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MULTIPLE BIFURCATION PROBLEMS
OF CODIMENSION TWO*

JOHN GUCKENHEIMER

Abstract. The term bifurcation in this paper refers to changes in the qualitative structure of any solutions
to a system of ordinary differential equations with a varying parameter. This paper is about multiple
bifurcations for which there is a multiple degeneracy in some feature of the system and a multi-dimensional
parameter in its definition. The most immediate motivation for studying these problems is that they occur in
the mathematical descriptions of many natural phenomena, but their importance extends beyond the fact that
they can be identified in applications. Multiple bifurcations provide both a means of organizing knowledge
about simple bifurcations and a powerful analytical tool for locating complicated dynamical behavior in some
models. An intuitive reason for these features is that near some multiple bifurcations, the effect of nonlinear
interactions is analytically accessible.

1. Introduction. In this section we present a description of the problems studied in
this review and an overview of the methods we use. The basic object of interest is a
system of ordinary differential equations depending upon parameters k

(1.1) Yc=fx(x)=f(x, ).

Here x R ", X R ’ and fx: " or f: R n n. We shall often represent the
system (1.1) by the vector field xx. The solutions of (1.1) are described by the flow

" R " with x(x, t) xx(t) being the value at time of the solution to (1.1) with
initial condition x xx(0). The individual curves xx: i !" are the orbits or trajectories
of the flow. Our primary attention is devoted to the way in which qualitative properties
of the trajectories depend upon the parameters ,. A bifurcation value ’o of the parame-
ter ? is one for which there are , in any neighborhood of ?0 such that the flows
and x0 are qualitatively different.

An example, here, illustrates these ideas. In the system of equations on 2

(1.2) 2,- Xx x2 -t- Xl(Xl2 -!-- x ), -’2- x, -- Xx2 -- x2(xl2 -I- x22 )
the origin is a globally stable equilibrium for X<0. However, when X>0, there is a
periodic trajectory which forms the circle x2 +x22-X. Thus a bifurcation (called the
Hopfbifurcation, cf. [2]) occurs at X 0.

We are interested in two general aspects of a bifurcation problem like (1.2):
(1) To what extent does the geometric structure of the solution set of the system

with parameters change if the system is perturbed? In particular, we want to examine
perturbations which add higher order terms to an expression like (1.2) which is ex-
panded as a Taylor series of an equilibrium.

(2) To what extent can one use the results of power series expansions to deduce the
presence of solutions with complicated asymptotic behavior near an equilibrium? In the
Hopf example (1.2), the Hopf bifurcation theorem (2.2) implies the Taylor expansion of
degree 3 at an equilibrium is usually sufficient information to determine the presence of
limit cycles near the equilibrium. We would like to study analogous problems for which
more complicated dynamical phenomena can occur near an equilibrium, in a way that
is determined qualitatively by a few terms in the Taylor expansion at the equilibrium.
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These two issues are closely related to the concept of structural stability [113]. We
do not attempt here to formulate our results in terms of structural stability, however.
Instead, we focus on particular dynamical features that can be described in each of the
problems we discuss. There have been efforts to develop a more systematic bifurcation
theory within the context of dynamical systems theory, but the fruits of these efforts do
not seem ripe for the kinds of applications discussed here. Nonetheless, our attitude is
motivated by the analogy with problems of singularity theory for smooth maps [126],
where a systematic theory has been developed [84].

The particular bifurcation problems we study are associated with a system (1.1) for
which there is an equilibrium point (x0,0) (this means f(x0,0)=0) which is not
hyperbolic. The Jacobian derivative of f with respect to the x variables has zero or pure
imaginary eigenvalues. The cases in which there is a single zero eigenvalue or a single
pair of pure imaginary eigenvalues are well known and reviewed briefly in 2. The cases
with double degeneracy: (1) a two-dimensional nilpotent space, (2) one zero eigenvalue
and a pair of pure imaginary eigenvalues, or (3) two pairs of pure imaginary eigenval-
ues are our principal object of study.

In problems with a double degeneracy at an equilibrium, at least two parameters
are needed to capture all of the qualitative features which are present in perturbations
of the original system. Expressed in terms of Taylor series expansions, we view a
problem with multiple degeneracy in the following way. The vector fields which yield a
certain type of bifurcation problem are those which satisfy special conditions. For
example, the vector fields with a two-dimensional nilpotent subspace at an equilibrium
are those for which P(0) (dP/d)(0) 0, where P() is the characteristic polynomial
of the Jacobian derivative at the equilibrium. The number of independent conditions
(two in the example) on the Taylor series is the codimension of the set of vector fields
satisfying the special conditions. We also call this the codimension of the bifurcation.
Thus, a vector field defined near an equilibrium with no eigenvalues on the imaginary
axis has codimension zero. The problems addressed in this paper have codimension
two. In addition to the special conditions which determine the type of bifurcation
problem, there will be additional inequalities that the Taylor series is required to
satisfy. In the example of a two-dimensional nilpotent subspace, we require
(d2P/d2 )(0) ::f= 0, to prevent the occurrence of a three-dimensional nilpotent subspace,
as well as other inequalities that will be specified later.

Given a vector field x with a bifurcation of codimension k, we embed x in a
k-dimensional family xx which is transverse to the set of vector fields satisfying the k
special conditions determining the bifurcation. For example, a two-parameter family xx
transverse to the vector fields with an equilibrium having a two-dimensional nilpotent
space is defined by

The process of determining these transversal families is discussed in 3. If we are lucky
then a transversal family xx with x0 x will contain all of the qualitative dynamical
features that exist in perturbations of x. (The family (1.3) does not have this property.)
In all cases, inequalities must be imposed upon nonlinear terms in the Taylor expansion
at the equilibrium of x in order to have the desired properties of stability with respect
to perturbations. When one locates a transversal family xx which is stable to perturba-
tions, one says (loosely) by way of analogy with singularity theory that xx is a universal
unfolding of x.
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There are two remarks which we make about this approach to bifurcation prob-
lems. First, the applications of the theory often involve systems which possess a
symmetry. Symmetries of the physical problem should be carried over to its mathemati-
cal description as a bifurcation problem. In discussing stability with respect to per-
turbations, it is necessary to specify whether the perturbation should be restricted to
those which also satisfy the given symmetry. When only symmetric perturbations are
considered, then one obtains a new list of codimension k bifurcations for each new
symmetry group that is studied. We shall consider results obtained for a few very
simple symmetry groups in this paper.

The second remark concerns the relationship between the results described in this
paper and other approaches to bifurcation theory. There are three issues to be consid-
ered: 1) static vs. dynamic bifurcations, 2) the imposition of trivial solutions, and 3) the
resence of a distinguished bifurcation parameter.

(1) One part of the solution of a bifurcation problem is the determination of how
equilibrium solutions depend upon the parameter values. This static problem is a
substantial subject in its own right and is much more amenable to systematic study
(using singularity theory) than the dynamic problem of determining the nonequilibrium
solutions as well. In the static problem one is interested in the zero set of families of
maps fx: R n- R n. The qualitative structure of the zero sets is preserved by coordinate
transformations of the form gx--q’x fx o qx with qx, qx: "--’" invertible mappings
depending smoothly on , and subject to the condition that qx(0)= 0. These coordinate
transformations can be used to make the linear parts of the Taylor expansion at two
equilibria the same if the two Jacobian derivatives have the same rank. On the other
hand a smooth change of coordinates y=q(x) transforms the differential equation
=f(x) into p-Dq,,-,(y)f(q-(y)). This yields a similarity transformation on the
linear part of the Taylor series at an equilibrium. Thus the eigenvalues of the Jacobian
derivative are unchanged by the type of coordinate change and problems that are
indistinguishable in the static theory appear very different when considered dynami-
cally.

(2) The second issue involved in comparing our results with other approaches to
bifurcation theory involves the hypothesis that there be a "trivial" solution. Perturba-
tion methods frequently assume that there is an equilibrium fixed at 0, and nonzero
solutions with a specified dependence on a small parameter e are sought. Customarily,
the equilibrium at 0 remains an equilibrium for all values of all the parameters in the
problem. In our setting, we can easily treat both the general case and this case in which
there is the constraint that fx(0)- 0 for all ,.

(3) The issue of a distinguished parameter arises when one replaces individual
vector fields as the basic object of study by one parameter families of ector fields. If
one adopts the latter point of view, then one wants to study all of the perturbations of a
given one-parameter family which has a degenerate bifurcation. With luck, one hopes
that there is a finite dimensional family of one-parameter families of vector fields that
contains all of the qualitative features found in perturbations of the degenerate one-
parameter family. Here there is a two-tier structure in which the single parameter of the
original system is distinguished from the additional parameters in the problem. Asymp-
totic methods usually distinguish a single parameter in terms of which nonzero solu-
tions are expanded.

In this paper we take a definite stand on issues (1) and (3). Dynamic bifurcation
problems without distinguished parameters are studied. This contrasts with the recent
work of Golubitsky and Schaeffer [38] in which static problems with distinguished
parameters are considered.
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Sections 3-5 are organized around the common strategy which can be used to
"solve" bifurcation problems of codimension two. We give here an outline of the steps
in this analysis.

I. The first step in analyzing a bifurcation problem involves the use of smooth
coordinate changes to reduce the arbitrariness in the Taylor expansion of a vector field
with a degenerate equilibrium. The normal form theorem (3.2) of Takens [125] is a
procedure for transforming coordinates near an equilibrium so that the Taylor series in
the transformed variables is particularly simple. This gives us a much smaller collection
of problems whose dynamics have to be explicitly analyzed. The theme, which recurs
later, is that the nonlinear terms of the normal forms control the interaction of the
degenerate modes which are undergoing bifurcation. A second, technical bonus of
applying the normal form theorem to a problem is that is allows one to reduce many of
the dynamical questions for codimension two bifurcations to considerations involving
two dimensional vector fields.

II. The second step in analyzing a bifurcation problem is the computation of a
transversal family containing the normal form of the vector field with a nonhyperbolic
equilibrium. This computation is done in terms of the first degree Taylor expansion at
the equilibrium. Arnold [6] gives a more comprehensive treatment of this aspect of the
analysis.

III. The third step of the analysis is the determination of the dynamics contained
in these transversal families. We work here with systems obtained by truncating the
normal forms with the terms of a certain degree. Even for these truncated systems,
some aspects of the dynamics are subtle. As remarked above, the truncated normal
forms for codimension two bifurcations at equilibria all separate so that much of the
dynamics can be deduced from a planar subsystem. Some of these planar systems have
periodic solutions and care is required for their study.

IV. We examine structural stability properties of solutions obtained in III for the
planar subsystems of the normal form families. If the phase portraits of these families
are insensitive to perturbations (including the addition of higher order terms in the
Taylor series), then we consider the analysis of the planar flows complete. However, we
do encounter cases in which the normal forms truncated with nonlinear terms of only
one degree lead to individual flows which have a family of periodic solutions. To
remedy this structurally unstable situation, we truncate the normal form at a higher
degree and repeat the analysis of step III. Our treatment here is incomplete in that we
do not evaluate certain integrals. We presume that most choices of the additional
nonlinear terms lead to structurally stable planar families, but the proof of this relies on
additional study of the integrals which we do not evaluate.

V. For systems with imaginary eigenvalues, another difficult step remains before
one has obtained a complete picture of the dynamics of the corresponding bifurcation
problems. This step is the description of the flows in three and four dimensions which
correspond to the planar flows for the reduced systems studied in 3 and 4. The
reduction was made on the basis that the truncated normal forms have a rotational
symmetry, but the full system may be only approximately symmetric. By using a C
change of coordinates, the original system can be made to differ from a symmetric one
by a function which is flat (has zero Taylor series) at the bifurcation point. Section 5
explores the consequences of asymmetry. For quasiperiodic orbits, the asymmetry
introduces small divisor problems which require the apparatus of the KAM
(Kolmogorov-Arnold-Moser) theory for their reduction. There are also questions



MULTIPLE BIFURCATION PROBLEMS 5

about transversal homoclinic orbits and hyperbolic invariant sets which arise. We refer
the reader to [5] for descriptions of these resonance phenomena.

The results of the analysis are summarized by the planar bifurcation diagrams
located at the end of the paper. These, diagrams partition a neighborhood of the origin
in the two-dimensional parameter plane into sectors. Each of these sectors represents a
set of systems which have similar dynamics. Some of the sectors ,subtend large angles at
the origin, but in some cases there are thin regions with boundaries that approach the
origin tangentially. Each sector boundary is associated with a simpler elementary or
codimension one bifurcation that is described in 2. Some of the boundaries which
involve the resonance phenomena discussed in 5 are. in fact "fuzzy." These fuzzy
boundaries represent small portions of the parameter plane near the bifurcation in
which there are dynamical phenomena that we cannot fully describe.

Section 6 is devoted to four representative examples to which the theory has been
applied.

1. The variational Van der Pol equations [21] include a codimension two bifurca-
tion to which the results of 3 and 4 can be applied directly. These equations arise in
the study of a sinusoidally forced, weakly-nonlinear oscillator.

2. Following Holmes [56], the motions of an elastic panel in response to a fluid
flow across it can be studied with the techniques in this paper.. Explicit calculations
require an initial finite dimensional approximation to the defining system of partial
differential equations.

3. A nonlinear reaction-diffusion problem is discussed for which the normal form
associated with a system with infinite degrees of freedom can be calculated [41]. Apart
from the issue of showing that there is no "hidden" symmetry, this application gives
the first analytic demonstration of "chaotic" solutions to a system of partial differential
equations.

4. Thermohaline convection is a bifurcation problem of fluid mechanics for which
codimension two bifurcations occur and normal forms can be calculated with suitable
boundary conditions [74]. This example also clearly demonstrates the essential role of
center manifolds in the determination of normal forms.

We have attempted to present the results in this paper in a widely accessible form.
Therefore, we have not tried to state the strongest possible structural stability results
for codimension two bifurcations. Instead our goal has been to go as far as a few
systematic methods will take us, indicating in 5 the issues whose resolution requires
more sophisticated techniques. One might hope that these methods could also be
extended to bifurcations of higher codimension, but problems with more degeneracy in
the linear part at an equilibrium require substantial new insights into the calculations of
the qualitative features ,of three-dimensional flows. Thus, we expect that analysis of
codimension three bifurcations will require methods which go well beyond those used
in this paper.

2. Codimension one. This section is a rapid review of some codimension one (or
elementary) bifurcations of a dynamical system. It provides background for the discus-
sion of codimension two bifurcations in the next three sections. Here we consider a
vector field Xx or system of ordinary differential equations x=fx(x) defined on R with,R a single parameter. We are interested in the variation of equilibria and periodic
orbits of Xx as functions of ). In particular, we initially focus open changes in the
equilibria and periodic orbits of Xx. An equilibrium p is a solution of fx(P)--0. A
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periodic orbit is a nonequilibrium trajectory with xx(t)-xx(O) for some t>0. Bifurca-
tions occur when there are changes in the number or stability of equilibria or periodic
orbits of the vector field with varying parameter ,.

To obtain a picture of the simplest bifurcations, we must first recall some funda-
mental results about equilibria and periodic orbits which are not bifurcating. If p is an
equilibrium of Xx, then the flow of Xx near p is studied initially by linearizing Xx at p.
One replaces the system of equations : =fx(x) by the linear system -(Dfx( p))j. If the
n n matrix Dfx(x) has no zero or pure imaginary eigenvalues, then the equilibrium is
called hyperbolic. At a hyperbolic equilibrium, one can write R as a direct sum of two
invariant subspaces E U, E such that the spectrum of Dfx(p) restricted to E u is in the
right half plane, and the spectrum of Dfx(p) restricted to E is in the left half plane.
Solutions x(t) of the linear system which lie in E tend to the origin as t -oo, and
solutions which lie in E tend to the origin as + oo. Other solutions diverge both as

oo and t--, + oo. The stable manifold theorem [47] asserts that a similar property is
true for the original vector field Xx. There are submanifolds, the stable manifold W and
unstable manifold W, invariant under the flow of Xx with the property that xx(t)p as
t--, + oo if xx(0) W and xx(t)p as t--, -oo if xx(0) W. There is a neighborhood
U of p such that all solutions not in W or Wu leave U both for times t>0 and times
t<0. The tangent spaces of W and W at p are E and E. Hyperbolic equilibria vary
smoothly with , as do compact subsets of their stable and unstable manifolds.

Bifurcation at an equilibrium requires that the linearized vector field have zero or
pure imaginary eigenvalues. In the simplest situations, these degeneracies of the lineari-
zation lead to the saddle node (or limit point) and Hopf bifurcations, respectively. In
each case, the local structure of the flow near the bifurcating equilibrium p is controlled
by specific nonlinear terms in the Taylor series of fx at p when these are not zero. This
is a common theme for all the bifurcations we study. Another aspect of the analysis of
all the bifurcations we study is that an extension of the stable manifold theorem allows
one to consider dynamical behavior in a low dimensional submanifold of R". The
center manifold theorem [83] implies that hyperbolic behavior persists in the directions
complementary to the eigenspaces for eigenvalues which lie on the imaginary axis [98].
Thus, for the saddle node and Hopf bifurcations, one need only study one- and
two-dimensional vector fields to understand the dynamics near a general bifurcation of
these types. We note that constraints or symmetries affect the analysis of the saddle
node bifurcation.

Saddle node. The prototype (normal form) for the saddle node bifurcation is the
one-parameter family of vector fields defined by :-)-x2 on l. Here the flow is
trivial with all solutions xx(t) -oo when <0 and __+ o. At 2-0, a single equi-
librium appears at x-0. It is stable from the right and unstable from the left. When
>0, there are two equilibria, one stable and the other unstable. The two equilibria
separate from each other at a rate comparable to V-. The saddle node is shown in Fig.
1. The extent to which these properties are satisfied by the general saddle node
bifurcation is expressed by the following theorem.

THEOREM 2.1. Let Xx be a one-parameter family of vector fields on . Let p be an
equilibrium point for Xxo for which the following hypotheses are satisfied:

(SN 1) The linearization of Xx0 at p has a simple eigenvalue 0 with right eigenvector v
and left eigenvector w. The remainder of the spectrum of Xx0 lies off the
imaginary axis.

(SN2) w((a/Oh)X,(p;,o))=/:O.
(SN3) w( OXxo(p))( v, v):/:O.
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Then there is a smooth curve of equilibria for Xx in Rn which has a quadratic tangency
with the hyperplane ( o ). If (x , ) and (x2, h ) are two equilibria ofXx near ( p, 0 ),
then x and x2 are hyperbolic and Idim WS(x)- dim WS(x2)l 1. The set of one-parame-
ter families of vector fields satisfying (SN I)-(SN2) is an open set in the space -=C("
,). Here quadratic tangency of a curve with a hyperplane means that the second

derivative of the curve does not lie in the hyperplane.

saddle node

transcritical

pitchfork

FIG. 1. Codimension bifurcations of equilibria.

This description of the saddle node bifurcation is inappropriate in settings for
which hypotheses (SN2) and (SN3) cannot be satisfied. Two of these deserve mention
as alternatives to the saddle node bifurcation. In classical bifurcation problems, one
usually has the distinguished trivial equilibrium at the origin which is assumed to exist
for all values of ,. Accordingly, hypothesis (SN2) cannot be satisfied at a bifurcation of
the trivial equilibrium. The appropriate condition which replaces (SN2) is that
w((O/)(DXx(O;o))(v))vO and the prototype for this new kind of bifurcation is the
equation Yc-Ax-x. This system describes a transcritical bifurcation in which two
smooth curves of equilibria cross at ,-0 and exchange stability there. Within the class
7. of systems which satisfy the constraint fx(0)-0 for all ,, transcritical bifurcation of
the trivial equilibrium is typical behavior. If the constraint is dropped then the trans-
critical bifurcation can be perturbed to either a pair of saddle node bifurcations or to
no bifurcation at all. Figure illustrates transcritical bifurcation.

The second alternative to the saddle node involves systems with a simple symme-
try. Examples often arise in which the systems .t--fx(x) are equivariant with respect to
a reflection. In a one-dimensional system, this means that fx(x)= -fx(-x) or fx is odd
for all ,. For such systems, both (SN2) and (SN3) will fail. The symmetry automati-
cally implies that there is a trivial equilibrium, so (SN2) is once again replaced with the
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condition w(()/)h)(DXx(0))(v)) 4 0. The hypothesis (SN3) is replaced by the assump-
tion w(D3Sx(0))(/9,/9, v)0. The simplest example satisfying these assumptions and the
symmetry condition is :t--,x-x3. The typical bifurcation behavior within the class of
symmetric systems is a pitchfork or symmetric bifurcation in which a curve of nontrivial
equilibria passes through the point of bifurcation (0,,0) with a quadratic tangency to
the plane Rn {’0). Pitchfork bifurcations can be perturbed to systems with either one
saddle node or three saddle nodes if the symmetry condition is dropped. The theory of
Golubitsky and Schaeffer describes these perturbations, though much of the theory in
this example was understood previously.

The bifurcation diagrams in Fig. show the loci of equilibria in Rn R for these
three different bifurcations involving one zero eigenvalue at an equilibrium. Each
represents structurally stable behavior within different classes of systems. The form of
the prototypical examples comes from the normal form analysis and transversality
considerations discussed in 3.

Hopf bifurcation. The second kind of codimension one bifurcation which involves
an equilibrium p occurs when the linearized vector field at p has a simple pair of pure
imaginary eigenvalues and no other eigenvalues on the imaginary axis. This bifurcation
is called Hopf bifurcation in recognition of E. Hopf’s contribution to its study (see [86]).
The simplest expression of a system with a nondegenerate Hopf bifurcation is given in
polar coordinates by

(2.1) ?=r(X-r2), /=1.

From a static point of view, there is no bifurcation of equilibria at , =0. However, the
stability of the equilibrium solution at the origin changes as , changes sign and this is
accompanied by a change in the number.of periodic orbits. The periodic solutions of
(2.1) form the smooth surface defined by r 2 with quadratic tangency to the plane- {0}. See Fig. 2. Computationally, the Hopf bifurcation provides an important
technique for locating periodic solutions of a system. Without having to integrate the
differential equations, the change in stability at the equilibrium signals the occurrence
of periodic orbits and their approximate location near the bifurcation. The following
theorem gives a precise statement of these results.

FIG. 2. Hopf bifurcation.

THEOREM 2.2. Let Xx be a one-parameter family of vector fields on 2. Let p(X ) be
an equilibrium for Xx for which the following hypotheses are satisfied:

(H l) The linearization of Xx at p() has a simple pair of complex eigenvalues c(),
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() with Rea(0) 0. All other eigenvalues of the linearization ofXx at p()
have nonzero real parts.

(H2) d/dX)(Rea(X )) va O.
Hypotheses (HI) and (H2) imply that in X there is a smooth two-dimensional

surface o tangent to the eigenspace of a(,o) and (o) at P(o) which comprises a family
ofperiodic orbits for the vector fields Xx. Moreover o is contained in a three-dimensional
submanifold M of "X in which Xx can be expressed via polar coordinates on M (3

(R" X (, }) in the form
i’.-- r( a, + br2 ) + higher order terms, = ( c+ dr2 ) + higher order terms.

Hypotheses (H 1) and (H2) imply that neither a nor c is 0 in this representation.
(H3) b:0.
Hypotheses (H1)-(H3) imply that o has quadratic tangency with the hyperplane

2 ( o } at ( p, o). Near p, o), the signs of a and b and the spectrum of the linearized
equations determine the stability of the equilibria p(,) and the periodic orbits in o.
Systems satisfying (H1)-(H3)form an open set of one-parameter families of vector fields
in Coo(" X ,’).

The Hopf and saddle node bifurcations constitute a complete list of the codimen-
sion one bifurcations of equilibria in general one-parameter families of vector fields.
More degenerate bifurcations can be perturbed to a succession of saddle nodes and
Hopf bifurcations by small Co changes in the family. It is of considerable interest to
determine which successions can occur when a somewhat more degenerate bifurcation
is perturbed. Results of this kind are readily obtained from the analysis of codimension
two bifurcations in the next sections. Before proceeding, however, we need to discuss
other kinds of codimension one bifurcations which do not involve qualitative changes
in equilibria.

For bifurcations of periodic orbits, one has theorems analogous to those stated
above which describe saddle node and (secondary) Hopf bifurcations for periodic
orbits. In addition, there is a new type of bifurcation for periodic orbits, the flip
(periodic doubling or subharmonic) bifurcation. The standard technique for investigat-
ing the stability and bifurcation of periodic orbits of a flow begins by choosing a
cross-section and defining its (Poincarh) return map. The cross-section is a hypersurface
M"-! C which is transverse to the vector field and intersects the periodic orbit in
exactly one point p. The return map O: M--,M is defined by sending x to the first point
on the trajectory through x which lies in M. The map O has p for a fixed point and is
defined in a neighborhood of p in M. The use of the return map reduces many
questions about the periodic orbit to corresponding questions about fixed points of a
system defined for discrete times. For discrete systems there is again a stable manifold
theorem. Here hyperbolicity requires that DO(p) has no eigenvalues of absolute value. 1.

The stable manifold theory works as well for discrete time systems as for continu-
ous time systems. Equilibria are replaced by fixed points, and pure imaginary eigenval-
ues are replaced by eigenvalues of modulus 1. We continue to use the notation WS(p)
and WU(p) for the stable and unstable manifolds of a fixed point p for the discrete
system obtained by iterating the map : M--, M. There are three generic codimension
one bifurcations for fixed points in one-parameter families of discrete systems. These
correspond to eigenvalues + 1,- 1, and pairs of complex .eigenvalues of modulus 1.
Complex eigenvalues which are third or fourth roots of unity are special.

THEOREM 2.3. Let 8x: M--,M be a one-parameter family of smooth maps. When

’ o assume that Ox has a fixedpointp at which the following conditions are satisfied:
(SN 1) The derivative DOx0(p) of 8x0 has a simple eigenvalue with right eigenvector
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v and left eigenvector w. The remainder of the spectrum ofD0xo(p) ties off the
unit circle.

(SN2) w((OO/O,)(p))vO.
(sr3) w(Z)2Oxo(p)(v, v))o.

Then there is a smooth curve offixed points for 0x in M which has quadratic tangency
with the hyperplane M {Ao}. If (x,h) and (xz,A) are two distinct fixed points near
(p, ho), then Idim W(x)-dim W(x,_)l 1.

THEOREM 2.4. Let 0x: M--,M be a one-parameter family of smooth maps. When
ho assume that A has a fixedpoint p at which the following conditions are satisfied:
(SH1) The derivative DOxo(p ) has a simple eigenvalue -1 with left eigenvector v

and right eigenvector w. The remainder of the spectrum of D0xo(p) lies off the
unit circle.

Hypothesis (SH1) implies that there is a smooth curve x(X) offixed points of 0x with
X(Ao)=p. Let a(,) be the continuous function such that a(,) is an eigenvalue of
DOx(x()) and a(Ao)= 1.

(SH2) (d/dX)(a(,o))vO.
(SH3) w(D30o(P)(V,V,V))O.
If hypotheses (SH1)-(SH3) hold, then a curve ofperiodic orbits ofperiod 2 bifurcates

from (p, ho) in MR. This curve has quadratic tangency with the hyperplaneM {ho}.
THeOReM 2.5. Let 0x: M M be a one-parameterfamily of maps which has a smooth

curve of fixed points x(). Assume that the derivatives DOx(x(7)) have a continuous
family ofsimple complex eigenvalues a(,), (h) such that the following conditions hold:

(HI)’ At X(Xo)=p, [a(ho)[=l and all other eigenvalues of DOxo(p ) beside
a(o), if( o) lie off the unit circle.

(H2)’ (d/dh)la(Xo)lvO.
If ai(,o)V for i=3 or 4, then hypotheses (HI)’ and (H2)’ imply that there is a

smooth change of coordinates so that the expression for 0 in polar coordinates in the plane
spanned by the eigenvectors a(ho),(o) is

0x( r, q) (r(1 + a(X- ’o) + br2 ), q’ + c+ drz) + higher order terms.

Hypotheses (H 1)’ and (H2)’ imply that neither a nor c is zero.
(H3)’ bye0.

Hypotheses (H1)’-(H3)’ imply that there is a two-dimensional surface o (not infinitely
differentiable!) having quadratic tangency with the hyperplaneM {ho} CMX which is
invariant for 0: 0(o)=o. lfof)(M {}) is larger than a point, then it is a simple closed
curDe

Note here that the dynamics of 0 on the invariant curves produced by this theorem
remain to be determined. This involves questions of resonance and small divisors which
we postpone until 5. In addition, the cases a(X0) and c((0) have strong
resonance for which additional terms enter the special polar coordinate representations
of 0 stated in the theorem [8]. These additional terms reflect more complicated behavior
for the typical family having bifurcations with third or fourth roots of unity as
eigenvalues.

The final type of codimension one bifurcation involves a lack of transversality
between the stable and unstable manifolds of equilibria or periodic orbits. Since they
involve trajectories far from these special orbits, they have a more global character than
the bifurcations considered thus far. Nonetheless, saddle connections for two-dimen-
sional flows are an important part of our analysis of codimension two bifurcations of
equilibria. If a trajectory is asymptotic to a single hyperbolic equilibrium or periodic
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orbit for both t--, + oo and t-oo, then it is called homoclinic. A nontransversal
intersection of the stable manifold of an equilibrium or periodic orbit with the unstable
manifold of another is a heteroclinic trajectory. The typical lack of transversality which
occurs in codimension one depends upon whether equilibria or periodic orbits are
involved because the dimension counts differ. (For a periodic orbit 3’, dim
Wu(/)-n+ 1, allowing the possibility of transversal intersections along a homoclinic
trajectory.) A full discussion of the phenomena involved in the lack of transversality
bifurcations is highly technical and would be out of place in this review. We restrict
ourselves to the one result which will be used in the next section.

THEOREM 2.6 [114]. Let Xx be a one-parameter family of vector fields on R 2 with a
saddle point x()). Assume that when ’=’0, there is a trajectory which tends to
p=x(,0) as t--,+__ oo. If the trace of DXxo(p ) is not zero, then there is an e>0 and a
one-parameter family ofperiodic orbits r(h ) for e + ho>2>)o or e 2o<2< such that
r(A)--, as ’o. The stability of the ,r(A) is determined by : r(,) is stable if,<O and
unstable if > O.

3. Codimension two bifurcations of equilibria i. Normal forms. Using the codimen-
sion one bifurcations described above as a basic dictionary, let us turn to the analysis of
codimension two bifurcations of equilibria. We consider a two-parameter family Xx of
vector fields on R n defined by the equations =fx(x) =f(x, A) with fx: n a
smooth map. We shall assume that within a specified class of two-parameter families of
vector fields there is a value h0 of h for which Xx0 has a degeneracy more complicated
than those described in the last section. With this assumption, we want to describe as
much as possible about the flows of Xx for , near ’0. In particular we shall draw
diagrams of the A plane showing regions in which the Xx have similar dynamic behavior
and the curves bounding these regions along which various codimension one bifurca-
tions take place. Experimentally based diagrams of this kind can be found in the
literature of fluid dynamics [20], but little emphasis has been placed upon understand-
ing the intersections of curves representing different bifurcations in that context.

THEOREM 3.1. Let .- C(In 2, R n) be the class of general two-parameter fami-
lies of smooth vector fields. Any two-parameter family of vector fields in - can be
perturbed so that the only bifurcations of equilibria are saddle nodes, Hopf bifurcations, or
one of the followingfive types:

(i) XXo has an equilibrium p at which DXxo has a simple zero eigenvalue and no other
eigenvalues on the imaginary axis. Hypothesis (SN3) of Theorem 2.1 fails, but a corre-
sponding cubic term is not zero.

(ii) XXo has an equilibrium p at which DXxo has a simple pair of pure imaginary
eigenvalues and no other eigenvalues on the imaginary axis. Hypothesis (H3) of Theorem
2.2 fails, but a corresponding fifth degree term is not zero.

(iii) Xxo has an equilibrium p at which DXxo has zero as an eigenvalue of multiplicity
two and no other eigenvalues on the imaginary axis. DXxo is nilpotent of rank on the
generalized eigenspace of zero (i.e., the Jordan canonical form on this subspace is (o))
and higher order conditions specified below are satisfied.

(iv) Xxo has an equilibrium p at which DXxo has zero as a simple eigenvalue and a
simple pair of pure imaginary eigenvalues. No other eigenvalues of DXxo(p ) lie on the
imaginary axis, and higher order conditions specified below are satisfied.

(v) Xxo has an equilibrium p at which DXxo has two simple pairs of pure imaginary
eigenvalues and no other eigenvalues on the imaginary axis. Nonresonance conditions and
higher order conditions specified below are satisfied.
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We shall summarize briefly some of the history of these different bifurcations.
Case (i) is a dynamic version of Thom’s cusp catastrophe [126], and its unfolding is the
same in this context as it is in Thom’s. The degenerate Hopf bifurcation (ii) has been
studied by Takens [122] and Golubitsky and Langford [37]. Each gives a full picture of
the unfolding of a persistent family. The double zero eigenvalue (iii) was analyzed
independently by Takens [124] and Bogdanov [16]. Their work established the ap-
proach to codimension two bifurcation problems adopted here. The bifurcations (iv)
have been studied in various contexts by Keener [69], [70], Langford [77], Guckenheimer
[41], and Holmes [58]. The double Hopf bifurcation has been studied only recently and
the work of a number of investigators will undoubtedly appear shortly after this is
written.

In the remainder of this review we shall concentrate upon the analysis of cases (iii),
(iv) and (v) from Theorem 3.1 which involve double degeneracies for the linearized
problems at an equilibrium. For cases (iii) and (iv) we discuss, alternatives which
involve restricting our space of vector fields to satisfy a constraint or symmetry of the
sort discussed in 2 with reference to the saddle node. In many cases, flows near a
codimension two bifurcation are completely determined by considerations involving
planar vector fields, but other cases involve resonance phenomena which are discussed
in 5. To emphasize the common structure of the analysis employed in the different
cases, we shall proceed by applying each step of the strategy outlined in the introduc-
tion to all cases simultaneously. The reader primarily interested in the results which
pertain to a given case can find these presented succinctly in 4 in Figs. 3-9.

The first step involves making smooth coordinate changes which simplify the
expression of our systems as much as possible. The practical meaning of this statement
is that we try to transform to zero as many nonlinear terms as possible in the Taylor
series of the vector field at the point of bifurcation. The procedure for doing so is
inductive, working with terms of successively higher degree in the Taylor series. At each
stage of the calculation one computes the image of a certain linear map that can be
expressed in Lie algebraic terms. Terms in the Taylor series can be changed by addition
of elements lying in the image of the linear map, so coordinate, changes are possible in
which the nonlinear terms of the vector field in new coordinates lie in specific comple-
ments to the images of the linear maps. The resulting expressions are called the normal
forms of the vector fields.

Let us describe the procedure of calculating normal forms in more detail. Let X:
R n__, R be a vector field and 4: "--"" be a locally defined diffeomorphism which
defines a change of coordinates. The expression of X in the new cooridnates is Y(x)--
D-x(X(-(x))). We are particularly interested in vector fields which have an
equilibrium at the origin and coordinate changes which leave the origin fixed. The
effect of such coordinate changes on the Taylor series of X at the origin can be
computed by expanding both and X in their Taylor series:

k k

Z
i=1 i=1

Here A(x)-,".j_ Aij(x))/Oxj is a vector field whose coefficients Aj(x) are homoge-
neous polynomials of degree and P; is a vector valued homogeneous polynomial of
degree i.

The linear terms of Y are the linear terms of Dq,X q-. Since the Taylor series of
q- begins with P-, the linear part of Y is PAP-1. We may choose PI so that the
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linear part of the vector field in new coordinates is in Jordan canonical form and then
assume that all further coordinate changes have Pt as the identity. To proceed induc-
tively, we assume that l> is chosen so that PE-P3-""-P-l--O and P1 is the
identity. Then the expression of X and Y will have the same terms of degree smaller
than and the terms of degree will differ in an easily computable way. If (x)-x/
Pl(X)+o(l), then k-t(x)-x-P(x)+o(l) and Dck(x)=id+DP(x)+o(l+ 1). There-
fore, Y has Taylor expansion of degree

(id+DPt(x))" E Ai(x-Pl(X))- . Ai(x)+DPtAt(x)-A, Pt(x)+o(l).
i=1 i=1

Algebraically, this last formula can be expressed by introducing a linear map A"
Hz Hz where Hz is the vector space of vector valued homogeneous polynomials of
degree l. The map is defined by Az(PI)-DPzA -A pz. IfA and Pz are both interpre-
ted as vector fields then this is the adjoint action of A on Ht: A(Pt) is the Lie bracket
[A t, Pt]. The nice aspect of this calculation is that the degree terms of X have been
changed in a way which depends linearly on the elements of HI. This allows one to
carry out normal form calculations quite effectively. One lets increase, thereby induc-
tively changing the terms of X of higher degrees to the desired form. However, one must
be careful in carrying through the procedure with examples to remember that the
coordinate change at stage will affect higher degree terms of X in a more complicated
nonlinear fashion. The end result of these computations is expressed by the following
normalform theorem.

THEOREM 3.2 [132]. Let X be a vector field on R with an equilibrium at O. Denote
DX(O) by L and by Ht the space of vector fields on whose components are homogeneous
polynomials of degree l. Define the linear map ad L" Ht Ht by adL(P) L, P ]. For
each l> 1, let Bt be the image of adL andpick a complementary subspace Gt: Ht-Bt+ Gt.
Then, for any k> 1, there is a polynomial change of coordinates in leaving the origin
fixed, so that the Taylor series of degree k of Dck" X -l is ]---1 Ct(x)+o(k) with

Ct Gtfor <l<_k.

Before applying the normal form theorem to bifurcation problems, we recall some
history of the linearization problem for hyperbolic equilibria. This is the problem of
whether there exists an analytic or smooth change of coordinates near an equilibrium
for which the vector field becomes linear. Formally, the solution to this problem
requires that the map adL" HHt in the normal form theorem be surjective for all
l> 1. The eigenvalues of adL acting on H have the form ?ti- j-- ajj, where the , i, ?j
are eigenvalues of L and the aj. are nonnegative integers whose sum is l. Thus the
formal solution of the linearization problem depends upon the eigenvalues of the
linearized vector field. If all the real parts of the eigenvalues of L have the same sign
and X is analytic, then Poincar6 proved convergence of the power series defining the
coordinate change. When L has eigenvalues in both the left and right half planes, then
the convergence question involves small divisors because the sums i-Ej--1 Oljkj do not
remain bounded away from zero. Nonetheless, Siegel [108] established convergence of
the formal coordinate change which linearizes X for a set of L whose complement has
Lebesgue measure zero on R". Sternberg [118] considered a C version of this theo-
rem. If smoothness conditions are dropped, then Hartman’s theorem [47] shows that all
vector fields are locally topologically equivalent to a linear vector field. (The kinds of
geometric phenomena which prevent analytic linearization when there are solutions of
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an equation ,;-E= ajkj.-0 are evident when one interprets the vector field as a
complex vector field [9].)

The linearization problem introduced above is never solvable at a nonhyperbolic
equilibrium. There will always be 1> for which the maps adL are not surjective. The
nonlinear terms coming from the complementary subspaces G in the normal form
theorem play an important role in determining the qualitative structure of the dynamics
of these systems and their perturbations. Applying the normal form theorem to our
bifurcation problems focuses attention on this issue. The relatively small number of
remaining nonlinear terms in the normal forms makes feasible a study of the dynamics
of the general equation with a given linear part. The computations which reduce the
general system to its normal form can be lengthy, but they are straightforward.

For codimension one and two bifurcation problems, there are five choices of L for
which we want to carry out the normal form computations:

(i) L=0 on R’, L=(0).

L is skew symmetric on R2 L_[O -w](ii) \ kl 0 I

(iii) L is nilpotent of rank on Nt, L=
0 0

(iv) Lisaninfinitesimalrotation (0 -w 0)one3
L- w 0 0

0 0 0

(v) L acts on 4, being skew
symmetric on two invariant

orthogonal subspaces,

0 --W 0 0

W 0 0 0
0 0 0 --W
0 0 W: 0

The first two of these cases correspond to the saddle node and Hopf bifurcations,
respectively. The last three correspond to the cases of codimension two bifurcations
from Theorem 3.1.

Cases (ii), (iv) and (v) above involve pure imaginary eigenvalues. It simplifies
matters to complexify the normal form calculations in these cases. Let us illustrate this
process with case (ii), the Hopf theorem calculations. Begin with 2 and coordinates
(x,y). If we allow each of x and y to become complex, then we introduce (z,) as the
coordinates relative to the basis

The matrix L becomes (-iw 0
0 w) in the new coordinates, or L- iw(-z O/Oz +/).

On H/. the eigenvectors of adL are the vector fields zi--O/Oz and zgt-O/O with
eigenvalues iw(l- 2j- 1), respectively. Therefore ad L is surjective on Ht if is even and
has a two-dimensional kernel if is odd. One choice of complementary subspace is the
plane spanned by (Z,)(!-1)/22/2 and (z)/-)/2O/O or the real vectors
(xZ+y)/-)/Z(x/x+y/y) and (x+y)/-)/(-y/x+x/y). In polar co-
ordinates these vector fields are rO/Or and rt- /0. For /---3, this computation
provides the justification for the expressions introduced in the Hopf bifurcation theo-
rem.
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We make an additional remark about the normal form for the Hopf bifurcation
before considering the codimension two problems. Note that the normal form ex-
pressed in polar coordinates has a right-hand side which is independent of the angular
variable (apart from the error term). Thus when the error terms are ignored, the normal
form equations are equivariant with respect to rotations 3’ of the plane. This means that
X([(x))=D’/X(x). This symmetry allows one to search for periodic orbits by finding
equilibria of the equation for the radial coordinate. A similar reduction here can be
accomplished also by the method of averaging [46] or a Lyapunov-Schmidt procedure.
From all three of these approaches, the fact that equations have an approximate
circular symmetry allows the effective use of the reduction. The reduced equation for
the radial coordinate has an odd right-hand side, this special form being a remnant of
the circular symmetry. The role of such "internal symmetries" will be important in our
dynamical analysis of codimension two bifurcations, because the normal forms can be
chosen to preserve the rotational symmetries of their linear parts.

Let us now compute the normal form equations for the codimension two bifurca-
tion problems. The results are summarized in 7. For the case of a two-dimensional
nilpotent space, we shall only need to compute the degree two terms of the normal
form. In R2,H2 is six-dimensional and adL: H2--,H is computed routinely. With
coordinates (Xl,X2) L- X2O/OXl, and adL(xO/Sx)- 2XlX20/)Xl,
adL(xx2O/Ox)- xO/Ox, adL(x/x)-O, adL(xO/Ox_)- 2xx20/3x2x/)x2, adL(xx2 O/Ox2)-xx2 O/Ox, adL(xO/Ox2)-x O/)x. We conclude that
the image of adL is four-dimensional with a complementary subspace spanned by
x O/bx2 and xx2 O/Ox. Any vector field X with linear part L can be transformed via
smooth coordinate changes to x2 O/Ox +(ax2 + bxx2)O/bx2 + O(Ix]3) for some con-
stants a and b. Linear rescaling of (x,x2,t) (which may reverse time) allows us to fix
a--b--1 if each is nonzero. Thus the general bifurcation problem involving a two-di-
mensional nilpotent space is reduced to studying the system of equations

.1 --X2, 2--XAr-XlX2

and its perturbations.
The next case on our list is (iv): L is a linear vector field on R with a pair of pure

imaginary eigenvalues and a zero eigenvalue. With coordinates (x,x2,x3) we may
assume L=w(x O/Ox2-x2O/OXl). By introducing complex coordinates in the (x,x)
plane, we write L=iw(-zO/Oz+)/)) as for the Hopf case described above. In
terms of the coordinates (z,,x3), the vector fields with monomial coefficients are
eigenvectors of ad L. We have

and

Thus, the complementary subspaces to ad L in the spaces H are spanned by polynomi-
als in z and xj. multiplied by the vector fields z /z, /, and /3x3. In particular,
the normal form of degree two expressed in cylindrical coordinates is
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/-- w+ o(1), -- arx + o(2), 23-bx+ cr 2 + o(2).

Once again the right-hand sides have 0 dependence only in the remainder terms. We
note also that the cubic terms will play an important role in the analysis of this
bifurcation. The normal form of degree three is given by

O-w+ dr2 + o(2),
i’-- arx + er +frx23 + 0(3),
Yc bx + cr 2 + gr2x3 + hx + 0(3).

The final computation of normal form we do is for a vector field X having two

pairs of pure imaginary eigenvalues --+ iw and --+ iw for its linearization at the origin.
We shall use coordinates (x,y,x,y) for R 4. If we complexify each (xi,yi) plane, then
the linear part of X can be expressed as

iw --z,-z + Y,-z + iw2 --z2-z2+Y-2 --L.

Once again the monomial vector fields are eigenvectors of ad L on the spaces H,

adL( z{,Y.,zJz’-Y.k22 -- ) [iw(k -Jl)+iwz(k2-J2)+ 8]zJl’kl Zjzk22 0

where 6= iw if (=z/and 6=-iwt if =t. The complementary subspace to the image
of adL is spanned by polynomials in (z) and (z22) times the vector fields z10/Oz l,

Y. )/OY., z2 O/Oz2 and 2/2, provided that w/w2 is irrational. If w/w2 is rational,
then extra resonance terms appear in the normal form.

In the nonresonance cases, the normal forms without the error terms are again
separable. With polar coordinates in the (x,y) and (x,y2) planes, the normal forms
of degree k (k odd) become

,--w + Bi(r2,r22)+ o( (r2 + r2
2 )’’-,,/2), i’i-riAi(r2 ,4)+ o((r2 + r22)’/),

where A; and B; are polynomials of degree (k-1)/2 with no constant term. The
absence of 0 dependence in the truncated equations for r means that this two-dimen-
sional system can be investigated initially and then information about the four-dimen-
sional system inferred from this. An analysis of the resonance cases requires that one
deal initially with equations that do not separate readily so that there is an invariant
planar subsystem, and will not be attempted in this review.

Before passing to the next step in our treatment of codimension two bifurcations,
the computation of unfoldings, we briefly indicate the changes necessary to deal with
systems possessing simple symmetries (in addition to the "internal" symmetries of the
normal forms themselves). If G is a group of symmetries acting on R n, then the vector
fields which are equivariant with respect to G form a subspace of the space of all vector
fields. Accordingly, we can perform the computation of normal forms within the class
of equivariant vector fields by restricting ad L to act on the subspaces of the H which
are equivariant. One simple case which arises in the applications we consider occurs
when there is a zero eigenvalue and a pair of pure imaginary eigenvalues. If this system
and its perturbations are equivariant with respect to a reflection symmetry in the
direction of the 0 eigenvalue, then all of the quadratic terms in the normal form
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disappear. The normal form in the class of equivariant vector fields looks much like
that in the case of the pure imaginary eigenvalues, except that one of the angular
variables is missing.

The next step in our analysis involves inserting two-dimensional parameters into
the problems so that we obtain a transversal family to the surface on which the
codimension two bifurcation occurs. For those problems (iii)-(v) of Theorem 3.1 which
have a double degeneracy of their linearizations, we can work in the context of families
of linear vector fields (perhaps with a constant term). There are the three cases (iii)-(v)
to consider, with alternatives for (iii) and (iv) depending upon whether 0 is constrained
to be an equilibrium.

Let us consider first the cases in which 0 is forced to remain an equilibrium. Here
one has the space of linear vector fields on R n, represented by n n matrices Mn. In M,
there is the real algebraic variety V consisting of matrices with eigenvalues having zero
real parts. We want to study L for which there is a submanifold M of V containing L
which has codimension 2 in M,. In the three cases (iii)-(v), M consists of matrices with
(iii) a 2 2 nilpotent Jordan block, (iv) a zero eigenvalue and a pair of pure imaginary
eigenvalues, or (v) two distinct pairs of pure imaginary eigenvalues. We may assume
that L is in Jordan normal form in each case, and then easily compute a transversal Ti
R2M,

0 0’ 2 h h 2

0 -w 0)(iv) L- w 0 0
0 0 0

T(X,X2)=

0 -w 0 0

w 0 0 0

0 0 0 -w:
0 0 w_ 0

w 0

0 0 h 2

T(Xl,)2)

’1 --W 0 0

1 1 0 0

0 0 )t 2 --W2

0 0 --W2 X 2

In the remaining cases that do not necessarily preserve 0 as an equilibrium, we consider
the space of affine vector fields and the possibility of perturbations without equilibria.
The transversals to the submanifolds M in the space of affine vector fields are

(vi) (T(X,,X2))

(vii)

x2
hi -4-X2XI
IX WX2

WX "- ,lX2

These transversals are combined with the normal form computations to give us the
two-dimensional families of vector fields whose dynamics we now study.

4. Codimension two bifurcations II. Dynamics. We now turn to the analysis of the
dynamics of the normal form equations. In each of the cases which have a double
degeneracy in their linear part, the normal form equations contain a pair which are
separated from the rest (involving angular variables) when remainder terms are ignored.
Our initial dynamical studies focus upon these planar systems. We begin by finding the
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equilibria of these systems as a function of the parameter and computing their stability.
This portion of the analysis is straightforward and requires mainly that care be taken in
enumerating the various possibilities which arise in the cases with pure imaginary
eigenvalues. The bifurcation diagrams in Figs. 7-1 3 contain the results of these calcula-
tions in terms of phase portraits superimposed on the bifurcation diagrams in the ?
parameter plane. In the X plane there are curves along which saddle node or other
codimension one bifurcations of equilibria take place. The phase diagrams show the
stability of equilibria using a solid circle for sinks, a cross for saddle points and an open
circle for sources. We have not distinguished the difference between sinks and sources
with real eigenvalues (nodes) and complex eigenvalues (foci). The crosses representing
saddles have arrows indicating the directions of stable and unstable manifolds. In some
cases, there are changes from sinks to sources, indicating the presence of Hopf bifurca-
tions and periodic orbits for the two dimensional flows.

The computations themselves which underlie these diagrams can be illustrated by
the case of a double zero eigenvalue. One begins with the system

The equilibria are found by setting 1--92--0 or x2-0, , +2x "-’X"]-XlX2=O. The
linearization of the equation at an equilibrium is defined by the matrix

( 0 1)L- k2+2x +X2 Xl

Saddle nodes occur when there is a zero eigenvalue at an equilibrium. Eliminating x
and x2 from the three equations :t-:t2-detL=0 gives the equation ,12-22/4-0.
This is the curve of the saddle nodes in Fig. 7. The condition for Hopf bifurcations to
occur is that 2-TraceL-0 together with detL>0. These equations yield x x2

?-0 together with ,
2 <0. This yields the Hopf curve H of the bifurcation diagram

in Fig. 7.
Note here a distinction between the case of a double zero eigenvalue and the cases

with pure imaginary eigenvalues. In the case of a double zero eigenvalue, the normal
form theorem together with linear rescaling of variables produce a unique equation
whose unfolding was to be studied. In the cases with pure imaginary eigenvalues, these
steps leave one with equations that still contain undetermined coefficients for higher
order terms. For the unfolding families to be persistent, these coefficients must satisfy a
number of inequalities. Several subcases for the dynamics of the equations are present,
and these are determined by the higher order coefficients. In the case of a zero plus
pure imaginary eigenvalues, there are four different subcases at this stage (after allow-
ing for time reversal). In the case of two pairs of pure imaginary eigenvalues, there are
many more subcases. The diagrams illustrate four of these, leaving the reader the task
of enumerating the entire list.

The second part of the dynamical analysis involves finding all the periodic and
homoclinic orbits for the two-dimensional systems. These occur for only some subcases
when there are pure imaginary eigenvalues. The procedure here is more subtle. One
begins by introducing a small parameter 8 and rescaling so that as 8--,0, one ap-
proaches an integrable system. This integrable system is interpreted as a blown-up
version of the original codimension two bifurcation. If the integrable system has
periodic orbits, then these can be studied for small 8 using a variational argument. The
result of this calculation is an estimate of which parameter values correspond to the
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appearance of a periodic orbit of given size and shape. When the estimated function is
a Morse function with nondegenerate critical points, then the dependence of periodic
orbits on parameter values in our two-dimensional problems will be qualitatively the
same. When the function is not monotonic, then multiple limit cycles appear in these
systems. Note, for instance, the pair of limit cycles which occur for a case with a double
zero eigenvalue and a symmetry of rotation by r.

The rescalings appropriate to each of the three cases are indicated in 7. The limit
systems obtained when -0 are integrable along the curve in the parameter plane for
which there is an equilibrium having pure imaginary eigenvalues. This means that there
is a function H: g2 fit constant along the trajectories of the limit equation for these
parameter values. The compact level curves of H which do not contain critical points
form a continuous family of periodic orbits for the vector field. The functions H for the
different cases are recorded in the summary in 7. In the limit iS=0, the Hopf
bifurcations have become totally degenerate. Their periodic orbits will approximate the
limit cycles which occur for >0 small, but a variational calculation involving t$ is
needed to determine how these limit cycles depend upon the parameters and their
stability. If one carries through this procedure for the Hopf bifurcation itself, then the
limiting vector field obtained for iS- 0 is linear.

The variational argument for finding limit cycles is based upon the formula
expressing the rate of change of area of a plane region R as it moves with a two-dimen-
sional flow t- An elementary computation shows that

d (areat(R)) t=o fRdiv X,
where X is the vector field of t and divX is the divergence of S. If fit has a closed orbit
3, and R is the interior of 3,, then fRdivX--O since the area of t(R) is constant.
Therefore, the vanishing of the divergence is a necessary condition for 3’ to be a closed
orbit of t. We want to apply this formula to the situation in which there is a
one-parameter family of vector fields X with X0 integrable. If R is the interior of a
periodic orbit 3’ of Xo, then a necessary condition for 3, to be the limit of a family of
periodic orbits 3, for X, >0, is that

The following theorem says that simple zeros for the last integral give sufficient
conditions for the existence of a family of periodic orbits 3,.

TI-IEOREM 4.1 [3]. Let X be a one-parameter family ofplanar vector fields such that
Xo has a continuous family ofperiodic orbits 3,s. Let R be the interior of 3, and define._ the
function g(s)--(O/Oi)(fRsdivX). If g(So)--O and dg(so)/dsvO, then there is a >0
and a continuous family of closed curves fl, [0, 0 such that flo 3,o and fl is a limit
cycle of X for > O. If dg(so)/ds< O, then fl is stable. If dg(so)/ds> O, then fl is
unstable.

We illustrate this last result in one of our bifurcation problems. For the case of a
double zero eigenvalue with rotational symmetry, the divergence integral is given by
fR,(A2d-alX), where R,. is the interior of a compact component 3’ of a level curve of
H(X,X2) X/2+A X2/2 + a X(/4 c. For > O, setting this integral equal to O,
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gives an equation for the approximate value of A. for which 3’ lies near a limit cycle of
the rescaled system

dXl dXa A X, + a X3+6(A X2 + a X?X2 )dT x2, dT 2 2

The values of A 2 for which the divergence integral vanishes can be computed explicitly
in terms of complete elliptic integrals. Integrating with respect to X2 gives

a, fXZl (2C + A 2 X? + a, X4 /2) ’/zdX,
A2=

f(2c/ A,X/ a, X/2) ’/zdX,
where the limits of integration are roots of the polynomial 2c+AX +aX/2. This
function A2(c) is not monotone in the case A >0, a <0, but rather has a single critical
point. There are values of A 2 for which there are periodic orbits corresponding to two
different values of c. At the critical point of A2(c), these periodic orbits coalesce with
one another in a saddle node of periodic orbits.

For the bifurcations involving imaginary eigenvalues, the results are more com-
plicated. To begin with, the rescaled limit equations are integrable but not divergence
free. Therefore, the computations are simplified by multiplying the rescaled limit by an
integrating factor which makes them divergence free. The second additional complica-
tion is that there are more terms of order 8 in the normal forms, and these involve
truncating the normal forms with higher degree than was necessary for our earlier
analysis of equilibria. Thus cubic terms must be retained in the normal form for the
zero-pure imaginary bifurcation, and fifth degree terms must be retained in the normal
form for the double Hopf bifurcation.

In the first of these two cases, the divergence of the cubic terms contains two
coefficients that can be varied. In the second case, the divergence of the fifth degree
terms is a homogeneous quadratic polynomial in (r,r) and has three coefficients.
One can arrange by the correct choice of coefficients that the function g(s) in Theorem
3.3. is not monotone. When the contributions of these higher order terms are then
balanced against the contribution obtained from a small variation of parameter values,
one obtains multiple limit cycles in the unfolding of the planar normal form equations.
Section 7 includes these divergence integrals. It seems that they cannot usually be
evaluated in closed form. However, genericity arguments suggest that most values of
coefficients will give a Morse function describing the parameter variations necessary to
maintain the different closed level curves of H as periodic orbits. When this happens,
the unfolding behavior of the planar systems will be structurally stable. Further study
of these divergence integrals and the corresponding geometry seems to be of interest.

The final feature of the unfolding behavior of these planar systems involves the
disappearance of the periodic orbits as the parameters are varied. The smallest periodic
orbits are associated with Hopf bifurcations, while the largest are associated with
homoclinic or heteroclinic trajectories. The limit of the periodic orbits .as they grow
larger is approximated by level curves of the function H which contain critical points.
For the corresponding integrable vector fields one has closed curves composed of
saddle point equilibria and portions of their stable and unstable manifolds. Thus the
disappearance of the limit cycles in our unfoldings as the periodic orbits grow in size is
associated with their periods becoming unbounded. The limit cycles terminate along a
curve for which one has saddle loop bifurcations of the, type described in Theorem 2.6.
In the cases with pure imaginary eigenvalues, internal symmetry of the equations forces
these loops to contain more than one saddle point.
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The following theorem summarizes the two-dimensional dynamic information
which we have obtained thus far.

THEOREM 4.2. Let Xx be one of the following two-parameter families ofplanar vector

fields and be the class of vector fields satisfying the indicated constraint or symmetry"
(1) yO/ax+(, +,2x+x2+xy)O/ay;
(2) y a/ax + ( y + 2x +x2 + xy) /ay, 0 remains equilibrium;
(3) y O/ax + ( y + 2x +__ x + x2y) O/by, rotational symmetry in r;
(4) X( nt- ay -b bx 2 q- cy2)O/Ox -b (2 -k- dx 2 -b ey 2 -b fx2y -b gy3) O/Oy, reflection

symmetry in x-direction;
(5) x(, + ay+ bx 2 + cy2)a/ax +y(X + dx2 + ey2 +fx2y+ gya)a/ay, reflection

symmetry in x direction + 0 remains equilibrium;
(6) x(? + ax 2 + by 2 + CX

4

jy 4 ) O/Oy, reflection in the x andy directions.
For almost all values of the coefficients (a,b, c,...,j) the families (1)-(6) are struct-

urally stable within the class of two-parameter families of vector fields in the indicated
class o, provided that the variational integrals listed in 7 define Morse functions. Dia-
grams for regions of structural stability in the (,l,h2)plane for cases (1)-(5) and selected
cases of (6) are illustrated in Figs. 3-9 (apart from indicating the variation of limit cycles
with parameters where limit cycles occur in a way that depends on two or three coeffi-
cients).

The final results in this section involve the interpretation of cases (4)-(6) of
Theorem 4.2 in terms of codimension two bifurcations which have pure imaginary
eigenvalues. Cases (4) and (5) apply to bifurcations with zero and pure imaginary
eigenvalues, with (5) pertaining to the constrained situation in which 0 always remains
an equilibrium. Here x plays the role of the radial coordinate and y plays the role of the
axial coordinate in a cylindrical coordinate system adapted to the problem. Case (6)
applies both to the double Hopf bifurcation and to the bifurcation with zero and pure
imaginary eigenvalues when there is a reflection symmetry in the direction of the zero
eigenvector.

To draw pictures of the phase portraits corresponding to the two-dimensional
system (4)-(6) of Theorem 4.2, when there are imaginary eigenvalues we must reintro-
duce the angular variables which have been ignored to this point. For the case of one
zero and one pair of pure imaginary eigenvalues, each point in the interior of the right

le node

saddle loop

Hopf

FG. 3. Stability diagram; double zero eigenvalue. (Theorem 4.2(1).)
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saddle loop
saddle loop

Hopf

transcritical

FIG. 4. Stability diagram; double zero eigenvalue, trivial equilibrium. (Theorem 4.2(2).)

saddle loop

Hopf

FIG. 5. Stability diagram; double zero eigenvalue, symmetry. (Theorem 4.2(3 +).)

Hopf

/Hopf

/---.------’--"- saddle node of periodic orbits

pitchfork

FIG. 6. Stability diagram" double zero eigenvalue, symmetry. (Theorem 4.2(3-).)
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a>O, e>O a>O, e<O

a<O, e>O a<O, e<O

FIG. 7. Stability diagrams, O+pure imaginary eigenvalues. (Theorem 4.2(4).)

(x,y) half plane corresponds to a circle in R 3. Equilibria of the planar systems which
lie off the y axis represent periodic orbits of the three-dimensional system, and periodic
orbits of the planar system give rise to invariant two-dimensional tori in R 3. Of special
interest in the next section will be the three-dimensional flows which correspond to
saddle loops for the two-dimensional flows. For the flow depicted in Fig. 1, one obtains
three-dimensional flows with an invariant set consisting of the surface of a two-dimen-
sional sphere together with a diameter joining two antipodal points. This invariant set
is attra.cting from the interior of the sphere.

For the double Hopf flows there are two angular coordinates. In the flow of
Theorem 4.2(6), nonzero points on the boundary of the positive quadrant correspond
to circles in 4 while points in the interior of the quadrant represent two-dimensional
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FIG. 8. Stabilio, diagrams, O+pure imaginary eigenvalues trivial equilibrium. (Theorem 4.2(6).)

tori in R 4. These limit cycles of (6) correspond to three-dimensional invariant tori in
R4.

We close this section with a brief discussion of the structural stability of the
unfoldings of codimension two bifurcations deduced from the two-dimensional analysis
described above. If the remainder terms of the normal forms are ignored, then the
normal forms themselves have "internal symmetry". They are equivariant with respect
to rotations in the plane of a pair of imaginary eigenvalues. If one restricts attention to
classes . of vector fields which possess these rotational symmetries, then the bifurca-
tion diagrams represent persistent unfoldings of the corresponding codimension two
bifurcations in the sense that perturbations of the family have homeomorphic bifurca-
tion diagrams.

THEOREM 4.3. Let be the class of vector fields in 3 which are equivariant with
respect to rotations around the x axis. Then there is a 1- correspondence between the
universal unfolding of codimension two bifurcations in E of vector fields with a zero
eigenvalue and a pair of pure imaginary eigenvalues and the persistent unfoldings of
Theorem 4.2(4). If one further restricts E to consist of vector fields with an equilibrium at
the origin or an additional reflectional symmetry, then the correspondence is with Theorem
4.2(5) of Theorem 4.2(6).
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aij>O, det>0 a! >0, a2>0, a21 <0, a22<0, det>0

a >0, a2>0, a2 >0, a22<0 a >0, a2>0, a2 <0, a22<0, det<0

FIG. 9. Stability diagrams, 2 pairs pure imaginary eigenvalues.

THEOREM 4.4. Let =- be the class of vector fields on R 4 which are equivariant with
respect to rotations in two orthogonal planes. There is a 1- correspondence between the
persistent codimension two unfoldings in - of vector fields with two pairs ofpure imaginary
eigenvalues and the persistent families in Theorem 4.2(6).

When the equivariance assumptions in Theorems 4.3 and 4.4 are relaxed, the
dynamic behavior of perturbations of the degenerate vector fields we have been study-
ing can be much more complicated than the phenomena we have considered thus far.
Equivariance forces the flows on invariant tori in the problems to be periodic or
quasiperiodic depending upon the rotation numbers which measure the average rates of
flow around different directions on the torus. Periodic flow on a torus is a highly
unstable phenomenon in the absence of equivariance. Even though the nonequivariant
portion is of arbitrarily high order in the Taylor series of the original vector field (of c
order in a C context!), the lack of equivariance causes substantial changes in the
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qualitative behavior of unfoldings. Another qualitative change which comes with the
departure from equivariance is the occurrence of transversal homoclinic orbits in some
unfoldings. These dynamic phenomena are the subject of the next section.

5. Codimension two bifurcations III. Resonance phenomena. In 4, we carried
through an essentially complete analysis of persistent codimension two bifurcations of
equilibria for classes of vector fields which possessed angular symmetries. Departures
from angular symmetry are associated with more complex dynamical phenomena than
those discussed in the previous sections. These new dynamical features are the subject
of this section. A thorough discussion of these problems is beyond the scope of this
review and strains the capabilities of the underlying mathematical theory. Therefore, we
shall confine ourselves to a description of the nature of these phenomena without
attempting to give an exhaustive treatment of their qualitative dynamics. Many details
remain to be further elaborated before a fully developed mathematical picture can be
presented.

There are two kinds of new phenomena that we describe. In some of the cases
involving pure imaginary eigenvalues discussed in 4, there were flows which have
invariant tori of two and three dimensions. The internal symmetry properties of the
flows imply that the dynamics of the motion on these tori is either periodic or
quasiperiodic. The basic issue for us is what kinds of new dynamics occur when these
flows are perturbed. The technical questions can be split into ones which involve (1) the
persistence of invariant tori, and (2) the kinds of new qualitative dynamics which occur.
New dynamics may occur either on an invariant torus or may be associated with the
destruction of an invariant torus. Considerable attention has been focussed upon
questions of this sort in relation to "mild turbulence" of fluids and the instabilities of
plasmas. For example, the Ruelle-Takens theory of turbulence [103] is based upon the
observation that the instabilities of periodic or quasiperiodic motion on an invariant
torus of dimension larger than two are incompatible with older theories of turbulence
[76]. This review is an inappropriate place for an extended discussion of these issues of
"chaotic" motion and turbulence, but the reader may wish to pursue their relationship
to the bifurcation phenomena described here.

The persistence of invariant tori with nonsymmetric perturbations can be ap-
proached in two different ways. When the unfolding parameters are included as varia-
bles, the invariant tori in the symmetric unfoldings occur as two parameter families of
invariant tori (of dimension two or three depending upon the problem). Some of these
tori will typically have periodic flow and some will have quasiperiodic flow. Without
symmetry, transversality arguments preclude the existence of nonisolated periodic orbits
in any flow contained within a structurally stable finite dimensional family. Thus, it is
reasonable to ask questions about the persistence of tori in one of the following two
forms:

(a) Does the whole family of invariant tori persist with nonsymmetric perturba-
tions (without regard to the dynamics of these tori)?

(b) Does an individual quasiperiodic invariant torus persist with nonsymmetric
perturbations so that the flow on the perturbed torus remains quasiperiodic?

The analytic techniques for answering these two questions are quite different from
one another and each involves its own complications.

The easiest problem in which question (a) above arises is the Hopf bifurcation of
periodic orbits described in 2. There one is concerned with a family of two-dimen-
sional invariant tori bifurcating from a periodic orbit as a pair of complex eigenvalues
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crosses the unit circle. This family exists, but with only a finite degree of smoothness
which typically decreases with the distance from the bifurcation. The technique used
for proving this uses the idea of a graph transform. The same approach can be used for
at least some of the codimension two bifurcation problems considered here to deduce
the persistence of parts of the families of invariant tori with nonsymmetric perturba-
tions [64].

The graph transform method applies generally to prove the persistence of normally
hyperbolic invariant submanifolds M of a flow. It proceeds by describing a Banach
space E of maps on M whose graphs yield all perturbations of M (with the desired
degree of smoothness and continuity). If is a perturbation of the flow of and >0,
then t maps one perturbation M to another fit(M). If care is used in selecting E and M
is the graph of a small E, then fft(r) will also be the graph of an element of E,
denoted F() and called the graph transform of . Fixed points of F near 0 E are
maps whose graphs are invariant manifolds of near M. To apply the method of graph
transforms one tries to pick E so that the graph transform F has a hyperbolic fixed
point at 0E. Then the implicit function theorem implies that this fixed point is
isolated and varies continuously with perturbations of F,: E- E. In particular, if t is
near t, then F, will have a unique fixed point near zero.

The applicability of the graph transform method requires that assumptions be
made which relate properties of the flow in M to properties of the flow in directions
normal to M. Roughly speaking, constructing a space E of C maps for which the
technique works requires a hypothesis guaranteeing that if there is an expansion or
contraction of trajectories inside M at the rate exp(?t), then all of the normal direc-
tions to M split into those for which the flow is expanding or contracting at a rate more
extreme than exp(r?t). In bifurcation problems having invariant tori, the normal
hyperbolicity depends upon the parameters, and it becomes weaker as one approaches
the collapse of these tori. However, at the same time that the normal hyperbolicity
becomes weaker, the flow on the torus itself approaches periodic/quasiperiodic flow.
The application of the graph transform method requires that one estimate the relative
rates at which these two things are happening. When the normal hyperbolicity becomes
weaker at a slower rate than the flow on the torus approaches periodic/quasiperiodic
flow, then the method works. Iooss and Langford [64] have successfully carried through
these calculations for some of the codimension two bifurcations. They introduce a
number of small parameters and use successive rescalings to pinpoint those tori to
which they apply the technique.

The graph transform method does not enable one to determine the dynamics of
the nonsymmetric flow on the family of perturbed tori. Also it is limited to proving a
finite degree of differentiability for the perturbed tori. At the expense of focussing upon
individual tori and introducing still greater technical complexity, small divisor methods
provide an alternate approach which surmounts these difficulties. This technique is
based upon the work of Siegel, Kolmogorov, Arnold and Moser and is often presented
in terms of hard implicit function theorems. There are a number of excellent references
for this analysis [51 ], so we do little more than describe the relevant results.

The n-dimensional torus can be regarded as a set of points in R whose compo-
nents all differ by integers: T=R/Z. A flow on T defines a flow on n by means
of this identification. If x(t) is the lifted trajectory of such a flow on with x(O)= x,
then limt_(1/t)(x(t)-x(O))=p(x) exists and is called the rotation vector of x(t). The
rotation vector measures the average rate of increase of each angular component of the
torus along the trajectory. If the flow on the torus is quasiperiodic or periodic, then p is



28 JOHN GUCKENHEIMER

independent of x. For periodic flows, P-(Pl,’" ",Pn) is a vector with p/pj rational for
all and j. The small divisor methods begin with tori whose rotation vector is strongly
irrational. One wants all of the ratios p/pj to be irrational numbers which satisfy
arithmetic conditions indicating that linear combinations of the p/p with integer
coefficients are poorly approximated by rational numbers. For such a torus T of the
original symmetric flow, one seeks an invariant torus on which the perturbed
nonsymmetric flow is quasiperiodic and still has the same ratios p/p. The stra.tegy of
locating involves finding a smooth coordinate transformation from T to T which
carries the symmetric vector field on T to a multiple of the nonsymmetric vector field
on .

Formal expressions for the coordinate transformation from T to " can be com-
puted using Fourier series, but the convergence of these formal expressions is difficult
to prove. They involve small divisors, linear combinations E=aip, with integer coeffi-
cients a, which appear in the denominators of the Fourier coefficients of the coordi-
nate transformation. Convergence requires hypotheses on how small these divisors can
be in terms of the size of the coefficient vectors (al,-..,a,). In addition to these
arithmetic conditions on rotation vectors, there can be difficulty in achieving the
freedom necessary to solve the equations which give the constant terms in the Fourier
series for the coordinate transformations. In our context, there are two necessary
hypotheses. The first is that there be a whole family of tori in which the rotation
numbers P2/Pl," "’,P,/P vary in a nonsingular manner. Without this hypothesis per-
turbations of the symmetric family which contain no torus with the original rotation
numbers might be possible. The second hypothesis requires that the tori be normally
hyperbolic. Without this assumption or something which replaces it, perturbations of
the symmetric family which destroy the whole set of invariant tori might be possible.
These two sets of additional hypotheses are satisfied for most choices of higher order
terms of the normal forms in the codimension two bifurcations discussed in this review.
The arithmetic conditions are satisfied by almost all rotation vectors (in the sense of
Lebesgue measure).

One expects those invariant tori for the symmetric problem consisting of periodic
orbits to have their dynamics greatly altered by a nonsymmetric perturbation. If there
is a continuous family of invariant tori, one expects an open dense set of these to have
hyperbolic periodic orbits in the absence of symmetry. Thus quasiperiodic motion is
only to be expected on a nowhere dense set of invariant tori. From this topological
point of view, the typical parameter value in a nonsymmetric family will not yield a
flow with a quasiperiodic invariant torus. Nevertheless, the set of parameter values
which do yield a quasiperiodic invariant torus is likely to have positive Lebesgue
measure in the parameter space. If one picks a parameter value at random (with respect
to Lebesgue measure), then there is a positive probability that it will lie in the (nowhere
dense) set of parameter values for which the corresponding flows have quasiperiodic
invariant tori.

There are additional new dynamical phenomena which occur in nonsymmetric
unfoldings of codimension two bifurcations besides invariant tori with hyperbolic
periodic orbits. In particular, transversal homoclinic orbits appear. These orbits are
generally associated with "chaotic" motion in dynamical systems, and with "sensitive
dependence to initial conditions." Here we shall emphasize the nature of transversal
homoclinic orbits, describe some of the implications of their existence, and explore how
they arise in nonsymmetric unfoldings of some codimension two equilibria. Questions
about the full extent of the limit sets which contain the homoclinic phenomena we
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describe will not be considered. In particular, questions about the stability and struct-
ural stability of these sets are left aside. Once again, there is much scope for additional
work in this area, and our current knowledge is fragmentary.

DEFtqITION. Let 3’ be a hyperbolic periodic orbit for a flow in R with stable
manifold WS(3’) and unstable manifold WU(3’). A homoclinic orbit for 3’ is a trajectory
/c Wu(3’)N WS(3’) different from 3’. If WU(3") and W(3’) intersect transversally along
8, then/ is a transversal homoclinic orbit.

Note that dim WU(3’)+dimW(3’)--n+ 1, so that transversal homoclinic orbits
are possible. Note also that the stable manifold theorem implies that the set of vector
fields with transversal homoclinic orbits is an open set in the set of all smooth vector
fields. A basic feature of transversal homoclinic orbits is that they imply the existence
of larger sets of trajectories which have hyperbolicity and recurrence properties. Inside
these sets, there are stable directions along which trajectories approach one another and
unstable directions along which trajectories diverge. This instability within the set leads
to sensitive dependence on initial values and an unpredictability about the long term
behavior of individual trajectories. The prototypes of these hyperbolic invariant sets are
Smale’s horseshoe and the more abstract subshifts offinite type, both expressed in terms
of discrete systems. As usual, one should interpret these models as return maps of a
cross-section to a flow.

We shall describe subshifts of finite type in a manner suitable for application to
our bifurcation problems. Consider a flow t: Rn___.)n and a finite number of disjoint
cross-sections RI,...,R to t" Each R; will be called a rectangle, and the following
hypotheses are made.

(M1) Each R has a continuous product structure Ri--EiU>(E with Ei and E
compact and homeomorphic to disks. Denote by EiU(x) the set of y R with the same

E coordinate as x. E/(x) is defined similarly.
(M2) If A" t_JR jR. is the map which sends x R to the first intersection of

{x(t)lt>O) with a rectangle (when this exists), then A(x)R implies that A(E(x))C
Ef(A(x)) and A(Ei(x))3 E(A(x)).

(M3) There is a metric d on t3R; and a constant ,> with the property that
yEi(x) implies ,d(x,y)<d(A(x),A(y)) and yE(x) implies ,d(A(x),A(y))<
d(x,y).

(M4) There is 1>0 such that At(R)fqRv for all i,j.
It is far from easy to verify that cross-sections satisfying (M1)-(M4) exist for a

given flow, but the consequences are far reaching. Assuming that there is more than
one rectangle in our collection, we want to examine the set A--(xb4(x) is defined for
all jZ). This means that x(t) intersects t_JR an infinite number of times for

+ c and t--,- . We will give the elements of A a convenient description as a
subshift or finite type. This process is called symbolic dynamics and the sets R satisfying
(M1)-(M4) constitute a Markov partition for A.

If x,y CA are distinct, then (M3) together with the disjointness and compactness
of the R. implies that there is such that hi(x) and A(y) lie in different rectangles.
Therefore x A is uniquely specified by the sequence {a}=_-a(x) defined by the
property that Ai(x)Ra,. Each a; lies in the index set { 1,.--,m) for the collection of
rectangles and is called the ith address or ith symbol of x. The symbol sequences a(x)
preserve much of the information about the dynamics of qb and A because applying A
to x corresponds to shifting indices. More precisely, if a--a(x), the symbol sequence of
A(x) is the sequence b with bi=a+ . Thus we can use symbolic dynamics to obtain a
qualitative characterization of the set A and the dynamics of A.
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Define the transition matrix T= (tjk) for (A, R l," ", Rm) to be the m m matrix
with tjk=0 if RfqA(Rk)- and tj.g- if RNA(Rk)va . We denote by o the set of
bi-infinite sequences (a}=_o of the symbols (1,. .,m) which satisfy taia+-- for all
i. If we define a metric on the set of sequences by a(a,b)-Y=_o i2 -Iil, i--0 or as a

a=b or a va bi, then o is a compact metric space. Together with the shift map o: o o
which shifts indices one unit, o is called the subshift offinite type with transition matrix
T.

THEOREM 5.1. Let ft: ’’--> be a flow which has cross-sections Ri,’",R with
return map A satisfying (M1)-(M4). Define the transition matrix T--(t2k) by tjk- 0 or
as RjfqA(Rk) is empty or not. Denote by A the set of points whose trajectories intersect
[..J R an infinite number of times as t--, o and + o. Then the symbolic dynamics ofA
establish a homeomorphism h between A and the subshift offinite type o with transition
matrix T. The homeomorphism h carries A to the shift map o--hAh-.

The essence of this theorem is contained in Smale [112], where he treats the case
m-2 and T=(I1) (the horseshoe). Hypothesis (M2) plays an important role in estab-
lishing that the map h is onto, and, consequently, that the set A will be large. We note
also that it is easy to establish a number of interesting dynamical properties for o such
as the existence of dense orbits, the density of periodic orbits, and sensitivity to initial
conditions. These are carried back to the set A by the map h. Smale [112] also relates
the concepts of subshifts of finite type and transversal homoclinic orbits.

THEOREM 5.2 [112]. If f: MM is a smooth invertible map defining a discrete
dynamical system, and ifp is a fixed point off which has a transversal homoclinic orbit,
then there is an iterate f" off and two sets R and R 2 for which (M1)-(M4) are satisfied
by the map A --f.

COROLLAgY 5.3. A discrete dynamical system f: M M has a transversal homoclinic
orbit if and only if there is a set A CM such that the symbolic dynamics of f[A form a

subshift offinite type.
We make a few remarks about these results for discrete systems before returning to

continuous flow. First, the sets A which they locate may be contained in larger
invariant sets of the same type. It is unlikely that the construction we have outlined will
determine a maximal invariant set A which is topologically transitive (has a dense
orbit). Whether a maximal topologically transitive set F is an attractor is an important
practical issue, but it is not easy to determine for examples that a set F is both an
attractor and that is satisfies the hyperbolicity conditions implicit in (M1)-(M4) (Smale’s
Axiom A). The second remark is that the topology of the sets A identified above is
relatively simple. The disjointness of the R required in (M1) forces the sets A to be
homeomorphic to Cantor sets. A maximal topologically transitive set F may have a
much more complicated topological structure, and the definition of Markov partition
must be modified to allow for this possibility.

From the point of view of bifurcation theory for discrete systems, the transition
from a system which has tranversal homoclinic orbits to one which does not is a
complicated story. Our knowledge about this transition is woefully inadequate but
steadily growing. Numerical studies such as those of H6non [49] find large sets which
behave as attractors, but the only theoretical evidence indicating their existence comes
from the study of one-dimensional mappings. Newhouse [89] has proved some re-
markable results which show that systems having an infinite number of stable periodic
orbits are a persistent feature of the transition to transversal homoclinic behavior.
Finally, we remark that "universality" properties have been found when homoclinic
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behavior first appears through an infinite sequence of flip bifurcations of stable peri-
odic orbits. Feigenbaum [32] first observed these features in the context of one dimen-
sional mappings, but a body of numerical, theoretical and experimental evidence
indicates that they are widespread.

Thus far we have discussed transversal homoclinic behavior in the context of
discrete systems or cross-sections to continuous flows. When a continuous flow admits
a global cross-section (such as in forced oscillation problems), the translation from
discrete geometry to that of the continuous system is relatively straightforward. The
analogue of a subshift of finite type is a special flow and it has the topology of a
solenoid. This is a one dimensional object which locally is the product of an interval
and a Cantor set. As the much studied Lorenz system [80] illustrates, the geometry of
homoclinic phenomena in continuous systems can be quite surprising when there are
equilibria in the flows and global cross-sections do not exist.

The most immediate appearance of transversal homoclinic orbits in codimension
two bifurcation problems does involve equilibria. Theorems 4.3 and 4.4 imply that it is
also a resonance phenomemon in that the only homoclinic orbits in symmetric vector
fields are not transversal. Thus transversal homoclinic orbits only appear in unfoldings
which break symmetries involving the angular variables of the normal forms. We shall
pick one case as an illustration of how the homoclinic behavior can be established. A
systematic theory of the extent of transversal homoclinic behavior in this or other cases
remains incomplete.

Consider the unfolding of a vector field with an equilibrium at which there is a
zero eigenvalue and a pair of pure imaginary eigenvalues. Assume further that the
quadratic terms of the normal form leave us with the following normal form equations
after linear rescaling.

/-w+o(1), i’=r(,2+az)+o(2), 2-,-z-r+o(2)
with a>0. The normal form equations truncated at terms of order two and having
parametric values along the curve -0, ,>0 have a flow which has a family of
invariant tori which are level curves of the function H(O,r,z)-ar/a/2(-r/(a+ 1)
-z). The curve H-0 consists of the z axis together with the ellipsoid E defined by

)/rZ/(a+ 1) z-0. The points (0,0, +( ) are hyperbolic equilibriap_+. Here
WU(p+)-E-(p_} and W(p_)-E- {p+ }. Both W(p+) and WU(p_) are rays on
the z axis, overlapping in the segment (p+ ,p_) interior to E; see Fig. 10. We shall

FIG. 10. Flow of saddle loops in unfolding of 0 + pure imaginary eigenvalues vectorfield (a2>0, a <0,
a < 0 in normalform ).
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argue, using a theorem of Sil’nikov [111], that if a< 2 in the normal form equation, then
generic nonsymmetric perturbations of the family represented by the normal form will
have transversal homoclinic orbits.

Consider trajectories near W(p+) fq W(p_) for the symmetric flows. If one fixes, >0 and varies X2 near 0 then these trajectories pass through a transition in which
they change from having bounded forward trajectories which remain inside E and
approach a limit cycle to trajectories which become unbounded with z- 0. This
behavior persists for nonsymmetric perturbations of the family. In nonsymmetric per-
turbations, W’(p+)fq W(p_) is usually empty. However, as the parameter X2 is
varied W"(p_) itself will undergo the transition described above, and it can only do so
by lying in W(p_). In other words, there will be a curve in the parameter plane of the
nonsymmetric systems for whichp_ has a homoclinic trajectory.

THEOREM 5.4 [111 ]. Let X be a three-dimensional vector field which has a hyperbolic
equilibrium p_ for which the following hypotheses are satisfied:

(1) The linearization of X at p_ has two complex eigenvalues i, and one real
eigenvalue , with 0< Re/t<,.

(2) The equilibrium p_ has a homoclinic trajectory.
Then within the space of C vector fields satisfying (1) and (2), there is a dense, open set
which has transversal homoclinic orbits.

This theorem of Sil’nikov can be visualized in terms of Fig. 11. Without leaving the
set of vector fields with a homoclinic trajectory, we may linearize X at p_ by a
perturbation, so we assume that X is linear in a neighborhood of p_. If the eigenvalues
of X at p_ are ,,/+-iw, the flow of X in cylindrical coordinates is given by
( r( ), 0(t), z( )) ( r(O)e vt, 0(0) + tw, z(O)ext ). Pick two cross-sections to the homoclinic
orbit near p_, the first M contained in a cylinder r=0 and the second M2 contained in
a plane z-. We want to compute the mapping g: M M2 along trajectories. To do
so, set z(t) and r(t) 0 exp(-/,- ln(/z(0))) and 0(t) 0(0) / w,- ln(/z(0)). Hence
g is defined on the set of points in M for which /z(0)>0 and g(O,z)=
(0 exp(’,- lln(/j/z)), 0+ w-lln(/z)). Note that a curve parallel to the z axis in M is
mapped into a logarithmic spiral in M2 and that circles of constant (r, z) are mapped to
circles of constant (r,z). The condition that 0<3<k implies that d&r,z)(O, 1) is un-
bounded at z 0.

FG. 11. Geometry of Sil ’nikov theorem.
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There is also a mapping h: M2 M along trajectories. The map h is defined in a
neighborhood of r--0 and smooth. The composition h g is a return map for M which
is defined in a neighborhood of the boundary of the half space /z>0. Now let us find
the image of a curve parallel to the z axis under h g. This will be a spiral converging to
the point q= WU(p_)fqM. If x=(p,O,z), the distance from h o g(x) to q will be of
the order of z -v/x. Thus as x q along a curve parallel to the z axis, the distance from
x to h g(z) will become larger than the distance from x to q. The rectangle R depicted
in Fig. 12 has horizontal boundaries with Z=Zo,Z, where z/zo is slightly larger than
exp(rhw- ). A vertical segment in R is mapped by h g into a spiral segment in which
0 varies by at least r. The values of z0 and z are determined so that this spiral
intersects the annulus in M defined by Zo<Z<Z in two components. Choose the
vertical boundaries 0=00,01 of R so that they fall well outside the two components of
the spiral arc which is the image of the segment z0<z <zi in the line through q parallel
to the z axis. The image of R will then overlap R in a figure with two components
R,R2 which looks like Smale’s horseshoe. The hyperbolicity estimates required in
property (M3) can be established provided that a certain constant defined by Sil’nikov
does not vanish. Since this argument can be applied to a whole sequence of strips R
which converge to the set z-0, one finds with it a countable collection of subshifts of
finite type, each a Smale horseshoe. These occur in the unfolding of our condimension
two bifurcation.

hg( R

z

R

FIG. 12. Smale ’s horseshoe in Sil ’nikov theorem.

6. Applications and examples. In this section we shall examine several situations in
which the preceding theory yields a substantial amount of information about problems
which have been considered previously by more classical techniques. We would have
liked to include here a larger array, including newer and more interesting examples
than those which are discussed, but fully developed applications of the theory described
in earlier sections are still limited. Two of the examples point to different kinds of
extensions to the theory which will be necessary for a full analysis of the bifurcations
present within them.

Example 1. Variational equation of Van der Pol. The forced Van der Pol equation
describes an oscillator with one degree of freedom and nonlinear resistance:

(6.1)
Experimental evidence during the late 1930’s with electrical circuits led Cartwright and
Littlewood to the first proofs of the existence of transversal homoclinic orbits in
non-Hamiltonian systems of differential equations [22]. Their argument applies to the
Van der Pol equation with large e, where it corresponds to "relaxation oscillations."
The dynamics of the Van der Pol equations are also of interest when e is small,
particularly when b and (w- 1) are of the same order of magnitude as e. In this near
resonance case, complicated dynamical phenomena occur.

The nearly resonant case of the Van der Pol equations can be studied by applying
the method of averaging to the equation. After suitable rescaling, the average deviations
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of a trajectory from those of the simple harmonic oscillator (over one forcing period)
are described by the systems of equations

(6.2) a- (-F+ou+v(1-(u2 + t2)).
The properties of the solutions of these variational equations (6.2) as functions of the
two parameters (o,F) have been studied by Cartwright [21], Gillies [36], and Holmes
and Rand [60]. Apart from minor uncertainties, they give a complete description of the
dynamics of (6.2) for all values of (o, F).

Figure 13 shows a picture of the (o,F) plane with the bifurcation curves located.
Of particular interest are the codimension two points 0,A and S. At the point A-
(1/v 8/,v/ there is a cusp point at which the two curves of saddle node bifurcations
(SN) terminate. At the point 0-(1/2,1/2), there is a codimension two bifurcation with a
double zero eigenvalue. Holmes and Rand [60] use the computation of the normal form
of (6.2) and Taken’s analysis of this bifurcation to prove the existence of a curve of
saddle loops (L) terminating at 0 in addition to the curve of directly calculable Hopf
bifurcations (H). The point S is "known" only on the basis of numerical evidence and
corresponds to a saddle node whose unstable manifold forms a loop which is part of
the boundary of the stable manifold.

Hopf
0

FIG. 13. Stability diagram of Van der Pol variational equations.

The features of (6.2) correspond to the features of the global return map for (6.1)
obtained by integrating (6.1) for time 2/w. The equation (6.1) is not equivariant in
any apparent way, so one does not expect that there will be resonant effects in relating
the dynamics of (6.2) to those of (6.1). In particular in the region bounded by the
curves H, L and the portion of SN joining 0 to S, (6.2) has a stable limit cycle, and one
expects the corresponding (6.1) to have an invariant two-dimensional torus. The dy-
namics on this two-dimensional torus should exhibit phase locking and entrainment.

Corresponding to the curve L of homoclinic loops for (6.2), one should find transversal
homoclinic solutions for (6.1). Note here that the algebraic calculations which locate the
point 0 in the bifurcation diagram for (6.2) indicate approximate parameter values for
which (6.1) should have transversal homoclinic solutions. See [44] for a more thorough
review of the dynamics of the Van der Pol equations.

Example 2. Panel flutter. The second example we discuss involves the oscillations
of a thin elastic panel which is forced aerodynamically by a flow across the panel. We
assume that all motions of the panel are normal deflections which are constant along
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lines parallel to the two ends of the panel. The ends of the panel are fixed at z--0 and
z and the lateral deflection is described by the function v(z, t), v: [0, 1] R ._.) R.
The governing equation for the motions is

aft’"’ + v""- F + k fo’ v"+

with representing differentiation with respect to and differentiation with
respect to z. Of the various parameters, p represents the dynamical pressue of the flow
across the plate and F represents a tensile load within the plate. The remaining
parameters reflect structural characteristics of the plate which we assume to be fixed.
Boundary conditions are v (t + av)" 0 (simply supported) or v v’ 0 (clamped).
This equation is derived by Dowell [29] and has been studied by Holmes [55] and
Holmes and Marsden [59] as an application of the theory of codimension two bifurca-
tions.

The plate equation above is a rather formidable nonlinear partial differential
equation. Even coping with the linearized equation is difficult. We shall use the
example to illustrate the kinds of approximations which can be made to reduce a
problem of this difficulty to manageable proportions without (apparently) throwing
aside the qualitative features of its dynamics. The next example provides a simpler
nonlinear partial differential equation for which a more complete analysis can be given,
but in this one the answers from finite dimensional approximations must suffice for
some calculations. Before describing this calculation, we briefly review the theory which
does give one confidence that the reductions preserve the qualitative structure of the
dynamic motions.

The approach which one adopts is that of trying to identify a suitable function
space on which the plate equation defines a smooth semiflow, in the terminology of
Marsden and McCracken [83]. This involves a set of technical hypotheses which allow
one to prove a good existence theorem. It also provides the basis for an infinite
dimensional center manifold theorem. Marsden [82] presents a recent review of these
topics from the perspective of bifurcation theory. Briefly, the center manifold theorem
applies to a system at an equilibrium p for which there is a 8>0 such that all of its
spectrum apart from a finite number of eigenvalues lies to the left of the line Rez -8
in the complex plane. In this situation, there will be an invariant finite dimensional
manifold M passing through p such that the tangent space to M at p is spanned by the
part of the spectrum which lies on the imaginary axis. If there are no eigenvalues in the
right half plane, then this center manifold M will be attracting in the sense that p has a
neighborhood U such that all solutions which remain inside U tend to M. Thus, one can
study the dynamics of the equation on the center manifold of M where it defines a
finite dimensional vector field.

There is no difficulty in including parameters in the center manifold theorem. If
one begins with a system which has a "trivial" equilibrium (v(z, t)--=0 in the example
here), then one can search for parameter values at which the equilibrium first loses its
stability. By this we mean that all of the spectrum lies in the left half plane apart from a
few eigenvalues on the imaginary axis. The corresponding center manifold M (including
the parameters) then determines the bifurcation structure for the full set of equations
regarded as a flow on the function space. If the normal form on M can be calculated
and the parameterized family on M is persistent within the appropriate class, then the
bifurcation analysis of this normal form can be applied to the example at hand. Apart
from being able to give a complete calculation of the spectrum of the linearized



36 JOHN GUCKENHEIMER

problem, this is the program carried out by Holmes and Marsden [59] for the panel
flutter problem.

In lieu of a full analysis of the spectrum, Holmes and Marsden employ a Galerkin
approximation procedure which approximates the problem by a finite dimensional one.
They then carry out calculations with these approximations, proving at the same time
that as large approximations are used, the sequence of approximate solutions does
converge in the function space to the solution of the original problem. Abstractly, the
Galerkin procedure works in the following way. One chooses an orthonormal basis
(w} for the function space (which is now assumed to have an inner product). Let Ek be
the finite dimensional space spanned by the functions Wl,..-, wk and ,r the projection
of the function space onto E. If the original equation is expressed as an ordinary
differential equation on function space dx/dt--f(x), then dx/dt--rf(x) defines a
vector field on the finite dimensional space E. This last equation can be expressed as a
system of k ordinary differential equations for the coefficients of the w along a
trajectory.

To apply the Galerkin procedure to the panel problem, one uses the functions
sin nrz as an orthonormal set. In terms of these, the panel equation can be described as
a second order differential equation for the coefficients. Thus there is a two-dimen-
sional space corresponding to each sin nrrz in the Galerkin approximations. Provided
that one retains at least four modes, numerical calculations indicate that the largest
eigenvalues of the linearized problem remain almost unchanged by the addition of
more modes. For reasonable parameter values (a, i, F, p) (0.005, 0.1, 2.29,r 2, 112.5),
there is a codimension two bifurcation with a double zero eigenvalue. There is a
symmetry to the panel equations which comes from replacing v with -v. This symme-
try is present in the Galerkin approximations where it takes the form of rotation by ,r

in the plane of each mode. Consequently, the normal forms will be those appropriate to
the class of rotationally symmetric vector fields. Holmes computes the coefficients of
the cubic terms of the normal form.

Example 3. Brusselator. The next example which we discuss is the Brusselator [12].
This is a model system of reaction diffusion equations representing the kind of dynami-
cal behavior one suspects (hopes?) plays a role in regulating the formation of patterns
in living organisms. One begins with the following reaction scheme:

AX, B+X Y+D, 2X+Y--,3X, X--,E.

In this scheme A,B,D and E are reactants whose concentrations are assumed to be
fixed throughout the reaction. It is the dynamics of the intermediates X and Y which we
want to examine with this assumption. In addition, we assume that the reaction is
taking place in a one-dimensional medium and that X and Y diffuse with diffusion
constants D and D2. This yields the following system of reaction-diffusion equations
(x, Y):

(6.3)
0X 02X 0Y 0Y X20----’--Ol--+-X2y-(B-3t 1)X-JI-A, O----f-O2- Y-3I-BX.

We assume further than the reaction is at equilibrium at the ends of the interval [0, r],
so that X(0) X(rr) A and Y(0) Y(rr) B/A for all t_> 0.

The problem to be solved here is the initial value problem. In particular, we would
like to know what kinds of dynamics are possible at t-, as a function of the
parameters (A,B, DI,D2). The problem is very far from a complete solution, but we are
able to give an argument for the existence of transversal homoclinic solutions based
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upon the theory described in this review. As with the forced Van der Pol example, this
argument lacks completeness in that one is unable to prove that there is a hidden
symmetry which would prevent the creation of transversal homoclinic solutions through
resonance effects. Apart from this missing detail, this provides the first existence proof
for transversal homoclinic solutions to a system of autonomous partial differential
equations which does not admit a trivial reduction to a finite dimensional system. The
Brusselator has served as a useful "model" system of partial differential equations, and
its analysis is in the same spirit as that which one hopes to use for a variety of fluid
dynamic problems.

The mathematical principles discussed for the panel problem allow us to apply the
results of finite dimensional bifurcation theory to this infinite dimensional problem.
There is an existence and uniqueness theory for solutions of (6.3) which guarantees that
the equation defines a suitably smooth.semiflow on the Banach space C[0,r] of C2

functions which satisfy the boundary conditions imposed by (6.3). Thus the center
manifold theorem can be applied, and we shall adopt the attitude that the bifurcation
structure of the problem is adequately described by the finite dimensional theory.

The Brusselator problem has the trivial equilibrium solution x(, t) ----A, y(, t)
B/A. We want to linearize the equations at this equilibrium and determine the spec-
trum of the linearized equations. Introducing

B
u=X-A, v=Y---A’

(6.3) becomes

(6.4)

If w--(u, v), we write wt-- Lw+Nw where L is the linear part of (6.4). Representing
w ( u, v) as a Fourier series w(t) Zoo,_0 w,(t) sin n, we find that the two-dimensional
spaces spanned by the vector-valued functions w, sinn$ are invariant for L with spec-
trum given by the eigenvalues of

B- n2D A2 )E,-
B --A2--n2D2

We want to find parameter values for which all of these eigenvalues have negative real
parts (bounded away from 0) except for a finite number which lie on the imaginary
axis.

We make two observations about the collection of eigenvalues of the matrices E,
as n varies. The first observation is that TrE,=B- 1-A2-n2(D +D2) is a decreasing
function of n. Consequently, if E, has pure imaginary eigenvalues for n> 1, then E,_ 1)
has an eigenvalue with positive real part. The second observation is that detE is a
quadratic function of n 2 with positive leading coefficient DiD2. Therefore, if Eg and E
have zero eigenvalues and Ik-/I> 1, then there is an E, which has negative determinant
and an eigenvalue with positive real part. Thus, when no eigenvalues have positive real
part, the maximum dimension of the eigenspace of the imaginary axis is 4. This
situation results when E, and E,+ each have a zero eigenvalue for some k> 1, and E
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has pure imaginary eigenvalues. We compute the parameter values for which this
maximal degeneracy occurs"

Dz=D2kZ(k+ l)2+2D,k(k+ l)
A2 D,DzkZ(k+ l)2 B-I+AZ+DI+D2

l+DlkZ(k+l)2

When these equations are satisfied, E has pure imaginary eigenvalues, E and
Ek + each have a zero .eigenvalue, and all other eigenvalues of the E, have negative
real parts. To see this, note first that the third equation determines that TrE --0 and
TrE <0 for n> 1. Next observe that detE, =A2+ n2(AZDl q-Dz-BD2)+ n4DlD2 Since
this function is convex, detE=detEk+ =0 implies that detEn->0 for all n. The
equation A2 + kZ(A2DI +D2-BD2)+ k4DID2-A2 +(k+ 1)2(A2DI + D2-BDz)-b(k+
1)4DID2 yields the second equation by eliminating the middle terms and solving for A2.
The first equation is then obtained by substituting the values of A2 and B from the last
two equations into the equation detEk- 0 and solving for D2.

This most degenerate equilibrium represents a bifurcation of codimension three.
Its unfolding has not been calculated. In lieu of being able to calculate the unfolding
for this codimension three bifurcation, we consider the easier problem of examining its
behavior near an equilibrium in which there is one zero eigenvalue of E, pure imagin-
ary eigenvalues for E and all other eigenvalues have negative real parts. If we regard
(A2,B) as being experimental parameters with the diffusion rates (D1,D2) fixed, then
the above conditions become

.42 D2k2( DI-+-D2-D2k2 ) A2(6.5) B-l+ +D+DDik2-D2k 2

subject to the following inequalities on the diffusion rates:

[ Dl +D2- Dlk 2

D2k2 +k:"(Dl-D2) (1 +(k-+ 1)2(Dl -D2))

-(k-+ 1)2D2(DI +D2)+(k+ 1)4DID2>0 for all kez.

There are solutions to this system of equations and inequalities with A,B,D and D2 all
positive.

Let E be the three-dimensional eigenspace of the imaginary axis for the linearized
equations (6.4) and let P: C[0,rr] E be the projection onto E. We want to express in
E the equations (PW)t=P(Lw+Nw) or wt=Lw+PNw for wEE. These are the
"truncated" equations of (6.3) which give an approximate description of the flow on its
center manifold. To the extent that the Taylor expansions of degree two at the origin of
the truncated equations and the full equations (6.4) agree, we can use the truncated
equations to determine the unfolding of the codimension two equilibrium of (6.4).
These computations are straightforward but somewhat lengthy. The details are not
illuminating, so we merely outline the procedure. More detail can be found in [41].

Denote by X the vector field on E defined by the truncated equations. Recall that
the normal form of X was (w+alr2)O/DO+a2rzO/)r+(a3zZ-t.-a4r2)O/Oz in ap-
propriate cylindrical coordinates. The coefficients (az,a3,a4) determine the qualitative
structure of the unfolding of this bifurcation. To compute these coefficients requires
several steps:

(1) We find a basis for E so that the linearization of DX(O) represents infinitesimal
rotation about the z axis (with rate 0).
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(2) For a vector field with. the linear part of X, we identify those expressions which
become the coefficients a in thenormal form.

(3) We determine those terms in N(w) which contribute to the expressions in step
(2) and compute their projections onto the two-dimensional spaces of the form (sin)w
and (sin kj)w.

(4) We compute the coordinates of the projections in step (3) relative to the basis
which extends the basis for E found in step (1) by the second eigenvector of L in EI.

We read off the coefficients in the normal form.
We list the results of this computation:

There are some interesting aspects to these calculations. The trigonometric in-
tegrals above depend strongly on the parity of k. When k is even, they all vanish and
the bifurcation is degenerate. This is due to the invariance of the functions sin2r/on

[0,r] with respect to the symmetry f(x)f(r-x). If we restrict attention to the class
of functions which possess this symmetry, then the cubic terms in the Taylor expansion
determine much of the qualitative behavior of the unfolding and the normal form is
then for systems with a reflection geometry. To give a complete analysis of the
bifurcation structure for varying boundary conditions, one needs to determine what
occurs when one allows this symmetry to be broken.

When k is odd, the quadratic coefficients of the normal form do not vanish (for
most allowable values of (D,D2)) and the unfolding results from 3-5 can be applied
directly. One question of interest is whether or not there are values of (D,D2k) which
yield transversal homoclinic orbits in the unfolding (unless there are hidden constraints
which prevent resonance effects). Such values of (Di,D2,k) do exist, indicating the
presence of chaotic solutions to the Brusselator equations. We note that numerical
solutions of the Brusselator have been computed which appear chaotic. These chaotic
solutions are irregular both in time and space.

Example 4. Double diffusive convection. The final example we discuss is a "classi-
cal" fluid mechanics problem: thermohaline convection. Fluid motions exhibit a wide
variety of dynamical phenomena, and fluid mechanics has been a fertile ground for
applications of bifurcation theory. Bifurcation computations involving the Navier-
Stokes equations are difficult unless they begin with steady flows of simple geometry.
Consequently, most of the classical theory deals with the initial bifurcations in which
an instability of a motion described by an explicit formula first occurs as a parameter is
varied. One prospect for the use of more parameters and the computation of multiple
bifurcations is that these provide a means for analytically coping with secondary (and
higher in some cases) bifurcations without doing fluid calculations much more
sophisticated than those which have been done in the past.
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We have selected thermohaline convection as an example to illustrate these points
because the linear calculations explicitly locate codimension two bifurcations.and some
work has been done to understand the behavior associated with these. Indeed, we shall
see that bifurcations of both the double zero and double Hopf type occur with some
symmetry in the system for the boundary conditions we employ. Knobloch and Proctor
[74] give an analysis of this problem using perturbation theory methods.

Thermohaline convection is the problem of studying the fluid motions of salt water
due to the buoyancy effects of opposing gradients of heat and salt (or of two other
solutes which affect the fluid density). The different diffusivities of heat and salt lead to
very different instabilities when hot salty water lies above colder fresher water and vice
versa. There is a large body of experimental and numerical observation to compare
with analytic results for this problem. The linear computation of stability as a function
of the steepness of the salt and heat gradients leads to codimension two bifurcations as
we now describe.

A horizontal layer of fluid of depth d has fixed temperatures and salt concentra-
tions on its upper and lower boundaries. One assumes that the fluid is incompressible
and that the buoyant force on the fluid depends linearly on the temperature and salt
concentrations. The resulting equations are

O--Tv+v. Vv-- Vp+g(otT-flS)+vV2v,
P

div(v)-0,
0T AT 2+v. VT-w -kv T,
at -d-
os AS
+V" vS-s -kv2S,at -d-

with v the fluid velocity vector, T and S the departures of the temperature and salt
concentrations from their steady state distributions, AT and AS the imposed tempera-
ture and solute differences across the fluid layer and w the vertical velocity component.
The remaining constants are the density p, the gravitational constant g, diffusivities k
and ks, kinematic viscosity v and the buoyancy dependency on temperature and
salinity given by a and/3. The pressue p is eliminated from the system by taking the
curl of the Navier-Stokes equation, thereby obtaining the vorticity equation. In the
case of velocity fields which never have a component in the y direction, we can express
the vorticity equation in terms of the stream function +. After rescaling, the system to
be solved is now

(6.6) o-’ V 20,-o-’J(q,,, V 2q,,) -RrO.T+RsO.,.S+ V411,
O,T+ O+-J( q, T)- v2T,
OtS+Oxq,,-J(q,,,S)-rv2S,

where J(f,g) is defined to be OxfO:-O..fOxg. The boundary conditions are
S-0 when z-0 or 1.
The system above has trivial 0 solution, and the linearization at the trivial solution

is obtained by dropping the Jacobian terms from each equation. For the linearized
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system, the normal modes (eigenvectors) are easily determined as functions of the form

g, q0sinrtx 1T (x,z,t)-etsinnrz T0cscrctx
S S0cosrx

where ( p, n, a) satisfy the equation

p3+ (o+’r+ 1)k2p2+[(o++o$)k4-r202k-2(Rv-Rs)]p
-k- o’rk 6 -+- r 2aa2(Rs-’rRr) =0,

kZ=rrZ(nZ+a2).

One seeks values of Rr and Rs for which no solutions p of this equation have
positive real parts, but some have zero real parts. Choosing a2-1/2 and n-1, one
obtains the values of p with the smallest maximum real parts. These can appear with
either a pair of pure imaginary eigenvalues, as a zero eigenvalue, or as a zero eigenvalue
of multiplicity two. The last possibility occurs for the special values of Rr and Rs for
which

or

(0 +’r + o’r )k4-,tr20a2k-2( Rr- Rs ) --O
o’k6 -I- 2Oa2(Rs-’rRr) -0,

(Rs)_ k6
Rr "r/’2Ct2(1-’) +’/o

These values of the Rayleigh numbers are a good candidate for the application of
our codimension two bifurcation theory. At this point one should compute the normal
form corresponding to this double zero eigenvalue and the transversality conditions for
variations with respect to Rs and Rr, thereby determining the bifurcation structure.
There is a symmetry in the system (6.6) which comes from simultaneously changing the
signs of k, S, T and z. This symmetry forces the normal form of this problem to be one
of type (iii) in Theorem 4.2. Following the perturbation calculations of Knobloch and
Proctor [74], one projects the equations onto a five-dimensional space V which includes
the two-dimensional zero eigenspace W. In the five-dimensional space V, the center
manifold M has quadratic tangency to W. Restricting the equations to M we retain all
of the terms that affect the cubic coefficients in the normal form and obtain an
unfolding of the type indicated in Fig. 9.

We end by illustrating how a small change in the boundary conditions for the
thermohaline problem produces a bifurcation of the double Hopf type, although the
appropriate normal forms have not been computed. The computation of the spectrum
of the linearized problem depends upon the horizontal wave number a. No restrictions
were placed upon a corresponding to the (physically unrealistic) idealization of an
infinite conducting layer. In addition to the difficulties in computing normal forms
which we described above, there are problems in applying the center manifold theorem
because the linearized operator has a continuous spectrum. The applied literature
uniformly avoids this difficulty by examining only disturbances whose horizontal wave-
length a--2/2 corresponds to the eigenvalues with the largest real parts. One way of
avoiding this second difficulty in applying the theory is to impose periodic boundary
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conditions in the x direction. For the normal modes of the linearized equation, this
forces a to be a multiple of the imposed period-m/D with D determining the scale of
the imposed horizontal periodicity. When the function (n2+ a2)3/a has equal values
for a-m/D, a-(m+ 1)/D with mZ such that m2<2D2<(m+ 1)-, then the corre-
sponding modes of the linearized equation can both be pure imaginary and a double
Hopf bifurcation results. The normal form for the example has not been computed, but
it does illustrate that double Hopf bifurcations occur in fluid dynamics problems.

7. Summary.This summary will list normal forms, integrable limits from rescaling
and variational integrals for the various types of bifurcations discussed in this paper.

Codimension one bifurcations.
Saddle node. Simple zero eigenvalue,

2=+ax2+o(2).
Transcritical. Simple zero eigenvalue, 0 constrained to be equilibrium,

2--x+ax2+o(2).

Pitchfork. Simple zero eigenvalue, reflection symmetry,

2=x+ax3+o(3).
Hopf. Simple pair pure imaginary eigenvalues,

-w+ar2+o(2), i,-Xr-a2r3+o(3).

Codimension two bifurcations.
Two-dimensional nilpotent space.

Rescafng.

d:l --X2 q- 0(2), )2--Xi-" X2X +alXq-a2xix2+o(2).

Xl-2Xl, X2--(3X2, 3t-T, )-34A, ,2--(2A2
Integral.

x?H( XI X2 ) -- q- A X2 q- A 2 -- q- a ---Variational calculation. Closed curve , in set H c is approximation to closed
orbit when

/o,
terior

This defines a surface in (A,A2,c) space locating lit positions for periodic
orbits.
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Two-dimensional nilpotent space with 0 constrained equilibrium.

1 -x2-+- 0(2), )2-.lXl +,2x2-k-alx+a2xlx2-k-o(2).
Rescaling.

Integral.

X --2X x2 3Xz, t-- T, -2A1, 2-2jx2.

HA, x? xtH( Xl, X2)--T- -T+a, T"
Variational calculation. If D is compact with H constant on D,

A2 fDX1(A2+a2X1)-0 or
a2 fD

Integral curves.

Two-dimensional nilpotent space with symmetry of rotation by r.

.l -x2+0(3), .2-XlX1-1-,2x2+alx-q-a2xx2nt-o(3).
Rescaling.

Integral.

XI-tX x2--t2X2 6t- T, )-62A )tIt 2 2"

H(X,X)=--+A -+a 4

Variational calculation. On the interior D of a compact component of H= c

Integral curves.

fl)( Az + a2X2 ) -O.
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0 + pure imaginary eigenvalue.

O-w+alr2+o(2),
r3+b2rx)+o(3)t-A2r+ a2rx + (bl

3 2 +a3x+ a4r2 + ( b3r2x3 + b4x + 0(3).

Rescalingfor equations in ( r, x ).

r=SR, x3--S3,

Integral.

&=T, 1--(2A1, 2=2A2

-a_ R_2a3/a2 ( A2+ a3 X32_+H(R’X3)- 2a
a3a4, R2 ).a ma2

Variational calculation. On the interior D of a compact component of H-c,

fD(( ( a3-a2 a2b3)R2+(b2-3a22a3LU3 )))A + b- q--s--_ b4X32 R-2a3/a2-1--O.
a3

Integral curves.

0 + pure imaginary eigenvalues + reflection symmetry in x axis.

--w+ar2+o(2),-- ,lr+ blrX + b2r3+ rP4 + 0(5),
,3-,x3 + b3rV-x3 + b4x +x3Q4 + o(5).

two pairs ofpure imaginary eigenvalues with no resonance.

Ol -wl + air? + a2r22 + 0(2),
6J2--W2 -{- a3rl

2 + a4r + o(2),
?, r,( ,, + brl + b2r+ P4 ) + o(5),

2- r2( ’2 + b3rl + b4r22 + 04 + 0(5).

(Two-dimensional systems for (r, x ), (rl, r2) are the same.)
Rescalingfor rl, r_).

r =6R, r2=8R 2, 62t T, )--t2Al, )k 2--t2A2
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The integral exists when (b b )b4A + (b4 b2)blA2 0,

H(R,R2)-r,R2 ( flO + flR21 + f12R22 )
with

2bl(bE-b4)
blb4-b2b
2b4(ba-bl)
blb4-b2b

--all a2___2and fl0 A2 l-- 2--

Variational calculation. On the interior D of a compact component of H--c
has the form

2 2 iRa2-1’YlAl +’yE’E+elR+eERIRE+e3R)Ra’ =0.

lntegral curves.
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CAUSTICS IN EXTENDED EUCLIDEAN SPACE*
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Abstract. This paper is one of a series in which the authors investigate genericity properties of caustics by
reflexion from smooth mirrors. Here, the mirror is a smooth surface in R 3, and two related problems are
considered: (l) what is the form of the caustic at infinity (the caustic in the "far field"), generically, with a
finite light source; (2) what is the form of the caustic generically when the light source is at infinity? For (1)
both "mirror genericity," where deformations of the mirror are allowed, and "source genericity," where only
the source may be moved, are considered. With some assumptions on M it is shown that the caustic can be
made generic in either of,these two ways. (In the latter case, only a local result is proved.) For (2), only mirror
genericity is considered, and it is shown that there is an obstruction to proving a result of this kind, caused by
an inherent lack of genericity in wavefronts arising from parallel light reflected from a .mirror in R3. It is
proved, however, that for most mirrors in with parallel incident light, the part of the caustic lying in a
compact region is generic.
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Key words, caustic, singularity, genericity, optics

Introduction. This paper is devoted to the study of light caustics obtained by
reflexion of a light source in a smooth convex mirror M in R 3. Here we consider the
related questions:

(1) What is the form of the caustic at infinity, generically, with finite light source?
(2) What is the form of the caustic generically when the light source is at infinity?
Both questions are of some physical interest. In particular the study of question (1)

is relevant for the appearance of the caustic in the far field, i.e. its appearance when cut
by a distant screen. (Cutting the caustic by a screen is one way, of course, of actually
seeing the caustic.) See 1.

The two questions are related because following [5] and [6] one can see that they
can both be attacked using contact of paraboloids of revolution with the mirror M,
without constructing an intermediate wavefront. (This observation is very useful since it
simplifies the computations.) For question (1) the focus of the paraboloid is the light
source and its axis is the direction of the reflected light. For question (2) the axis will be
the direction of incident light and the focus the corresponding point on the caustic.
However, the two situations are very different when it comes to the genericity ques-
tions. We will as before be considering two basic questions:

(A) Mirror genericity: Is it true that, fixing the light source, for almost any mirror
the corresponding caustic is generic?

(B) Source genericity: Is it true that, fixing the mirror, almost any light source will
give a generic caustic?

Concerning the more interesting question (B) we see that we have a far better
chance of proving source genericity in (1) than in (2). For in question (1) we have a
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three-parameter family of peturbations of the source and we are asking for a two-
parameter family of functions (the height functions on the wavefront) to be generic. In
question (2) we only have a two-parameter family of perturbations of the source (the
different incident directions) and we are asking for a three-parameter family of func-
tions (distance squared function on the wavefront) to be generic. (We have inter-
changed the roles of the axis and focus.)

In 1 and 2 we obtain some positive results concerning source genericity for the
caustic at infinity. The principal one (Theorem 2.12) states that if the mirror M is
analytic then for almost any position of light source s inside M the caustic at infinity is
locally generic. The corresponding assertion for mirror genericity (for a general smooth
M) already follows from our work in [3] and the theorem of Looijenga which shows
that generic wavefronts give generic caustics at infinity.

In 3 we begin by discussing some problems concerning mirror genericity with
light source at infinity. (The fact that there are problems vindicates again our study of
these questions; genericity results do need to be proved.) We do show (Theorem 3.3)
that, given any compact region K of R and incident direction s for the light, for an
open dense set of mirrors that part of the caustic in K is generic. The version of mirror
genericity which asks for a generic compactified caustic in projective 3-space is shown
to fail. Because of these problems, and the complications involved in getting results in
the easier case of finite light source in [4], we do not consider source genericity for
question (2). (Note that it already fails in the plane: see [6].)

1. Caustics and screens. In practice one usually observes light caustics by placing a
screen in the ambient space; the caustic will then appear as a bright curve on the
screen. Thus although for generic wavefronts in R the caustic has local forms of the
type listed in [5], in practice one observes two-dimensional sections of these local forms.
What form will these sections take? For a generic wavefront and generic screen one will
observe the models associated with a one-dimensional wavefront as in Fig. 1. For if L is
the screen and 14" the wavefront, then the proof of the genericity of wavefronts given by
Looijenga in [10] (see also [12]) shows that a generic W gives a generic family of
distance squared functions WL R and hence a generic Lagrangian or catastrophe
map, with L as control space rather than the whole of R 3.

FIG.

In this paper we wish to prove a different type of result. We claim that choosing a
screen sufficiently far away from the generic wavefront W one should obtain the
generic forms of the diagram above, and the caustic curve on the screen should not
change if we move the screen (i.e. the caustics should be isotopic). In physicists’
terminology we are studying the caustic in the far fieM. To do this we need to introduce
the family of height functions on W. So consider S=((t,a)R3: t2/llal[2--1}
and define G: WS by G(x,t,a)--tllxllZ-2(a,x)--tllx-at-ll2-t-llal[ 2. This
is the compactification of the distance squared functions discussed in [10] and [12, p.
713]. For t--0 we have the height functions on W. As usual the (extended) caustic is the
set of points (t,a) of S for which a(t,a): W---) has an A_>2 at some point. (We can
think of this extended caustic as lying in the projective space p3, i.e. S modulo
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antipodal points, for a(_t,_a)-’- --a(t,a).) If t4=0 a point of the extended caustic corre-
sponds to a point of the usual caustic (i.e. at- is a centre of curvature of W.) However,
the new points of the caustic in S are those on the sphere (at infinity) given by {t-0}.
This is in fact the fold curve of the Gauss map of W (see [2]).. The main idea is that this
caustic at infinity is essentially the caustic in the far field, i.e. the caustic cut with say a
spherical screen of sufficiently large radius centered at the origin. The key lemma we
require is:

LEMM, 1.1. For a generic wavefront the sphere {t--0 } cuts the natural stratification
of the extended caustic transversally.

Proof. By Looijenga’s transversality result both G and its restriction to W {t-0
are generic families of functions for generic W. Thus one generically has strata of type
A2,A3 and A2/A2 of the extended caustic meeting the sphere {t- 0}. To prove that
{t- 0} meets the A2,A3 and A2/A2 strata of S transversally we need the following
rather trivial extension of the standard Thom lemma. Let F: XYZ be smooth and
A C Y, B C Z be smooth submanifolds. If F is transverse to B then the restricted map F:
XAZ is transverse to B if and only if the projection r: F-(B)CXY Y is
transverse to A.

(Proof. This is a local assertion, so near a point aA write Y as A A’ with a now
written (a,a’)A A’. Write r for projection of Y onto A’ and consider F: XAA’

Z. Now F is transverse to B, so by Thom’s lemma Fa," XA Z is transverse to B at
(x, a, a’) if and only if the composite

’ A’ ’ A’F-’(B) --,AN

isa submersion at (x, a, a’). This is so if and only if r is transverse to A at (x, a, a’)
Q.E.D.)

We now take X- Wr), Y=S, A- {.t-0}, F=rjG, Z--Jk(W,R) and B the A 2
or A set (r-1) or A_/A2 set (when r=2). For.generic W we have jG transverse to
the relevant B as well as its restriction to w(r){t--O}. So the projection r:
(jG)-I(B) S is transverse to {t-0}, as required. Q.E.D.

The relevance of the lemma is as follows. We have a two-sheeted mapping S- {t--
0} R defined by (t, a) t- a, with a (one-sided) inverse _..) S { 0) defined by
x ((1 /llxll=)-/=, x(1 /llxl12)- /2). Thus the spheres centred at0 correspond to
the sets t--i, a constant, in S. Since {t--0 } meets the extended caustic transversally, so
will t=8 for 8 small, and we will have isotopic caustic curves on all sufficiently large
spheres (with corresponding radius -2_ 1.)

One final crucial observation: in the proof of Lemma 1.1 above we assumed that G
was a generic family. If however we only have G: W {t=0} generic then since
genericity is open we will have G: W U--, generic for some suitably small
neighbourhood U of {t=0} provided W is compact. This in fact suffices to prove the
lemma in this case, and make the deductions above. So for caustics in the far field we
need only consider the family of height functions on compact wavefronts .W.

Consequently let us review some facts concerning height functions on smooth
surfaces in 3. (See [2] for details.) A height function in a given direction has an A_>2
singularity at a point p of a surface W in R if and only if the normal to W at p is in the
given direction and the Gaussian curvature of W at p is zero. Generically only A,A2
and A singularities occur. The A singularities occur at points where the rib lines cut
the parabolic curves, and give rise to cusps of the Gauss mapping. Contact of A_<2 of a
surface with its tangent plane is easily seen to be automatically transverse. For an A
point, however, there is a genuine condition to be satisfied.
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As in [5] we shall study the caustic (at infinity this time) via contact between the
mirror and quadrics (in fact paraboloids) of revolution rather than considering height
functions on the wavefront. (We shall only consider local genericity, i.e., we ignore
self-intersections of the caustic.) These two approaches yield the same result; the fact
that contact is preserved on taking orthotomics is proved in [3, 4] and [1], and the
proof that an A arising from the paraboloids is transverse if and only if that arising
from the corresponding height function is transverse is similar to the proof in [5,
Appendix] for the .4 4 and D4 cases when considering distance squared functions.

Let M be the mirror and let R denote the space of quadratic forms on R whose
zero-set is a paraboloid of revolution. In 2 we parametrize R by R 33 where
one factor R gives the focus s, which corresponds to the light source in our work. In
what follows we take sIntM, the open region of 3 inside M. There is a global
contact map

F: MXR--*g

defined by F(m, Q)= Q(m). What we actually do in 2 is to show that, for some closed
set f of measure zero in IntM, the map F with s restricted to IntM-f has jet
extension (as a family of functions on M) transverse to various strata in jk (M,).
This is done by using a local version , of F and working case by case. (In fact, for
strata of singularities of corank 2 we show directly that the contact map avoids these
strata (Lemma 2.2).) We can now deduce from Thom’s basic transversality lemma that,
for all s off a set of measure zero in IntM- f (or in IntM), the contact mapping with s
held fixed is transverse to these strata. Ts is equivalent to the corresponding result for
height functions on the orthotoc (thus for Aa and corank 2 the strata are actually
avoided for almost all s), and establishes the genericity of the caustic at infinity for
almost all source positions.

2. Transversali of the contact map. In this section we present detailed computa-
tions concerning the contact of the mirror M with paraboloids of revolution. We write
A for the real vector space of all quadratic functions on 3 (i.e. with only constant,
linear and quadratic terms) and R for the subset of those whose zero-sets are paraboloids
of revolution. Note that R is of course closed under multiplication by nonzero scalars.
We wish to show that R is actually a smooth submanifold of A, and to compute its
tangent space at any point.

A paraboloid of revolution has a focus s=(u, v, w) and a directrix plane. If is in
the direction of the axis (t (p, q, r) 0) then for some k the directrix plane has
the form t.a k, where a (x,y,z). Then the distances of any point of the paraboloid
of revolution from the focus and the directrix are equal. We always assume that s does
not lie on the directrix plane.

LEMM 2.1. The equation of the paraboloid of revolution with focus s and directrix
t. a:k is

(*) (k t’)2 t2(s-

Here 2= t-t is the square of the length of t, etc. The paraboloid can also be described
as the antiorthotomic of the directrix plane relative to the focus. In our situation the
directrix plane is the tangent plane to the wavefront W, and the focus is either the light
source or the point on the caustic corresponding to light from infinity in the direction
of the axis. Contact between W and its tangent plane is the same as contact between M
and the paraboloid of revolution.
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The left side of (.) yields an explicit parametrization of R (more precisely of
"half" of R: for every QR either Q or -Q, but not both, has the form given), the
parameter space being the open subset of R R R comprising those points (k, s, t)
with v0 and t-sv k. We claim that this parametrization has maximal rank 7. If we
differentiate (.) with respect to k,u,v,w respectively we see that the image of the
differential contains k-t. a, x-u, y-v,z-w: the condition t. svk ensures that these
vectors are linearly independent, so the image of the differential contains 1,x,y,z. If we
now differentiate (.) with respect to p, q, r respectively and disregard linear combina-
tions of 1,x,y,z in the result, we see that

X=x( px +qy+ rz)-p(x2 +y+z 2),
Y=y( px + qy + rz ) q( x 2 +y2+ z 2 ),
Z= z( px + Cly + rz ) r( x 2 +y2 + z

9_ )
all lie in the image of the differential. One readily checks that X, Y,Z are linearly
independent if and only if t=0, which condition is automatically satisfied. Thus R is a
smooth immersed submanifold of A of dimension 7 with tangent space spanned by
1,x,y,z,X, Y,Z. In practice we shall be concerned more with the subset Rz=0 of R,
comprising quadratic functions with zero-set paraboloids of revolution passing through
the origin 0 in 3, and tangent there to the plane z-0. Rz=0 is likewise a smooth
submanifold of A, of dimension 4, with tangent space spanned by z, X, Y, Z. In fact, by
the reflexion property for paraboloids of revolution, the reflexion g= (u, v,- w) of the
focus in the plane z--0 must be a scalar multiple of t--( p, q, r), so we can write

X=x( ux + +z ),
Y=y( ux + vy- wz ) -v(x 2 +y2 + z ),
Z= z( ux + vy- wz + w(x - +y- + z2).

A trivial calculation based on Lemma 2.1 shows that the unique paraboloid of
revolution

Q=ax2 + by 2 + cz + 2dxy+ 2eyz + 2fzx + gz

through 0 in 3, tangent to the plane z--0, with focus s--(u,v,w), where w4:0, has
coefficients

a v + w2, b U 2 / W2
C U 2 @ 132

d= -uv, e= vw, f= uw,

g= -4w(u + v + w ).

Geometrically, it is more illuminating to write Q=AS-p2 where A u / v2 + w,
S=x2 +y2+z-4wz, P=ux/vy-wz. S represents the sphere through 0 centered at
the point where the z-axis meets the axis of Q, and P represents the plane through the
origin perpendicular to the axis of Q, so a translate of the directrix plane.

Contact of M with paraboloids of revolution. We need to make a few preliminary
comments about the contact of M at a fixed point with paraboloids of revolution. By a
rigid motion of N we can suppose the point in question is 0, and that (close to 0) the
surface is given in the Monge form

z-1/2(,x 2 + x_y2) + C(x,y) + D(x,y) +
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where C,D,... are binary forms of degrees 3,4,... and /1,/2 are the principal
curvatures at 0. We are concerned only with surfaces M having positive Gaussian
curvature, so we can suppose rl >0, r2>0 and rl-<2. Now let N be an open neighbor-
hood of 0 in R on which the function z z(x,y) is defined. We define the contact map
3’: N R R by the formula

3’(x,y, Q)- Q(x,y,z(x,y)).

Of course for a fixed Q passing through 0 the germ of this function at 0 represents the
contact [3, 4] of Q with M at 0, and is singular if and only if Q is tangent to z-0 at 0.
For such a paraboloid of revolution

Q-ax 2 + by 2 Av cz 2 + 2dxy + 2eyz + 2fzx + gz

with a, b, c, d, e,f, g expressed (as above) in terms of the coordinates u, v, w of the focus,
the contact germ has initial Taylor expansion

3"(x,y)--(a+1/2x,g)x2+2dxy+(b+1/2x2g)y2+’’’.

We wish to consider in detaikthe conditions for 3’ to be transverse to the various
canonical strata in the jet-space: of course, this refers strictly not to 3’, but to a
corresponding jet-extension into a jet-space J’(2, 1).

Strata of corank 2. The condition for contact of corank 2 is that the quadratic part
of the germ should be identically zero, i.e.,

0-2d-
0- a +1/2rg I)2 ’ w2- 2rw( U 2 "q’- 1)2 + W2 ),
0 b + 1/212 g- u 2 --1- w2- 22w( u 2 -+- 1)2 + w 2 ).

Note that since we are only interested in positions of the source s inside the ovaloid M,
it cannot lie on any tangent plane to M, so we can always assume w v0. When 0 is an
umbilic of M, i.e. rl- 2- (say), these equations have the unique solution u-0, 1)-0,
w-1/2, i.e. the source is the midpoint of the line-segment joining 0 to the unique
centre of principal curvature. And at a nonumbilical point the equations have two real
solutions w-1/2x, uZ--(1/4lCZ)(1/tCl 1/2) in the principal plane v-0. These
elementary deductions suggest that for almost all positions of the source we should be
able to avoid contact of corank 2. Indeed at each point rnM we have at most two
positions of the source giving rise to contact of corank 2, and as m moves over M we
expect these points to sweep out a surface avoidable by arbitrarily small changes of the
source. The corresponding mental picture on the orthotomic of M is that one is trying
to force all the umbilics off the parabolic curve by small changes in the source.

LEMMA 2.2. There exists a closed set C_ Int M, of Lebesgue measure zero, such that
for every position of the source s off f there is no paraboloid of revolution with focus s
having contact of corank 2 with M.

Proof. For m M write f,, for the set of (at most two) positions of the source s for
which a paraboloid of revolution with focus s has corank 2 contact with M at m. Take

’ (resp. ") to be the union of the sets fm with rn an umbilic (resp. not an umbilic).
Using the local triviality of the normal bundle of M one sees easily that f’ has
Lebesgue measure zero. And that f]" likewise has Lebesgue measure zero follows
exactly the initial part of [5, proof of Prop. (4.7)]. Thus f-f’tAf" is of Lebesgue
measure zero as well. Moreover f is closed. Indeed f is the image under the proper
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projection MI ---)R of the set Vof pairs (m,p) with mM,Pm, so it suffices to
show V is closed i.e. its complement is open in MXR 3. And that is a trivial conse-
quence of the explicit description of ’m given above. Q.E.D.

Generic strata of corank 1. For any integer k_> the contact map 3’: NR
induces a single jet-extension into the jet-space J0(2, 1) without constants. Our next
objective is to discuss the transversality of this map to the strata of corank 1, i.e. the
An-strata. Note that the vector sum of the image of the differential and the tangent
space to the orbit contains the vectors in the Jacobian ideal Jr, modulo terms of degree
_>k + 1" the remaining generators arise by taking the list of tangent vectors to R, and
substituting z-z(x,y) in each. In particular, the tangent vectors x,y produce the linear
terms in the jet-space, so we need only consider terms of degree _>2, and the list of
tangent vectors to Rz_o. We start with the generic strata of corank 1.

LEMMA 2.3. The contact map is always transverse to the An-strata for n <_ 3.
Proof. For these strata the Jacobian ideal Jr will contain all monomials of degree

_>3, so we need only consider x2,xy,y 2. Modulo terms of degree _>3 we have Z-----
w(x 2 +y-), and the tangent space to the orbit contains

5X-x aq-i x +dxy, X-y--dx + b+sx2 xy,

i3’ g 2 03’-y -x =--(a+-Xl )Xy+ dy -Y ---fy dxy+ ( b+x2 ) Y 2

These five vectors span the same space as x2,xy,y 2 unless a+gx/2=O, d=0, b+
g2/2 =0: but these are precisely the conditions for contact of corank 2, and the result
follows. Q.E.D.

The Aa-stratum. This stratum requires a rather detailed analysis. A necessary
preliminary is to observe that the condition for 3’ to be of corank is that at least one
of a+gxl/2, d,b+gx2/2 should be nonzero, and that

d 2-(a+1/2x,g)(b+1/2x2g ).

Patient manipulation, using the fact that we can always assume w4 0, reduces this to

4x,x2w(u2+v2+w2)--2{x,u2+x2v2+(x, q-x2)w2} -k-w--0

defining a circular cubic surface in R 3, in fact precisely the first discriminant surface of
[5, {}3]. At an umbilic of M, where -x2-x (say), this reduces to the sphere u 2 +v2+
w2-w/2x, and its tangent plane w- 1/2x. This simple fact allows us to make a rather
direct attack on the question of transversality to the Aa-orbit at an umbilic of M, i.e.,
we can assume the source lies either on the sphere, or on the plane, and consider each
possibility separately.

LEMMA 2.4. Suppose 0 is an umbilic of M. There are only finitely many points on the
plane w- 1/2 where the contact map fails to be transverse to the Aa-orbit.

Proof. For the Aa-orbit the Jacobian ideal Jr contains all monomials of degree -> 4,
so we can work modulo such terms. In fact we need only consider x3,x2y, xy2,y for
then the argument of Lemma 2.3 will produce x2,xy,y 2 as well. Modulo terms of
degree -> 4 the tangent vectors to Rz=0 yield

I 2 2z=-(x +y )+C(x,y),
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X 2 2X=--uy2-vxy+-(x +y ),
Y - 2Y=--vx--uxy+(x +y ),

2Z=---(x +y2)+x(ux+vy)(x2+y2).

Now when w- 1/2x we have a+1/2xg- -u2, d- -uv and b+ 1/2xg- -v2. Using these
relations we see that, modulo terms of degree _>4, the tangent space to the An-orbit
contains

2 03, 2(-x -x =-ux ux+vy),

Oy-xY -x =-- uxy( ux + vy ),-Y -x =-- uy E ( ux + vy )

2 7

=- vx ( ux +,
(

We can assume u=/=0 or v=/=0, else the contact is of corank 2 so these vectors span the
space of binary cubics with factor ux / vy, and we can work modulo such terms. Note
now that from z, X, Y, Z we can construct essentially one linear combination without
quadratic terms, namely

i
x r2Z -- C(x,y) -- ( ux + vy )(x 2 +y2 ).

Transversality can only fail if ux + vy is a factor of this, i.e.

(i) C(-v,u)--O.

We require a further condition on u, v which we obtain as follows. The tangent space to
the An-orbit also contains x l)7/ix, y i"//ix, xi7/y, y’,//iy. By subtracting off
appropriate multiples of X, Y, Z we obtain vectors without quadratic terms in the vector
sum of the tangent space and the image of the differential. Explicitly, we consider
(modulo terms of degree _>4, and cubic terms with factor ux+vy)

And transversality can only fail if ux + vy is a factor of all four expressions, i.e.,

(ii)

(iii)

U/) 2 /92 OC
-a-(u +

U 2 OC
"’-( U 2 +192 ) -- ’U -X 19,- U) O,
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(iv)
V2 OC- (U2 + V2) +gV -y (V,--u)--O,

uv OC

When u 0, v v 0 or u v 0, v 0 a brief calculation verifies that the equations (i) to (v)
have at most two solutions. When u vs 0, v0 the equations (ii), (iv), (v) are redundant,
and we need only consider (i), (iii). (i) represents three (possibly complex) lines through
the origin in the (u,v)-plane. And, as w= 1/2 implies g= -(2/)(u2+v2+ 1/4-),
we see that (iii) represents a circular quartic curve in this plane with a singular point at
the origin. Thus we obtain only finitely many points of intersection with u0, v v 0 (in
fact _<6) unless the quartic reduces to a line and a cubic, and the line lies in the set
defined by (i). However, simple inspection of the equation of the quartic shows that this
can only happen when the line is u=0, which case we have already dealt with. That
completes the proof of Lemma 2.4. Q.E.D.

LEMMA 2.5. Suppose 0 is an umbilic of M. There are no points on the sphere
u 2 + v + w2-- w/2x where the contact map fails to be transverse to the Aa-orbit.

Proof. In principle this proceeds in the same style as that of Lemma 2.4. Again, we
can work modulo terms of degree _>4, and need only produce x3,x2y, xy2,y 3. The
tangent vectors to R=0 produce

1 2 2z=-(x +y )+C(x,y),

wrx(x 2X -y(vx-uy)+- +y),

2Y=x(vx--uy)+-Wxy(x +y),
/ 2 2Z--w(x2+y2)+-(ux+vy)(x +y ).

When u2q-v2+wa-w/21 we have a+1/2g=v2, d--uv, b+1/2cg-u2, and the tan-
gent space to the A4-orbit contains

x2 07 2 0___. "--__UX2(VX__Uy )- -x vx 2 ( vx uy ) "x Oy
Oy Oy

uxy(vx ),- xY -x vxy( vx uy ) -xy -y uy

Oy 2 07_y2 uy2(vx_uy).-x =-vy2( vx-uy)’ -Y 3y

Either u4=0 or v4=0, or else we have contact of corank 2, so these vectors span the
space of binary cubics with factor vx-uy, and we can work modulo such terms. From
the vectors z,X, Y, Z we can produce a linear combination with no quadratic terms,
namely

wz- - Z--wC(x,y) -- ux + vy)( x 2 +y2),

and transversality can only fail when vx-uy is a factor of this, i.e.

(i)
/ 2 V2)2+ -wC(u,v)-O.
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We produce a second condition on u, v as follows. Using the Euler relation we see that
the tangent space to the Aa-orbit contains the vector

]/ ]/ )2 2 3gC(x,yX-x +Y-y (Vx-uy +3xw(ux+vy)(x +y2)+ ).

However, the image of the differential contains

2uX+vY=--(vx-uy +--(ux+vyl(x2+y2)

and subtraction produces the vector

5 2xw( ux + vy)(x +yZ ) + 3gC(x,y).

Transversality can only fail when vx-uy is a factor of this, i.e.,

(ii)
5 2 122)2-w(u + + 3gC(u,v)-O.

Now (i), (ii) give two equations in (U2-+’V2)2, C(u,v), and the determinant of the
coefficients is easily checked to be xw2 4: 0. It follows that u-- 0, v 0, establishing the
result. Q.E.D.

We can sum up our discussion of what happens at an umbilic of M as follows:
LEMMA 2.6. Suppose 0 is an umbilic of M. There are only finitely many positions of

the source s--(u, v, w)for which the contact mapping fails to be transverse to the An orbit,
all of which lie in the plane w-- 1/2x.

We turn our attention now to the question of what happens at a nonumbilical
point of M. Our first step is provided by

LEMMA 2.7. Suppose 0 is not an umbilic of M. There are no positions of the source
s u, v, w) off the principal planes u O, v 0 for which the contact mapping fails to be
transverse to the Aa-orbit.

Proof. As in the two previous proofs, we work modulo terms of degree _>4, and
need only produce x3,x2y, xy2,y3. We suppose throughout that ua:0, va=0. Following
the philosophy so far adopted we need to construct a linear combination of z, X, Y, Z
with no quadratic terms. Sheer calculation produces

where

4w( u 2 + v2 )C(x,y) (g:! X2 -- x2y 2 )(Aux + Bvy)

a i1 u2 q- 121)
2 q- ( I 2 I )w2

B i1 u2 -{- 121)2- ( I2 I )w 2

The next step is to produce from x O’t/Ox, y O’t/Ox, x O’/Oy, y O’r/Oy a vector with zero
quadratic part, by subtracting off an appropriate linear combination of X, Y, Z. Start-
ing with x OV/Ox +y O//Oy this proceeds uniquely and produces the vector

(2) 3gC(x,y) + 1/2 (x,x2 + x2y
2 )(A’x + B’y)

where

A’- 6uw-pw- ru, B’ 6vw- qw- rv.
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The important practical consideration here is that by taking an appropriate linear
combination of (1) and (2) we obtain a binary cubic with factor x2+r2y2, namely
this position definite form times the linear form

(3) u( gA + 4w2c)x +(gB+ 4wEc)y.
We can now obtain a definite restriction on u, v, w. Looking at the tangent vectors to
the A4-orbit obtained by multiplying Of/Ox, i)/Oy by xE, xy,y 2 we see that we can
work modulo cubic forms with factor

(4) u((a+1/2lg)x+dy } +v(dx+(b+1/2x2g)y}.
Transversality can only fail when the linear forms (3) and (4) are linearly dependent" a
few lines of working reduces this to the condition

() ,u + .v- + (, +)w-w.

However, the very fact that the contact is of corank imposes a further condition on
(u, v, w), namely that it satisfies the equation (**) of the first discriminant surface: in
view of (5) this can be written as

(6) U 2 +192"+ W2- 1/4XlX2.

Eliminating u, v from (5), (6) we obtain

{
2

-0,

and since Ki,/2 are distinct and positive, we see that these equations-can only be
satisfied when one of u, v is zero. That concludes the proof. Q.E.D.

It remains to discover what happens in the principal planes at a nonumbilical
point of M.

LEMMA 2.8. Suppose 0 is not an umbilic of M. Then, for a position of the source in
one of the principal planes, transversality to the A4-orbit can only fail when 0 is an
A >_3-point of M. Moreover, in this case transversality will fail at not more than one point
in each principalplane.

Proof. By symmetry we can suppose u-0, v 4: 0. Following the initial steps in the
proof of the preceding proposition we can produce a linear combination of X, Y, Z with
no quadratic terms, namely

(1) 4vwC(x,y)- (x2v2- x2w2+ KIw2 )y( KI x2 + x2y
2 ).

For contact of corank exactly one of a+1/2clg, b+ 1/2r2g must be v0. The former case
is easily disposed of. Looking at the tangent vectors to the Aa-orbit obtained by
multiplying OV/Ox, OV/Oy by x 2, xy,y 2 (modulo terms of degree _> 4), we see that they
span the space of binary cubics with factor x, and we can work modulo such terms. But
then vx,//Ox-2(a+ 1/2xlg)Y has zero quadratic part, and the coefficient of y3 is =/=0,
so we achieve transversality. It remains to discuss the case b+1/2x2gvaO. The first
observation to make here is that then necessarily a+ 1/2xlg-(v2 + w2)(1 2XlW)-0 so
w--1/2r, a line in the (v,w)-plane. Secondly, the tangent vectors to the Aa-orbit
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obtained by multiplying O’t/Ox, O,/ay by X2, xy,y 2 (modulo terms of degree _>4) span
the space of binary cubits with factor y, and we can work modulo such terms. In
particular, transversality can only fail when y is a factor of (1), i.e. y is a factor of
C(x,y), which is precisely the condition for 0 to be an A_>3-point of M. To obtain a
definite restriction on v we consider the tangent vectors x O’t/Ox, y O’t/)x, x’g/)y,
y 19"/19y to the Aa-orbit. The first two are zero, modulo terms of degree _> 4, and cubic
terms with factor y. For each of the latter two we can remove the quadratic terms by
subtracting off appropriate multiples of X, Y,Z. The only positive information is
provided by the vector vxl)’t/y+2(b+1/2xzg). The condition for y to be a factor of
this is easily written down. If we agree to write C(x,y)=y(cx2+c2xy+c3y2), and
bear in mind that w- 1/2x l, the condition reduces to

4vz +
x2 vc 4

yielding at most one value of v for which transversality fails. Q.E.D.
We can now put the bits together to establish the main result we need concerning

the Aa-stratum. Unfortunately at this point we need to assume M is analytic. We do not
know whether this assumption can be avoided.

LEMMA 2.9. Assume that M is analytic. Then there exists a closed set f C_ IntM, of
Lebesgue zero, such that for every position of the source s off the contact map is
transverse to the Aa-orbit.

Proof. For each point rnM there is, by the preceding propositions, a finite set

’m C of "bad" positions of the source, where the contact map fails to be transverse
to the Aa-orbit. Write A for the set of points (m,s) in MXI with sm. Let us
assume, temporarily, that A is subanalytic. For the properties of subanalytic sets used
below, see [8], [9] or [4, 4]. Observe first that then A necessarily has dimension <2,
since the fibres of the projection M>(I M, restricted to A, are finite. Moreover, the
image of A under the proper projection MR3R will likewise be subanalytic, of
dimension <2, and hence its closure f will have the same properties. It follows that f
has Lebesgue measure zero in R3, and has of course the properties required by the
proposition. Thus it remains to check that A is subanalytic. Evidently, we need only
consider points on M which are umbilics, or A_>3-points, each condition defining a
subanalytic subset of M. Then, for each type of point m GM we have simply to observe
that the proofs of the preceding propositions yield the "bad" set "m explicitly as the
zero set of a finite system of analytic equations.

The A,-strata with n_>5. Our final objective in this section is to prove that for
almost all positions of the source s we can avoid nongeneric contact of corank 1.

LEMMA 2.10. Assume that M is analytic. Then for almost all positions of the source s
inside M there is no paraboloid of revolution with focus s having contact of type A >_5 with
M.

Our strategy for proving this result is based on a refinement of the Thom basic
transversality lemma [7] due to Mather [11 ].

LEMMA 2.11. Let F: A B N be a smooth mapping, and P C_N a smooth manifold.
Suppose that for all c-(a,b) in AB either Fa"BN is transverse to P, or the
dimension of ImTF+ TFc)P is strictly greater than that of ImTrFa+ TFc)P: then for
almost all a A in the sense ofLebesgue measure, Fa" B N is transverse to P.

We now set up the situation to which this result will be applied. Consider the
"global" contact mapping

1". MX R3 X R X R3>_.
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given by F(m,t,c,s)-Q,(m), where r-(t,k,s) and Q is the left-hand side of (.) in
Lemma 2.1. The flighted arrow indicates that the domain of F is the open subset of
MXI3XI XI defined by t.s:/:k and sIntM. We consider F as a family (F) of
smooth mappings parametrized by the positions of the source s. Of course locally ts is
precisely the contact mapping we have studied in ts section. Each F induces a smooth
jet extension

(1) jrs" MXr3Xj4(M,n)

and it is to ts that we apply the Thom-Mather lemma. For this application we shall
need to use the jet-bundle wch includes constants in the fibres. The reason for this is
that in essence k adjusts the constant term of Q, and we want to use up the influence of
k on ts constant term so that it does not affect others.

Let us note at once that since multiplying k and by , 0, merely multi-
plies Q, by , ts cannot affect the contact singularity. It follows that the tangent
vector corresponding to

p+q+r+k O
always lies in the tangent space to (for example) an A stratum. Ts effectively reduces
the tangent vectors provided by 3X from four to three.

Next, we claim that, if Q, has contact of type A with M at m, then the vector
sum of the image of the differential at (m,t,k) of (1), and the tangent space to the
A 5-stratum has codimension 2. Indeed if we write for the algebra of germs at m of
smooth functions on M, for its mafimal ideal, and Jr, for the Jacobian ideal
generated by the partials of F with respect to some local coordinates on M, then
5+Jr, has codimension 5 in . On the other hand, as we have noted, at most three
extra independent vectors come from 3X, so the claim is proved.

Consider now the corresponding mapping

(2) n3 n).
We clam that here the corresponding vector sum has codimension 1. This needs only
to be checked locally, using the contact map studied earlierin ts section. First we
note the crucial fact that 1, x and y are all in the image of the differential of the contact
map, as they were when, using J0, we ignored constant terms. To see ts obsee that
differentiation with respect to k,p, q,r produces nonzero multiples of

k-px--rz, -u+x, -v+y, -w+z

respectively, where z-z(x,y) as in the earlier parts of ts section. A linear combina-
tion of these produces the nonzero constant

k-pu-qv-

withoutyer terms. It is now clear that we obtain x and y too.
Next, the tangent vectors to the A5 stratum obtained by multiplying O/Ox and

O/Oy by monoals of degree 3 (and ignoring terms of degree 5) span a subspace of
the space of bina quartics of codimension 1. Augmenting these vectors by a single
vector, we obtain all terms of degree 4 in the jet space, and can work modulo terms of
degree 4.

Let fl C IntM be the closed set of measure zero for which one or more of the
transversafity arguments of Lemmas 2.4, 2.5, 2.7, 2.8 fail. We shall assume now that



CAUSTICS IN EXTENDED EUCLIDEAN SPACE 63

s f; clearly we can still apply the Thom-Mather lemma to IntM-f and still deduce
that, for all s off a set of measure zero in IntM, the mapj(F is transverse to A__>5 (and
hence does not intersect it). Then the arguments of the above four results yield terms of
degree 3 modulo those of degree _>4, and then terms of degree 2 modulo those of
degree _>3. We use here the fact that 1,x and y are automatically present, so that we
need only, as in the proofs of the four results, consider quadratic and higher terms.

The end result is that Lemma 2.10 follows by an application of the Thom-Mather
lemma, the appropriate submanifold of j4 being the A_>-stratum. Q.E.D.

Putting together Lemmas 2.3, 2.6, 2.9 and 2.10 we obtain:
THEOREM 2.12. Suppose that M is analytic. Then, for all sIntM off a set of

measure zero, the caustic at infinity is locally generic.

3. Light source at intinity. Here we consider only the question of mirror generic-
ity. The general method used in [3] when the light source was finite was

(a) Given the mirror and source construct a smooth wavefront W.
(b) Deform W slightly to obtain a generic wavefront W’.
(c) Reconstruct a corresponding mirror M’, a slight deformation of M.
When the light source is at infinity, i.e. there is given a direction s for parallel

incident light, we have a choice of incident wavefronts. Namely, we can choose for
"incident wavefront" any plane L given by x.a-fl, where a is a unit vector in the
incident direction and fl is some real number. (Note that the same L will serve for light
in the directions a and -a.) We reconstruct the wavefront W in much the same way as
we did for the case of a finite source (see Fig.2). Corresponding to each point rn of the
mirror there is a (unique) point x on L with the normal to L at x passing through m.
We then reflect x in the tangent plane to M at m to obtain the corresponding point q of
W. Of course W depends, as did L, on ft. A short computation shows that W is the
locus

(1) q-m+(fl--m.a)a-2((fl-m.a)(a.n))n

where n is the unit normal to 34 at m (note that n and -n give same q). We suppose
that a and fl are selected so that fl-p. a>O for all m on M, so that M lies wholly on
one side of L.

W q

FIG. 2

LEMMA 3.1. (a) If the tangent plane to M at m does not contain the incident direction
s (i.e. if a. n va O) then W is immersed at q provided fl is sufficiently large (depending on
m).

(b) If the tangent plane to M at p does contain s then W is immersed at q.
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Proof. (a) Differentiating (1) with respect to coordinates u 1, u2 on M we obtain

Ou Ou -iui a a 2 .Ou a.n)-+-(fl-m.a) a.-u n

)n
--2((fl--m.a)(a.n))

The condition for the 8q/8u to be linearly dependent is therefore a quadratic equation
in/3 where the coefficient of/32 is zero if and only if

n ) n
a. -u n + ( a. n ) --0, i= 1,2,

are linearly dependent. However, M has nonzero Gaussian curvature at m, so that n,
On/Ou and On/Ou2 are linearly independent there, and by hypothesis a. n is nonzero.
Hence the coefficient of/32 cannot be zero, and for a given rn the vectors Oq/Oui will be
linearly independent for all sufficiently large/3.

(b) When a. n =0 the expression for Oq/Ou reduces to

Ou, Ou .-u "a a-2 (fl-m.a) a.-u n.

Let b be a unit vector perpendicular to a and n. Then

ui
0__q ( 0mui { ( 0n)}a" -u/q-z-...b b-2 (fl-m.a) n.

Consequently W fails to be immersed precisely when

_u .b)( n
(recall that fl-m.a is nonzero). Choose coordinates so that b-)m/Oul, a--Om/Ou2

(both evaluated at m), so the above reduces to (On/OuE).(Om/Ou2)=O. Finally the
Gaussian curvature of M at m is

On OU 0/,/2 0/,/2 OU 0/,/2

which is therefore _<0. This contradiction shows that W is always immersed at q.
Q.E.D.

The problem with using this lemma to construct a wavefront 14/is that, given M
and the incident direction s, we cannot choose a fixed fl so large that the resulting W is
immersed everywhere. No single fl will work for all points of M away from the profile
curve on M in the direction s (i.e. the set of points of M at which the tangent plane
contains the direction s), since the sufficiently large value of fl in Lemma 3.1(a) tends
to infinity as m approaches the curve.

As a simple illustration take a circle in the plane and a line not meeting the circle
(Fig. 3) Carrying out the wavefront construction in the plane, with the circle as mirror
and the line as incident wavefront, we obtain the curve illustrated (Fig. 3), which
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inevitably has a node. Rotating the figure we obtain a mirror M in R and incident
wavefront L for which the constructed wavefront W will have a cone-like point of
nonimmersion, no matter how distant L is from M.

FIG. 3

We now show that there is a genuine obstruction to carrying out the proof of
mirror genericity (see Fig. 4).

LEMMA 3.2. Let m be a point on the profile of the mirror Mfor the incident direction
s. If q is the corresponding point of W then there is one centre of curvature where the
corresponding sphere has A2 contact and one principal curvature zero, W having A >_3

contact with its tangent plane.

z

FIG. 4

Proof. Write M at 0-m locally as

z =f(x,y) Ex 2 + 2txxy + ,y2 + 0(3).
Note that , and , are both nonzero, for otherwise the Gaussian curvature of M at 0 is
_<0. We can then take a-(l, 0, 0). Using the parametrization of W given by (1) above
we find

q-fl-- 2(fl--x)(fx2)(l+fx2 +re2)-,
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qz=y-2(fl--x)ffy(1 +fx +fy:Z) -1,
q3 =f+ 2( fl- X)fx(1 +fx2 +fy:)- l.

Hence

q-fl- 8fl2x2- 16flXlxxy 8fl/2y 2 + O(3),
q2=Y+O(2),
q 4flx + 4fl#y + O(2).

Consequently 0 M corresponds to (/3, 0, 0) on W, and near this point W has equation
x=fl-z2/2fl+higher terms in x,y,z. Thus the principal curvatures of 14/are -1/fl
and 0 and one centre of curvature is at the origin, i.e. at the point p M.

The distance squared function from 0 to W close to (/3, 0, 0) is

q2+q+ q32_/32 +y__ 8fl,2x + q(x,y)

where q involves only terms above the diagonal joining X and y2 in the Newton
polygon of y2_ 8fl,2x3. Since , 4=0 the distance squared function does indeed have an
A2 at the point (fl,0,0) of W. The height function on W at this point in the incident
direction is ql, which has quadratic term 8fl(x + ly)2. Substituting x- u-/-ly
we get quadratic term -8fl2u- but no term in y3. So, at (/3, 0, 0), W does have A_>3
contact with its tangent plane. Q.E.D.

Thus one part of the caustic corresponding to points of the profile is well behaved.
This is analogous to the plane case, where, with parallel incident light, a point m of M
where the tangent is in the incident direction always gives a nonsingular point of the
caustic, situated at the same point m.

However, genetically the profile will be a smooth curve (in fact always since our
mirrors have positive Gaussian curvature) and, since each point gives an A_>3 for the
height function on W, this part of the caustic at infinity is never generic. (Generically
A_>3 will occur only for isolated points.) Thus independently of M and the incident light
direction the caustic is nongeneric at infinity, and the proof of mirror genericity
sketched out at the beginning of 3 must fail. Putting it another way, we cannot expect
to start with M, construct W, deform W to IV’ and reconstruct M’ from IV’, since only
wavefronts W with the nongeneric behaviour at infinity discussed above can arise from
actual mirrors. There is a built-in lack of genericity for wavefronts arising from parallel
light reflected from a mirror in R 3.

Despite this we are able to prove a weaker result.
THEOREM 3.3. Let K be a compact region in and s an incident light direction.

Then, for an open dense set of embeddings of the 2-sphere S2 as a convex mirror in R 3,
that part of the caustic within K is generic.

Proof. Openness is clear; we have only to prove density. Given M and s construct a
wavefront IV using a value of fl large enough to ensure that M lies wholly on one side
of the incident wavefront L. Now choose an open neighbourhood U of the profile of M
relative to s, as follows. For each point m of the profile, one point of the caustic is at m
and is an A2 (by Lemma 3.2)mhence automatically transverse. So in some neighbour-
hood U of the profile each point m’ will give one centre of curvature of IV near to the
profile, and it will be a transverse A2. By shrinking U if necessary we can ensure that all
of the centres of curvature of IV inside K arise either from the transverse A2’s corre-
sponding to points in U or from points of M- U.
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Now increase/ if necessary so that the construction for the wavefront gives a
smooth point q for each p in M-U. (Recall that the bad values of/3 for each point p
are the roots of a quadratic equation whose coefficients depend smoothly on rn and
whose /32 coefficient is nonzero away from the profile.) This will not disturb the
property of the previous paragraph; consider the resulting wavefront IV. We now use
Looijenga’s results ([10], [12, p. 712]) to deform W slightly to get a generic wavefront
W’ generic, that is, for distance squared functions from points in K. We can do this
in such a way that W’ coincides with W at points of W corresponding to UC_M.

(Strictly speaking, in order to make W’ smooth we shall have to work with a pair of
neighbourhoods U c U of the profile.)

We now wish to recover a new mirror M’ from W’. Clearly we want M’ to coincide
with M on U; how do we construct the other part? Let q be a point on the wavefront
W. The corresponding point rn on M is given by F(m, v l, v2) -0 where

F(m, vl, v2)=m-q- ( [3- m. a)N
where N is the unit normal to the wavefront at q (in Fig. 2 the distance from rn to x is
[3-m.a, and is equal to the distance from rn to q). Here v l, v2 are local coordinates on
W, so that q and N are functions of v l, v_. Now F= 0 is a set of linear equations for rn
and there is a unique solution if and only if the three vectors ei+ aiN are independent.
(Here e (1, 0, 0), etc., and a=(al,a2,a3).) If these vectors were dependent, then for
some nonzero ,--(X1,,2,,3) we would have Y,i(ei+aiN)-O,which gives X--(,.
a)N, so ,-a--(,. a)(N. a). But ,. a=/=0 so N-a=- and since N and a are unit
vectors N- a, so that rn q (/3-p. a)a.

When W is constructed from a mirror M then (writing as before n for the unit
normal to M), comparing the last equation with (1) we have (-m. a)(a. n)=0, so
that a. n-0, i.e., rn is on the profile of M for the incident direction. Consequently we
can smoothly reconstruct an M’ from W’ provided we have not perturbed W too much
to obtain W’; away from UCM we will have a.n4:0.

Finally, will the parametrization m(vl,v2) of the reconstructed mirror be an
immersion? Differentiating F-0 with respect to v we obtain

Om Oq(Om) ON
Ov Ov

t- .a N-(8-m.a)-vi-O.
Assuming , Om/Ovl Om/Ov2 for some ,R we have

dq Oq ON ON )-0.-A + -(fl-m.a) A
0/)l 01)2

It is now a straightforward matter to show that m is actually a centre of curvature of W
at q. (For example one can choose coordinates so that W is {(191, D2,f(191,192))) locally,
with f(vl, v2)-- 1/2xiVl + 1/2x2v + 0(3). Then

ON 0N
--(--KI,O O) ’--(0 --K’ O)0191 01)2 2’

at v v2 0 and m(0) (0, 0, m 3) where m 8- m(0). a :# 0. The above equation then
gives 2 1/m 3-)

Hence we are only in trouble if m is a centre of curvature of W at q, i.e. light rays
reflected from M at rn focus at m. But this is absurd, especially when the incident rays
are parallel. (One easily obtains a formal contradiction by considering the distance
squared function from m to W at q.)
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Thus perturbing W slightly to W’ we can recover M’ as a smooth mirror, since the
condition for rn to be an immersion is necessarily open and is satisfied, as we have just
seen, by M. This completes the proof. Q.E.D.
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REPEATED RESONANCE AND HOMOCLINIC BIFURCATION
IN A PERIODICALLY FORCED FAMILY OF OSCILLATORS*

BERNIE GREENSPAN AND PHILIP HOLMES

Abstract. We use global perturbation techniques originally due to Melnikov [1963] to study the bifurca-
tion behavior exhibited by a family of nonlinear oscillators subject to periodic forcing. We concentrate on the
case in which the unforced systems possess a one-parameter family of periodic orbits limiting on a homoclinic
orbit.

1. Introduction. Many physical problems are modelled as single degree of freedom
nonlinear oscillators subject to external periodic forcing. The books of Andronov, Vitt
and Khaikin [1966] or Hayashi [1964], [1975] provide examples from mechanics and
electrical circuit theory. Such oscillators without external time-dependent perturbations
may be studied by phase plane techniques, and their typical behaviors are therefore
fairly well understood (cf. Andronov et al. [1971], 1973]). However, the presence of
external forcing greatly complicates the situation, and classical analyses (using, for
example, averaging or perturbation methods) have generally been limited to the case of
weak nonlinearity (cf. Nayfeh and Mook [1978]).

In earlier work (Holmes 1979], 1980], Moon and Holmes 1979], Greenspan and
Holmes [1981]) we were able to overcome this limitation by studying small perturba-
tions of strongly nonlinear, integrable systems. In the present paper we make use of
these techniques to study a problem in which, as a parameter is varied, repeated
resonances of successively higher and higher orders occur, culminating in "subharmon-
ics of infinite order" and homoclinic orbits. Specifically, our main example is the
nonlinear oscillator

(1.1) j)-y d-y ey2.-.+ 3’ cos t,

where e, 8 and 3’ are (small) parameters. The corresponding unperturbed (Hamiltonian)
system is

(1.2)
with Hamiltonian

ji--y +y3--0,

))2 y2 y4(1.3) H(y,9)--
2 2 4

which is completely integrable and whose solutions may be expressed in terms of
elliptic functions and, in the homoclinic limit on H(y,p)-O, hyperbolic functions.

Equation (1.1) without periodic forcing (3,=0) was studied by Holmes and Rand
[1980] and shown to exhibit planar homoclinic bifurcations as the parameters e and 8
are varied. Results of Takens [1974] involving a singular "blowing up" change of
coordinates were used to do this. In the present paper these results are recovered more
directly by Melnikov’s method (Melnikov 1963], Greenspan and Holmes 1981]) and
we are also able to treat the periodically forced case.
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*Department of Theoretical and Applied Mechanics and Center for Applied Mathematics, Cornell
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Equation (1.1), without periodic forcing, occurs as a model for panel flutter in a
steady supersonic air flow (Holmes 1977], Holmes and Marsden 1978], Holmes 1981]).
Periodic perturbation of the pressure differential across the panel would give rise to an
additional time-dependent term such as ),cost (cf. Dowell [1966]). Our example is,
therefore, not without physical interest.

The paper is arranged as follows: In 2 we review Melnikov’s method and state the
main results. In 3 we present a preliminary example to illustrate the main ideas and to
point out a characteristic difficulty which often arises in such analyses. Moreover, this
example displays all the typical behavior found in each resonance band of our main
example. We prove a theorem (Theorem 3. l) giving a fairly complete description of an
autonomous averaged system close to the full system, and from this obtain partial
results on the Poincar6 map of the latter. In 4, we turn to our main example. We show
that, for fixed ), and e<< l, as/ is increased a countable sequence of bifurcations occurs
in which subharmonic motions of successively higher periods 2rm are created and
destroyed until ultimately, for a critical value #-/(oo), for any ), >0 and e sufficiently
small we have countably many subharmonic orbits coexisting in a thickened "figure of
eight" neighborhood of the level curve H(y,)5)-0 of the unperturbed Hamiltonian
system (1.2)-(1.3). The closure of the unstable manifolds of these orbits forms a
complicated attracting set, which we briefly describe.

Related work on global bifurcations of two-dimensional diffeomorphisms with
attracting invariant closed curves has been done by Takens [1974], Arnold [1977],
Aronson et al. [1980], [1982], but in the former cases these authors concentrated on the
resonances encountered in the neighborhood of a Hopf bifurcation. Here we are more
concerned with passage through resonance and the analogue of the planar homo-
clinic bifurcation in which a periodic orbit vanishes as its period becomes infinite.

The papers of Aronson et al. are more directly relevant here and we shall see that
the generic (time periodic) perturbations of our results on the averaged equation give
rise to a Poincar6 map displaying essentially the same features found by these authors
in their numerical work.

2. Global perturbations on integrable systems: Melnikov’s method. In this section
we briefly review the analytical techniques to be used below. For more details, and
proofs of the theorems, see Greenspan and Holmes [1983] or Guckenheimer and
Holmes [1983]. We note that Chow, Hale and Mallet-Paret [1980] have obtained similar
results by different methods.

We consider systems of the form

(2.1) c=f(x)+eg(x,t), x--

where

f= f(x

are sufficiently smooth (Cr, r->2) and bounded on bounded sets and g is T-periodic in
t. For simplicity we assume that the unperturbed system is Hamiltonian" f----v-,aH f__
_0H_ff The non-Hamiltonian case is considered by Melnikov [1963] and Holmes [1980a].
Specific assumptions on the unperturbed flow are (cf. Fig. 1):

A1. For e=0, (2.1) possesses a homoclinic orbit q(t) to a hyperbolic saddle point
P0"
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A2. Let F= (q(t)ltR)U (P0}. The interior of F is filled with a continuous
family of periodic orbits q(t), a (- 1,0). Letting d(x, F)- infqrOlx ql we
have lim,_0 sup/R d(q’(t), F) 0.

A3. Let ha=H(q(t)) and T be the period of q(t). Then T is a differentiable
function of h and dT/dh>0 inside F.

We note that A2 and A3 imply that T monotonically as a 0. Many of the results
to follow can be proved under less restrictive assumptions.

Since g is T-periodic, the extended (x,t) phase space of (2.1) is the product
R2S, where S is the circle of length T. Associated with (2.1) we have a Poincar6
map pto defined on a (global) cross section ,to=((x,t)lt=to). pto is obtained by
following solutions of (2.1) based on ]to to their next intersection with Xto, cf. Chil-
lingworth [1976]. Thus the unperturbed Poincar map pdo is simply the time T map of
the unperturbed flow of :=f(x). Fixed points and periodic cycles of period m of pto
correspond to T-periodic motions and mT-periodic subharmonics of (2.1) respectively,
and stability types correspond. In what follows we are effectively using regular per-
turbation theory to approximate pto based on our knowledge of pdo from the integrable
unperturbed problem. (The general theory tells us that any two Poincar maps pt,, pt2
are diffeomorphic, and consequently we will sometimes drop the superscript to.)

FIG. 1. The unperturbed system.

We first consider bifurcations from the homoclinic orbit q(t) as e increases. In
this connection it is important to establish perturbation results for the fixed point Po of
the Poincar map and its invariant manifolds.

LEMMA 2.1. Under the above assumptions, for e sufficiently small (2.1) has a unique
hyperbolic periodic orbit ,/(t)--po + O(e). Correspondingly, the Poincark map pto has a
unique hyperbolic saddle point ptO=po+O(e). Moreover, the local stable and unstable
manifolds Wi(,,) Wlc(),,) of the perturbed periodic orbit are C close to those of the
unperturbed periodic orbit po S , and orbits q( t, to ), q( t, to ) lying in the global mani-

folds WS(/,), WU(T,) and based on ,to can be expressed as follows, with uniform validity
in the indicated time intervals:

(2.2) q( t, o) qO( t_ o) + eq( t, o ) + O( e2 ), [to o),
q( t, o) qO( t_ o) + eq( t, o) + O( e2 ), (- , o ].

As described in Greenspan and Holmes [1983], the distance d(to) between the
manifolds WS(p), WU(p) of the perturbed fixed point p=, fq y, to of the map pt0 is
well approximated by the Melnikov function M(to):

(2.3) d(to)- eM(t) +O(e2).
If(q(O))l
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Here M(to) is given by the simple formula

(2.4) M(to)=f f(q(t))Ag(q(t),t+to)dt,

where the wedge product is defined as aAb=aib2-a2b. We then have the following:
THEOREM 2.2. If M(to) has simple zeros and maxima and minima of 0(1), then, for

e>0 sufficiently small, Wu(pto) and WS(pto) intersect transversely. If M(to) remains
bounded away from zero then W( pto ) fq WS( pto )

COROLLARY 2.3. Consider the parameterized family Y =f(x)+ eg(x, t; Ix), Ix R and
let hypotheses A1-A3 hold. Suppose that the Melnikov function M(to,Ix ) has a quadratic
zero M(z, Ixb)--(OM/Oto)(Z, Ixb)--O but (O2M/Ot)(z, Ixb)=/=O and (OM/OIx)(Z,#b)=/:O.
Then Ix B Ix b + O(e) is a bifurcation value for which quadratic homoclinic tangencies occur
in the family of systems.

We remark that, if g=g(x) is not explicitly time-dependent, then we have, using
Green’s theorem,

(2.5) I_f(q(t))Ag(q(t))dt=f_o(fg-fg)dt
f(g2(u,v)a-gl(u,v))dt

-fintrtraceDg(x ) dx.

Thus the formula obtained in Andronov et al. [1971] is a special (planar) case of the
more general Melnikov function which describes the "splitting" of the separatrices.

We now turn to the periodic orbits q(t) within F. To study these we need the
subharmonic Melnikov function. Letting q(t-t0) be a periodic orbit of period mT/n,
with m and n relatively prime, we set

(2.6) Mm/n(tO) fmTf(q(t)) Ag(q(t), + o) dt.
"0

THEOREM 2.4. If M"/n(to) has simple zeros and maxima and minima of O(1), and
dT,/dh 4: O, then for 0< e <_ e(n), (2.1) has a subharmonic orbit of period rn T. If n
then the result is uniformly valid in 0< e <- eo e(1).

COROLLARY 2.5. Consider the parametrized family Yc =f(x)+ eg(x, t; Ix), Ix , and
let hypotheses A1-A3 hold. Suppose that M’/n(to,Ix) has a quadratic zero Mm/"--

)Mm/n/to-O, 2Mm/n/)t2o, )Mm/n/Ix=/=O at Ix--Ixb" Then Ixm/--Ixb+O(e) is a

bifurcation value at which saddle-nodes occur.
The final result is a generalization of one obtained by Chow, Hale and Mallet-Paret

[1980]. It implies that the homoclinic bifurcation is the limit of a countable sequence of
subharmonic saddle-node bifurcations.

THEOREM 2.6. Let Mm/(to) Mm(to). Then

(2.7) lim M"(to) M(to).
m-- oo

The existence and bifurcation results summarized above are supplemented by a
perturbation method which enables us to compute the global structure of the perturbed
Poincar6 map pto, and to determine how the sets of subharmonics and homoclinic
orbits are related. Our starting point is Melnikov [1963,7], although we have some-
what modified his transformations.
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Since the unperturbed system is Hamiltonian, a symplectic change of coordinates
to action angle variables can be found in the interior of F:

(2.8) I=I(u,v), O--O(u,v).

Under this change of coordinates (2.1) becomes

(0I 01 )dee(2.9) /=e ug +-v g F(I,O,t),

(00 00 )defO f ( I ) + e -u g +-O--vg2 G I, O )

where 2(I)- 0n i--( ) 2r/T is the angular frequency of the unperturbed orbit q(t)
with action I=I(q). We now consider small perturbations of a resonant orbit

mT--. Letting

(2.10) I-U+fh,

(2rn) def
O-(I)t+q t+q- t+q,

we obtain

(2.11)

where denotes . Here we have expanded in Taylor series and used the fact that
f’ 4 0, since dT/dh 4: O. Since

0I 0I OH 0I
(2.12) 0--=0H 0---if (i)f2 and 0--=f(i-f,
(2.11) can be rewritten as

(2.13) -- f--gf q(t)Ag q( ), +- ) + e[ F’( I, ftt +ck, )h -- 0(83/2),fl"(I)h 2 +G(I","t+q,t)] -[- 0($3/2).

Provided that f’(I’) is bounded, for 2 sufficiently small, the averaging theorem (cf.
Hale [1963]) can be applied to the leading term of (2.13) to yield

fomTf(q(t))Ag(q(t),t+/f)d--V f mT

or

(2.14)

Under the averaging theorem, the hyperbolic or elliptic fixed points of (2.14) corre-
spond to small periodic motions of .(2.11) and hence to subharmonics of order m/n of
(2.1). It is, of course, no coincidence that a necessary and sufficient condition for the
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existence of such fixed points is that the Melnikov function Mm/n have simple zeros
and that f]’(U)v0 (dT/dh v0). We note, however, that in approaching a homoclinic
orbit, f’(I) typically grows without bound, and, in contrast to the uniform validity of
Theorems 2.2-2.6, the averaged results become invalid in this region.

We note that (2.14) is a structurally unstable Hamiltonian system with Hamilto-
nian

2

where V(q)=(1/2rn)fM"/n(/f)dq, and thus to determine the stability and the
global behavior of orbits of the unperturbed system near the resonant orbit q, we must
investigate the terms of O(e). Thus, second order averaging is necessary (cf. Holmes
and Holmes [1981]). Lettingf/g-(1/2rn)M’/n(q/f)+’(q,t) where P has period
T and zero mean, the averaging transformation is

(2.16) h-F+vqfP(,t)dt, ,I,-,,

where the antiderivative is defined up to a t-independent term generally taken to be
zero. Using (2.16), (2.11) becomes

(2.17)

--’ + (..t + o. )+2rn

-a’h+e 2 +G(l",a"t+q,t)+a’ Pdt ---O(83/2).

Since P has zero mean (it is simply a sum of Fourier components), fP and fP
also have zero mean and on a second application of averaging to the O(e) terms of
(2.17) we obtain (dropping the bars)

(2.18) -V/- 1Mm/n(dp/a)+ef’()h-+-O(e3/2)

-a’h+e 2
+G(q,) +O(e/),

where F’, G are the averages of F’ and G. As Morosov [1973] notes, this second order
averaging generally suffices to determine the stability of the fixed points and hence of
the bifurcating subharmonics, at least for f’< and e sufficiently small. However, as
we shall see in our application in 3 and 4, one can sometimes also obtain global
information on the Poincar map by considering the time T flow maps of the averaged
systems (2.18) in the neighborhood of each resonant and nonresonant periodic orbit.
These results on the full Poincar map P[ follow from application of the averaging
theorem (Hale [1969]). In other situations, the T-periodic terms in the O(e) components
of (2.17) are of crucial importance in establishing the global structure of solutions of
the system, and averaging leads to qualitatively incorrect results (cf. Holmes
[1979], [1980]). We shall meet both situations in the examples which follow.

3. An example of a single passage through resonance: the nonlinear harmonic
oscillator. The computations necessary for application of the Melnikov theory outlined
above, while not conceptually difficult, are often tedious, and the main ideas tend to be
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obscured by lengthy computations with special functions. In this section, therefore, we
present a simple example in which all functions are trigonometric and all transforma-
tions can be made explicitly. Moreover, this example exhibits all the behavior found in
each resonance band in our main example, to follow in 4.

We consider the system

(3.1) --v( fl--( u 2 +v2))+e(u--u( u2 +v- ) + ,u cos t),

where is a fixed parameter, and y vary and O<e<< is a (small) scaling parameter.
We first make the transformation to standard action angle coordinates:

(3.2) u- 2sin0, v- 2cos0,
to obtain

(3.3) i= e[28I- 412 + 2,Isin20 cos t],
tJ- 2 21+ e , sin 0 cos 0 cos ].

The period T(I) of the orbits of the unperturbed system is given by

(3.4) T-
2

(fl-2I)

and the unperturbed phase plane is filled with periodic orbits (apart from the circle
I-f/2 which is filled with degenerate fixed points); see Fig. 2.

9,/2

FIG. 2. The unperturbed nonlinear harmonic oscillator.

First consider the case ,--0 (no external forcing). It is easy to see that the
dissipation parameter acts as follows. For _<0 all the closed orbits of Fig. 2 are
broken and there is a unique, globally stable sink at the origin, while for >0 there is a
unique stable, hyperbolic periodic orbit given by

(3.5a) I--
2’

with period

27/"
(3.5b) T() f .
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The Poincar6 map associated with (3.3) therefore has an attracting invariant circle on
which the rotation number is rational if T(6)/2cr=p/q, p,q., and otherwise irra-
tional. (When 8 f, T(8) is infinite and we have an attracting circle of degenerate fixed
points.)

We now study the passage through resonance of subharmonics of order two; that
is, we shall be concerned with the case in which 8"f- 1/2, so that T(8)4r, and , v 0.
We therefore consider bifurcations from the resonant orbit given by

(3.6) I-I’=
2 4"

The general theory leads us to expect the bifurcation of a finite set of points of period
two in the Poincar6 map. Here, where the perturbation calculations are straightforward,
we are able to check this directly and also obtain more subtle, global information.

Following (2.10), we let

(3.7) I- --so that (3.3) becomes, after some trignometrical expansion:

(3.8a) /- V- 0-0+ cost+ sin2,
sin2t (1 +cos2t)2 2

+e[2--4+,(cost+ sin2sin2t cos2 )]2 2 (1 + cos 2t) +4e/h,
[ (cos2sin2,+ sin2(1 +cos2t))](3.8b) +--2h+e

where- -).
To average the first order (O()) terms we use the transformation (cf. (2.16))

(3.9) h-g+f(cost+ sin2 cos2 )2
sin2t cos2t dt, -,

where the bracketed term F(, t) is the oscillating part of the leading term of (3.8a). We
have the antiderivative

f ( sin2 cos2(3.10) (, t) dr- sin t- cos 2t
4

sin 2t

and thus, applying the transformation (3.9), (3.8a, b) become (cf. (2.17)):

cos

+e 2-4+ cost+Si sin2t cos2
2 (1 cos 2t)

cos2q
-0 2

cos2t-

"/(cos 2 sin 2t + sin 2(1 + cos 2t))--f2h+e
sin2sin cos 2

sin 2 q,
sin 2 1

2 h+O(e3/2),

cos 2q,
sin 2 t

4 ! +o(3/’-).
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We note that a direct calculation of the Melnikov function from (3.1) yields M(to)=
2rroa[--]cOSto], which, upon setting to-q/f-2q and dividing by 2r, as in
(2.14), yields the leading term of (3.11).

Averaging the O(e) terms, (implicitly) using a second transformation (/7, )--, (/,)
and dropping the double bars, and rescaling time by a factor (g we obtain

(3.12) /4--oa 6-oa-cos2q +V- 26-4--cos2q h+O(e),- -2h+ [sin2] + O(e).

The remainder of this section is devoted to an analysis of the autonomous aver-
aged system (3.12) and a discussion of the implications for the Poincar6 map of the full
system (3.8a, b) or (3.1)-(3.3). Throughout, oa is fixed, e is a fixed and sufficiently small
parameter, and and 7 are allowed to vary.

TI-IEOREM 3.1. The bifurcations set and phase portraits of the autonomous averaged
system (3.12) in the neighborhood of the resonant band h-O (I= f]/2-1/4) are homeomor-
phic to those shown in Figs. 3 and 4. In particular:

(i) Two pairs of fixed points exist within the region bounded by the lines AO, DO
given by 7 --+4(-0)+ O(2); /f <2oa these are saddles and sinks (if S>2oa,saddles
and sources). These fixedpoints coalesce in saddle-node bifurcations on AO, DO.

(ii) There are two curves BE, CE lying within o(vrg) of the line =o and meeting
A O, DO at the points E, F. A further curve GH connects BE, CF and curves El, JFjoin
this curve as shown. Outside the region BEIJFC the phase portrait has a smooth invariant
closed curve, within EOF this curve contains the four fixed points. Within BEIJFC no
such curve exists. The curve becomes nondifferentiable and vanishes in saddle-connection
( homoclinic) bifurcations on BEI, JFC and on IJ the sinks change from nodes to spirals,
also leading to a loss of differentiability. Approaching EIJFfrom below the curve succes-
sively loses degrees of differentiability.

C
B

0

FIG. 3. The bifurcation set for (3.12). For a detailed description of the region near E, F, see the proof of
Lemma 3.4.
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FIG. 4a. Structurally stable phase portraits. Invariant closed curve shown as heavy line. Portraits in regions
3a are homeomorphic to those in 3, but the foci are nodes.

(R)

FIG. 4b. Bifurcation phase portraits, lnvariant closed curve shown as heavy line.
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Proof of Theorem 3.1.
Assertion (i). First consider the truncated system (3.12) with O() terms removed.

This is a Hamiltonian system with Hamiltonian

(3.13) 9C(h,) h2+ t(3- 0)q 7sin 2q,

which has two saddles and two centers at (h, q)-(0, 1/2 cos-1(4(-)/3’ )) if 3’ > 411- 0I.
Thus we obtain the approximate saddle-node bifurcation curves 3’= -+-4(3-to). We
next linearize the full system, including O() terms, to obtain the matrix

(3.14) A
-2

sin2+ V/e- 3’h sin2

2 cos2

Noting that trace A=4(23-4o)<0 if 3<20, we obtain the stability results of
assertion (i) in the theorem. Also, provided 20, by Bendixson’s criterion no closed
orbits exist in the planar flow of (3.12), although a unique closed curve does exist upon
identification of =0 with =2rr (cf. assertion (ii),._and see b_.elow). Finally, the phase
portraits in regions (, (), (), (), () and on , and follow from straight-
forward consideration of the level curves of (h,) and the perturbations due to the
O() terms on solution curves, eigenvalues and eigenvectors.

Assertion (ii). This is proved in two stages. We first fix "t and .0, taking
-A, and perturb the truncated Hamiltonian system (3.13) by adding the O() terms:

(3.15)

When --0, (3.15) has a homoclinic cycle connecting the saddle points at (h,)=
(0, 3rr/4), (0, 7r/4) and formed by the level curve=3’0/8 of the Hamiltonian

(3.16) (h,)-h2- sin2.
The four branches of this cycle are conveniently given by solutions based at the points
(h,rk)=(+_/2,r/4), (--+ 7x/-ff/2,5rr/4). Denoting one such branch by (/(t),qff/))
we can investigate whether it is broken or not for 0 by computing the Melnikov
function as in 2. Here the perturbation is time independent, and we have

(3.17) ---cos2sin26+ 2/ toA-- (2+ -cos
Noting that/(z) and sin2(z) are even while cos2(z) is odd, (3.17) may be sim-
plified to
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where a and b take the values 3r/4 and 7r/4. Using /2-(yw/8)(l+sin2)--
(,t/4)cos2, where k q’ r/4, we obtain

(3.19) M(A)
"r/2

-6dA +

for the upper and lower branches of=,0/8 respectively.
A similar computation, involving integration from q-0 to 2r or 2 rr to 0 along an

unperturbed orbit with energy >3,0/8 shows that for each value of A<2/r
precisely one such orbit is preserved below the resonance band, while for A>2---/r
one such orbit is preserved above it. In the original coordinates, these are smooth limit
cycles lying in the annulus centered at I-f/2-1/4 (h-O). The topology of the (h, q,)
phase space of (3.16) is important here, since, viewed as a planar system, there are no
closed orbits! These limit cycles persist as moves away from --o, as an examination
of (3.12) shows, since for sufficiently large values of Ihl the term

e 2-4o- - cos2 h

becomes important, leading to a net upward trend of solutions for h <0 if 8<o and a
net downward trend for h>0 if/J>0. Finally, setting 8-0+ (gA--0__+ 2eVg-ff/rr we
obtain estimates of the saddle connection bifurcation curves BE, CF. Note, however,
that this estimate is only valid for fixed , since as 3,0 the term 2(2/-40)h of (3.12)
becomes greater than the "leading" term (o/4)cos2q. To complete the proof of
assertion (ii) we now address this point.

We state several lemmas, which together complete the proof. These lemmas are
proved at the end of the section.

LEMMA 3.2. For ,=0, J<20 (3.12) has a smooth normally hyperbolic attracting
invariant closed curve h o(. o)/2(40- 2).

By the persistence theory for such normally hyperbolic manifolds ( Hirsch, Pugh and
Shub [1977]), this curve must persist for ,/sufficiently small.

LEMMA 3.3. For 3’ > 41i--1 and sufficiently small the invariant curve contains two
saddles and two sinks and is composed of the union of these fixed points with the unstable
manifolds of the saddles.

LEMA 3.4. There are two unique points (+-,8-+)=(E,F) near the curves /--
---4(8-0) for which the invariant closed curve d.,enerates into two nondifferentiable
saddle-node connections as shown in phase portraits t), (.

LEMMA 3.5. The sinks existing within the region >418-1 are nodes below a curve

given by "/ "/16( i )2 + E24 andfoci above this curve.
LEMMA 3.6. Two .curves El, JF connect the points E,F with the curve

, 16(J-0)2+e2o4 For parameter values on these curves the unstable manifolds of the
saddle points make connections with the strong stable manifolds.Lof th__e.e sinks, providing a

nondifferentiable closed curve, as shown in the phase portraits ,_, Q.
These lemmas together complete the proof of assertion (ii), and their proofs, which

follow, provide more details on the phase portraits of Figs. 4a and b. We note that
results similar to the present ones were obtained by Levi, Hoppensteadt and Miranker
[1978] in a study of bifurcations of the discrete sine-Gordon equation

+-v, t- -sinq,-ov+I

under variation of dissipation, o, and driving current, I.
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Proof of Lemma 3.2. Setting 3,-0 in (3.12) we find that h-0(-0)/(4o-21)
is filled with degenerate saddle-nodes whose stable manifolds are a family of lines h

vrg(2o 6)q+ const, foliating the (h, q) phase space. Moreover, solutions approach
h- to(i- o)/(4t- 21) like e-(4-2)t. [--]

Proof ofLemma 3.3. Letting 3,- 4/gF and #- o+A, (3.12) becomes

(3.20) (; (a- r cos2q- 2wh ) + O(e),

+-
It is easy to check that, for I’>181 (3,>41- 1), (3.20) has sinks and saddles as specified,
which coalesce pairwise in saddle-nodes when A=--+ F. To prove that the unstable
manifolds of the saddles form a smooth invariant curve, we consider the eigenvalues
and eigenvectors of the linearized problem, with matrix

(3.21) A-[-20_2 2/-e- sin 2 q’ ]"0
Setting Fsin2q--+V/F:-A: (Fcos2q,-A) for sinks and saddles respectively, we ob-
tain eigenvectors and eigenvalues as follows:

(3.22) sinks"

e,2- (-M,2,2);

saddles"

As F, A . 0, f"--, 0, "- 2 and the eigenvectors tend to (0, 1) and (2o, 1)
respectively. Moreover, the lines h=vCe-o(q-c) are invariant stable manifolds for the
fixed points (h,q)=(0,c)z For sufficiently small F,A, the stable manifolds of the
surviving fixed points (h,q)-(0, 1/2 cos-l(A/F)) must lie close to h-dgo(q,-) and
hence cannot recross h--0 but must lie as in phase portrait () of Fig. 4a. This implies
that the unstable manifold of each saddle must limit in the two sinks, and, moreover,
must do so tangent to the slow eigenvector (-1,2), providing the required smooth
curve.

Proof of Lemma 3.4. Set 3,.4(8-0), so that (3.12) has a pair of saddle-nodes at
(h, q)(0, 0), (0, r). From the proof of assertion (i), and in particular consideration of
the truncated Hamiltonian system, for sufficiently large 3’ solutions in both branches of
the stable manifold of each saddle node lie in h <0 as t-- oo, while solutions in the
center manifolds lie in h>0 as t- / oo. Thus, the left-hand branch of each center
manifold lies above the right-hand branch of each stable manifold (phase portrait
(, Fig. 4b.). Conversely, for sufficiently small 3’ we will show that the center mani-
fold lies below the stable manifold, so that there must be at least one point (3, +, +)
where the manifolds coincide as specified. Finally, we will show that this point is
unique, thus establishing the bifurcation structures on DFO. Those on AEO (

4(8 0)) follow in an analogous manner.
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We set A I’ in (3.20):

(3.23) t-(F(1-cos2)-2oh)+O(e),
(h 2h + O( e).

Since the vector field is r-periodic in we need only consider the interval [0, r].
From (3.23), for F =0 the stable manifold of (0, 0) in the interval is given by the graph
h , and thus, for F sufficiently small this manifold intersects the line --rr above
the fixed point (0, r). A straighforward consideration of the vector field of (3.23) shows
that solutions leaving (0, r) in the left-hand branch of the center manifold of (0,
must remain in the interval [0, r] below the stable manifold of (0, 0). All such solutions
must therefore limit in the point (0, 0). Moreover, they must do so along one of the
(nonunique) right-hand branches of the center manifold of this point. Since any center
manifold for this analytic system is Ck for all k, any union of such center manifolds,
joined at (0, r) and (0, 0), must also be Ck for all k. Such a union provides the required
smooth attracting invariant curve. See Fig. 5.

h= - (-cos2)

Fit. 5. The center manifoMfor A I’.

To complete the proof of Lemma 3.4 it suffices to show that the upper (fight-hand)
branch of the stable manifold of (0, 0) moves down monotonically as F increases, so
that there is precisely one value, F+, for which it connects (0,0) and (0,r), as in
portrait () of Fig. 4b.

Let this manifold on the interval (0, r] be given by the graph h hr(). Choose F
small, so that hr()>0 on (0, r] as in the proof of Lemma 3.3. Let I’2> FI. Then, since
everywhere the F2 vector field (3.23) has a greater vertical component than the F vector
field, any solution based on hr, and integrated backward for F2 must enter the region
below h r, and continue to lie in it. Thus the curve h r2, forward asymptotic to (0, 0), lies
below hr,. A similar argument shows that if hr intersects h=0 at ff= (0,r), then

hr2 intersects h=0 at some =2<1; see Fig. 6. E]

the [’2 Field

F. 6. The behavior of hr() with I’.
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Proof of Lemma 3.5. The eigenvalues Sl,2 of the sinks given in (3.22) become
complex on the curve

(3.24) 12(,d4- 16e(F2-A2).

Setting 3’- 42F, 8 0 +gA in (3.30) we obtain

(3.25) ’ /16( +)2 24

as claimed. Crossing this parameter curve, the invariant closed curve changes from C
to CO (see Remark 3.1). V1

Proof of Lemma 3.6. The proof of this result is essentially the same as that of
Lemma 3.4. Vq

Remark. The precise degree of differentiability of the smooth closed curve which
exists below the bifurcation curve EIJF is determined by the ratio of the eigenvalues of
the sinks:

Using linear theory near either of the sinks, it is easy to see that the two pieces of the
closed curve meeting at a sink are approximated, in the canonical local coordinate
system, by y=clxl, x<_O, and y=c2lxl, x>_O, for some constants c, c2. Letting n(a)
denote the integer part of a, we see that all derivatives up to and including the nth are
continuous at the sink, and hence that the curve changes from Cn to Cn-I near the
parameter value

,- 16(8-0 +
(n+l)2

Note that, for n 1, we recover the C to Co value of (3.25).
We now consider the implications of Theorem 3.1 for the full, time-dependent

system (3.8) or, equivalently (3.1), (3.3). Under the conditions of the averaging theorem
(Hale [1969]), hyperbolic fixed points of (3.12) correspond to points of period two for
the Poincar6 map of (3.1), (3.3) in the neighborhood of the unperturbed resonant orbit
I-f/2-1/4. Similarly the hyperbolic limit cycles of (3.12) correspond to smooth hyper-
bolic invariant closed curves of the map. Such closed curves may contain higher order
subharmonic or dense orbits, depending on the rotation number, but this more delicate
behavior is not revealed by our O(e) analysis.

Except on the curves BEI and JFC the phase portraits are all either structurally
stable or exhibit saddle-node bifurcations of codimension one. Therefore, since the
Poincar6 map of the full system is close to the flow map of the autonomous system for
ev 0 and sufficiently small, this behavior persists for the full system in the sense that its
Poincar6 map is diffeomorphic to the time 2&-r flow map of (3.12), via the change of
coordinates (3.7). In particular, invariant curves of this map are diffeomorphic to
solution curves of (3.12) and the saddle separatrices of the latter are diffeomorphic to
the stable and unstable manifolds of the map. However, on BEI and JFC pairs of
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separatrices coincide, and this behavior is nongeneric for one-parameter families of
maps, in which we expect, at worst, quadratic tangencies of manifolds (cf. Newhouse
[1980]).

To check this in a specific case (on BE, CF) we restore the terms to (3.12) which
were removed in the second averaging process and consider the periodically perturbed
system (3.11), with=+A, as above. After rescaling time as in (3.12), we have

(3.26) /- --cos2q+ re- 0A-- 2o--3’ c+ sin2q2 s cos2q2 (1 + c)

-3’o(cos 2ckc- sin 2cks ) } h]
( sin 2q cos 2q )],- -2h+ -3’ (cos2qs+sin2q(1 +c))-3’o s c4 s4

where c denotes cos(2t/) and s denotes sin(2t/). Computing the (time-dependent)
Melnikov function by integrating along the unperturbed heteroclinic branches
(/(t), (t)) as before, we obtain

(3.27) M(t0,A ) +,roA+2to7V [K(3’ o)e-3/Ze-l/]sin(2to/)+O( -1/)
as e 0, where/3 r-/4 and K is O(1).

Since the oscillating part of M is exponentially small in rig, it does not immediately
follow that, if .M has simple zeros, then the true distance function d(t0) 2M(t0, A ) +
O(e) also has simple zeros (cf. (2.3)). However, the constant part of d(to) certainly
vanishes near A=---+2/r, since d(to) depends continuously on A, and the leading
O() term has a simple zero with respect to A at -----2 Vq---/rr. Thus, choosing
2e-/r such that d(t0) has zero mean, and assuming that d(t0) is analytic in 3’, o and
e (cf. Melnikov [1963]), we can conclude that, since at least one term of the oscillating
part of d(to) in (3.33) has simple zeros, there is an open set of 3’,0,e values for which
d(to) also has simple zeros. It follows that the stable and unstable manifolds of the
period two saddles in the Poincar6 map intersect transversally with exponentially small
oscillations in exponentially small neighborhoods of the "averaged" heteroclinic bifur-
cation points -0--+,rVrW/2. Moreover, on the boundaries of these regions the
manifolds have quadratic tangencies, in view of Corollary 2.3. We illustrate this in Fig.
7a for the case 6to-2Vre-y/r. Similar splitting of the coincident manifolds of phase
portraits E,F, E1 and JF can also be expected to occur. These results agree with the
genetic case.

For more information and general results on exponentially small Melnikov func-
tions and their implications, see Marsden and Holmes [1983].

We note that the behavior proven to occur for the system within the resonance
region AOD, together with the partially conjectural results on homoclinic tangencies
and transverse homoclinic orbits near BEI and JFC, is in agreement with the detailed
computer observations of Aronson et al. [1980], [1982]. In particular, our computations
suggest that, on the curves AO and DO, away from the points E, F, simple saddle-node
bifurcations occur as in the portraits Q, Q, (, Q of Fig. 4b, and the rich

homoclinic behavior detected by Aronson et al., if it all occurs in the present case, must
be confined to a narrow band near the curves BEI and JFC. In Fig. 7b we conjecture.a
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generic bifurcation diagram for the full Poincar6 map, the letters and roman and arabic
numerals on this figure correspond to the notation of Aronson et al. [1981], [1982], and
we note that our results agree with their analysis and numerical computations. (cf.
Aronson et al. 1982, Figs. 9.1-9.4]).

FIG. 7a. Passage through homoclinic bifurcations for the Poincarb map near the curve BE. cf. Aronson’s
cases 6, f and 5 respectively).

I h

FIG. 7b. A generic bifurcation set for the Poincarb map; only one side is shown. The letters and roman and
arabic numerals refer to the cases classified by Aronson et al. [1980], [1982].

Summarizing our results, we have
THEOREM 3.7. The bifurcation set and associated invariant manifolds for the Poincarb

map of (3.1)-(3.3), in the neighborhood of I-f/2-1/4, are diffeomorphic to those de-
scribed in Theorem 3.1 for the autonomous averaged system (3.12), with the following
exception: Exponentially close (with respect to fg) to the curve BEIJFC of Fig. 3 more
complex global behavior involving transverse homoclinic orbits and quadratic tangencies
will occur in the generic case.

Using the Smale-Birkhoff homoclinic theorem (Smale [1963],[1967]), and New-
house’s 1979], 1980] results, we can therefore conclude that, in the generic case in a
sufficiently small neighborhood of BEIJFC, the Poincar6 map has countably many
unstable periodic orbits of arbitrarily long periods, uncountably many bounded non-
periodic motions, and for a residual subset of parameter values, countably many stable
periodic orbits. However, note that the stable period-two sinks will probably be the
only "observable" attractors throughout the region bounded by the curve AOD.
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4. An example of repeated resonance and homoclinic bifurcation. We now return
to the example outlined in 1. Letting #- e#, ,-e, we have the system

(4.1) ,i=e, --u--u + e(u2--v+ cost).
The unperturbed system (e-0) has the phase portrait sketched in Fig. 8. We shall
study perturbations from the family of periodic orbits (uk, e*) given by the elliptic
functions with modulus k (0, 1):

2
dn t k(4.2) u*(t)-

2_k2 2_k2,

2-k2 (t k)cnsn
2-k

which limit on the center (1,0) as k0, and on the homoclinic orbit

(4.3) u’(t)- fsecht, 1.1( ) V-sech tanh t,

as k 1. These orbits are based at points (2/(2-k2) ,0). A similar family exists
within the left-hand half plane and periodic orbits encircling all three fixed points can
also be given in terms of elliptic functions. For more details, see Greenspan [1981],
Greenspan and Holmes [1983], and for general information on elliptic functions, see
Byrd and Friedman [1971]. The period of the orbit (u*,v*) is

fu+(,) d_u =2/2_kZ K(k)(4.4) T()- 2.,,_(,)/2h+u2_u4/2
where u -(1 --+ v/1 +4h )1/2, where h-H(k) is the Hamiltonian energy defined below,
and where K(k) is the complete elliptic integral of the first kind. The unperturbed
Hamiltonian of (4. l) can also be expressed as a monotonically increasing function of k
for k (0, 1)"

I)k2 Uk2 Uk4 k2-(4.5) H(u*,vk)-- 2 2t4 (2_k2)9.=H(k).
(u

FIG. 8. The unperturbed Duffing equation.
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Note that H(k)(- 1/4,0) for the two families of orbits (uk, vk). Also we have

dT/dk >0 for k(O, 1),(4.6) dT/dH= dH/dk

and dT/dH- o as k- 1. Hence assumptions A1-A3 of {}2 are all satisfied, with the
homoclinic orbit ( u, v) playing the role of q0.

We first compute the Melnikov function M(t0) for the homoclinic orbit"

(4.7) M(to)- _oe’(t)[(u’(t))2v’(t)--v’(t)+ cos(t+to)]dt
4 sech tanh dt- 2 sech tanh dt

+ /- sechttanhtcos(t+ to)dt

16 4 f-r. sech( ’rr )15 3 sint"

Here the final integral is computed by the method of residues. Thus, by Theorem 2.2
and Corollary 2.3, if

(4.8) "> (-)
transverse homoclinic orbits exist near the level curve H(u, v)-0, and quadratic homo-
clinic tangencies occur on curves near

(4.9)
16-20/ r

"-- +- cosh

We next compute the subharmonic Melnikov function Mm/n(to) of (2.6), selecting
the unique resonant orbit within the right-hand homoclinic loop with period

(4.10) T(k(m n)) 2/2 k(m n )) 2rrm)2K(k(m n --.
n

We obtain

Mm/n(, 7, to )-J,( m,n ) B-J2 ( m,n ) J3( m,n )sin o

where

(4.11) Jl(m,n )-- 2fu+(k)uZ/2H(k) + u2- u4/2 du
u-(k)

8__[2(k4+k,2)E(k)+k,2(k2_2)K(k)](2_k2)-5/2
15

J2( m’n )- 2u-ik)/2H(k + U2--U4/2 du

4-[(2-k2)E(k)-2k’2K(k)](Z-k:Z) -3/2
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with

+/-(u k) [1---1 +4H(k)]12
and

0,
J3(m,n) Vcrsech(mrK,(k)/K(k)),

n=/=l,
n-1.

Here k k(m, n ), E is the complete elliptic integral of the second kind, K’(k) K(k’) is
the complementary complete elliptic integral of the first kind and k’-v/1- k 2 is the
complementary elliptic modulus. These integrals were evaluated using formulae and
recursion relations found in Byrd and Friedman [1971 ].

Now, while J3 is only defined for k k(m, n), Jl and J2 are defined for all k (0, 1).
Replacing J(m, n) by J(k) for all k (0, 1) we can compute the following limits:

lim Jl (k) --16 lim J, (0) -0 lim Jz(k)- lim J2(O) O"
k---, k---, 0 k---, k-,0

while

and

(4.12) lim J3( m, ) ,/r sech
oo

Thus we verify that Mm/M, as expected from Theorem 2.6. Moreover, we find that
Jl(k) and J2(k) increase monotonically from 0 to their respective limits as k increases
from 0 to (cf. Carr 1981, Chap. 4]).

We now define the resonance ratio (k) as

Jl( k )(4.13) (k)- jz(k)

and, when k- k(m, 1), we write (k( rn, 1)) as

(4.14) (m)- J,(m, 1)
Jg_(m, 1)

LEMMA 4.1. There exists 0 <_ 1< such that (k) decreases monotonicallyfor 1<k< 1.
Hence for rn sufficiently large i( rn ) decreases monotonically with increasing m, limiting on
iS(o)- , so that a countable sequence of resonance ratios accumlates on this point from
above.

Proof. A direct (if tedious) computation using (4.11) shows that

(4.15) J(k)J2(k)-Jl(k)J(k )

1--(2-k2)-l[80(Z-k2)E2(k)- 160k’2K(k)E(k)15

-32(k4+k’E)K(k)E(k)+ 16k’E(2-k2)K2(k)].
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As k--, 1, we have the asymptotic behavior k’-x/1-k2 0, E(k)- and
K(k),ln(4/k’)--, oo. Hence all terms in this expression remain bounded except
-32(k4+ k’E)K(k), which approaches -oo. Thus, for k sufficiently close to (m
sufficiently large) we have ’(k) (JJ2 JJ)/J22< 0. But from (4.4)-(4.6) we see that
the period T(k) of the unperturbed orbits increases monotonically with k, or, con-
versely, that k(m, 1) increases monotonically with m. It follows that -(m) (k(m, 1))
decreases monotonically with m, as claimed. In fact, a numerical evaluation reveals that
the expression (4.15) is negative for all k (0, 1), and so we can take/ 0. E]

Remark 4.1. Carr [1981] obtained this lemma along with other results without
computing J and J2 directly.

These results imply that the sequence of approximate saddle-node subharmonic
bifurcation values

(4.16a) --__+ Jl(m,1)-J2(m,1 )
J3(m, 1)

accumulate on the homoclinic bifurcation curves (4.9). Each pair of lines (4.16a) forms
the boundary of a resonance sector like that of [}3, meeting the i axis at the point
(m)=Jl(m, 1)/JE(m, ). (Since J3(m,n)=O for n we are only concerned with
resonances of order roll.) As in the proof of Lemma 4.1, it can be checked that
JE(m, 1)/Ja(m, 1) increases for sufficiently large m as m - o (JJ3 J2J>0), so that
the higher order resonance sectors become progressively narrower (cf. Greenspan 1981 ]).

/

\ \ \ ,/

//’

FIG. 9. The countable sequence of resonance regions (not to scale). Here 8--e, y--e.

We illustrate these bifurcation curves in Fig. 9. However, we note that, while the
existence results for subharmonics are uniformly valid for 0<e_<e0 (e0 is independent
of m,cf. Theorem 2.4), the bifurcation curves generally vary with e. In fact, from
Corollary 2.5 and recalling that e-y, e-i, the approximate condition of (4.16a)
should be replaced by

eSl(m, 1)-iJv_(m, 1) +eEc(6,m e)(4.16b) y-+/-
ja(m, )
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where c<_C(8,m,e)<_c2 is uniformly bounded. (Here plays the role of/ in that
corollary, and is regarded as fixed.) Thus we cannot guarantee that the true bifurca-
tion curves accumulate uniformly in e as m o, as illustrated in Fig. 9. However, since
the actual resonance regions are e-close to the approximate regions illustrated, we can
conclude that there are values of ,,8,e>0 for which countably many subharmonic
coexist. (For example, pick 3,=e, =4e/5 and e>0.) In particular, we note that the
resonance sectors do not shrink to zero as m--. o.

To study the interior structure of each resonance sector we must compute the O(e)
terms of (2.18). In the present case, rescaling time as in (3.11) we have

(4.17) -- --- Mm(mdp ) + ff’( dp )h

( ’’(Im)h2-’(Im)h+V 2
+G(q)

where Mm(mq)-J(k)-SJ2(k)-/J3(k)sinmq, k-k(m, 1) and a’(Im) can be calcu-
lated as

(4.18) ",(im)
r 2(2 k2 )[(2 k 9- )E(k)- 2k’K(k )]

2k4k’-g3(k)

We note that, as m- , k- and fl’(I’)- o; in fact

(4.19) ’(Im)

SO that the averaged equations (4.17) are not uniformly valid in m, since v2 must be
taken successively smaller as f’(Im) increases with m.

Now for m< the second order term f"(I") is a (negative) constant which need
not be computed explicitly (in the example of [}3, fl" ------ 0), but we do need the averaged
functions

(4.20)
0 t2rm V(I,O)[U-(I,O)V(I,O)-V(I,O)+ cost] dtlt=lm,F’()- aI 2rm lo (I)

and

fo2rm 0 imG(rk)- 2rm -[U2(Im,O)V( ,O)---v(Im,O)nt- cOSt] dtlk=k(m,1),

where O=f(I’)t+q=t/m+ and U, V are determined by the action angle trans-
formation. Here some results due to Greenspan [1981] which we now summarize are
useful.
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Derivatives of the symplectic action angle transformation (U, V)(I(u, v), O(u, v))
and its inverse (I,O)(U(I,O), V(I,O)) are related via their matrices of partial deriva-
tives"

(4.21) O 8v 8 --I Vt Vo

since det[Iu i 1-o.oJ -1 Thus we have 0 -UI and using this, we may rewrite (4.20) as

(4.22)

f-’rm(Gr(,1,)+G(,1,))dt..fzm(F()+F,())dt, 6()-
2rm.o

F’(,) 2m 0o

where

(4.23) Fv(q) aI) V(I,O)cost
I--I

F,(q)- --- ( fI) [uZ(I’O’VZ(I’O)-V2(I’O)] )
[=I

[U2(I,O)V2(I,O)-gV2(I,O)] )
I--I

Gv( ck ) -- ( I, O) cos

G()---(I’O)[Ua(I’O)V(I’O)-V(I’O)]
I=I"

where 0- t/m+ q.
We first claim that the averaging transformations (cf. 2) can be chosen so that

(4.24) +

This follows from the fact that, when the perturbation term e(u2v-gv) is absent in
(4.1), both the perturbed system and the truncated averaged system (4.17) are Hamilto-
nian. For details, see Greenspan 1981].

We next claim that G(q,) is in fact independent of q,. To see this, note that in

(4.25) G,(d?)-2rm OI Ira’ --rn

uZ(Im +dP)V( Imm m v(Im +)]m

the change of variables s-t/m+q, removes explicit q dependence in the integrand,
while leaving the limits unchanged, due to the fact that all functions are 2rm-periodic
in t. Similarly, F(q,) is independent of q. Thus G and F are constants in any specific
resonance order calculation.
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As in the example of 3, the fixed points of (4.17) lie near (h,)- (0, ), where is
a root of Mm(mck)-O, and their stability types are determined by the matrix A of the
linearization of (4.17). In particular, from the discussion above, we have

(4.26)

traceA VF(q)

l--I

2rm f( I ) [J’(k)-J2(k)] + (i) [J’(k)-J2(k)] OH )I

f’(l ) [Jl(k)_J2(k)] +[j(k)_j(k)]_n2(I’) ,=m

-mf’(Im)[J’(k)-J2(k)] + k’ [J(k)-J((k)]2"n"

I---Ira

k-k(m,1).
At resonance 6 8(m) J(k(m, 1))/J2(k(m, 1)), and this reduces to

4rm k J(( k ) J2(k )

which, in view of (4.15), is a negative constant. Thus the fixed points are saddles or
sinks, as in 3. Away from resonance, we have J 8J2<0 below resonance (8>i(m))
and_J iJ2>0 above resonance (<8(m)). Thus,_ since f’< 0, we have traceA <0 for
all i>8(m), but traceA can change sign for 8<8(m). This is precisely as in 3, where
we found that the fixed points are saddles and sinks for 8<20 but saddles and sources
for >2o. (In the present example,8 decreases as we pass to successively longer period
resonant orbits, rather than increasing as in the example of [}3).

From the above discussion, and writing J/(m, 1) as J/(m), (4.17) becomes

(4.27) /-- --[J,(m)-J2(m)-J3(m)sinm]
+ fe-[ o(m)(Jl(m) Jz(m)-Ja(m)sinmq)

+
4rm k (J[(m)-J(m)-J;(m)sinmq,) h,

-,(m)h+f "(m)h2 ( (2-k2) )2 -- (m)J3(m) + 4rm k J(m)

-1mcosmck+Kl(m)-SK2(m )
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where (m)=-(m/2r)f’(m)>O, ’(m)--’(Im)<o and fl", K, K2 are constants,
whose precise values we shall not require. Apart from the presence of these constants
and the term "h2/2 in the second component, (4.27) is, term by term, equivalent to
(3.12). We are therefore able to conclude that the system governing the averaged
behavior in a single resonance band in the present problem behaves just as does the
model problem of {}3. In particular, the delicate analysis necessary near each bifurca-
tion point (, ,) (8(m), 0) is effected by writing

(4.28) -- (m)+’A=J,(m)/Jz(m)+A, --V/-F,

so that (4.27) becomes

(4.29) h’- V- --- (J2(m)A + FJ3(m)sinmck )

+ 4m k Jz(m)(J(m)Jz(m)-J’(m)Jz(m))h +O(e),

"(m) h2+K,(m)_K2(m )+-’(m)h+ 2

Equation (4.29) is the analogue of (3.20), and an analysis of its phase portraits yields
analogues of Lemmas 3.2-3.6:

LEMMA 4.2. For =0, (4.27) has a smooth normally hyperbolic attracting invariant
closed curve given by

(4.30) h
J,(m)-t$J2(m)

2_k2

2’rrV/- (m)(S’(m)-S2(m))+4vtm k (J(m)-J(z(m))

This curve persists for sufficiently small.
LEMMA 4.3. For ">I(J(m) 6J2(m))/J3(m)l and sufficiently small the invariant

curve contains m saddles and m sinks and is composed of the union of these fixed points
with the unstable manifolds of the saddles.

LEMMA 4.4. There are unique points (, i$,, ) on the curves - +-- ((J(m)-
i$J2(m))/J3(m)) at which the invariant curve degenerates into a set of m nondifferentiable
saddle-node connections.

LElVtMA 4.5. There is a curve ,, within the sector y 1(J(m) iSJ2(m))/J3(m)[ and
within O(’g) of its boundary below which the sinks are nodes and above which they are

foci. .+.
LEMMA 4.6. Two curves connect the points (,i$,) with ,,. For parameter

values on these curves the unstable manifolds of the saddle points make connections with
the strong stable manifolds of the sinks, providing a nondifferentiable closed curve.

The proofs of these results proceed just as do those of Lemmas 3.2-3.6. The
presence of the additional terms in (4.27) and (4.29) in comparison with (3.12) and
(3.20), respectively, introduces no new qualitative features.

As in 3, we therefore obtain a theorem on bifurcations of the autonomous
averaged system for the order m resonance band entirely analogous to Theorem 3.1.
Rather than stating this result, we recall that just as in the former case, the "gross"
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behavior carries over the Poincar map for the full system, and we have the following
final results"

THEOREM 4.7 (existence of subharmonics). For 0< e <_ eo and for parameter values
within each resonance sector bounded by the curves -- +-- (( J(m ) tJ2(m))/J3(m)) the
Poincarb map of (4.1) has precisely 2m periodic points of period m, m of which are
saddles. This result is uniform in the sense that eo is a (small) constant independent of m.

We remark that, for values of sufficiently close to i(o)--, and >0, this
implies that countably many pairs of subharmonics of arbitrarily high period coexist,
since the resonance sectors overlap and accumulate on the homoclinic bifurcation
curves (4.9).

The stability results are more delicate"
THEOREM 4.8 (stability and global behavior). For 0< e <_ e(m), where e(m) 0 as

m o, the global structure of the bifurcation set and Poincarb map for (4.1) are diffeo-
morphic within each resonance band to those of the modelproblem of3 (Theorems 3.1,3.8
and Figs. 3, 4), with the following changes:

(i) There are 2m points ofperiod m, rather than 4_ofp_eriod 2;
(ii) m of these p_oint_s are saddles and m sinks for >i(m ) and m are saddles and m

sources for i<i(m), where

(4.31) 8s(m)--
(2-k2) 2,()Jl(m)- k J(m)-m m

1(2 2-k2k J(m ) mf’(m )J2(m )

Also, as in Theorem 3.8,
(iii) Within each sector there are curves analogous to BEIJFC of Fig. 3. Transverse

homoclinic orbits and quadratic tangencies will occur for parameters exponentially close
(with respect to ) to these curves in the generic case.

We recall that the nonuniform validity of the results of Theorem 4.8 are due to the
fact that the derivative ’(I ) in (4.17) grows without limit as m-o o.

We remark that the results of Greenspan [1981] and Greenspan and Holmes [1983]
on perturbations of periodic motions outside the level curve H(u, v)= 0, together with
the results of Carr [1981], demonstrate that a second sequence of resonance sectors
bounded by lines of the form

(4.32)
e(m)--84(m) )+O(e:)3,- --+

j3(m )

accumulate on the homoclinic bifurcation sector from below. These sectors meet the 8
axis at points (m)-o4/5- as m-o o. Result analogous to Theorems 4.7-4.8 can be
stated for these subharmonics and their bifurcations.

We close with some comments on the attracting set for the case i8(o)-. It is
not difficult to check that, for 3’- 0 and 8 and 0< e_< e0 sufficiently small, (4.1)
possesses a double (figure of eight) attracting homoclinic orbit. This follows directly
from the Melnikov theory, which shows that for near 8(o)- (Jl(k)/J2(k))lk= -the figure of eight level curve H(u, v)-0 is preserved, and a calculation of the trace of
the linearized vectorfield at the saddle points (u, v)-(0, 0)" yielding -eS. A theorem of
Andronov et al. [1966] on planar systems then implies that the homoclinic orbits attract
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nearby solutions, so that the Poincar6 map of (4.1) with 3,-0 takes a "thickened figure
of eight": U, bounded, say, by the level curves H- --+a, into its interior:

Cl(P(U))CU.

The attracting set is then defined as

where C1 denotes closure. We note that, since the vector field is dissipative near the
unperturbed saddle loop, the Poincar6 map contracts areas and A therefore has zero
Lesbesgue measure. For -0, A is simply the union of the two homoclinic orbits and
the saddle point. We now have

THEOREM 4.9. For 0<e_<e
0 sufficiently small and 8=-+ O(e), one may select ">0

such that the attracting set A of (4.1) contains horseshoes and hence contains a countable
set of saddle type periodic points of arbitrarily high period and an uncountable set of
bounded nonperiodic orbits. Moreover, while A may contain finite or countable sets of
stable periodic orbits, none of their periods are less than some integer N(), and N() o0

as 0.
Remark 4.2. The attracting set does not qualify as a nice attractor (or a strange

attractor) since it may not contain a dense orbit. However, since the stable orbits can
be made to have arbitrarily high period (for small ) they will be effectively unobserva-
ble in any numerical study and one will see "pseudochaos".

Proof. The Melnikov computations given above, together with Theorem 2.2, show
that for all >0 and -47, there exists an e0 such that for e<e0 the Poincar6 map P
has transverse homoclinic orbits. It follows by the standard arguments of the Smale-
Birkhoff homoclinic theorem that some iterate P of P has horseshoes, i.e. P has an
invariant cantor set AM on which P is conjugate to a shift on two symbols. See Smale
[1963], [1967]; Moser [1972], or Guckenheimer and Holmes [1983] for details. This
proves the first part of the theorem.

Now as Newhouse 1974], 1979], 1980] pointed out, transversal homoclinic orbits
can coexist with homoclinic tangencies, wild hyperbolic sets and their attendant stable
periodic orbits. In fact the stable sinks we find in each resonance sector for finite rn
correspond to (some of) Newhouse’s sinks. However, we can guarantee that as0 for

--+ O(e) the periods of any such sinks N() oo. This is proved as follows.
First set =0 in (4.1) to obtain an autonomous planar system. From the computa-

tions of (4.11) or the theorems of Carr [1981, Chap. 4], we see that the homoclinic figure
of eight loop is preserved if lies on a curve given by

4
(4.33) --+ O(e)

(cf. Corollary (2.3)). Choose accordingly and now let vary. Our computations show
that, for any finite and sufficiently small e, countably many subharmonics coexist (cf.
(4.16a-b), (4.32), and Theorem 2.6). However, as --,0 the values of m for which (4.16)
and (4.32) are satisfied approach infinity. Hence saddle-node bifurcations occur in
which orbits of successively higher periods N() coalesce and vanish (cf. Fig. 9). It
follows that, for any specified integer N, we can choose values of , 8 and e>0 such
that no periodic orbits of period rn <N exist. [2
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It is a reasonable conjecture that A=CI(WU(p)), i.e. A is the closure of the
unstable manifold of the unique saddle point (u, v) (0, 0) + O(e3,) for the perturbed
Poincar6 map. More details on attractors of this type appear in Holmes and Whitley
[1983a, b].
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ON THE GLOBAL CONVERGENCE OF THE TODA LATTICE
FOR REAL NORMAL MATRICES AND ITS APPLICATIONS

TO THE EIGENVALUE PROBLEM*

MOODY T. CHUt

Abstract. The asymptotic behavior of the Toda lattice, when acting on real normal matrices, is studied. It
is shown that the solution flow eventually converges to a diagonal block form where for a real eigenvalue the
associated block is of size with that eigenvalue as its element and for complex-conjugate pairs of
eigenvalues the associated block is of size 2 2 with the real part as its diagonal elements and the (negative)
imaginary part as its off-diagonal elements. This result generalizes the well-known asymptotic behavior of
Jacobi matrices and is consistent with that from the QR-algorithm.

1. Introduction. Recently the dynamic flow of a special system of differential
equations, known as the Toda lattice, has been found to be closely related to the
important QR-algorithm [1], [2], [4], [7]. Roughly speaking, the QR-algorithm can be
shown to be the time-1 mapping of the solution to the Toda lattice. Specifically, if we
consider the following dynamic system for matrices in

(1.1) ’= X, IIoX X. IIoX- HoX.X
where IIoX=X--X-r and X- is the strictly lower triangular part of X, then the
following properties concerning the solution flow X(t) with initial data X0 at t-O can
be derived from the general results presented in the previous paper [1].

LEMMA 1.1. The solution X( ) is given by

(1.2) X( ) Q*( )XoO( ),
where Q( ) solves the initial value problem

(1.3) .-Q.IIoX, Q(O)-I.

Indeed Q(t) is exactly the unitary matrix involved in the QR-decomposition [3], [6] of
the matrix etX, namely

(1.4) etXo-O(t)R(t)
where R(t) is an upper triangular matrix with real nonnegative diagonal elements.

LEMMA 1.2. For k-O, +-- 1, +--2,..., suppose the matrix e x(k has the QR-decomposi-
tion

(1.5) eX(k)-- Q(k)R(k).

Then

(1.6) ex+)-Rk)Q’.
Observe that, by (1.2), the trajectory X(t) is bounded in R’, so its to-limit set is

nonempty, compact and connected. We are interested in finding this set. A special case,
when X0 is a Jacobi matrix (and hence when X0 is a real symmetric matrix by a
standard tridiagonalization algorithm), has been studied extensively by a number of
authors [2], [4], [7]. In fact, based on the continuous dependence of the initial data for

*Received by the editors December 7, 1982.
*Department of Mathematics, North Carolina State University, Raleigh, North Carolina 27650.

98



TODA LATTICE FOR REAL NORMAL MATRICES 99

the system (1.1) and a well-known theorem [5], [6] in the numerical analysis concerning
the convergence of the QR-algorithm, we have the following generalization [1 ].

THEOREM 1. If the matrix Xo ER
"X" has real distinct eigenvalues (’l >X2>’’" >

)}, then the Toda flow X(t) converges to an upper triangular matrix with the eigenvalues
appearing on the diagonal ,’. the descending order.

In this paper we want to study the behavior of this flow when complex-conjugate
pairs of eigenvalues occur. As is shown in [1], for an arbitrary (nonnormal) 2X2
matrix, the appearance of such a pair of eigenvalues will result in a periodic (in fact, a
circular) portrait in the phase plane and thus X(t) has no convergence at all. It is
natural, therefore, to restrict ourselves in the study of the normal matrices first.

We begin in the next section with some preliminary facts. Especially, we point out
the differential system which governs the dynamics of the corresponding eigenvectors
of the flow X(t). It turns out this system is much easier to handle than the system (1.1)
itself. In {}3 we discuss how eigenvalues affect eigenvectors and, hence, the entire flow
X(t) by the inverse algorithm. Although we only analyze two situations there, they
seem to be generic enough to get general conclusions.

2. Preliminary facts. It is obvious, from Lemma 1.1, that normality is preserved
along the flow provided that X0 is a normal matrix. It is also known that there exists a
unitary matrix U0 such that

(2.1) Xo- UTUo
where T is a diagonal matrix with eigenvalues as its elements. Without loss of generality
we shall assume these elements are arranged in such a way that

Re,hi _> Re)k2 _>.-. >’REX.,
and that whenever there are complex-conjugate pairs, they are adjacent to each other.
By (1.2), it follows that

(2.3) X(t)- U*(t)TU(t)
where

(2.4) U( ) UoO( ).
Notice that, by (1.3), U(t) satisfies the differential system

(2.5) /)= U. HoX.
We shall assume X0 is an upper Hessenberg matrix. Then the following lemma [1]

guarantees the preservation of this structure along the entire flow. Recall that this
useful property is also enjoyed by the classical QR-algorithm.

LEMMA 2.1. IfX is an upper Hessenberg matrix, so is =[X, H0X].
Let us denote the matrix U(t) in (2.4) by U(t)=[u(t),...,u,(t)] where ui(t ) is the

th column of U(t). Then by (2.3) we have

(2.6) [u,-..,u,]

Xll X12 Xln

X21 X22

X32

0 Xn,n_ Xnn



100 MOODY T. CHU

So the following equality holds for each k- 1,...,n.

k+l

(2.7) X xi,ui Tu,,
i--1

where it is understood that u+ =0. Since all the vectors u are mutually orthogonal,
we know that for all _< i_< n and _<j_< n

(2.8) xij: < ui, Zuj >
where ., ) is the inner product in C n.

From (2.5), (2.6) and (2.8), it is not hard to see now that
LEMMA 2.2. For i= 1,. .,n, the vector ui(t ) satisfies the differential system

(2.9) fti- Tui- X < uj, rui > uj- < ui, TUi- > Ui-
j=l

In particular, the first column Ul(t) of U( t) satisfies the equation

(2.10) /’1 TUl < Ul’ TUl > UI"

Direct substitution also shows that
LEMMA 2.3. The solution to (2.9) is given explicitly by

(2.11) u,(t)-- eTtul(O)
IleTtul(o)ll2

We note that the ith component Uil(t ) of u is given by

(2.12) uit(t ) eAitUio

(X__,leXtuo]2) 1/2

where ui0 is the complex conjugate of the first component of the ith eigenvector of X0.
The following useful inverse algorithm [5] turns out to be very important.

THEOREM 2.1. Suppose B is an unreduced upper Hessenberg matrix with positive
subdiagonal elements and Q is a unitary matrix, then Q and B are uniquely determined by
the first column of Q, providedA is given and B Q*AQ.

For our application, observe that the subdiagonal elements of X(t) can never
change signs along the positive orbit. If we assume, without loss, that X0 not only is an
upper Hessenberg matrix but also is unreduced to begin with, then from (2.6), (2.10)
and the above theorem, we know that X(t) and U(t) are completely determined. The
detailed analysis is presented in the next section.

3. Convergence of X(t). First of all we should explain the meaning of convergence
used in our context. Strictly speaking, convergence would be taken to mean the
convergence of the flow X(t) to some limit matrix. In our context, however, we mean
convergence under deflations, i.e. we are concerned about the convergence of a subma-
trix obtained by deflation, as soon as the subdiagonal element is negligible, to another
submatrix. The precise meaning will become clear later and indeed, as will be seen also,
these two notions of convergence are essentially the same when the Toda lattice is
acting on normal matrices.
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For the simplicity of discussion, we shall make one more genetic assumption,
namely Ul04:0 whenever we need it and that X0 is nonsingular. We shall also use the
notation" to mean "converges to."

LEMMA 3.1. If the eigenvalues in (2.2) are such that

(3.1) Reh =h >Re,h2>_... _>Re,
then

(3.2) x,,(t)X,, x2,(t)0 and Xik(t)O

for every 2<_k<_n as .
Proof. It is clear from (2.12) that as o,

u. and Uil(t)O(3.3) u,,- lu,0
for all i_>2. Let us adopt the following notation in its intuitive sense:

(3.4) lim ui(t) i.

Then we have, from (2.8),

(3..5) x,,( ) ( u,, Tu, ) ( a,, Tft, ) -X,
and, from (2.7),

(3.6) Ixz,(t)l-IlZu,-x,lU,llz-,llZa,-X,a,llz-O.
Observe that, by (2.8) and (3.6),

x2,(/) < u2 Tu, ) ff,zh,a, 0(3.7)
implies

(3.8)
where

(3.9)

Ul2(t)0
means the complex conjugate. Therefore,

x,2(t )- (u,,Tu2)- (T*u,,u),,,,u,O.
Indeed, for every k> 2, it is always true that

(3.10)

implies

Therefore,

(3.12) x,k(t)- (u,,Tuk)- (T*u,,uk)-h,,,u,kO.
In other words, if condition (3.1) is satisfied, then as o

h 0 0 0 0

0 x x x x
X(t) 0 x x x x

0 0 x x x
0 0 0 x x

(3.11) u,k(t)O.
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where "x" represents either a nonzero element or an uncertain position.
Apparently when this convergence phenomenon happens, one is tempted to per-

form the deflation and to proceed the computation on the submatrix. We would like to
point out, however, that those uncertain positions are really not entirely uncertain (they
are uncertain simply because we don’t care to include the analysis in Lemma 3.1). As a
matter of fact, from (2.9), we know that for each k_>2, the eigenvector u is governed
by

k

(3.13) ug-Tug- (ui,TUk)Ui--(Uk,TUk_)Ug_,
i--l

whereas, from (3.8), (3.9), (3.11) and (3.12), we see that the vector tCn-, governed
by

k

i=2

where is obtained from T by deleting the first row and column, would describe the
behavior of u as well when is large enough. Therefore, those uncertain positions are
actually converging according to either Lemma 3.1, with h being replaced by h 2, or the
next lemma, with and 2 being replaced by X2 and X3. It is in this sense that we
mean convergence.
LE 3.2. If the eigenvalues in (2.2) are such that

(3.14) Re-Re2>Re3-.. Re
and if X-a+ ib with b O, then as t , we have

x,(t)a, x22(t)a, x3(t)0,
(3.15)

x(t)(sgnxE(O))lbl, XE(t) (sgnxE(0))lbl,

andfor all k 3

(3.16) Xk(t)O, X(t)O.

Proof. It is clear again from (2.12) that as ,
eibtUlo e-ibtu20(3.17) u(t) u(t)

( + ) ( + )
and for all 3,

(3.18) Uil(t)O.
Notice that Ull(t ) and u22(t ) do not converge at all. But we still use the notation (3.17)
to indicate how they behave when becomes large. Since X0 is a real matrix, it must be
that u0- fi20- Therefore

(3.19) Xl,(t ) u,Tu) X,lul(a+ib)la,l+(a-ib)la-a.
i=1

Thus

(3.20) Ix2, (t)l Tu,- x,, u, I1=-11Z,-a b
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implies that

(3.21) XEl(t)+-b
where the sign of this limit is the same as that of x2(0) since x21(t) can never change
signs. Since b 0, it follows, assuming x21(t) b, from the fact

Tu --XllU(3.22) u2
X21

that

(3.23) Ul2(t)--,iul(t ), UE2(t)iuE(t ), ui2(t)O
for all i_> 3’.. So by (2.8), we know

(3.24) XEE(t ) ( u2 Tu2 a

and

(3.25) Xl2(t)=(u,Tu2) -b.

By (2.7), simple calculation also shows

(3.26) Ix =(t)l=llTu=--x zu,--x==u=ll=- llTa=/ba,--aa=li=O.
We now claim for all k_> 3, as o

(3.27) uk( ) O, u_( ) O.

Indeed this fact follows from solving the following system of equations

u, ru, ) =O, ( u, ru ) =O,(3.28)
or equivalently

(3.29) ,(a+ib)a, +2g(a-ib)a21-O,
tlk(a + ib)iftl-2g(a-ib)ift2 =0.

Therefore, for all k-> 3,

(3.30) Xlk(t)-- Ul,ZUk-- (Z*Ul,Uk-Z*ll,ak--O,
(3.31) x2(/)- (u2,TUk)-- (T*u,uk)-(T*u2,u)-O.

In summary, this lemma states that if condition (3.14) holds, then

a -b 0 0 0
b a 0 0 0

X(t) 0 0 x x x
0 0 x x x
0 0 0 x x

where again "x" represents uncertain positions.
Finally we note that for the case b-0 (multiple eigenvalues), similar results (a

2 2 diagonal block) still can be obtained. Even for the nongeneric case when Re,-
Re2-Re,3- ReX4, an argument analogous to Lemma 3.2 can still show the conver-
gence. It is interesting to see the asymptotic behavior of the general flow [1]

(3.32) ’= X, IIo(G(x))]
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where G(z) is an analytic function defined on an open set containing the spectrum on
X0. The analysis, nevertheless, is much harder than (1.1) since we don’t have a system
as nice as (2.9) and we are still working on it.

REFERENCES

[1] M. T. CHU, The generalized Toda lattice, the QR-algorithm and the centre manifold theory, SIAM J. Alg.
Discrete Meth., 5 (1984), to appear.

[2] P. DEIFT, T. NAN3A, AND C. TOMEI, Differential equations for the symmetric eigenvalue problem, SIAM J.
Numer. Anal., 20 (1983), pp. 1-22.

[3] J. G. F. FRANCIS, The QR transformation, a unitary analogue to the LR transformation, Comput. J., 4
(1961), pp. 265-281.

[4] J. MOSER, Finitely many mass points on the line under the influence of an exponential potential--an
integrable system, Dynamical Systems, Theory and Applications, J. Moser, ed., Lecture Notes in
Physics 38, Springer-Vedag, Berlin, 1975, pp. 467-497.

[5] B. N. PARLETT, The Symmetric Eigenvalue Problem, Prentice-Hall, Englewood Cliffs, NJ, 1980.
[6] A. RALSTON AND P. RABINOWITZ, A First Course in Numerical Analysis, McGraw-Hill, New York, 1978.
[7] W. W. SYMES, The QR-algorithm and scattering for the finite nonperiodic Toda lattice, Physica, 40 (1982),

pp. 275-280.



SlAM J. MATH. ANAL.
Vol. 15, No. i, January 1984

(C) 1984 Society for Industrial and Applied Mathematics

0036-1410/84/150 !-0005 $01.25/0

ON THE WIDTH OF THE INSTABILITY
INTERVALS OF THE MATHIEU EQUATION*

HARRY HOCHSTADT"
Abstract. It is shown that the widths of the instability intervals of the Mathieu equation are asymptoti-

cally given by

4m[(m-- 1)!]

Recently the asymptotic widths of the instability intervals of the Mathieu equation
have been determined by Avran and Simon [1] as well as Harrell [2]. The purpose of
this note is to provide a rather simple method for the calculation of these widths. To do
so, some formulas developed in the book by Meixner and Schaefke [3] will be used, and
for convenience their notation will be used.

The Mathieu equation is

y" +(,-2h2cos2z)y O.

The eigenvalues of the periodic spectrum fall into four classes, as follows:

(I) y’(0) :y’ (r/2) 0, (a2,,},
(II) y’(0) :y (r/2) 0, {a2,,+1},

(Ill) y(0) =y’ (r/2) 0, (bE,,+ },
(IV) y(O)=y (r/2) 0, {bE,,}.

These eigenvalues can be ordered as follows ([3],p. 119): ao<b <a <b2<a2<b <a
<.-- provided h2>0. One can easily show that for large n, a2n-(2n)2, b2n(2n)2,
a2,+-(2n+ 1)2, b2+-(2n+ 1)2. The widths of the instability intervals are given by
bk --ak, and we shall demonstrate that for large k we have

8h2k
(2) b,--ak--,

4k[(k-- 1)!] 2

To derive (2) we shall make use of the continued fractions which the eigenvalues
satisfy. Corresponding to the four cases we have [3, p. 118]

2(I) X-(2n h4 h4 2h4

,- (2n 2)2 ,- 4 X
h4 h 4

(2n + 2)2-, (2n + 4)2- X

*Received by the editors April 19, 1982. This work was supported by the National Science Foundation
under grant MCS-8103373.

tPolytechnic Institute of New York, Brooklyn, New York 11201.

105



106 HARRY HOCHSTADT

(III)

(IV)

,_ (2n + 112_ h4 h4-- (2n 112 ,-- h 2

-ha ha

(2n + 3)2- X (2n + 5)2- X

k_ (2n_+_ 112_ h4 h4

X- (2n- 112 ,-- + h a

-h4 h4

(an + 3t2- , (2n + 5)2- ,
,_ (2n)2_ h4 h4

X- (2n 2)2 )k 4

h4 h 4

(2n + 2)2- X (2n + 4t2- X
(I)-(IV) are transcendental equations, whose solutions are a2n a2n+l b2n+l b2n
respectively.

To estimate the above continued fractions we recall the following facts. Suppose
we consider the following continued fraction:

(3) A1 "42 A3
B + B2 + B3 +

and let P,/qk denote the kth convergent, where

(4) Pl--"41, P2=AB2, q-B, q2-B1B2+"42.

ThenPk and qk satisfy the following recurrence formulas,

p.+ B.+ p. +A.+ p._
q.+ B.+ lqn +An+ lqn- 1,

with the initial condition given in (4). From (5) one can easily deduce that

(6) Pk
qk Pk- qkqk-l

An explicit solution for the q, can be found, as follows. Let

(7) q.-B,B2. B.U..
Then

(8) U. =, (0 B]}I( 00)I0 n_>l.

To calculate b2, we return to the continued fraction (IV) and let

Ak: --h4 }(9t
Bk-)-(2(r-k))2 k- l,2,. r-1,

t,--h4 )k- 2,-...
,k_(E(r+k))2_X
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Then we can rewrite the continued fraction (IV) in the form

(10) A- (2r +=--
q,-i qk m=0 k+m+l k+m

TO estimate the sum in (10) we note that ,(2r)2 and k-4k(k+r). Use of (6), (7),
(8) shows that

(11)

Pk+m+ Pk+m__ --h4(k+m+l) --h4(k+m+l)

Ok+m+ Ok+m Ok+m+ lOk+m 4k+m(k+m)!(k+m+2r)! ]2r! [4(k+m+ +2r)]

Equation (10) can therefore be estimated by

(12) X- (2r +-----= O
qr-I qr r6r

Similarly a2r can be estimated from (I), with the Ak, Bk,-k,/k as defined in (9)
and also

(13)
Then we find

(14) X_ (2r)=_t Pr--I 0
qr- qrqr- q, r6r

b2r is a solution of (12) and a2r a solution of (14). A comparison shows that the
asymptotic developments of a= and b= will agree up to terms of O(h4/qrqr_ l)" Then
it follows that, with

Bk X- (2(r- k))2 4k(2r- k ),

2h4r 2h4r [ h4)](15) b2r- a=r--- + 0
qrqr- 4=r-’[(2r -1)!] = -A similar analysis using the continued fractions for a2r+ and b2r+l finally shows

that

(16)
8h2m

4"[(m- 1)] - h 4
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FACTORED PRODUCT EXPANSIONS OF
SOLUTIONS OF NONLINEAR DIFFERENTIAL EQUATIONS*

STANLY STEINBERG*

Abstract. Lie transformations are used to represent solutions of initial value problems for systems of
nonlinear ordinary differential equations as exponentials of first order linear partial differential operators.
These exponentials are then expanded using an analog of the usual exponential identities. This expansion is
called the factored product expansion. Such expansions have been found useful in the study of magnetic and
optical lenses.

1. Introduction. In this paper we will discuss factored product expansions, of solu-
tions of initial value problems for systems of nonlinear ordinary differential equations,
that is, for problems of the form

-Yd (t)=f(y(t)), y(0)-y.

Here

Y=(Y,," ,Yn),
y( ) ( y( ),y2( ),. ,yn( )),
f(Y)-(fl(Y),’" ",fn(Y)),

where n is a positive integer, and yj are real parameters and yj(t) and fj(y) are real
analytic functions with

f(0) =0.

We associate with the initial value problem the first order linear partial differential
operator

L- f.(y) -y
j=l

and then use Lie transformations (which are sometimes called Lie series) to write the
solution of the initial value problem in the form

y(t)=etLy.

Becausef(y) is analytic we can use a power series expansion to write

L- . L
k=l

where each Lk is a linear first order partial differential operator with homogeneous
polynomial coefficients, and where the degree of homogeneity of the coefficients of Lk
is k.

*Received by the editors April 16, 1982, and in revised form September 23, 1982. This work was
partially supported by the National Science Foundation under grant MCS-8102683.

*Department of Mathematics and Statistics, University of New Mexico, Albuquerque, New Mexico
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A natural generalization of the exponential identities to this situation gives an
infinite product expansion

et(Li +L2+L3+ .) eFeF2eF3...

where, again, Fk is a linear first order partial differential operator with degree k
homogeneous polynomial coefficients. It is this last formula that we call the factored
product expansion. This formula is closely related to the noncommuting exponential
identities frequently called Baker-Campbell-Hausdorff formulas.

The Baker-Campbell-Hausdorff formulas have a long history and have important
applications in the study of Lie groups [7]. The applications we have in mind are quite
different from Lie group applications and, to our knowledge, first appeared in the
papers of Dragt et al. [1]-[5]. These papers use factored product expansions to study
magnetic and optical lens systems in a Hamiltonian mechanics setting.

Our main result, Theorem of 4, gives a procedure for calculating all of the
exponents in a factored product expansion. This result is a generalization of Dragt and
Finn [1, Thm. 2 and Lemma 6] to a non-Hamiltonian setting. More importantly, our
method of proof is different from that of Dragt and Finn. This new method of proof
allows us to obtain some new results on the degree of approximation given by truncated
factored product expansions that should be useful in applications. We also note that
our results are easily specialized to the Hamiltonian setting.

This paper is organized as follows. In 2 we give a brief summary of the properties
of Lie transformations in a non-Hamiltonian setting. In this paper we use the name Lie

transformation to describe the transformation generated by the exponential of a first
order linear partial differential operator and the name Lie series to denote the power
series definition of the Lie transformation. Other works sometimes use this terminology
differently. We do not include any proofs because, with the exception of the noncom-
muting exponential identities, the proofs are elementary and can be found in the
literature [1]-[6], [8], [9]. The results on noncommuting exponential identities follow
from our results in 3. An expository account, with proofs, of these results on Lie
transformations and series along with extensive references to literature on the theory
and applications of Lie transformations can be found in Steinberg [8].

In 3 we give some preliminary results and in 4 we give the main result on
factored product expansions along with some new corollaries on the degree of ap-
proximation given by truncated expansions.

2. Lie transformations. Here, for the convenience of the reader, we state the basic
properties of Lie transformations. As we noted in the introduction, other accounts can
be found in the literature. A Lie transformation is an exponential of a first order linear
analytic partial differential operator in n variables.

L- X fj(y)Dj, Dj-yj,j=0

wheref(y) is an analytic function near y 0. A Lie transformation is then given by

etL: X n!
n=0
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The right-hand side of the last equation is called a Lie series. The action of the Lie
transformation on a function g(y), analytic neary- 0, is given by

e,Lg(y)_ t"L"
n! g(Y)- -. (f(y).D)"g(y).

n=0 n=0

Properties. We assume that f(y), g(y) and h(y) are analytic functions near y-0,
that a and b are real constants, that c(t) is a smooth real valued function and that L is
as above.

1) Convergence.

etLg(y)

is a well defined analytic function of y and for y and small enough.
2) Time derivative.

3) Linearity.

4) Product preservation.

5) Composition.

-- c(t)L c’( )te c(t)L cc(t)Lc’( )Z.

etL( ag+ bh ) aetLg+ belch.

et(gh) (etLg)(etLh).

ettg(y)-g(etty).

We now suppose that P is another first order differential operator and define
successive commutators by

[L, lop_p,
[L, .]’P-LP-PL,
[L, "]np-IL, "In-IlL,P], n>l.

6) Similarity.

etPe-tt-ettL"lP ..[L," ]"P.
n:0

7) Function multipfier.

e,tge-th-(etg)h"

8) Noncommuting exponential identities.

et( L+P)_ etLetPe t2 t(2)et3 t(3/4t(4t t(5)

etLetP.-- etL+ tP+ t2Wt2) + t3Wt3)
_qt.. .,
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where

and so forth. Here each L(’) and W(’) are k-fold commutators of L and P.
9) Differential equation property. If

y(t)-etLy,

then

y’(t)=f(y(t)), y(O)-y.

3. Preliminary results. In this section we will derive a formula for the derivative of
an exponential of a time-dependent operator. Both this formula and the applications of
this formula use operators that are defined as analytic functions of first order differen-
tial operators or as ,analytic functions of commutator operators. We define these
operators using infinite series. Because we use only formal series properties of these
expressions, we will not worry about the convergence of the series. We note that the
formula we derive in this section can be used to derive the noncommuting exponential
identities of the previous section.

Let

a(z) X
k-O

be analytic near z-0 and assume that L is an operator. Then

a(z)-
k=0

As we said before, we consider the series as a formal expression. However, if we know
all of the eigenvectors and eigenvalues of L, then this information can be used to
calculate A(L) in terms of A applied to the eigenvalues of L. If the coefficients ak
decrease like .,, then it is possible to show that A(L) is well defined for first order
differential operators of the type we are discussing. In addition, if L is a bounded
operator and the power series of A(z) has a finite radius of convergence, then it can be
shown that A(tL) is well defined for sufficiently small scaler t.

We have already met one example:

In the next proposition we will use

In the next section we will use

A(z)-ez.

eZE1
z

z
A(Z)-eZ_l

It is easy to see that the last A(z) is singular at i2 ,r, and consequently the power series
of this function has a radius of convergence equal to 2 ,r. Thus it seems unlikely that the
series for A(L) will converge for operators of the type we are considering. We also note
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that we will apply our formulas when the commutator operator [L, is used in place
of the operator L, and thus compute A([L, ]).

The next well-known result is key to our computations.
PROPOSITION 1. If L(t) is a linear first order differential operator with coefficients

that are analytic in both andy, then

d L(t)-e eIL(t)"]--_.] t) L(t)
1--e--[L(t)"]

[L(t)i" L’(t)eL< --e -(;5[ :] L’(,).

Proof. Set L L( ), L’ dL( )/dt and then compute:

d L_d Lk-e - k---( -k-i.. " LmL L m

k=0 k=l m=0

LmL’Lk-m-I
m=O k=m+

!j, Lm Lj

=2 2 m --L’--
m=O/=O (re+j+ 1)! m! j!

However,

(m+j+ 1)!
= "rm(1-’)Jd"

so

d L fol rLL,e(I--r)L fol r[L L e[L"]--lL,e L.-e e dz= e "lL’dze =
[L,.]

Replacing by 1- in the above integrals gives the second form of the result.

4. Main results. Our main result is the following:,
THEOREM 1. If

L- Lk,
k=l

where Lk is a first order differential operator with homogeneous polynomial coefficients of
degree k, then

etL-- eF(t)eF2(t)eF3(t).

where Fk(t) is a first order differential operator with homogeneous polynomial coefficients
of degree k. The equality is meant in the sense offormal series.

Proof. Before we begin the proof we note that if Lj and Lk are first order partial
differential operators with homogeneous polynomial coefficients of degree given by
their subscripts, then

Here we mean that Lj+k_ is another first order partial differential operator with
homogeneous polynomial coefficients of degree given by the subscript j+ k-1. Note
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that ifj then commutation by Lj does not increase the degree of homogeneity of the
coefficients of Lk. This relationship between the commutator and the degree of homo-
geneity of the coefficients is a central aspect in our calculations.

Differentiate the proposed identity with respects to t:

Lett=e[r"’l-
F, F(eF’eFzeF3"

e [v2’’]
+e F’

7;. ] FeF2e F3.

+eFteF etF3’
[F;; F;eF3"

The inverse of the proposed identity is given by

e-tL-- e-F3e-F2e- F.

Multiply the derivative of the proposed identity on the right by this to obtain

e[’]
L

etr" _-fi.] r,
[-15,]. F; + e i-F . Fe v,

e [r3’’l
+erie r2 i-ff317] Fe-Fe-F

----e ’ ][- F{+e,, .1 e",l[F" F’

+ eF,, leF,. eF" 1-

To make the coefficient of the linear expressions in y zero, we need

F(t)-[Fl(t; "1 L I.
e [rCt).

An obvious solution for this equation is

F(t)-tL

We now proceed to set the coefficient of higher powers of y equal to zero. Set
R)-L and then for k2 define
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Here R.k) means the terms of degree j in R*), and F, is determined by integration.
Some care must be used in evaluating the formula for R,. When k= 1, the formulas
involve [L,. ]. In this case we note that this commutator is a linear mapping on the
space of first order linear partial differential operators with degree k homogeneous
coefficients, and that this space is finite dimensional. Consequently functions of [L,
can be computed using spectral theory on finite dimensional spaces. When k> 1, the
powers series definitions of e and z/(e- 1) are used to compute functions of [L,, ].

Things are set up so that

F,+e[Fk,.le[F+"]--
[F,_,,.] F,+, +....

and then our choice for Fk gives

Rk)--0, l_<j<k,

which completes the proof.
Remark. If in Theorem we replace by -t and take the inverse of the resulting

identity, then we obtain

etL e-- F3(--t)e-- F2(--t)e-- F(--t).

We note that, in general, it will not be possible to compute the expressions exp(Fk)
or exp([ Fk, ]) in closed form or to do the necessary integrals in closed form. In such a
case Fk may be determined using truncated power series in t, say through terms of
order m. The only thing that changes in the above proof is that all equations then mean
that the first m / terms of the power series in agree.

The next result estimates the error made when factored product expansions are
used to approximate solutions of ordinary differential equations.

COROLLARY 1. If
y(t)--etLy

and

then

Yk ( ) e Fl(t)e F2(t)’’" e Fk(t)y,

ly(t)--y,(t)[<__ Ck]t lYl
+!

for some constant Ck.
Proof. Because Lie transformations yield well defined analytic functions, both y(t)

and Yk(t) are analytic functions of and y. Thus we need to show that all terms in the
power series of y(t)-yk(t) of order lower than given in the estimate are zero. This is
exactly what the previous theorem does.

In another paper [9], we have given examples in one space dimension that show the
above estimates are the best possible. We note that in this elementary setting it is
possible to compute all of the needed expressions in closed form. As we stated above, it
is not possible, in general, to compute exp(Lk) or exp([ Lk, ]) in closed form. In view
of this, the next result is useful in applications.
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COROLLARY 2. Given m>0, it is possible, using only power series techniques, to
determine Yk( so that

ly(t) -y(t)IKIYl IriS/’ / cltl lyl

for some constants K and Ck.
Proof. In the previous theorem use power series techniques to determine F,

_<j_< k through terms of order and then use the power series to determine exp(F)
through terms.of order t" and then write

y(t)--eFleF2...eF,.

5. Comments. It is our belief that the factored product expansions are generically
divergent. Another way to say this is that the constants Cg in Corollary will, in
general, grow as k becomes large. The growth of the constants C was confirmed by
some of the numerical experiments done for [9]. As stated before, the error estimate
given in Corollary is best possible for the class of equations being considered [9].
However, in some special circumstances the errors may oscillate, giving better results
than our estimates indicate.
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ASYMPTOTIC INTEGRATION OF PERTURBED LINEAR
DIFFERENTIAL EQUATIONS UNDER CONDITIONS
INVOLVING ORDINARY INTEGRAL CONVERGENCE*

JAROMIR IMA

Abstract. In this paper, we consider asymptotic integration of nth order linear differential equations with
constant coefficients, modified by the addition of small functions. The integral smallness of the perturbation
functions is expressed in terms of ordinary convergence instead of the classic conditions which require
absolute integrability. The proof of our result is based on the Banach contraction principle.

1. Introduction. Statement of the result. We consider the scalar linear differential
equation

(1.1) X(n)+[al+Pl(t)]x(n-l)+ +[an_l+Pn_l(t)]x’+[an+Pn(t)]x--O
where ak are complex numbers and p(t) are continuous complex-valued functions
defined on the half-line 0_< < c.

A classical asymptotic theorem (see Hartman [2, Thm. 17.2]) gives asymptotic
estimates for a fundamental system of solutions of (1.1): if the functions k(t)ltq are
integrable on 0, c) for some q_>0 and if the real parts of roots ,j of the equation

(1.2) )n+al)kn-l + +an_l+an--O
are distinct, then there exist n solutions xj(t) of (1.1) such that

(1.3) x)(t)-(X+o(t-q))exp(Xjt), O<_k<_n-1 as t.
In this paper we shall obtain a similar result under the weaker assumptions that

the integrals

(1.4) fPk(t)tqdt
converge (possibly not absolutely) and that the roots of (1.2) are distinct. The case
)k 2 n 0 has been discussed by Trench [3].

Furthermore, instead of (1.4) we shall consider more general integrals

fp(t)eottqdt
with nonnegative constants p and q.

We now state our result.
THEOREM 1. Suppose (1.2) has distinct roots Al,Ag_,.. ",’n. Let the complex-valued

functions p(t) be continuous on [0, oo) and satisfy the following conditions:
(i) flP l( )l dt< c
(ii) the integrals

fpk(t)exp((p+ifl)t)tqdt <_k<_n,

where # and q are nonnegative constants, converge (perhaps conditionally) for
fl=0 and also for all fl- ft./m Im(Aj-- Am) satisfying Re(hi-’m)- tg;
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(iii) if p 0 and 0 <_ q< in (ii), then

-q pk(s)sqds dt< o, 2<_k<_n.

Then (1.1) has n solutions x(t),. ",Xn(t ) such that

(1.5) x(t)-(h.+o(e-tt-q))exp(t), O<_k<n-1.

This theorem contains a result concerning perturbations of the nonoscillatory
equation x"-x 0 (Trench [3]) as a special case.

2. Preparatory estimates. In the proof of Theorem we shall use the following
lemma.

LEMMA 1. Let h(t) be a complex-valued continuous function integrable (perhaps
conditionally) on the half-line o, o), where t0>0. Denote

H(t)- sup h(s)ds t>-to
tl>_t tl

Then the function h(t)t-q is integrablefor all q>_O and

(2.1) h(s)s-qds <_2H(t)t-q, t>_to

Further, let K( be a continuously differentiable complex-valuedfunction satisfying

(2.2) ]g(t)l<-goeatt-q

and

(2.3) ]g’(t)l<_geatt-q

on o, o), where Ko,K, avO and q>_O are real constants.

(i) If a< O, then the integral of K(t)h(t) converges and

(2.4) fK(s)h(s)dsl<_ Ko+ltl-lKl)H(t)eatt-q, to<_t<o.

(ii) If a > O, then

Proof. Denote

(K+a-K)tqH(t)tqexp( a(t-t)

t+t ) )] tt-q for+ 2qa K H +KoH( e o <_2

H,(t)- h(s)ds.
Integrating by parts yields

ftt,h( s )s_q dS _S_qHi(S ) t,qs_q_ lnl( S ) dS.

Since H(t) 0 as and

lqs-q-’H,(s)l ds<_H(t) qs-q-I ds,

the integral of h(t)l-q converges and satisfies (2.1).
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Assuming now a function K(t) to have the properties stated in the hypotheses, we
can write

(2.6) ftt’K(s)h(s)ds K(s)Hl(S)] tl

fttlKt(st-Jr- )Hl(s)ds

and

(2.7) IKO)(t)H,(t)l<_KjH(t)ett-q,
If a< O, then (2.7) implies that

(2.8) ftmlK’(s)H,(s)lds<--K,H(t)t-q fte"’ds--K, lal

By (2.6)-(2.8), f K(t)h(t)dt converges and (2.4) holds.
If a> 0, let T= (to + t)/2. From (2.7),

(2.9)

t>_to, j--O, 1.

-1
n(t)eatt-q.

ftlK’(s)H,(s)l d-flr’( f;IK’(s)H (s)l ds
to to

<--KIH(to)t-q f[ eaSds+KlH(T)T-q f’ e"Sds

ot- lKl tqH( to )eaT+ H(T ) T-qeat]
By (2.6) with t=to and t=t, (2.7) and (2.9) the inequality (2.5) is valid for to<_t<m.
This completes the proof of Lemma 1.

Remark 1. If K(t) satisfies (2.2) and (2.3) with a--0, then, in general, the inequal-
ity (2.4) is useless. In this case,

(2.10) ftK(s)h(s) h(s)
because of (2.6). However, it is now necessary to show that the integral on the right of
(2.10) converges.

Remark 2. The right-hand sides of (2.4) and (2.5) can be written as

(Ko +K )m(to t, a, q )eatt-q,

where the function m(to, t, a, q) is independent of K(t),

(2..11) lim m(to,t,a,q)-O, to>0
and

(2.12) lim supm(to,t,a,q)=O.
to t>_t

These properties of m(t0, t, a, q) are the only ones which will be used in the proof of
Theorem 1.

The proof of (2.11) and (2.12) is easy. Indeed, if a<0, then m(to, t,a,q)<_
(1 + lal-)H(t), and the relations are valid. If a>0, then

m(to,t, ct, q)<(l_ +a-1)tqH(t)tqexp( a(t--t)2 }
+2qa-lH( t+t )2 +H(t), t>--to.
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Obviously, it is sufficient to verify (2.12) for the function

m(to,t)-tqH(to)tqexp{a(to-t)/2), a>0.

We shall show that

(2.13) supm(to,t)<_2qH(to)(1 q-2qtqM), t0>0,
t>_t

where M is an upper bound of e-all q on [0, or:)). Observe that m(to, t)<_2qH(to) for
to<_t<_2to. Further, t(t-to)-l<_2 for t->2to. For such a t,

m(to,t)-2qt-qH(to) tq(t--to) -q. e-aSsqls=(t_to)/2
<_ 2qt-qn( 0). 2q M.

Consequently, (2.13) is valid.

3. Proof of Theorem 1. To avoid unnecessary subscripts, we let r be a fixed
integer (1 <_r<_n) throughout the proof. We shall show that under the conditions of
Theorem 1, there is a solution x-x of (1.1) satisfying (1.5) withj- r.

If t0>0, let U[ o, o) be the space of all functions u(t) in Cn-t[ 0, o) satisfying

(3.1) u(lC)(t)exp(--)krt)--O(e-ptt-q), O<_k<_n- 1, as t--, o.

Then U[ o, o) is a Banach space with respect to the norm
n--I

(3.2) Ilull-sup ]utk)(t)exp(-Xt)lett q.
t>--to k=0

In the following, assume that t_>to. From (3.2) and the identity

u()( ) exp(--X,t ))’-- ( u(+ )( ) Xru()( )) exp(--),t ),
we find that

(3.3)
and

(3.4)

u()( ) exp( Art)I ulle-Ptt-q (0_<k_<n-1),

I( u(’)(t) exp(-)rt ))’1-< ( + IA,I)llulle-’t-q
if u U[ o, ).

For convenience, let

(3.5) gj(t)=f. E ’nr-lCPk(S)exp(’r--)kj)sds
tojk=

and

(3.6) Ljk[u](t)= k(s)exp(-hjs)u(n-)(s)ds

where

to if Rej.< Rekr- p,
t2- oo if Re2_>Rekr-p.

(0_<k_<n- 2)

(l_<j_<n),

(l <_j,k<_n),

(3.7) IL(t)l<_mo(to,t)t-qexp( (Re)kr- Re)kj- p)t ),

LEMMA 2. Under the hypotheses of Theorem 1, the functions Lj(t), Ljk[u](t ) are

defined on o, o0) and satisfy the inequalities
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and

(3.8) [Ljk[U](t)l<llullmj(to,t)t-qexp((Re,r-ReXj-p)t}
for every u in U[ o, ) and <_j, k<_n. Here the functions mj(to, ) are independent of u
and satisfy

lira m.(to, t) -0, to>O,(3.9)
and

(3.10)

and

lim supmjk(to,t)-O.
to--, t>to

Proof. If Re ,j. Re,r- #, let
n

h(t)- r-kpk(t)eptt q,
k=l

Kj(t )-t-qexp ( (,-)k2- p )t).
By condition (ii) of Theorem 1, fh(t)dt converges. Obviously the function K2(t)
satisfies (2.2) and (2.3) on [to, oo), with a-Re,,-Re)j.-O4:0, K0-1 and K=,--OI+qt . From Lemma and Remark 2, the integral

L2( t ) =[K2(s )h(s ) ds

converges and satisfies (3.7), with mjo(to, ) satisfying (3.9) and (3.10). If Rej-Re
-p, we can apply Lemma to the integral

Lj( ) fh(s )s-q ds,

where
n

hj(t)- X )-P(t)exp(()-))t) tq,
k=l

because, by condition (ii), f h(t)dt converges. This proves (3.7).
Now (3.3) with k-n- implies that

ftlP,(s)exp(-X:)u"-"(s)lds<_llull ftlpl(s)ls-qexp((Rer-Re,j-p)s} ds

<_]]ullt-qexp( (REX,- ReXj-p)t) ft [p(s)] ds

if Rekj>-p+ Re,, which shows that Ljl[U](t ) is defined and (3.8) holds for k-1.
(Here we need assumption (i) of Theorem 1.) If Rehg<-O+ Rekr, let T=(t0+ t)/2.
From (3.3) with k-n- 1,

ftilp (s) exp(-hgs )u("- ’)(s )] ds

<-Ilulltffq exp( (REX,- Re,j.- #)T) ft:lp, (s)l ds

+ IlullT-qexp{ (REX,- Re,j- O)t} f:lpl(s)l ds,
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Therefore (3.8) with k- holds if

mjl(to t)-t-qtqexp{(Re)k-Re)kj-p)t--t}fclpl(S)lds+2qf( Ipl(S)lds.2 to to+t)/2

(The properties (3.9) and (3.10) of such a function mjl(to, ) were proved at the end of
{}2.)

Now, let k be a fixed integer, 2<_k<_n. Let h(t)=pk(t)tqept and Kj(t)-
t-qexp(-(hj+ o)t}u("-k)(t). Then Kj(t)C[ o, oo) and, by (3.3) and (3.4),

(3.11) Ig(t)i<_llull exp(ott)t-:zq

and

(3.12) [gfi(t )1_< Mll ull exp( tXlt )t-2q

where a ReXr- ReXj- 2p_< Re,r- Rehj- O and M- + Xr] + Xr- Xj- Pl +qt . To
prove (3.8), we can also apply Lemma to the integral

)
lOj.

the number a 4:0 in (2.2) and (2.3) is given by

a-- { ReA-_#, ReAj- # if Rekr- Re,,j-
if ReAr- Re,j-p-0 and O>0.

In fact, from (3.11) and (3.12), (2.2) and (2.3) are valid for Ko-llulltq and K=
Mllullt q, since a --<IX.

It remains to prove (3.8) in the case where Re,j- ReX and p-0. Using (2.10), we
obtain

(3.13)

where

ILia, u](t)l ftKj(s)h(s)dsl
<_llullt-=qln,(t)l+Mllull s-Zqlnl(S)lds,

ft ftHi(t)= h(s)ds Pk(S)sqdS.

Inequality (3.13) shows that (3.8) holds if the integral on the right-hand side (3.13)
converges and

tq s-ZqlHl(*)l 0 as t o.

If 0_<q< 1, the last assertion follows from condition (iii) of Theorem 1. If q-> 1, we may
apply Hospital’s rule:

lim ft s-2qlH’(s)l ds
lim

t-2qlH’(t)l
-0.

t-q (qt-q-l)
This completes the proof of Lemma 2.
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Returning to the proof of Theorem 1, we define the operator T by

(3.14)
where

(3.15)

T[ul(t)-- cjexp(,jt)lj[ul(t),
j=l

n

Ij[u](t)-Lj(t)+ Ljk[U](t ), <j<_n.
k=l

Here Lj(t), Ljk[u](t ) are the same as before (see (3.5) and (3.6)) and the numbers
satisfy the system

(3 16) c.Xk._(O if O_<k_<n-2,
if k-n- 1.

j=l

By Lemma 2, the functions I[u](t) are defined on o, oo) for every u U[ o,
and

(3.17) I[u](t)l( +llull)m(to,t)t-qexp((Re,r-Re,j-p)t), l_<]_<n.

For any elements t, t in U[ o, oo),

(3.18)

II .[ a ](t)- a ](t) ]-
n

k-I

< t tll mj(to, )t-qexp { (Rer-- Rej p )t ), <_j<_n,

where the functions m.(to, t) in (3.17) and (3.18) are independent of u and

(3.19) lim mj(to,t)-O to>0
and

(3.20) lim supm(to,t)-O.
to--, oo t>t

Consequently, I[u] Cl[ o, o) and, by (3.5) and (3.6),

(3.21)
n n

lj[ul(t)-L(t)+ Y Lk[u](t)--exp(--jt ) Z Pk(t)x(n-k)(t),
k--! k--I

where x(t)- exp(t)+ u(t).
From (3.14), (3.16), (3.21 ) and induction,

(3.22)

and

(3.23)

T<*)[ul(t) cjh.exp(Xjt)Ij[ul(t)
j=l

(0_<k<n- 1)

T(n)[u](I)-F pk(l)x(n-k)(’) c22.exp(22t)I2[u](t).
k--I j=l

From (3.17) and (3.22),
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n

(3.24) +llull) IcjAkv.[mj(to,t)e-P’t-q,
j=l

O<_k<_n-1, u U[to,.O ).
Thus T[u] is in U[ o, oe) for every u U[ 0, oe) (see the definition (3.1) and property
(3.20) of mj(to, t)). From (3.18) and (3.22),

n

](T’[ a](t) T’[ gt](t)) exp(-rt)l<_llft-gtll Icjhlm(to,t)e-Ptt-q,
j--I

and so, by the definition (3.2) of the norm in U[ 0, o),
n--I n

Ilz[a]-z[a]ll<-lla-all sup [c2t.[m(to,t )
t>--to k--0 j--

for arbitrary functions ti, a in U[ o, o). By (3.20), there is a to>0 such that
n--I n

sup ]chlmj(to,t)<l.
t>--to k=0 j=

For such a o the operator T is a contraction mapping of the space U[ 0, o) into
itself. According to the Banach contraction principle ([1, p. 11]), there exists u such
that T[u,]=u, i.e., T[ur](t)=Ur(t ) for to<t< oe. From this identity and (3.21)-(3.23)
it follows that x(t)=exp(t)+ur(t) is a solution of (1.1) on [to, oe). This solution can
be extended to [0, oe). Using (3.19) and (3.24) with .u=u= Z[ur] we find that this
solution satisfies (1.5) withj--r. This completes the proof of Theorem 1.
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BOUNDARY VALUE PROBLEMS FOR
AN nTH ORDER LINEAR DIFFERENCE EQUATION*

ALLAN C. PETERSON"
Abstract. We are concerned with boundary value problems for the nth order linear difference equation

Pu(m)=,’j=oaj(m)u(m+j)=O, where a,(m)=l and a0(m)4:0. We give necessary conditions for the
coefficients aj(m) for Pu(rn) 0 to be (1, n l)-disconjugate. The Green’s functions for (l, n -/)-boundary
value problems, _< 1--< n 1, are also considered.

Key words, linear difference equation, boundary value problem, disconjugate, Green’s function

We are concerned with the n th order linear difference equation

(1) Pu(m)- aj(m)u(m+j)--O, mI,
j=0

where the coefficients are defined on either the finite "interval" I [a, b] =-- (a, a +
1,- -,b), a and b integers, or the infinite "interval" I=[ a, oo) (a,a + 1,... ), a an
integer. We assume a,,(m) and a0(m) :/: 0 for m I. Solutions for (1) are defined on
I", where I a, b+ n when I a, b ], and I I when I a, c). A lot of notation
used in this paper is the same as used by Hartman in [1 ].

We now introduce an adjoint difference equation [3, p. 289] of (1). To this end we
first define quasi differences Dkz(m) as follows. If z(m) is defined on In, then

Doz(m)=z(m ), mIn.

t’(ml z(m ) mCin-g(2) DkZ(m)--Dk_z(m+ 1) + ct0(m

for _< k--< n. It can easily be shown that

(3) DkZ(rn)-- X z(m+j)
j:0 to(m+J)

for O<_k<_n. We then define the adjoint operator P* and adjoint difference equation
by the equation

(4) P*z(m)=D,,z(m)=O.
By use of (3) with k- n we could also write this as (see [3, p. 289])

(5) P*z(m)- tn-J(m+J)z(m+j)-O.
j:0 a0(m +J)

If u(m) and z(m) are defined on I’, then as usual, the Lagrange bracket of z(m)
and u(m) is defined by

n--I

(6) {z; u}= DkZ(m)u(m+k ), nE1I.
k=0

*Received by the editors February 16, 1982, and in revised form August 10, 1982.
Department of Mathematics and Statistics, University of Nebraska, Lincoln, Nebraska 68588.
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If u(m) is defined on In, then we define the usual difference operator A by

Au(m)=u(m+ 1)-- u(m), m_In-I

If u(m) and z(m) are defined on In, then by operating on both sides of (6) by A, it
is easy to obtain the Lagrange identity

z(m) Pu(m)+u(m+n)P*z(m)-A{z" u} mI.(7) ao(m------
For each p, 0_<p_<n- 1, define up(m, t) to be, for each fixed I, the solution of

(1) satisfying the initial conditions

k---0,. .,n- 1,

where 6pk is the Kronecker delta. Similarly, let zp(m,t), for each fixed El, be the
solution of (4) satisfying the initial conditions

Dkzp(t,t)--6pk, k---0,- .,n- 1.

By the Lagrange identity (7), we get that for fixed s,t_I (zp(m,s);Uq(m,t)) is con-
stant in I . Hence

(zp(m,s);Uq(m,t))l,,=s- (zp(m,s);Uq(m,t))l,=t.

It follows easily from this that

(8) Uq( S --p, t)- OqZp( t,s ), 0_<p,q<_n-1, s,tI.

These are very important formulas. (See [4(6)] for the analogous results.)
Let u(m),...,un(m) be functions defined on I n. Then as in [1] we define

W[u,,. .,u,](m)=

for mIn+ l--k, <_k<_n.

u,(m) uk(m )
u,(m+ 1) uk(m+ 1)

u(m+k-1) ug(m+k-1)

We can assume that our difference equation (1) is defined on (-, z)= (integers}
by defining ai(m)=ai(a), m<_a and ai(b ) for m>_b. This will be assumed whenever
necessary in the remainder of this paper.

It is easy to use (8) to derive
THEOREM 1.

W[uo(m,t)," ",Uk_l(m,t)]l,,=s+n_k W[Zn_k(m,s)," ",zn-,(m,s)]l,=
for k--1,...,n.

COROLLARY 2. Assume + n--1 <s. The difference equation Pu(m)=O has a non-
trivial solution u( rn ) with

u(t+j)=O, j--k,...,n-1,

u(s+j)=O, j=n-k,...,n-1,
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iff the adjoint equation P*z(m)= 0 has a nontrivial solution z(m) with

j--0,. .,k- 1,

j=O,...,n-k-1.

A solution u(m) of (1) is said to have a zero at tI" provided u(t)--0. We say
that u(m) has a generalized zero (see [1]) at t, provided u(t)=0 when t= a and, when
> a, either u(t) 0 or there is an integer k, _< k_< t- a, such that (- 1)k u(t- k)u(t) > 0,
and, if k> 1, u(t-k+ 1)= u(t-1)=0. A solution u(m) will be said to have a

(k, n- k)-pair of zeros in I" provided u has zeros at t, + 1,..., + k- 1, followed by
n k generalized zeros at s, s + 1,- -, s + n k 1, where a _< < + k <s<s + n k

<_b+n. We will say that (1) is (k,n-k)-disconjugate on I, provided no nontrivial
solution has a (k,n-k)-pair of zeros in I ". We say that (1) is disconjugate on I" if no
nontrivial solution of (1) has n generalized zeros on I.

In the following result we do not assume (1) is disconjugate on I ". With this in
mind compare the following result with [1, Thm. 5.2].

THEOREM 3. Assume I--[a,b] and that (1) is (l,n-l)-disconjugate on I for a fixed
{1,. .,n-- 1}. Then

(9)

a,(m) a,+,(m) a,+,_ (m)

>0

for mI- (I--I)for k- 1,. -, card I. (Here %(m)=Oforj>n orj<O.)
Proof. We prove (9) by induction on k. For k we want to show that

(-1)’+zat(m)>O, mI.

If we assume not, then there is an m0 I such that

( 1) n+la;(m0)_<0.

Let u be the solution of (1) such that

u(mo+j)--O,
u(mo+l)=l.

By use of (1) evaluated at m 0, we get that

u(mo + n) a,(m0)u(mo + l) a,(m 0).

Since u(m0 + + 1) u(m0 + n 1) 0, and

(- 1)"-tu(m o + )u(mo + n) (-- 1) "+’+ ’at(m0) -->0,

u(m) has a generalized zero at mo+n. Hence u has an (l,n-l) pair of zeros at

m0<m0+ l+ 1, which is a contradiction. Hence (- 1)’+zaz(m)>O for mI.
Assume k> and the inequalities (9) are true with k replaced by 1,2,.-. ,k- 1.
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Assume

Then there are constants Al,. ",Ak, not all zero, such that

(10)

at-(mo+ 1)

at_k+(mo+k--1)

%(mo)A, +a,+,(mo)A2
at_,(m0+ 1)A, +at(mo+ 1)A 2

at+k-2(mo+ 1)

%(mo+k-1)

at_k+l(mo+k--1)A1

and if l+k<n,

u(mo+l+k- +j)--O, O<_j<_n-l-k.

Note that u(m) is a nontrivial solution, as not all A,.-. ,Ak are zero.
Using the first equation in (10), Pu(mo)-O, (11) and (12) yields

u(mo+n)--O.
Proceeding in this fashion we finally get, using the k th equation in (10), Pu(mo + k- 1)
=0, (11) and (12), that

u(mo+n+k-1)-O.
But then u(m) is a nontrivial solution of (1) with an (l,n-l)-pair of zeros at m0<m0+
/ k, which is a contradiction.

Now assume l+ k>n. In this case let u(m) be the solution of (1) satisfying

(13) u(mo/j)--O O<_j<_l--1,

(14) U(mo+l+j)--Aj+l, O<_j<n--l.

In this case (10) becomes
(15)

%(mo)A,
%-(mo+l)A

a,+_,(mo+l+k-n- 1)A
a,_,(mo+l+k-n)A

%-,-(mo+k-1)A

/ / lx.(mO)An_t+l-O
/... / a._l(m0/ 1)A.-t+l +,.(mo+ 1)A,,_,+2-O,

+ + a,(mo+l+k-n-1)Ak-O,
+... + a,,_(mo+l+k-n)A,-O,

+"" + at(mo+k-1)A,-O.

(11) u(mo+j)--O O<_j<_l--1,

(12) u(mo+l+j)=Aj+,, Ojk-1,

We consider the two cases / k_< n and / k> n. We will show that both cases lead to a
contradiction.

First assume + k_< n. In this case let u(m) be the solution of (1) such that

+ + at+,_ (mo)A,- 0,
/ / Otl+k_2(mo/ 1)A,--0,

+ + at(too+k- 1)Ak--0.
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Using Pu(mo)=O, (13) and (14), we get the equation

ot,(mo)A +... +ot,,_,(mo)A,,_,+ +ot,,(mo)u(mo+n)=O.

Combining this with the first equation in (15), we get that

Hence

a,,( mo )[ u( rn o + n ) --A,,_,+ ,] --0.

u(mo+n)-A,,_t+ .
Similarly, using Pu(mo+ 1)=0, (13), (14) and the second equation in (15), we get that

u(mo+n+l)=An_t+2.

Proceeding in this manner we finally get, using Pu(mo+ l+k-n-1)--0, (13), (14) and
the (l+ k n )th equation in (15), that

u(mo+l+k-1)=Ak.

Since at least one of A,.--,Ak is nonzero, we now know that u(m) is a nontrivial
solution of (1).

Using Pu(mo+l+k-n)--O, (13), (14) and the (l+k-n+ 1)st equation in (15),
we get that

u(mo+l+k)=O.

Finally, using Pu(mo+k- 1)=0, (13), (14) and the kth equation in (15), we get that

u(mo+n+k-1)=O.

But then u(m) is a nontrivial solution of (1) with an (l,n-l)-pair of zeros at m0<m0+
+ k, which is a contradiction. Hence D 4: 0.

If we assume (9) is not valid, then there is a m0Il-k such that

(-- 1)k"+t)D

( )k.+)
at(mo) at+,(mo) at+ k_,(mo)
at_,(mo+ 1) ott(mo+ 1) at+k_2(m0 + 1)

at_k+,(mo+k--1) at_k+:z(mo+k--1) ott(mo+k-1)

Let u(m) be the solution of (1) satisfying the boundary conditions

u(mo+j)--O,
u(mo+l+k+j)=O,
u(mo+n+k-1)=l.
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Evaluating (1) at m o, too+ 1,...,mo+k- respectively, we are lead to the equa-
tions

at(mo )u(mo + 1) + at+ ,( mo)u(mo + l+ 1)
+... +at+k_,(mo)u(mo+l+k--1)=O,

at_,(mo+ 1)u(mo+l)+at(mo+ 1)u(mo+l+ 1)
+-.. +at+,_z(mo+ 1)u(mo+l+k-1)=O,

at_k+,(mo+k-1)u(mo+l)+at_k(mo+k-1)u(mo+l+ 1)
+... +at(mo+k-1)U(mo+l+k-1)=-l.

Solving for u(m o + + k 1), we get that

U(mo+l+k-1)--
at(m o)

at_+_(mo+k-2) at(mo+k-2)

Hence

1) n-iu(mo+l+k-1 )

(-- 1)(k-l)(n+l)

(_ 1)’"+t)D

a,(mo) a,+k_(mo)

at_,+_(m o+ k- 2) at(mo + k- 2t

so u has a generalized zero at mo+k-1. Hence u(m) is a nontrivial solution of (1)
which has an (l,n-l)-pair of zeros at mo<mo+l+k, which contradicts the (l,n-l)-
disconjugacy of (1) on I". Hence

and the proof is complete.
Let U(m,,) be the Cauchy function (see [1]) for (1). That is, for each fixed

u[a,b], U(m,u) is the solution of (1) satisfying

j--1,...,n-1,

THEOREM 4. ;f we assume (1) is (k, n k)-disconjugate on I" a, b / n for a fixed
k, <_k <_ n 1, then the Green’s function G(m, ,) for the problem

Pu(m)--f(m),
u(a+j)--O,
u(b+n-j)--O
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exists. It is defined on In I and can be expressed in the form"

(16) Gk(m,v)----

0 Uk(m,a )
U(b+k+ 1,g) Uk(b-+-k+ 1,a) Un_l(b+k--1,a )

Un_l(b+n,a)

for m <-- v, andfor m> v

(17) Gk(m,v)----

U(m,v) uk(m,a)
U(b+k+ 1,v) uk(b+k+ 1,a)

U(b+n,v) uk(b+n,a)

Un_l(b+k+l,a)

Un_l(b+n,a)

where

uk(b+k-1,a) Un_l(b+k-1,a)

Un_l(b- t’l,a )

and uj(m, a) are defined as before (8).
Proof. The proof of the existence is elementary and will be omitted. We will show

that the Green’s function Gk(m,v) is given by (16) and (17). The Green’s function
Gk(m,v) is characterized (see [1,p. 20]) by PGk(m,v)=6,, for (m,v)InI, where,, is the Kronecker delta, and where v(m)--Gk(m, v) satisfies the boundary condi-
tions

(18) v(a+j)--O, O<_j<_k-1,

(19) v(b+n-j)-O, O<_j<_n-k-1.

Define G(m, v) on In 1 by the right-hand side of (16) for m_< v, and by the right-hand
side of (17) when v<m. It suffices to show G(m,v) satisfies the above properties that
characterize G(m, ).

Assume throughout this paragraph that m[a,a+k-1]. We now show that
v(m)- G(m, ) satisfies the boundary conditions (18). If m _< v, then by (16) we get that
G(m,v)=O. If v<m, then by (17)

U(m,v) 0 0

U(b+n,v) u,(b+n,a) un_,(b+n,v )

But a <_ v<m _< a + k 1, so U(m, v) 0 in the above determinant. So again G(m, v) 0.
Hence v(m) G(m, v) satisfies (18).

Now assume m [b + k+ 1, b + n ]. Then m> v, and it follows from (17) that
G( m, v) 0. Hence v(m) G(m, v) satisfies (19).

It remains to be shown that PG(m,v)=6m for (mv)I"I. If re>v, then
PG(m,v)=O follows easily from (17). Similarly, if a<_m<v-n+ 1, then PG(m,v)=O
follows easily from (16).



BOUNDARY VALUE PROBLEMS 131

Assume a _< v n + _< m< v. Using (16) and (17), we get that

0 aj(m)u,(m+j,a)

U(b+n,v) u,(b+n,a)

aj(m)u,,(m+j,a)

u.(b+n,a)

+-5. y
j=v-m+l

aj(m)U(m+j,v)

V(b+,,)

Using U(m +j, v) 0, j v m + ,-.., n, we get that

PG(mv)-

aj(m)u,,_,(m+j,a)

u_(b+n,a)

0 Pu,(m,a) PU,_l(m,a )

U(b+n,v) uk(b+n,a ) Un_l(b+n,a

Finally, consider the case m-v. Using (16) and (17) it is easy to see that

0 ao(v)u,(v,a ao(V)U,,_,(v,a

U(b+n,v) uk(b+n,a u,,_(b+n,a)

D

(Xo(p)U(p,p) Olo(P)Un_l(P.a )

U(b+n,v) Un_l(b+tl,a )

PV(v,p) PUn_l(P,a )

U(b+n,v) Un_l(b+n,a )

Since the last determinant is zero, and U(v, v) (1/ao(V)),

PO(v,v)-m.

DEFINITION. Let 1-<-p<--n--1. We say that Pu(m)-O is pp-disconjugate on
provided there is no nontrivial solution of Pu(m)-O such that u(a+j)-O, O<_j<_p- 1,
and u(m) has n -p generalized zeros in a +p, b + n ].

For results concerning pp-disconjugacy for differential equations, see [5].
Notation. Assume Ul,’",u are functions defined on some interval J, and t(j)J,

_<j_< k. Then set

Dk(#(1),""" ,be(k))-

u.(,()) u(,())
u.(/z(2)) Uk(/(2))

Ul((k)) Uk((k))
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THEOREM 5. Suppose that (1) is pn_k-disconjugate on I n. Let uj(m), <_j<_k, be a
solution of (1) such that uj(a + ) O, 0 <_ <_ n -j and ( 1)- u(a+ n -j)> O. Then

Dk(#(1),...,#(k))>0

for a+ n-k<_l(1)< <l(k)<_b+ n. In particular

ok(m)-- W(u,,. ,u,)(m) >0

for a+n-k<_m<_b+n-k+ 1.
If one reads the proof of [1, Prop. 5.2], it is easy to see how to prove this result. In

the proof of Prop. 5.2 it need not be true that ck 4:0 as claimed, because it is possible
that/0(1) a / n- k+ 1. This is easy to correct.

Acknowledgment. The author would like to thank L. Jackson and the referee for
their help with this paper.
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EIGENVALUES OF ANALYTIC KERNELS*

G. LITTLE? AND J. B. READE"
Abstract. It is shown that the eigenvalues of an analytic kernel on a finite interval go to zero at least as

fast as R-" for some fixed R < 1. The best possible value of R is related to the domain of analyticity of the
kernel. The method is to apply the Weyl-Courant minimax principle to the tail of the Chebyshev expansion
for the kernel. An example involving Legendre polynomials is given for which R is critical.

Key words, eigenvalue, integral equation

Introduction. Let En denote the ellipse with foci at -+ and semi-axis sum R> 1.

We prove the following theorem.
If K(x,t)--K(t,x)C[- 1, 1] 2, and for each t[- 1, 1] there is an analytic con-

tinuation to K(z, t)for z inside En, which is uniformly bounded in z, in this range, and if
the operator

Tf(x)- f’ K(x,t)f(t)dt
--1

has eigenvalues

then ,--- O( R-").
This improves on the estimate O(R-n/4) obtained by Hille and Tamarkin in 1931

using infinite determinants. Our method is to use Chebyshev polynomials to approxi-
mate K(x,t) on [- 1, 1] 2 by a kernel of finite rank, and to relate the operator norm of
the difference kernel to the n th eigenvalue of K(x, t) by means of the Weyl-Courant
minimax principle. We give an example to show our estimate is best possible by n th
powers.

1. The Weyl-Courant minimax principle.
LEMMA 1. If T is any compact symmetric operator on a Hilbert space H with

eigenvalues

and if S is any operator of rank <_ n, then

Proof. Let (qn) be orthonormal eigenfunctions corresponding to (’n). Then we can
choose

*Received by the editors June 2, 1982.
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with I111 such that Sq= 0. Therefore

(T- a )q,ll=- Tq, ll= IIX / X / +Xn+ lan+ ldPn+
2

The lemma follows.. Cebyse expansions. Let T(cosO)=cosnO denote the nth Chebyshev poly-
nomial.

LNNa 2. g f(z) is analytic inside E, then f(z) has an expansion in Chebyshev
polynomials

f(z)-gao+2aT(z)

validfor z inside ER. Iff(z) is bounded inside ER, then a,- O(R-n).
Proof. For z inside ER we have z- 1/2(w + w- ) where R- <lwl<R, Therefore

2f(1/2(w+w-)) is analytic for all w satisfying R-<IwI<R, and so has a Laurent
expansion

2f (w+w ) E anW

valid in this range, where

a,
ri (w+w- w dw,

C being any contour lying in R-<lwl<R which circulates the origin once positively.
Clearly a_ -an, and so

2f -(w+w- ) -ao+an(w +w-n)-ao+2anT -(w+w- )

for all R- <lwl< R. Hence
x3

f( z --ao + E anTn( z )

for all z inside E. Taking C to be the circle with center at the origin and radius r
satisfying R- <r<R, we have

[an[<_2Mr-n,

where M=sup[f(z)l over z inside E. Hence, if we let r--, R, we obtain

lan[<__2MR-n.
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3. Proof of the theorem. By Lemma 2 we have

ao(t)+Ea,(t)T,(x)( x,

for all x,t[- 1, 1], where a,(t)=O(R-n) uniformly in t. Taking the contour C of the
proof of Lemma 2 to be the unit circle, we obtain

fo K(cosO,t)e_inOd0an( )---
which shows that an(t C[- 1, 1]. Therefore, if we define

Sn(x,t)-ao(t)+ a,(t)Tk(x),

we have a continuous kernel of rank _< n / 1. Also

IK(x,t)-S,(x,t)l- a(t)T(x)<_ la(t)l- ] O(R-)-O(R-").
n+l n+l n+l

Hence by Lemma 1, we have hn+ 2 O(R-n), which gives the result.

4. Legendre polynomials. Let

d
Pn(z)-2,n! ffz-- (z z-

denote the n th Legendre polynomial.
LEMMA 3. ]P,( z )1_< R" for z En.
Proof. For zEn we have z-1/2(w+ w-Z) where [wl-R. Therefore

 cos,

by Laplace’s integral. (See [2, p. 312].) Now

_!(w+w )+-(w--w- )cos wcos2-q+w sin2-q5
21__< R cos -q+R- sin2 -q<R cos-+sin2 R.

Hence

Z m
COROLLARY. The estimate of the theorem cannot be improved to O(R-( +)) for any

e>0.
Proof. Consider

K( x, t) E n-R-nP,(x )P,( ).
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K(x, t) satisfies the hypotheses of the theorem and has eigenvalues

1)_1,,- n +- n-2R-n.
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EIGENVALUES OF POSITIVE DEFINITE KERNELS II*

J. B. READE

Abstract. We prove what we conjectured in our earlier paper of the same title [SIAM J. Math. Anal., 14
(1983), pp. 152-157], that the eigenvalues of any p times continuously differentiable positive definite kernel
are o(l/np+ i). The method is the same as we used to prove the case p= except that we now approximate
the kernel by trigonometric polynomials obtained from certain combinations of Jackson kernels.

1. Introduction. Suppose that the real kernel K(x,t) has continuous pth order
partial derivatives and is 2rr-periodic in x, t. Suppose also that K(x, t) is symmetric and
positive definite, so that the operator

K(x,t)f(t)dtrf(x)- -.

on the Hilbert space L2[-,n", ,t/’] has positive eigenvalues (Xn) which can be arranged in
a decreasing sequence converging to zero. We show

,-o
np+l

as n oo.
We give the details for the case p-2. The generalisation to p>2 involves no

essentially new ideas. The method can also be applied when p 1, though the proof in
[1] is considerably simpler.

2. Cz functions. We say the function of one variable f(x)C2 if f(x) has a
continuous second derivative.

LEMMA 1. Ill(x) C2 is 2 r-periodic, then

2
-( f(x + 2h ) +f(x- 2h))--(f(x+ h ) +f(x-h)) +f(x)- o( hE )

uniformly in x as h- O.
Proof. Given e> 0, choose >0 such that

[f"(x)--f"(y)l<e
whenever Ix-yl<. Then, by the second mean value theorem, we have

2
-( f(x+ 2h) +f(x- 2h))-3( f(x+h)+f(x-h)) +f(x)

2if,=3h (x+2hO)+f"(x-2hO2)-f"(x+hO3)-f"(x-h04)l,

for some 0<Ol, 2, 03, 04< 1,

2
<-eh2

for all Ih1<15/2.

*Received by the editors July 15, 1982 and in final form September 24, 1982.
Department of Mathematics,The University, Manchester, England M13 9PL.

137



138 J.B. READE

3. Jackson kernels. Let

3 sin(nt/2)
n(2n2+ 1) sin’(t/2)

be the n th Jackson kernel. The fact that

sin(nt/2) "k (n-lkl)ei
sing- (t/2) k-- -n+

shows that J,(t) is a trigonometric polynomial of degree 2n-2, and also that

LEMMA 2.

J(t)dt-12r

(1)t2Jn(t) dt-O -f__- t2 sin4(nt/2) f_ sina(nt/2)
dt l

4 dt
sina(t/2) 2

since sint>2t/r for all O<t<rr/2,

f sina(u/2)
l"
4n tin,

nr u 2

putting u-- nt,

where

if

--O(n).
LEMMA 3. For any symmetric 2r-periodic continuous kernel K(x, t ),

fTf_  i f-_f-( x, 2x )J(x- ) dx dt= K( x, )J(x- ) dx dt,

( x, 3x- 2t )J,(x- ) dx dt= ( x, 2t- x )J,(x- ) dx dt

Hn(t)-Eazkeikt

k

Proof.

Jn( ) aeit.
k

"’J_ K(x,2x-t)J,(x-t)dt=f2x+’ ( x u)L(u x)au,
"2x-.

K
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putting u- 2x- t,

f]I(, )L(- t) m,

since K(x, t) is 2r-periodic, which gives the first identity. Using the same substitution
we have

y-_ f2x/K(x, Bx- 2t )4(x- ) dt=2x_ K(x, 2u- x)4( u-x ) du

r(x,-x(x-m,

which gives the first half of the second identity. To prove the second half of the second
identity we observe firstly that, if k is odd,

putting u- + r,

f’K(x, 2t- x )e‘kt dt- f02rg(x, 2u- x )eiku du,

f= K(x, 2t-x)eiktdt

--0,
whilst, if k is even,

f_ f_-.-/ iu+x)/2K(x,Zt-x)ei’tdt-- 2_xK(X,u)e du,

putting u- 2t- x,

f K(x,t)ei(+x/dt.

Therefore

if k odd,

f_ f- K(x,2t-x)eik{x-t)dxdt-O,

( x, )eik(t-x)/2 dx dt,

if k even. Hence

(x,2t-x)J.(x-t)dxdt-2a (x,2t-x)eik(X-Odxdt

f= f==I ik(x-t)/2a, (x,t)e dxdt
k even
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LEMMA 4. IfRn is the operator on L2[-r, ,n’] with kernel

4jn(x-t)-lHn(x-t )- -5
then Rn

<I, the identity operator.
Proof. It is sufficient to prove that the Fourier coefficients of

4 (t)-13L -5 /.( )

are all _< 1. If ck is the k th Fourier coefficient, then

4 )3L(t)-3Hn(t ) e-iktdt

e-2ikt )--e-ikt-F- dt

12rl f_/.(t)(eikt/2 e-ikt/2 )4dt

4 f_l.( t)sin4
kt

3 Tdt

>_0.

4. Proot ot the result in ease p= 2. If S is the positive square root of T, then the
operator SR.S is symmetric and has a continuous kernel (see [1]). Also

SRST

and so, by Mercer’s theorem (see [1]), T-SRS has trace norm

f" K(x,x)dx f" IK( (4 H.(x_t))dxdtx,t) 3J=(x-t)-3[[Z--SR.Slltr - 4r2
-r---- f-_ ff ( K(x,x)-4K(x t)+IK(x 2t-x))J.(x-t)dxdt42

-4 . . g(K(x,2t-x)+K(x,3x-Zt))

-3(K(x,t)+K(x,2x-t))+K(x,x) J.(x-t)dxdt-f2 f] (--4. 2 . . i (K(x’x-2u)+K(x’x+2u))

5((,x-t+(x,x+)) +(,

putting u x-t and using the periodicity of K(x, t),

-, _u,(x, ulL(u) exeu,
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where ,(x, u) is continuous and vanishes when u-0, by Lemma 1,

_-1-- f-_ fo=U ,(x u)J.(u)dxdu
2or 2

or

since O(x, u) is even in u. Given e> 0, choose 6>0 such that IO(x, u)l< e whenever
lul<t. Then

2’0.2 -or"0

" u L(u)au

a
2’n

where A is an absolute constant, by Lemma 2.

u(x u)L(u)aau <_ uL(u)au
2r 2

where M- maxl,(x, u)l,

3M for u2 du
rn (2n 2 + 1) sin4(u/2)

for all n_> some N. Therefore

T- SR,S[I,< (A + 1)e
2n

for all n_>N, and so

(1)T- SR.SII ,r-- 0 --as n-o oo. However, SR,S has rank <4n-3, and .so, by the Weyl-Courant minimax
principle for trace norms (see [1 ]), we have

which gives

X-o
4n--2

5. The ease p_>3. The proof we have given .for p-2 readily generalises to p_> 3.
One has to use higher order Jackson kernels,

sinZP(nt/2)Jpn(t)--A’ sinE,(t/2)
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where Apn is such that

2r _,

The generalisation of Lemma needed is

P )r( 2pf(x)+ E (--1 p+r
r=l

/(2pp)(f(x+rh)+f(x-rh))-o(hP)
for 2rr-periodicfCp. For Rn one takes the operator with kernel

2 ] (-1)"- 2p Hp.(x-t)
r=!

p+r

where

apnr( E arke
ikt

k

Jpn( ) E akeikt.
k
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ANALYTIC PROPERTIES OF ARITHMETIC SUMS ARISING
IN THE THEORY OF THE CLASSICAL THETA-FUNCTIONS*

BRUCE C. BERNDTt AND LARRY A. GOLDBERG

Abstract. In the transformation formulae for the logarithms of the classical theta-functions, there arise
certain arithmetic sums that are analogous to Dedekind sums. In this paper, analytic properties of these
arithmetic sums are established. In particular, reciprocity theorems are proved and representations as finite
trigonometric sums are given. Moreover, certain infinite series and certain doubly infinite series are evaluated
in closed form in terms of these arithmetic sums.

It is well known that the classical Dedekind sums s(h,k) first arose in the
transformation formulae of the logarithm of the Dedekind eta-function T/(z). (For an
elaboration of this connection and for basic properties of Dedekind sums, consult the
monograph of Rademacher and Grosswald [17].) In contrast to Log T/(z), the loga-
rithms of the classical theta-functions 02(0,q), t3(0,q) and v4(0,q) have scarcely been
studied. (We use the notation .of Whittaker and Watson [19, Chapt. 21] for the theta-
functions.) In [5] and [8] we derived the transformation formulae for Log 0,,(0, q ),
n: 2, 3, 4. There are, in fact, 9 distinct transformation formulae depending upon pari-
ties of certain coefficients a, b, c and d in the modular transformation(az + b)/(cz + d ).
Arising in the transformation formulae are 6 different arithmetic sums, wch are thus
analogues of s(h,k). If h and k are integers with k>0, these 6 sums are defined by

k-I

(1) S(h,k)- E (-1)J+’+thJ/kl,
j=l

j:l

hj

j=l

hj

j=l

E
j=l

j:l

Here, as usual, Ix] denotes the greatest integer not exceeding x, and ((x))=0 or
x-[x]-, according as x is or is not an integer, respectively.

Rademacher 15], 16, pp. 578-584] briefly studied Log,(0, q), n 2, 3, 4. How-
ever, his approach was via the Dedekind eta-function, and so the sums defined above
were not discerned by Rademacher. Some of these sums, or variants thereof, are
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mentioned in a paper of Hardy [11, pp. 121-123], [12, pp. 390-392], where reciprocity
theorems are stated without proofs. However, Hardy did not observe the connections
between his sums and theta-functions.

The sums S(h, k) and sj(h, k) arise in the theory of rs(n), the number of represen-
tations of n as the sum of s squares. Hardy has established exact formulas for rs(n),
5_<n-<8, and asymptotic formulas for s> 8, an account of which may be found in
Knopp’s book [13, Chapt. 5]. Employing the sums mentioned above, Goldberg [10] has
shown that a substantial simplification in Hardy’s proof can be effected. These sums
also arise in the study of the Fourier coefficients of the reciprocals of n(0, q), n---2, 3, 4
[9].

In this paper, however, we are primarily concerned with analytic properties of
S(h,k) and sn(h,k), l_<n_<5. First, we shall establish infinite trigonometric series
representations for S(h, k) and s,(h, k). Viewed in another way, we evaluate certain
infinite series in closed form in terms of S(h,k) and s(h,k). Secondly, these infinite
series representations are employed in deriving representations of S(h, k) and s(h, k)
as finite trigonometric sums. Thirdly, it is shown that either type of representation can
be utilized to establish reciprocity theorems for our sums. Fourthly, we sum certain
nonabsolutely convergent double series in terms of S(h,k) or s(h,k). We then use
reciprocity theorems to determine the "error" made in inverting the order of summa-
tion.

THEOREM 1. Let h and k denote relatively prime integers with k>0. If h + k is odd,
then

(2) S(h k)_4_ (rrh(2n-1)r 2n-
tan

2kn=l

if h is even and k is odd, then
o

( rh(2n- 1) )(3) s(h k)-
2

cot
r 2n-1 2k

n=!
2n-- 0 (mod k)

if h is odd and k is even, then

o [ rhn
tan(4) s2( h’k - n

n=l
2n0 (mod k)

if k is odd, then

1 ltans3( h’k )- r n --n:l

if h is odd, then

(6) s4(h k)-4 ( rh(2n-1) )
.=

2n--:-]-- ct 2k

and if h and k are odd, then

(7) ss(h k)
2 E 1 rh(2n-

2n 2k
n=l

2n--l0(modk)
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Proof. We prove (2). If we employ in (1) the well-known Fourier expansion

(_ 1)txj_4 sin(2n-1)rx
r 2n-1

n--l

where x is not an integer, we find that

(8) S(h k)-
4 --n= 2n-1 (-1)Jsini

j=l

If m-(2n- 1)h,2n- 0 (modk), and h and k are of opposite parity, an elementary
calculation gives

k-I

(9) (_l)Jsin(rrmj) rim-- --tan(-).
j=l

Substituting (9) into (8), we establish (2) immediately.
To prove (3), we first observe that

k-I

)[hj/]s(h,k)- E J(-
j=l

when h is even. The remainder of the proof is now quite similar to that of (2).
Likewise, the proof of (6) is similar to that of (2).
To prove (7), we first show that

k-I

)j+[hj/klss(h,k)- E J(--
j=l

when h and k are odd. Now proceed as in the proofs above.
We sketch the proof of (4). Since h is odd and k is even, we find that

k-I hj
(10) s2(h,k)- (--1)Jj( (--11.j=l

We next recall that

(11) ((x))__l sin(2rrnx)
r n

n=l

Using (11) in (10) and proceeding as in the proof of (2), we easily complete the proof of
(4).

The proof of (5) is like that of (4) and utilizes (11).
A similar representation for s(h,k) was established by Rademacher [14], [16, pp.

26-36] and rediscovered in [3].
We next establish analogues of a familiar representation of s(h,k) as a finite

trigonometric sum 17, p. 18].
TheOREM 2. Let h and k be coprime integers with k> O. Ifh + k is odd, then

(12) S(h,k)=- tan cot
j=!

2k 2k
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ifh is even and k is odd, then

(13) s(h,k)- 2k

ifh is odd and k is even, then

k

j=l
jv(k+ l)/2

(14) SE(h’k)- 4k

if k is odd, then

(15)

cot
rh(2j-1) ) ct( 2k

j4=k/2

k-!

s3(h,k)-k jX1"= tan( __)rhj cot( __);
if h is odd, then

(rh(2j-1))co(16) s4(h,k)-- cot
2k

j=l

and if h and k are odd, then
k

(17) ss(h,k)=- tant
j=l

j(k+ 1)/2

,rr(2j- 1) ).2k

rh(2j 1)
cot

2k 2k
1)

Proof. We establish (12). From (2),

S(h k) -2- X tan
r 2n-1

rh(2n-1) )2k

Now let n-rk +j, -o <r< oo, <_j<_k. After some elementary simplification, we find
that

k rh(2j- 1)
tan

2k r+(Ej-1)/(2k)’S(h,k) - j=l r=-o

where the inner sum is to be interpreted symmetrically. If we now employ the familiar
partial fraction decomposition for r cot(rrx) on the right side above, we deduce (12) at
once.

The proofs of (13)-(17) follow precisely along the same lines as the proof of (12),
and so we omit them.

Either Theorem or 2 may be employed with contour integration to establish
reciprocity theorems for S(h,k) and sn(h,k ), l_<n_<5. We shall use Theorem to
prove the reciprocity formulas of Theorem 3. The proofs utilizing Theorem 2 are very
much akin to a corresponding proof of the reciprocity theorem for s(h,k) found in
Rademacher and Grosswald’s book [17, pp. 21, 22].

THEOREM 3. Let h and k be coprime, positive integers. Then if h + k is odd,

(18) S(h,k)+S(k,h)--1;
ifh and k are odd, then

(19) ss(h’k)+ss(k’h)-2 2hk
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if h is even, then

(20)

if k is odd, then

s,(h,k)-2sz(k,h)--- -h-+-

h(21) 2s3(h,.k)-s4(k,h ) 1--.
Proof. Let CN denote a positively oriented circle of radius RN, --<N< oo, centered

at the origin. We assume that the radii RN increase to oo and are chosen so that the
poles of tan(rrhz)tan(rrkz) are at a distance from CN greater than some fixed positive
number for all N. Let

iN_il fc.tan( rhz )tan( rkz ) "dz
Now on 0<0<or, tan(Rea) tends to boundedly, and on r<0<2rr, tan(Re) tends to
-i boundedly, as R tends to o. Hence, a short calculation shows that

(22) lira I,- -1.
N---, o

The integrand of IN has simple poles at z=(2m-1)/(2h), -o<m<, and at z=
(2n- 1)/(2k), -<n< oz. The residues are easily found to be

2 ( rk(2m- 1) )r(2m- 1)
tan

2k
-oo <m< oo,

and

rr(2n 1)
tan

2k

respectively. Hence, by the residue theorem,

2 2 2m-S-i- tan 2h
(23) IN--

/"
[(2m-1)/(2h)l<Rv

(rh(2n-1))2
2n-tan

2k’/7’
1(2n l)/(2k)[<Rv

Letting N tend to oo in (23) and combining the result with (22), we find that

--1--
4 2 1 rk(2m-1) 4 rh(2n- 1)

2m-
tan

m= 2h rr
n=

2n--
tan

2k

which is equivalent to (18) by Theorem 1.
Proofs of (19)-(21) can be given along the same lines as the proof of (18). The

calculations in the proofs of (19) and (20) are slightly more difficult because the
integrands have double poles as well as simple poles.

The reciprocity theorems (18), (20) and (21) were first discovered by Berndt [5],
while (19) was initially observed by Goldberg [8]. Elementary proofs of (18), (20) and
(21) have been given by Apostol and Vu [1]. All of these reciprocity formulas are, in
fact, special cases of "three-term relations" that have been established by Goldberg [8].
We remark that either of the two methods of contour integration to which we referred
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above can be extended to produce three-term relations. Three-term relations for Dede-
kind sums have been proved via contour integration in [4]. Further generalizations of
(18) can be found in [6] and [7].

Let h and k denote coprime, positive integers. Define

L,(h,k)-
n= m=l ((2m--1)k)2-((2n 1)h)2’

(2m-- I) kv(2n 1)h

LE(h,k)- E E
n= m= (2mk)E-((2n -1)h)2’
2inky (2n-- l)h

L3(h,k)_
n=! m=l ((2m--1)k)2--(2nh)2"

(2m-- I) kva2nh

In the next theorem, we shall evaluate these conditionally convergent double series in
terms of the sums S(h,k) and s,(h,k), _<n_<5. In Berndt’s paper [2], similar series are
evaluated in terms of Dedekind sums. We could use the same method here. However,
we shall use a suggestion communicated to us by Sczech [18], instead.

THEOREM 4. Let (h,k)= with h,k>O. Then

,l1.2
ihk S( h, k) ifh + k is odd,

(24) L(h,k)-
r 2 r 2

8-s5 ( h, k ) +32hEk2 if h and k are odd

(25) L2(h,k)=

q/.2 2
16hkS4(h k)+ ifh is odd

16h 2

,//.2 ,//.2( )-8-sl(h, k)+ 16h2 +- ifh is even,

(26)

,,/l,
2

-s3(h,k ) if k is odd,
L3( h,k ) r2 r 2

--,,ntc--’-’-s2(h’k)+ 2k2 if k is even.
32h

Proof. We shall prove only (25). The proofs of (24) and (26) follow along the same
lines and, in some instances, are simpler.

Suppose first that h is odd. Then 2mkv(2n 1)h for each pair m,n of integers.
Thus,

1 2L2(h’k)-l$K-
n=l m=-oo m {(2n--1)h/(2k)) 2 {(2n 1)h/(2k)) 2

h(2n-1) +--4h.=2 2n_l
ct

2k = (2n-l)
2 2

16h
,

by (6).
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Next, assume that h is even and write

(27) LE(h,k)- 2 2 )2 1)h)2n=l m=l (2mk ((2n-
2n-- 0 (rood k)

n=l m=l
2n-- -----0 (mod k) 2mk(2n- l)h

(2mk)E-((2n 1)h)2

=S+$2,

By the same argument as in the first case,

(28)

(29)

r rh(2n- 1)S 4hk 2n-
cot

n= 2k
2n-- 0 (mod k).

oo

2h2 n=l
2n-- 0 (mod k)

-8h-S’(h’k)+-2 l(2n- 1)2- k-’ =1 (2n-- 1)2

-r2 i6h2r2 (-$1)8hS,(h,k) +
In $2, set 2n- 1- (2j- 1)k, j<, to get

_1
m$2-

j= m= -{(2j-1)h/2}
2m (2j-- l)h

-8k E
t
E

mj= m=- {(2j-- 1)h/E}:+
2m(2j-- 1),

4h2k2j (2j-i)2q-2h2k2.= =, (2- )
32

32h2k2

(2n )2

}((2j-1)h/2} 2

Putting (28) and (29) in (27), we complete the proof.
COROLLARY 5. Let h and k denote coprime, positive integers. Then

2

(30) L(h,k)+L,(k,h)-16hk’
r2

(31) L2(h’k)+L3(k’h)-16hk"

Proof. To prove (30), combine the reciprocity theorems (18) and (19) with the
evaluations (24). Similarly, to establish (31), combine the reciprocity formulas (20) and
(21) with the evaluations (25) and (26).
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Equalities (30) and (31) imply that the order of summation in Ln(h,k ), _<n_<3,
may not be inverted. Moreover, (30) and (31) indicate precisely the "error" made in
such an inversion. Thus, interchanging rn and n in L(k,h) and L3(k,h), we find that,
respectively,

n=i m=l
(2m-- !) k(2n-- l)h

((2m--1)k)2-((2n 1)h)2

m=l n:l
(2m-- 1) k(2n- l)h

((2m--1)k)2-((2n 1)h)2

7/.2
16hk

and
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BANDWIDTH VERSUS TIME CONCENTRATION:
THE HEISENBERG-PAULI-WEYL INEQUALITY*

MICHAEL G. COWLING" AND JOHN F. PRICE:

Abstract. The main result is that for quite general weight functions v, w

IIf II,- -< g( vfll/ wf q )
for all tempered distributionsf for which, roughly speaking, the right side makes sense, where _<p, q<-- oo, K
is a constant independent of f, and f is the Fourier transform of f. As a corollary, if 0, _>0 satisfy 0> l/p#

and> l/q#, where # =2t/(t-2), there exists K= K(p,q,O,k) such that

for all f. In this case the inequality is equivalent to 1112--<ga-(l-a)-I Ixlfll,ll ly’fll where a satisfies

a(O 1/p) (1 a)(- 1/q#). Hence it generalizes the classical uncertainty principle inequality (which is
the case p=q= 2 and 0== 1) and an inequality due to Hirschman (the case p=q=2 and 0,>0). Also (1)
is trivially true when 0--0 and p=2 or =0 and q-2 and it is shown that it is not possible apart from these
three cases.

One of the approaches to the main inequality is as follows: Suppose s, t[l, 2] and E, F are subsets of R
of finite measure. For allfL

ilfll2<_K( ( fE,lf(x)lSdx )l/s+ ( fF,lf(y)ltdy )!//}
where K= K(s, t, E, F) is independent off and’ denotes complementation.

1. Introduction. Let Lp, _<p_< , denote the usual Lebesgue spaces of complex-
valued functions over the real line R; denote their respective norms by II’llp. The
Fourier transform f of f in L is defined by f(y)-ff(x)e-2’xy dx. (Unless indicated
otherwise, f... dx will always denote Lebesgue integration over R.) The Fourier trans-
form off in LP, <p_<2, as a function in Lp’ will also be denoted by f. (Throughout p’
will be the usual conjugate exponent of p.) The starting point for this paper is the
well-known inequality

This inequality is of fundamental importance in quantum mechanics. In this case it
is usual to normalize f so that Ib51,. 1; as such it represents the state of a one-dimen-
sional system. Proceeding with this interpretation, the first and second norms in (1.1)
represent the standard deviations of the position and momentum observables (assuming
they both have mean zero). In this way the inequality becomes the mathematical
formulation of the quantum mechanical uncertainty principle first described by Heisen-
berg [9] in 1927. (The precise version (1.1) appears in Weyl [18, p. 77] where it is
attributed to Pauli.)

Recently Fefferman and Phong [6] have given an application to the theory of
partial differential equations.

The inequality is also of considerable importance in signal analysis [3], [13], [16]
where it is sometimes referred to as the bandwidth theorem. Its role in this area is to
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give precision to the statement that for signals of equal strengths (that is, equal
L2-norms), the more a signal is "concentrated" in time, the more its band is "dispersed",
and vice versa. This interpretation seems to have been first pointed out by Gabor [7].

One drawback when attempting to apply the result in this area is that it only
provides a reciprocity relation between time and frequency concentration for functions
that decrease fairly rapidly to zero at infinity. With this in mind we investigate
inequalities of the form (1.1) but with Ilvfllp and [[wllq replacing the norms on the
right, where v and w are nonnegative measurable functions. The general nature of our
results is best seen by restricting the main theorems to the case where v, w: x lx[.
For example, from Lemma 2.1 and Theorem 5.1 we have

THEOREM 1.1. Suppose <--p <-- oo and 0 <_ 0< oo. Then there exists K such that

for all f in Lz provided O> 1/p## =(p-2)/2p. Otherwise no such inequality is possible
(apart from 0 0 andp 2 in which case both sides are equal with K= 1).

In the sequel it turns out to be more fruitful to analyze a modification of the above
form, namely

Ilfll=<_g(llvfll,/llw]llq), ft2.

In many cases this is equivalent to the corresponding "multiplicative" inequality as
evidenced by Lemma 2.1. However, with the latter type we can go even further and
show that no assumptions need be placed on the weights (and hence on f and its
Fourier transform) in a neighbourhood of the origin (Corollaries 2.3 and 2.4). This
further illustrates the direct relationship between the asymptotic behaviour of a func-
tion and the local smoothness of its transform.

When 0 and p 2, inequality (1.2) is just the classical case (1.1). When p 2
and 0<0< oo, (1.2) is due to Hirschman 11 ]. To complete this introduction we outline
a proof (of a mild extension) of the classical inequality.

THEOREM 1.2. If <--p<--2 andfL2 is nonzero, then

2
Ilfll 2 -< 4 rr xfll ly ll ,

with equality if and only ifp 2 andf is a constant multiple of exp(kx) with k< O.
Proof. It is enough to consider f in the Schwarz space g. Since 2riyf=(f’)^, the

fight side becomes 211xfllll(f’)^ll,. Hence

4rllxf[[p[lyfll, >-2 f lxff’[ dx>-fx(]f 2[) dx=f[fl2dx,
as required, where the first step is the Hausdorff-Young inequality followed by H61der’s
inequality.

If p 2, it is easily seen that the constant is attained when and only when f as
described in the statement. A similar analysis of the inequalities in the preceding
paragraph when _<p<2 shows that in this case the inequality is always strict. E]

Better constants. The sharp form of the Hausdorff-Young inequality (due to
Babenko and to Beckner [1]) asserts that when <p<2 and kp-(p/P/p’/’)/,
[ll_<k,lbfllp for all fin L with equality if and only if f is as in Theorem 1.2. If this
s used in the proof of Theorem 1.2, the inequality becomes
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However it is still the case that this inequality is always strict when <p< 2 although it
is likely that the constant given is not best possible.

In the sequel the constants we obtain are, in general, probably far from best
possible. Hence any improvement due to using the sharp form of the Hausdorff-Young
inequality is unlikely to be significant so we only use the classical form.

A useful reference for the classical inequality (1.1) and related results is Dym and
McKean [4]. A family of inequalities related to those described in the abstract have
been developed in [15] and used to estimate quantum mechanical Hamiltonians.

2. Some inequalities with weights. We shall be interested in inequalities relating
Ilfll2, Illxlfllp and l[ ly’fllq. Inequalities of the form

for allfL2 can only be true if the following relation between a,p, q, 0 and holds:

(2.2) ,(O--l/p#)-(1--a)(q l/q#).
For otherwise, by replacing f by its "normalized dilate" Dxf, where Dxf(x)=
,-l/2f(x/), and simplifying the expressions obtained, we may deduce that

for all in R +. Ts is false unless the left-hand side is 0 or the rit-hand side is + .
Nevertheless, it is possible to relate 112 to IIIxlOlp and IlPlq in a different way, wch
seems more appropriate. We shall consider inequalities of the form

(2.3) ilfll= g .(1- ),- (lllxlfll,+lllyl*fllq)
for all f in L2. If (2.2) is verified, then (2.3) is equivalent to (2.1), wle if (2.2) does not
hold, we still obtain some information. The scope of Lemma 2.1 (below) is to show that
(2.1) and (2.3) are equivalent if (2.2) holds. This ties our work to that of Hirschman
[11], who treated the case wherep 2, with the multiplicative inequality.

We shall actually work in the more general context of inequaties of the form

(2.4) Ilfll= c(llvfll +llw llq) for aUf L2( ),
and our first theorem about these follows Lemma 2.1.

LEM 2.1. Suppose that p,q, that 0O,<, that 0<a< 1, and that (2.2)
holds. Then the following inequalities are equiva&nt (where in each casef ranges over L2):

(i) ii:li,  lli/l: Iliyl+/llq

(iii) ilfllK::(1- =)l-: (ii ixiO/ll, + illyl+illq},
(iv) II/llK=:(,-=)’-:{’-:lllxlSll.+-:lllylYIIq}
for all in +.

Proof. The general inequality, for a in (0, 1) ana a, in i +,
abl-<_aa+(1-a)b
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shows that (i) implies (ii). Next, if (ii) holds, then by replacing f by Dxf as in the
discussion after (2.2), we find that, for all f in L2,

I):II, <-K Ixl :II + }
Choosing such that

X-/-(1_)-,
we obtain (iii). Replacingf by Dxfin (iii), and setting 8- equal to -l/p proves (iv).
Finally, if (iv) holds, then we nize the right-hand side by choosing

and obtain (i).
Before we state Theorem 2.2, we recall some of the results of Slepian and Pollak

[14] and of Landau and Pollak [12]. Let I be the interval [-8,8], and suppose that f is
a nonzero L2-function supported in I. Then f extends to an entire function in the
complex plane. Plancherel’s formula tells us that

( fdyif(y)i) I/_ Sdxif(x,,) I/,
but sincef cannot vanish on any set of positive measure,

dylf(y)l 2
< fdxlf(x)

The above mentioned authors quantify this inequality: they prove that there .is a
function ’N + (0, 1) such that

() fdxlf(x)l

for all f in L2 which vanish off I. They show that ya(Se) is the largest eigenvalue of the
integral equation

Xf(x)=f(w) sin(2e[x-wl)[x_w] dw.

In what follows g’ is the space of tempered distributions; it is the dual of , the
space of rapidly decreasing, infinitely differentiable functions. Also whenever pN m,
p’ denotes its usual conjugate.

THEOREM 2.2. Letf be in ’, Nt and e be positive real numbers, and let s and be in
[1,2]. Suppose that outside the interval I, f is given by an L’-function, and that outside I,
f is given by an Lt-function. Then f is in L2. Moreover, g

I/s (:)I//B- dyer(y)

then

s] O/s (l--O)/t[Ifl12 <- A+ (28) et.] [ Bt+ (2e)t’r t]
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where

o=l/s-1/2, =1/t--1/2, 0=/(o+),
a-- [1-7(e)2] -’ [(28 )’B+ 7(8e)(2e)A

and

fl--[1--,(se)z]-l[(2e)A + 3,(Se)(28)’B].

Proof. The proof splits into two stages. First, we show that f and f are given by
locally square integrable functions, and deduce that f. X1 and f-XI are square integra-
ble. (X e is the characteristic function of E.) Then we estimate the 2-norm of f.

It is possible to write f as the sum of a compactly-supported distribution and an
LS-function. Then f is the sum of a smooth function and an LS’-function, so f is locally
square integrable. Similarly, f is the sum of a smooth function and an L/’-function and
so is locally square integrable.

Let C and D be the numbers given by the rules

1/2

Now f=f’xt+f’xt, so f=(f’Xt)^+ff’Xt) and f.x,-(f.xt,)^.Xz+(f.xx)^.XI;
Therefore

(+ f,y[(f, x,)^(y)l- /2

by the inequality (2.5), HOlder’s inequality, and the Hausdorff-Young theorem. Simi-
larly,

c_<()+(2 11
Eliminating D, then C, we obtain the inequalities

(2.6)

(2.7)

C_< 1- y(Se)2] [(2e)Ay(Oe)+ (28)’B],
D_<[1--l,(Se)2] [(28 )’By(Oe)+ (2e) A].

Now we show that f is in L2 and estimate its norm. First of all, f is in Ls, and

il;’iis <- { il;’. ,oil; + IIs., II;}’’
_< {(2i )’Illx,. II,_ +A*} ’/’- {(28 )osCS +As} l/s.
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Similarly, f lies in Zt, and

(2.9) i1:11,_< { (2E),rtDt.4_ nt ) lit.
The Hausdorff-Young theorem implies that f is in Lt’(i), and

HOlder’s inequality now allows us to conclude thatf is in L2(R), and

II/II .-<II;II -<

with 0 as in the enunciation of the theorem. The inequalities (2.6)-(2.9), together with
this last inequality, yield the desired conclusion. [3

We now present various corollaries of this result. The first of these, Corollary 2.3,
is very general, while the second, Corollary 2.4, refers to weights of the form Ixl. It is
very hard to work with the estimate of Theorem 2.2, and it is not a good estimate, so we
shall not bother to keep track of constants in the rest of this section. In what follows, K
is a number, independent of the function f involved, which may vary from line to line,
and may depend on other parameters.

To state Corollary 2.3 we need a further definition. A (measurable) function v:
R + will be said to be (E,p)-adapted for some measurable set E in R if C(v,E,p),
given by the formulae

(2.10)

(2.11)

is finite.
COROLLARY 2.3. Suppose that l_<p,q_<oo, that 0_<,e_<oo, and that v: -+ is

( I,p)-adapted while w: -, + is ( I, q)-adapted. Let f be a tempered distribution which
is given by a locally integrable function off I and whose Fourier transform is given by a
locally integrablefunction off I. Then, for some constant K,

In particular, f L2 whenever the right side is finite.
Proof. If _<p_<2, then

while if p_> 2, then

by H61der’s inequality (with the obvious modification if p-- oo). The hypotheses of the
corollary therefore imply those of Theorem 2.2 with s equal to min(p, 2) and equal to
min(q, 2). I-q
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COROLLARY 2.4. Suppose that l<_p,q<_oo, and that O<-O, ck<_o. If O> lip# and
ok> 1/q#, then the following inequality holds:

II/11 Ixl , 11, / lyI+i , 11+ ).
This may be interpreted as follows: iff is a distribution for which the right-hand side makes
sense and is finite, then f is in L2 and the inequality holds.

Proof. The function x-+lxl is (/1,p)-adapted for some positive t if and only if
O> 1/p#. Thus if the right-hand side of the inequality is finite, we are in the situation
dealt with in Corollary 2.3 and Theorem 2.2. The only problem is the evaluation of the
constant.

3. More inequalities. In this section we obtain the central inequality under condi-
tions which are in part more general and in part more restrictive than those assumed
for Corollary 2.3. The main difference is that the intervals I and 1 are replaced by
arbitrary sets E, E2 of finite measure. (This will also be done in 4 but here we shall be
able to obtain estimates of the constant.) Corollary 2.3 required no a priori assumptions
on f and f on I and I, respectively, which amounted to allowing the weights to vanish
on those sets. In Theorem 3.4 below we do require the weights to satisfy certain mild
conditions on E and E2. In view of the counterexample described in the last section,
the hypotheses of Corollary 2.3 and Theorem 3.5 are quite reasonable.

The "bootstrap" methods of this section consist of repeated applications of the
HOlder and Hausdorff-Young inequalities, separately applied on .EI,E2 and their
complements. They are well-suited to keeping track of the relevant constants.

Throughout E and E2 will be sets of finite measure, their measures being denoted
by m and m 2, respectively. Whenever the weights u;: t Ii + (i= 1,2) are (Ei, q )-
adapted, define b and b2 by

mT’lqllu?’ll
if 1-<ql-<2,

(3.,)

and similarly for b.
LEMlViA 3.1. Let ui: II Ii + (i= 1,2) be (E,q)-adapted. Suppose further that the

numbers

(3.2) ai m’Z llur ’x ,,11,,. 02 m? -llur’x
are finite. Then there is a constant K such that

(3.3) Ilfll -< g(llu, file, -t-Ilu: fiiq2 )
for all tempered distributions f such that f and its Fourier transform are given by locally
integrablefunctions. In particular, f L2 whenever the right side of (3.3) is finite.

Constants. As we shall see, this inequality is a consequence of the following: Let
A -Iluiillq, and A2-11u2flq:. If 1-<qi, q2 -<2, then

(3.4) Ilfll<[mlb 2 m-l/q(al-fbl)ill-P-ml/q2b2t12] l-t

where 1/2-tlq +(1 -t)/q, wle if ql and 2<q2, then

(3.5) Ilfll(a
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When 2<q, q2 _< , (3.5) can be replaced by

(3.6) Ilfll2<_blA! +(a2 + b2)A 2.

Proof. With f as in the statement of the lemma, assume that A and A2 as defined
in previous paragraph are finite. (Otherwise there is nothing to prove.) Our first step is
to estimatef locally (that is, on E2) by showing that

_<(a +b(3.7) IIxll 1.

(Since f and ] are measurable, all the integrals in the proof are defined and so, by
reversing the order of the steps, we see^ thatfL2.)

Sincef=fxe,+fxel, f=(fxe,) +(fxel) and so

Denote the latter two integrals by I and I respectively. Hlder’s inequality applied
twice and the Hausdorff-Young inequality once yield

i, fe
Assume now q 2:

<bAI.I2m/qll(fx,) Ilq m/qllfxllql-
On the other hand, if 2 <q ,

i  ll(fx. )-ii -ilfx. ll  lliu,x  ll rllu lXEII2r,.
Choose r=ql/2(1 ]. Hence 2r-ql and 2r’-2q/(ql-2)-q7 so, once again,
I2blA1. When used in (3.8), these estimates for I and I2 establish (3.7), as required.

Our methods now differ for the three cases (3.4), (3.5) and (3.6). First assume
q, q22; (3.7) is used to estimate [[filq as follows:

mT’/q(a +bl)A +ml/qbzA2.

A similar inequality holds for lift[q, with the subscripts and 2 interchanged. This
allows the final estimate for [[fi[: to be obtained. In fact, it is possible to estimate
with qpq"

q,[lf[[qi where l/p-t/q, +(1-t)/q

+ (a:+ (a, + + ’-’.
This yields (3.4) wch in turn results in (3.3) with

K=max(m/qb,,m I/q (a: +bz),m/qbz,m ’/q (a, + b,)}.
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Now suppose that 2_<q2_<oe. Arguing as in the second estimate for 12, IIxell
b2A_. Combining this with (3.7) shows that

which is (3.5). To obtain (3.3), take K=max{a +bl,b2}. In the case where both
q,q2 (2, oo],

Ilfll=-< min ( ( a +b)A + b2A 2 ( a_ +b)A2 + biA },
which completes the proof.

The following lemma provides the transition from the previous lemma to the main
result of the section, Theorem 3.3, by showing that, roughly speaking, the inequality
remains valid when the weights are replaced by higher powers of themselves. Its proof
is a simple application of HOlder’s inequality.

LEMMA 3.2. Let p,q, fl satisfy l_<p, q<_, q=/=o, O<fl<p/q and (q-2)/flq-
( p 2)/p. Then

Ilwllq--

for any measurablefunction
Powers of weights. Suppose that

Ilfll= <- K( IIw,fllq, / wl[q= ).
By taking g> to be f, then f, in the preceding lemma we have

Ilfll, sc l/n( IIw,/11, / w,/11,, )
provided the exponents satisfy O<fl< min(pl/ql,P2/q2), qi:/= and (qi- 2)/flqi
(Pi- 2)/pi for i-1,2. On the other hand, if we have the multiplicative version of
the inequality, namely

Ilfll - -< :11 w,fll qi w/llq,
then under the conditions just described

Ilfll-< g’/allw, flip, IIw
The first case forms the basis for the proof of Theorem 3.3 and the second for its
corollary given in Remark 3.4. Before this, however, we illustrate the ideas with the
simplest case, namely P =P 2.

The casepi =p=2. Whenp =p2=2 in 3.2, ql =q2 =2 and fiE(0, 1). In combina-
tion with results Theorem 1.2 and Lemma 2.1, this yields

ii111

_
_< (4.)11 ixisllll lylYll

for all f in L and ct_> 1. As a point of comparison, the argument used by Hirschman
[11] (with the sharp form of the Hausdorff-Young inequality [1]) shows that

where Ha-2ae(8/e)"(F(1/2tl)/2a)2. Hirschman’s constant is better than ours and
as et--+ oo, H--.tl(8/e)"a(2.94).
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THEOREM 3.3. Let EI,E2 be measurable subsets of with finite measures. Let
PI,P2 [1, OO] and suppose that the weights wi: I -,1 + (i- 1,2) are (Ei,Pi)-adapted. If
also there exists 0>0 such that

(3.9) f w-Odx<

then there are constants K, fl> O, such that

Ilfll -< r(llwl fll , + IIw 
for all tempered distributions fsuch that f and its transform are given by loca@ integrable
functions.

Proof. The proof varies slightly among the three cases (i) p, p= 2, (ii) 2p,
p and (iii) pn <2<p. Since the trd case contains all the features of the
first two, it alone will be proved. Suppose we have , qn and q2 satisfying

(3.10) O< fl O/q;,

(3.11) ( qi-- 2)/flq,-- ( p,-- 2)/p,,

(3.12) fl<Pi/qi, qi<

for i-- 1,2. From (3.9) and (3.10)

Since fl>0, (3.11) shows that lql<2 and 2<q2. Hence w is (E,q)-adapted
since w is (E,pl)-adapted. Also (3.11) shows that w is (E2,q2)-adapted since w2 is
(E2,P2)-adapted. Thus Lemma 3.1 applies with the conclusion that

for f in L2. Application of the ideas following Lemma 3.2 based on (3.11) and (3.12)
leads to the required inequality with K=

It remains to find fl, ql and q2 satisfying (3.10) to (3.12). Since ep/(1-e)(p-2),
ep/(2 e)( p- 2) and ep/(p- 2) all tend to 0 as e 0, we may choose e1, e2 (0, 1) so
that

elPl e2P2(3.13) (2_p,)(l_e,), (p2_2)(l_e2)
ep e2p2(3.14) (2-e,)(2-p,)- (2+e2)(p=-2)

E E2(3.15) 2-p P2- 2
< 1.

Denote the number in (3.14) by fl and define q1-2-el and q2-2 +e2. Direct substitu-
tions show that (3.13), (3.14) and (3.15) imply (3.10), (3.11) and (3.12) respectively, as
required.

The only difference for the first two cases described at the beginning of the proof
is that whenever Pl (or P2) equals 2, then q (or q2) is given the same value. (See the
discussion below Lemma 3.2.)
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Remark 3.4. When working with the weights w(x)=lxla, w2(y)--Lvla with 0,_>0,
we can use Lemma 2.1 to transform the additive version of the inequality (3.3) to the
multiplicative version. Hence the argument in the second part of the paragraph follow-
ing Lemma 3.2 is now applicable. For these weights (3.9) is automatically satisfied
when E --E2-- [- 1, 1]. Also in this case w is ( El ,p )-adapted provided O> 1/p# and
wE is (E2, q)-adapted provided > 1/q#. Assuming these conditions, arguing as in the
proof of Theorem 3.3, but based on the multiplicative version of Lemma 3.1, and
applying Lemma 2.1 once more leads to

just as in Corollary 2.4.

4. A priori inequalities. In this section we prove some a priori inequalities for
L2(R)-functions which generalise the results of 2 and 3. More precisely, we prove
that if E and F are sets of finite measure, if _<p, q_<, and if v and w are weights
which are respectively (E,p)- and (F, q)-adapted, then, for some constant K,

(4.1) Ilfll = -< K( Ilvf + IIw/rllq

for all f in L2(R). We are unable to give any estimate whatever for the constant K.
Examples of tempered distributions f for which the fight side of (4.1) is finite, even
zero, but for whichfL2 are given in [19].

The proof of the a priori inequality (4.1) is based on the argument of 2, together
with a more general version of the results of Pollak and Slepian [14] and Landau and
Pollak [12]. We give this generalisation first, which is based on the following result due
to Benedicks [2].

PROPOSITION 4.1. If fL2(), supp(f)C_E, supp(f)C_F, and m(E)+m(F)<,
then f-- O.

THEOREM 4.2. Let E and F be subsets of offinite measure. There exists a number
,/( E, F)< such that

for allf in L2(II) whose supports are contained in E.
Proof. Consider the operator T on L2 given by the formula

Tf=xe XF(fXe) )

where 6f--I denotes the inverse Fourier transform. This operator is compact and of
positive type. (To see that it is compact, note that the kernel of the integral operator

belongs to L2( R).)
The operator norm of T is at most 1, so T admits a spectral decomposition with

eigenvalues in [0, 1]. Let ),(E,F)2 be the largest eigenvalue. If /(E,F) were equal to 1,
then there would exist a nonzero functionf such that

,l}-II:ll ,
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that is, such that

Since for all g we have

1(Xg)^(Y )I2dyIIII.
(with equality only if supp((xeg) )C_F) and

llxII<IIgll 2
2

(with equality only if supp(g)C_E), the existence of such an f would contradict Pro-
position 4.1. Thus 3’(E,F)< 1. Further, iff-xef, then

fl,(y)12dy- ( T/,I) <_v( E,F)llfll,

as required. []

THEOREM 4.3. Let f be in L2([), let s and be in [1,2], let E and F be sets offinite
measure, and let

A ,dx[f(x)["
/" - ,dxli(y)

Then

where

IIfll . [’+m(E)’a] o/,[ B’+ m(F )’fl’] (

o-- l/s- 1/2, ’= l/t-- 1,/2, 0--z/(o+’),

a--[1-3’(E,F)]-’[m(E)B +3’(E,F)m(F)A],
fl-[1-3’(E,r)Z]-’[m(r)A +3’(E,F)m(E)B].

Proof. The proof is but part of the proof of Theorem 2.2, and we omit it. [51

COROLLARY 4.4. Suppose that <_p, q<_ , that E and F are subsets of R offinite
measure, and that v: + is (E,p)-adapted while w: + is (F,q)-adapted. There
exists a constant K such that

II/11-</’;:(IIv/x ,llp + Ilw& ,,, +

for allf in L(R).
Proof. The corollary follows from Theorem 4.3 just as Corollary 2.3 follows from

Theorem 2.2.
It would be interesting to study further the constants 3’(E,F). Superficially it

appears that 3’(E, F)<3’(m(E)m(F)/4), where the 3’ function on the right side is that
considered by Pollak and Slepian [14] and Landau and Pollak [12].

5. Counterexamples. In this section we show that conditions similar to those
assumed in Theorems 2.2 and 3.3 are necessary to establish the relevant inequalities.
Throughout v and w are measurable functions from to R +.
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COUNTEREXAMPLE I. Suppose continuous v, w satisfy v(x), w(x)O as x . If
0<p, q<_ oe there is no constant K such that

(5.1) Ilfllz <- g( llvfllp / Ilwllq)
for allf in L2.

Proof. Choose nonzero f in . For each n 7/+ define f: x exp(2rinx)f(x n).
Then IIfl12- IIJql= while Ilvfllp, IIwllq--’ 0 as n--, .

COUNTEREXAMI’LE II. Given <_p, q<_ oe, suppose v, w satisfy

(5.2) Ilxt0,vll-o(1/2) as X- ,
(5.3) w is of polynomial order as x ,
or vice versa. Then there is no constant K such that

(5.4) Ilfll_-< s,cll vfll,,, II.?llq

for allf in L-.
Proof. The proof is based on the familiar Rudin-Shapiro construction. Choose

nonzero f in $ with support in [0, 1]. Let f0--go =f and define sequences (fn), (gn) via
the inductive step

f+ =f+ ’r2 g, gk+!

for kZ+ where Gh:x-,h(x-a). Evidently

(5.5) IIf,,ll 2 2"/21if112,

(5.6) v/,, lip -< II/11 x o,,, v lip.

The critical property of the sequence (f,,) is If,,l_<2"+l)/2lf which follows from the
identity Iff /lgl2,-- 2+ Ilf[2 (see [10, (37.19)]). Hence

IIw/,,llq<2’’+’,/-Ilwfllq.

Suppose (5.4) is valid for all f in L2. From (5.3), (5.5), (5.6).and (5.7),

2"_< const. IIx t0,2,,l v lip. 2"/2

which contradicts (5.2). D
Remark. If we drop condition (5.3) and assume that the weights v, w are "rapidly

increasing", then for fairly general functions f, (5.1) and (5.4) are valid in the trivial
sense that either IIv)qlp or Ilw]]lq-, or f=0. Hardy’s theorem ([8], see also [4, pp.
155-158]) gives us one example of this type of result: Suppose that

v(x)>--A.exp(ax2), w(y)>--B.exp(y2)
for Ixl, lYl sufficiently large where A,B,a,B>O. If f satisfies Ilvl]l, IIwl <, then
f=0, or f is a constant multiple of exp(-ax-), or there are infinitely many such
functionsf in $ according as .aft >r, a/3 r 2 or aft<r 2.

In [19] we give the following extension: Suppose that v, w are as above and at least
one of p,q[1, m] is finite. If afl_>rr 2, then the only f in $’ satisfying IIvjqlp, IIWlq<
is f= 0, while if aft<r 2 there are infinitely many such functions in $.
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Discussion. In the remainder of the section we are concerned with the inequality

for all f in L2. Apart from the situation described in Corollary 2.4 or Remark 3.4, this
inequality is also valid, but now in a trivial way, when p 2 and O=0 or q-2 and

0. The following three counterexamples show that there are no other cases in which
(5.8) is possible. As usual, we supposep, q[1, oo] and 0, _>0.

COUNTEREXAMPLE II’. If O< lip# and ok4 1/q#, or vice versa, then (5.8) is not
possible.

Proof. Assume that (5.8) is valid for all f in L2 with /9< lip# and qb4: 1/q#.
Substitute Dxf for f, where Dxf is the normalized dilate defined by Dxf(x)=
-I/2f(x/?) (see 2) and fn is as defined in the proof of Counterexample II. Then
2,,/2_< const.(,0-I/p#2,,(0+ l/p) +-+ /q#2n/2 ) and hence

<const. ((2"X )(-’/P#> +X-o+ ’/q# ).
If -q+ 1/q# <0, take h=2" and if -q+ l/q# >0, take =(2/3)". In either case we
get a contradiction by letting n o.

COUNTEIXAMPLE III. If O= 1/p# with 2<p_< o and qva 1/q#, or vice versa, no
inequality of theform (5.8) is possible.

Proof. When 0= 1/p#, replacement off in (5.8) with Dxf gives

II/11 r (II ixisll, + x-++’/q"lllyl+illq )
for all ,> 0. But this requires

(5.9) II/11 _-< :lip
whenever qb =/= 1/q#. Definef by f(x) x- 1/2 on 1, n and 0 otherwise. Substitution in

(5.9) results in (logn)l/E<-K(logn)I/p for all n (with the obvious modification when
p- o), an impossibility if 2 <p-< o. O

COUNT.gEXAMPLE IV. Suppose 0-- 1/p# with 2<p_< and q= 1/q# with 2<q_<
o. Then (5.8) is not possible.

Proof. Choose k C(R) satisfying q(x)-- 0 for x-< 0, q(x)- for x >_ and
0 _< k-< 1. Also choose a C(R) satisfying a(x) 2 +x for x < 1, a(x) x for x _> 10,
and x _< a(x) _< 2 + x for all x. For each e>0 define

g(Y)-q(lYl)IYl ’/(log(a(lyl)))- ’/: e_4vl.

From Theorem of Wainger [17] (with k- 1, 1-0, 3,- 1/2 and b(y)-(log(a([,l)))-1/2),
f(x)=lim_o+d-lg(x) is defined for all xv0 and is infinitely differentiable apart
from x--0. Furthermore, this theorem shows that as x 0

i(x ) I1-’/-(log( a( /ixI)))-’/- Ixl- l/2log( I)-’/
and, since fELl, that f(y)-q(lyl)lyl-ll2(log(a(lyl)))-1/2. It is routine to check that
IIIxlOJqlp, IllYlJlq< when 0- 1/p#, 2<p< o and q,-1/q#, 2<q_< o and yet II)ql=, which contradicts (5.8). (In fact, IIIxlOfllp< when 0> 1/p# or O>_l/p# and
2<p_<o, and Illylfllq< when q<l/q# or q,<_l/q# and 2<q_<o. Hence this
function also provides a counterexample in these cases. It uses, however, more powerful
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machinery than counterexamples II’ and III. Also note that the case p-q-o and
0-,-1/2 is easily disposed of by the function f: x-olxl-/2 since its (distributional)
Fourier transform is itself.)

As indicated in the discussion below Counterexample II, when we put together the
above bits and pieces we get the completion of the result started in Corollary 2.4 and
3.4.

THEOREM 5.1. Suppose p, q [1, o] and 19, k>_O. There exists a constant K such that

Ilsll (11 "sll, + lyl+ZIIq )
for all tempered distributions f with the property that f and f are locally integrable
functions if and only if O> lip# and> 1/q# or (p,O)--(2,0) or (q,)-(2,0).

REFERENCES

[I] W. BV.CKNER, Inequalities in Fourier analysis on R n, Proc. Nat. Acad. Sci., 72 (1975), pp. 638-641.
[2] M. B.NV.DICKS, On Fourier transforms offunctions supported on sets offinite Lebesgue measure, Res. Rep.,

TRITA-MAT-1974-5, Royal Institute of Technology, Stockholm.
[3] D. C. CI-AMVENEY, Fourier Transforms and Their Physical Applications, Academic Press, New York,

1973.
[4] H. DVM AND H. P. McKAN, Fourier Series and Integrals, Academic Press, New York, 1972.

[5] W. G. FARIS, Inequalities and uncertainty principles, J. Math. Phys., 19 (1978), pp. 461-466.
[6] C. Fv.FFERMAN AND D. H. PnONG, The uncertainty principle and sharp Girding inequalities, Comm. Pure

Appl. Math., 34 (1981), pp. 285-331.
[7] D. GABOR, Theory of communication, J. Inst. Electr. Engrs. 93(3) (1946), pp. 429-457.

[8] G. H. HARDY, A theorem concerning Fourier transforms, J. London Math. Soc. 8 (1933), pp. 227-231.

[9] W. H.IS.NBERG, Ober den anschaulichen lnhalt der quantentheoretischen Kinematik und Mechanik, Z.
Phys., 43 (1927), pp. 172-198.

[10] E. HEWrrT AND K. A. Ross, Abstract Harmonic Analysis, Vol. II, Springer-Vedag, New York, 1970.

[11] I. I. HmSCnMAN JR.,A note on entropy, Amer. J. Math., 79 (1957), pp. 152-156.

[12] H. J. LANDAU AND H. O. POLLAK, Prolate spheroidal wave functions, Fourier analysis and uncertainty (2),
Bell System Tech. J., 40 (1961), pp. 65-84.

[13] A. PAPOULIS, Signal Analysis, McGraw-Hill, New York, 1977.
[14] H. O. POLLAK AND D. SLEPIAN, Prolate spheroidal wave functions, Fourier analysis and uncertainty (1),

Bell System Tech. J., 40 (1961), pp. 43-64.
[15] J. F. PRICE, Inequalities and local uncertainty principles, J. Math. Physics, 24 (1983), pp. 1711-1714.
[16] D. E. VAKMAN, Sophisticated Signals and the Uncertainty Principle in Radar, Springer-Vedag, New York,

1968.
[17] S. WANGV.R, Special trigonometric series in k-dimensions, Mem. Amer. Math. Soc., 59 (1965).
[18] H. WEVL, The Theory of Groups and Quantum Mechanics, Dover, New York, (transl. of 1930 German

edition).
19] M. G. COWLING AND J. F. PRICE, Generalisations of Heisenberg’s inequality, Proc. Harmonic Anal. Conf.

Cortona, 1982, to appear.



SIAM J. MATH. ANAL.
Vol. 5, No. I, January 1984

1984 Society for Industrial and Applied Mathematics

0036-1410/84/! 501-0013 $0 .25/0

CHEBYSHEV SYSTEMS OF MINIMAL DEGREE*

B. L. GRANOVSKY" ND ELI PASSOW $

Abstract. Let F--(f/}’__ 0 be a set of continuous functions on [a,b], and let F*-{fi.}i",j: o. We
determine conditions on F which are necessary and sufficient for the set F* to be a Chebyshev system on
a, b consisting of exactly 2 n + distinct functions. The results have applications in the field of experimental
design.

1. Introduction. In many problems of mathematical statistics and probability the
matrix of moments, M(j), occurs. Here M(li)-llmijlli,j=o, mij-fxfi(x)fj(x)l(dx),
where {f}, i=0, 1,- .,n, is a set of n+ linearly independent continuous functions on
a compact space, X, and is a probability measure on X. In particular, in the theory of
least-squares and experimental design such matrices are called information matrices or
design matrices, and the measures j are called experimental designs.

One of the questions arising in this field is to find a solution j for the problem of
moments mij()- m’j (m’ are given), with the minimum number of points of support.
(For the statistical significance of this problem and related results see [1, Ch. 10].) The
solution clearly depends upon properties of the set of functions {ff}i,=0, in particular
whether this set forms a Chebyshev system. (A set (u}7=0 of continuous functions on X
is a Chebyshev system on X if every nontrivial "polynomial" Y,%oCiu(x) has at most n
zeros on X. We call n + the degree of the Chebyshev system.) In this paper we give
necessary and sufficient conditions on the set {f/}’=0 so that the set {f/f.}in,j.= 0 is a
Chebyshev system of minimal degree.

2. Preliminary results. Let ,(U) be the number of distinct elements of the set U.
Let U--U:{u}7:0 be a set of real numbers and denote by U*--U,* the set of all.
possible products of two elements of Un; that is, U* U* {ui j},j:0. Our first result
tells when ,(U*) is minimal.

LEMMA 1. Suppose u 4 O, O, 1,..., n, and [u il 4= lujI, i,j-- O, 1,..., n, 4=j. Then
v(U,*)2n + 1, with equality if and only if the set Un is of the form U,-- (0u’)__0, where
o and u are some real numbers such that u, o 4= O, lul 4:1.

Proof. The sufficiency is obvious and we prove the necessity by induction. The
assertion is trivial for n-0, so assume it is true for n-1. Without loss of generality,

2assume that lu01<lUll< <lull. Then U,*-U,*_ O (uu,}j=0. Now lun_Unl and u, are
larger than the absolute values of all the terms of U*_ and, by the induction hypothe-
sis, ,(U*_ )_>2n- 1. Hence, ,(U*)>u(U*_)+ 2_>2n+ 1, which proves the first part of
the assertion. Now suppose that ,(U,*)-- 2n + 1. Then the above inequality implies that
u(U*_) must equal 2n-1. Thus, by the second part of the induction hypothesis,
Un_ (ou’}7,Z_ and, hence, U*_ (09-u’},-2. It is only left to show that u too is of
the desired form. Observe first that without loss of generality we can assume that lul> 1.
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(For if O<lu[< 1, then fi- u- and -wu will generate the same set Un_
k },--0-) So according to the assumed order of the elements of U, we have u, 0u ’,- and, hence,k-0, 1,. .,n- 1. Now consider UoU which is distinct from u,_u and u,

must coincide with some element of U*_ . Thus UoU,-co2uj for some 0<j<2n-2, and
from this it follows that u,-couk for some n<_k<2n-2 (k>_n because otherwise u,
would belong to U,_ ).

We now claim that j=n. For suppose that j>_n+ 1. Then the products u,_2u,
2 would fail to be elements of U,*_ i, so that U,* would have at least threeU Un and u

more elements than U*_ has. But we showed earlier that ,(U*)-,(U*_ )+ 2. There-
fore,j= n, un 0 u",, and the proof is complete.

We would now like to apply Lemma to a set of functions. We wish to show that
under appropriate hypotheses the set of all possible products of functions {fo,f,"" ,f,}
consists of 2n+l distinct functions if and only if fik(x)-co(x)[u(x)]k, k-O, 1,...,n,
for some permutation {i, } of {0, 1,-.., n }. The obvious approach is to apply Lemma
point by point to define the functions c0(x) and u(x). The potential difficulty is that
Lemma guarantees only that some rearrangement of {Uo, U,...,u,} forms a geomet-
ric progression, and it is possible that different rearrangements hold at different points.
This could be the case if the relationships which hold between the products (of the
values of the functions) which reduce the number of these products to 2n / differ at
different points. If, however, we insist that the same relationships hold at each point--
that is, if we demand that the relationships hold between the functions--then this
difficulty will not arise, as is shown in the next lemma.

LEMMA 2. Let Un-{Uo,U,...,u,}, V-{Vo, V,...,v,} be two sets of real numbers
as in Lemma 1, and suppose ,(U*)-2n + 1. Suppose that identical relationships hold
between the elements of U* and V*; that is, uiu- uku (for some i,j, k, l) if and only if
viv2-vkvt. Then there exists a permutation {it,},=0 of {0, 1,...,n} such that simulta-
neously uik-cou and vi-tv, k-O, 1,. .,n.

Proof. From Lemma it follows that Un-{couP}7,=0 and V-{tv’}7,=o Without
loss of generality assume that uk-cou, k-O, 1,...,n, so that, in particular, UoU=
uuk_, k-1,2,..-,n. Thus the same relationships must hold for the corresponding
elements of Vn, that is, VoVk-VVk_ , k- 1,2,. .,n, and it follows from these relation-
ships that vk-Vo(V/Vo), k- 1,2,. .,n. Thus vk-tv, k-O, 1,. .,n, where t-vo and
U 191/I)0"

Remark. Note in Lemma that the order of the terms {lull)7,-0 determines the
order of the terms in the geometric progression {couP}7,=0 From Lemma 2 we see that
if the products {uiu} and {viva} satisfy identical relationships, then the order of the
terms Ivil will either be identical to that of lull or exactly reversed; that is, if lUol<lu,l<

<lui,,I, then either IVol<lv,l<...<lv.l or ]Viol>ll)ill>... >ll)inI.

3. The main results. Let F= (fo,f,"" ",fn) be a set of continuous functions on

[a,b], let F*- (f fj},j=0, and suppose thatfk(x)-co(x)(u(x)), k-O, 1,...,n. Then F*
will be of the form F*-(co2(x)(u(x))k)2o, so that u(F*)<2n+ 1. (In certain degener-
ate cases it is possible that u(F*)<2n+ 1.) Our next theorem is a converse to this
result.

THEOREM 1. Let F--(fo,f,’" ",f) be a set of continuous functions on [a,b]. Let
T={x[a,b]: fi(x)4=O, If(x)lvlf.(x)l, i,j--O, 1,’",n,ivaj} and suppose that T, the
closure of T, is equal to [a,b]. If ,(F*)-2n+ 1, then F={co(x)(u(xa) ,=0, where
co(x) C[ a, b and co(x ) 4= O, x T, while u(x ) =/= O, lu(x)l 1, x T, and u(x ) is continu-

ous on a, b ], except possibly where co(x) O.
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Proof. Since v(F*)-2n+ 1, certain identities of the formf/f=fgft exist. Let x T,
ug=f(x), k-O, 1,...,n, and let U-{u0,ul,...,un}. Then v(U*)-2n + 1, so that, by
Lemma 1, there exist o 0(x) 0, u u(x ) 0, lu(x )1 1, and a permutation k k(X ),
k--0, 1," .,n, of {0, 1,..-,n}, such that uik ouk, k-O, 1,...,n. Ify is any other point
of T and if we let v=f(y), then vivj=vgv if and only if UiUj--UkU1. Hence, by
Lemma 2, the v’s form a geometric progression in the same order as the u’s. Since x
and y are arbitrary in T, it follows that f/k(x)- (x)(u(x)), k-O, 1,...,n, for all x T._
In particular, f/0(x) o(x), x T, and because of the continuity of fo(X) on a, b T,
o(x) coincides with f/o(X) on [a, b]. Thus 0 is continuous on [a, b]. Now u(x)
f/,(x)/(x) holds for all x T, where both f,(x) and (x) are continuous on [a, b ].
Therefore, u(x) is also continuous on a, b ], except possibly where o(x) 0.

THEOIM 2. Let F= (fo,f," ",fn} be a set of continuous functions on [a,b]. Then all
distinct functions of the set F*-(f/f)i,j=0 form a Chebyshev system of minimal degree
2n+l on [a,b] if and only if F is of the form F=(o(x)(u(x)))=o, where o(x) and
u(x) are continuous functions on a, b ], satisfying

(i) (x):0, x[a,b];
(ii) u(x ) is monotone on a, b ].
Proof. Assume that all distinct functions comprising F* form a Chebyshev system

of degree 2n / 1. We show first that the functions in F are linearly independent. Note
that each f, k-0, 1,. .,n, must have a finite number of distinct zeros, for otherwise
F* would not be a Chebyshev system. From this and the fact that {f}’=0 .are distinct
continuous functions, it follows that for any fixed k-0, 1,.-.,n, the functions ff,
i-0,1,.-.,n, are distinct. Let Yioaif,.(x) be a nontrivial polynomial. Then
f(x)E’=0aif/(x) Ei=oaifi(x)f(x) is a nontrivial polynomial formed from distinct
functions f/f F*, i-0, 1,. .,n. Hence Ei%oaifi(x)f(x) has at most 2n distinct zeros,
so that E’:0aif(x) has a finite number of distinct zeros. Hence F is a linearly
independent set of functions.

We now show that F is actually a Chebyshev system of degree n. Let p(x)-
Y’=obif(x) be a nontrivial polynomial with r distinct zeros on [a,b], at x, x,...,xr.
We will show that r<_n. Construct a nontrivial polynomial q(x)-E.=oCif,.(x) having n
distinct zeros on [a,b], all of them different from x, x,...,xr. Then p(x)q(x) is a
nontrivial polynomial formed from linear combinations of the functions f,.f F*, so
that, according to our assumption on F*, the total number of distinct zeros of pq
cannot exceed 2n. Thus r+ n<_2n, so that r<n. But p is an arbitrary polynomial, so
that F is a Chebyshev system of degree n on [a, b].

It follows from this that the complement of the set T in Theorem is a finite set,
since no function f,. F can vanish at more than n points, and no two functions Ifl, If.l,
wheref, fF, can agree at more than 2n points. Thus T=[a,b], so that by Theorem 1,
the system F is of the form F--{uk}=0 It remains only to show that the functions-(x) and u-u(x) satisfy conditions (i) and (ii).

Suppose that (x0)-0 for some xo [a,b]. Then all of the functions o(x)[u(x)],
k-0, 1,...,n vanish at x0, so that any polynomial, p(x), formed from these functions
will also vanish at x0. Now let p(x) be a nontrivial polynomial having n distinct zeros
in [a,b], all different from x0. Then p will have n + distinct zeros on [a,b], so that
F- {uk}7,=0 is not a Chebyshev system. This proves the necessity of (i), and from this,
by Theorem 1, it follows that u(x) is continuous on [a,b]. Suppose now that x0,

Xl,...,x are n + distinct points in [a, b], and consider the system of linear equations
n

J(xi) 2 a[u(xi)] -0, i--O, 1,. .,n.
k=O
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If u(x) is not monotone on [a,b], then there exist xj, xt in [a,b], xjvxt, for which

u(xj)=u(xt). But then thejth equation of this linear system will be a multiple of the
lth equation, so that the determinant of this system will vanish. Hence, the system has a
nontrivial solution, so that F is not a Chebyshev system, contradicting our earlier
findings, and completing the proof of the necessity of the conditions. The sufficiency is
evident from the above analysis.

COROLLARY. Let 0--<t0<t <.-. <tn be a set of integers and let F-- {xtk)nk=O. Then
F*- (xt,xtJ}i,2=o is a Chebyshev system of degree 2n+ on [-1, 1] if and only if tk--kt,
k--O, 1,..., n, where is an odd integer.

Proof. By Theorem 2 it is necessary and sufficient that xtk=to(x)[u(x)] k, k=
0, 1,-..,n, where to(x) and u(x) satisfy conditions (i) and (ii) of that theorem. Thus,
tO(X) Xt, U(X)--Xtl-t, and it follows that the conditions (i) and (ii) are satisfied if
and only if t0=0 and t =t is odd, since x is monotone on [-1, 1] if and only if is
odd.

Remark. From Theorem 2 it follows that for F* to be a Chebyshev system of the
minimal degree 2n + it is necessary that F be a Chebyshev system of degree n. If F is
as in the Corollary then, by [2], it is a Chebyshev system of degree n if and only if 0-- 0
and tk, k-- 1,2,. .,n, are alternately odd and even. The result of the corollary is that
among the sequences {tk} of [2] only those which are of the form 0--0, tk kt, odd,
provide the desired property of F*.
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A NOTE ON HUDSON’S THEOREM ABOUT
FUNCTIONS WITH NONNEGATIVE WIGNER DISTRIBUTIONS*

A. J. E. M. JANSSEN"
Abstract. We show that a (generalized) function f has a nonnegative Wigner distribution W(f,f) if and

only iff is a Gauss function (possibly degenerate). We prove, more generally, that the convolution of W(f,f)
with certain Gauss functions is nonnegative if and only iff is of the special type mentioned. As a consequence
we have that the only (generalized) functions whose Wigner distributions are concentrated on a curve of a
particular type are delta functions or exponentials exp(- rat + 2 rflt+) with a, fl, 3’ complex, Re --0. The
main tool used is Moyal’s formula for the Wigner distribution together with Bargmann’s integral transform.

1. Introduction. ForfL2(R), the Wigner distribution W(f,f)off is defined as

1; f x- dt (xl y_l).(1.1) W(x,y; f,f ): e-2iytf x+- -It is known that W(f,f) is a continuous, bounded, real-valued function that may take
negative values. The Wigner distribution was introduced by Wigner [15] as a device that
allows one to express quantum mechanical expectation values in the same form as the
averages of classical statistical mechanics. By means of the Wigner distribution one can
describe Weyl’s correspondence [7], [14] in the following elegant form (see for this e.g.
[4]). If a R 2 __> is an observable, then the expectation value of a in the state f is given
by

(1.2) ffa(x,y)W(x,y; f,f )dxdy,

i.e., instead of substituting a particular point (xo,Yo) of the phase plane in a (as one
does in classical mechanics), one integrates a against the "density function" W(f,f).
More recently there has been considerable interest in the Wigner distribution as a tool
for signal analysts to describe a signal in time and frequency simultaneously (cf. [3],
[5]). In both quantum mechanics and signal analysis one likes to interpret W(f,f) as a
density function of two variables. Such an interpretation is awkward, since W( f,f)
may take negative values as already said. Nevertheless, there is a fairly extensive list of
positivity properties of the Wigner distribution (cf. [3], [11]). These properties express
that certain averages of the Wigner distribution are nonnegative. A typical example is:
for any/L2() (cf. [21),

ff )2 2r,(--b)2)W(x(1.3) exp(-2rS(x-a y ,y f,f )dxdy>O,

for all >0, ,>0, aR, bR where 3,_< 1.
It is convenient to allow in this note certain generalized functions f which we shall

describe in [}2. We shall show that if fve 0 has a Wigner distribution that is nonnegative
everywhere (in a generalized sense), then f is necessarily of the form

(1.4) f ) exp( ra 2 + 2rfl r ,{ )
or

(1.5) f(t)--dta(t ),
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where a, fl, 3’, a, d are complex numbers with Rea_>0. If we restrict to fL2(R), this is
known as Hudson’s theorem [8]. The f’s in (1.4) are what we call Gabor functions
(although this name is usually reserved for the case that a is real and positive). We have
for thef in (1.4), by calculation,

(1.6)

(2)’/-exp(_2rtRe.g+2rr(Re8)_/Rea_2rr(x_Re/Reot)2ReaW(x,y; f,f )- Rect

2r(y+xlma-Im)2/Rea),
if Re a> 0, and

(1.7) W(x,y; f,f )=exp(-2rRe’c+arxRe)io(y-Im+xlma),

if Rea- 0. And for thef in (1.5), we have

(1.8) W(x,y; f,f )-ldl2exp(4crylma)8o(x-Rea).
We shall show more generally that if i,> 1, and (1.3) is nonnegative for all a and b,
then f must be of the form (1.4) or (1.5). This result shows that Gabor functions and
delta functions are fairly isolated objects in this kind of time-frequency analysis. As an
application we show that if W(f,f) is concentrated on a curve of a certain type, then f
must be of the form (1.4) (with Re a--0) or (1.5).

The key argument, due to Hudson (cf. [8]), is the observation that for 3’ =8--- 1, the
expression (1.3) can be written as exp(-vt(a2+b:))lG(a-ib)l:, where G is an entire
function of order 2 (Bargmann transform off). Now, fL(R), W(f,f)>_O everywhere
implies that G (a- ib)4 0 for all a and b (unless f--=0). And Hadamard’s theorem can
be used to show that G, and hence f, has a special form. Since we also want to discuss
f’s which are not necessarily square integrable, we consider in 2 the Bargmann
transform in some detail for f’s in a convenient set of generalized functions.

2. Preliminaries. A convenient theory of generalized functions for discussing the
Wigner distribution was elaborated by De Bruijn (cf. [4]); we describe it here briefly.
We don’t want to use Schwartz’ theory of tempered distributions since this theory has
the disadvantage that functions like f(t ) exp(t ) and f(t) =/i(t) cannot be considered.
Also, the theory used in this note arises naturally in the context of the Bargmann
transform which will be used later on. Our test function space S consists of all entire
functionsf for which there are A >0, B>0 such thatf(x + iy)-- O(exp(-,n’Ax2 +,n’By2)).

/2 (cf. [6], [9]). We mayThis space can be identified with the Gelfand-Shilov space ,-1/2
describe S as the set of all fL2() for which (f,+,,)-O(exp(-na)) for some a>0.
Here kn are the Hermite functions, given by

(2.1)

n(x ) ( 1)n2,/4(4,a.)--n/:Z( !)--,/:Z ( d )n --2rxn e" x e (x,n--0,1,...);

we have H4,,,-(n+1/2)4,,,, where H=(x2- 1/4rZ(d2/dxZ))cr is the Hermite operator.
We denote the dual of S by S*" an FS* is an antilinear continuous functional on S.
We have (F,/,,)=O(exp(na)) for all a>0, if FS*. Yet another way to describe S and
S* is by means of the Bargmann transform (of. [2], [12]): for FS* we let

(2.2) (Br)(z)-e’rZ/Z(F, gz) (zGC),
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where, for w C,

(2.3) gw(t)--2/4exp(--rr(t--w)2) (tEe).

We note that (Bn)(z)-(zfff)n/Vri). Now B maps S(S*) one-to-one onto the set of all
entire functions of order 2, type <r/2 (order 2, type _<r/2). For details we refer to
[12].

It is important to note that

( ’//" 2 b2 ) ib) (a,b),(2.4) (F,G(a,b))-exp --(a + ) (BF)(a-

where Gv(a,b) denotes for 3’ >0, a R, bR the Gabor function,

(2.5) G(a,b)(t)- - exp(-r-’(t-a +2ribt-riab)

whose Wigner distribution is given by

)2 2r3’(y(2..6) W(x,y Gv(a,b ), Gv(a,b))-2exp(-2r3"-|(x-a -b))
(xR,yg).

We further have

(2.7)

(BF)(z)-2’/4(1 +a) /2exp -- +a rrz2+ +a

and

(1 )(2.8) (BF)(z)-2’/4dexp --rz2+2rraz-ra2 (z C),

where F is the f of (1.4) and (1.5) respectively. We conclude that if P(z)= az2-+ bz + c
with lal<rr/2, b C, cC, then there is exactly one F of the form (1.4) or (1.5) such
that (BE)(z)-- exp(P(z)).

We shall also need the operator e-n, which can be defined on S and S* for
Re a_> 0. We have

(2.9) B(e-’nF)(z)-e-’/2(BF)(ze ) (z C),

for FS* (cf. [2], [12]). For a>0, e-n is De Bruijn’s smoothing operator N (cf. [4]);
the kernel K of N is given by

(2.10) K(z,t)-(sinha) l/2exp
sinha ((z2+)cosha-2zt)

The Wigner distribution can also be defined for FS*; it thus becomes a gener-
alized function of two variables. An important formula is due to Moyal (cf. [4])" if
F S*,f S, then

(2.11) (W(F,F), W(f,f ))-l(F,f )l 2.
Note now that (1.3) follows from (2.6) and (2.11) in case 8- 3’-1.
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We shall also use the formula

(2.12)

W(x,y; N,,f,N,,f)-(Esinha)-lexp(-Err(x 2 +yE)tanh a)

ffexp(- 2r cotha((z x/cosh a)2 + (w -y/cosha)2))
.W(z,w; f,f )dzdw

for xN, yN; this is just another way to write [4, Thm. 16.1]. Here fS, but it is
easy to extend (2.12) so that it holds for FS* (cf. [10], where things like these are
treated in detail).

3. The main result. In [9], a generalized function of 2 variables is called non-
negative (>0), if (O, tp)>0 for every nonnegative test function tp of two variables. It
can be shown from the Riesz representation theorem (also cf. [9, App. 4]) that for such
a there is a unique Borel measure # on 2, such that

ffexp(-re(x+y))dt(x,y)<o for all e>0,

and such that (,p)-ffq(x,y)dl(x,y) for all test functions tp. This notion of
nonnegativity agrees with the familiar notion of nonnegativity, a.e., if is an ordinary
function.

THEORE 1. Let F S*, and assume that W(F, F)>_0. Then F is of the form (1.4) or
(.).

Proof. Let ’- W(F, F), and assume thatF0. This implies by (2.11) that :# 0,
whence/o 0. We conclude from (2.11)and (2.6) that

(3.1) I(F, G,(a,b))I2--(W(F,F), W(G,(a,b), G,(a,b)))

)2--2r( -b)E)do(x=ffexp(-r(x-a y ,y)>0,

for all a , b R. That is, (F, G(a, b)) v 0 for all a g, b . We see from (2.4) that
(BF) (z)vO for all z C. Since BF is an entire function of order 2, type _<,r/2, we
conclude that BF is of the form (BF)(z)-exp(P(z)), where P(z)-az+bz+c, with
lal_<rr/2. Hence, by (2.7) and (2.8), and injectivity of B, F is of the form (1.4) or (1.5).
This completes the proof.

As an incidental note we remark that with a similar method one can show the
following. Assume that F S* has a radially symmetric Wigner distribution. Then F is
a multiple, of a Hermite function q. Here we call a generalized function of two
variables radially symmetric if (, tp o U) (, tp) for all test functions qo and all 0 g,
where ( tp o Uo )(x,y ) (x cos 0+y sin 0, x sin 0 +y cos 0 ) for (x,y ) R 2. For the proof
one observes that, by radial symmetry of W(F,F) and W(GI(0,0), GI(0,0)) and (3.1),
the expression I(F, G(a,b))l2 only depends on a2+ b2. This implies that I(BF)(z)I only
depends on Izl, whence, by the maximum modules principle, (BF)(z)-cz for some
cC, n-0, 1,.-’. Hence F=dq, for some dC. Also see [11], [13], where it is proved
that

W(x,y; ,)-2(-1)"exp(-2vr(x2+y2))L,,(4r(x2+y2)),
with L, the n th Laguerre polynomial.

It is fairly easy to generalize the previous theorem as follows.
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THEOREM 2. Let FS*, 8>0, y>0, y> 1, and assume that F is not of the form
(1.4) or (1.5). Then the convolution of W(F,F) with exp(-2rrix--2ryy2) takes nega-
tive values.

Proof. We see from (2.9) that N F is not of the form (1.4) or (1.5) if ct >0. Hence,
by the previous theorem, W(NF,NF) takes negative values. Then (2.12) shows that
the convolution of W(F,F) and exp(-2rcotha(x2+y2)) takes negative values. This
proves the theorem in case

In general we can express, by a transformation of variables and (3.2) below, the
convolution of exp(-2rx2-2ryy2) and W(F,F) at the point (a,b), as the inner
product of exp(-2ro((x-ae)2+(y-be-)2)) and W(Z,F,ZF). Here /9-(37)1/2,
e-(/y)/4 and Z, is the operator defined by (Z,f)(t)-e-l/Ef(e-lt) for fS, and
extended in the obvious way (cf. [10, 1.15]) to S*. We use here that for fS, xff,
y,
(3.2) W(e"x,ey; f,f )- W(x,y; Z,f,Zf ),

a formula that can be generalized straightforwardly so as to hold forfS* as well. It is
clear that if F is not of the form (1.4) or (1.5), then neither is ZF. Since we can find an
a>0 such that p-cotha, we conclude from the special case already treated that the
proof is complete.

4. An application. It is believed that the only curve a Wigner distribution can be
concentrated on is a straight line; this is true only if certain restrictions on the curve
are imposed (cf. the examples at the end of this section). We shall give a proof for the
following simple case. Let C be a continuously differentiable curve in the plane with
parametrization y" II -->R 2, where we assume that Iy’(t)l>0 for all t. Assume that for
all oR there is a straight line passing through Y(t0), but not tangent to C, such that
there is e>0, >0, with the property that the distance between y(s) and l>_e, if
Iy(s)-Y(t0)l_>& This condition is satisfied, e.g., if C is the graph of a continuously
differentiable function defined on . Now let FS* be a function whose Wigner
distribution is concentrated on C in the following sense" there is a continuous function
h" C, such that h(y( ))- O(exp(elY( )12 )) for all e>0, and

(4.1) (W(F,F), q)- h(7(t))q(y(t))lT’(t)ldt

for all test functions of two variables. We shall show that this implies that F is of the
form (1.4) (with Rea-0) or (1.5), so that, in particular, C is a straight line. To this end
let y(t0) -(a, b) be a point on C and consider for Re ct >0 the function g, , b, given by

(4.2) g,,b(t) exp(--ra(t--a +2ribt-riab) (t),
whose Wigner distribution W,, ,,, b is given by

(4.3)

Wa’a’b(X’Y)’- Rea exp(-2r(x-a)2Re-2r(y-b+(x-a)Ima)2/Rea)"
We have by (2.11) and (4.1)

(4.4) O<_(W(F,F), W,,,,b)--f h( y( )) W,,,b(Y( ))lY’( )[dt

Cf. [1]. thank Alan Weinstein for calling my attention to this paper.
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Now let be the line through 3’(t0) whose existence is assured by our assumptions, and
take a such that { x,y)ly b x a)Im a) is the graph of I. (If is parallel to the y-axis
we can use a similar argument with

2 1/2

)2- exp(-r3’-(t- a + 2ribt- riab)
instead of g,, b, where we take 3’ 0). If we let Rea 0, the right-hand side of (4.4)
tends to Coh( 3’( to ))13"( to )I, where C0>0 is a number that depends only on the angle
between and the tangent line at C through 3’(t0). Hence h( 3’( t0 )) _> 0. We easily see
from our theorems and (1.6)-(1.8) that F is of the form (1.4) (with Re ct--0) or (1.5).

Notes. The condition "h continuous" can be relaxed to "h measurable" at the
expense of elegance of the proof. It is furthermore likely that the conditions on the
curve C can be relaxed somewhat as well. On the other hand, consider the function
f=nSn, whose Wigner distribution is given by 1/2k,l(--1)klk/2@l/2, where the
summations are over all integers (this follows from a straightforward calculation and
the Poisson summation formula, written in the form Ynn(X)=Yne--Zrinx). The points
of the lattice (-, ) can be joined by a smooth curve C; such a C does not satisfy our
assumptions, of course. Another objection is that the function h cannot be continuous
in this case. This is not a serious point, however, as can be shown as follows. Let k0:
R R be continuous, and assume that k0 vanishes outside [-, 1/2]. The Wigner distri-
bution of ko,f (where f is as above and denotes convolution) is obtained by
convolving W(f,f) and W(k0, ko) with respect to the first variable (cf. [5, 4.1 ]). We get

2;(4.5) W(x,y; ko ,f ko ,f ) - k,I

(this formula can also be derived by directly using the Poisson summation formula).
Since W(ko,ko) is concentrated in the strip [-1/2,1/2],, we see that W(ko,f,ko,f) is
concentrated in the set ((x/,k)llxl_<-, k, l7/). The components of this set can
be embedded in a smooth curve, and the function h now becomes continuoUs, since
W(k0, k0) is continuous.

A second example showing that one has to be careful with the statement, "W(f,f)
cannot be concentrated on a curve unless this curve is a straight line," is the function
f(t) cos 2 rrt, whose Wigner distribution equals 1/4(2 (y) + 8-2r(Y) + 20(Y)CS4rx).
Now W(f,f) is concentrated on the three lines y-0, y- --+ 2 rr, and these lines can be
embedded in a smooth curve.
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GENERALIZED FOCK SPACES AND ASSOCIATED OPERATORS*

FRANK M. CHOLEWINSKff

Abstract. A class of generalized Fock spaces associated with Bessel functions is studied. The generalized
Fock space is a Hilbert space of even entire functions weighted by a modified Bessel function of the third
kind, whereas ordinary Fock space is a Hilbert space of entire functions of several complex variables
weighted by a Gaussian kernel. The generalized Fock space has a reproducing kernel which is a modified
Bessel function of the first kind.

Commutator relations between the Schr0dinger radial kinetic energy operator and multiplication by z
lead to a generalized class of Weyl relations for the Bessel functions.

1. Introduction. In a series of papers, V. Bargmann [2]-[4] studied a family of
Hilbert spaces, whose dements are entire functions of n complex variables. These
Hilbert spaces are associated with Fock’s [10] realization of the creation and annihila-
tion operators of Bose particles in quantum field theory.

If q and p are selfadjoint operators on a Hilbert space satisfying the canonical
commutation rule

(1.1) [p,q]- -il, with Planck’s constant h-2r,

and if

P-2-1/2(q+ip) and O-2-1/2(q-ip),

then P*- Q, Q*-P and

(1.2) [e,o]-.

Fock [10] introduced the operator solution P- of the commutation rule (1.2) and
applied it to quantum field theory. Bargmann obtained a realization of Fock space oy as
a space of entire functions weighted by a Gaussian function.

In this paper a Hilbert space of entire functions on which the square of the
position operator and the generalized radial kinetic energy operators are adjoints is
obtained. The Hilbert space is weighted by a modified Bessel function of the third kind.
As a matter of convenience, we deal primarily with the one variable case throughout the
paper.

Fock space (also known as Fischer space) is the Hilbert space of entire functions
with inner product given by

fJ(z)g(z)e-12dxdy, z-x+iy,(1.3) ( flg )-where C denotes the complex numbers. Thus the growth of functions in OYis dominated
by exp(lzl2/2). Let f, g , with Taylor series expansions

f(x)- 2 a,,z" and g(z)- 2 c,,z".
n:0 n:0

*Received by the editors January 5, 1982, and in revised form September 23, 1982.
fDepartment of Mathematical Sciences, Clemson University, Clemson, South Carolina 29631.
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Then

(1.4) (fig) a,f,,n
n--0

and

(1.) Ilfll- n=-0

The existence of a reproducing kernel in Fock space is of fundamental importance. Let

(1.6) (z,w)--ez, z,wC.

Then

(1.7) f(w)--(f(z)lez) for all wC.

Thus, the Dirac delta function in Fock space is the exponential function. If we define
the multiplication and differentiation operators on by

then

(Zf )(z)-zf(z) and Df(z)-df(z)
dz

(Dfig)- (flzg),

that is, D and Z are adjoints. Furthermore, D and Z satisfy the commutation rule

[D,Z]-I

of the annihilation and creation operators for "bosons" in quantum theory.
Let v be a fixed positive number. The generalized SchrOdinger radial kinetic energy

operator is given by

d 2 2v d
(1.8) A-+--dx2 x dx"

A is the familiar radial part of the Laplace operator on n-dimensional Euclidean space
E n, with 2v-n- 1. The operator A is also known as the Euler or Bessel operator; see
Weinstein [22]. In this paper we construct a Hilbert space of entire functions on which
A and x 2 are adjoints.

Let

(1.9) Kv(x ) K( X ) X1/2-VKv_ I/2( X )

where Kv_/2(x ) is a modified Bessel function of the third kind. The generalized Fock
space oy,, introduced in this paper, is the Hilbert space of even entire functions with
inner product given by

(1.10) (fig) fcf( z )g( z )din,( z )
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where

(1.11) dm (z) K(lz[2)r4+’
drdO, z-rei

2v" l/2F(’+ 1/2)

If f, g 0y have Taylor series expansions given by

f(z)- a,z 2" and g(z)-
n=0 n=0

2n

then

(1.12) (flg)-
n--0

where

(1.13) bz,(U)-2
n !F(n + u+ 1/2)

r(v+ 1/2)

The generalized Fock space also has a reproducing kernel. Let

(1.14) ,(z,w)-I(z),
where

z,wU.C,

I,(z)-2"-1/2F(v+ 1/2)zi/Z-"I-/2(z)
and Iv_l/2(Z) is a modified Bessel function of the first kind of order v-1/2. If f,,
then we have

(1.15) f(w) (f(z)ll.(z)). for all w C C.

Thus the modified Bessel function serves as the generalized Dirac delta function in ..
The Schr6dinger radial kinetic energy operator and multiplication by z are de-

fined on 0y. by

Azf(z)_d2f(z) + 2u d

dz-------- -7- z f( z )

and

(QZ)f(z)-zZf(z).
In , we have

(iig)-(iii).
Thus A and Z 2 are adjoints in oy,.

Moreover, k and z 2 satisfy a commutation rule,

(1.16) [A,2]--4 v+- I+4-
This commutator rule leads to a generalized class of Weyl relations for the Bessel
functions.
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2. Definitions and preliminary results. Let , be a fixed positive number. We set

x2. dx(2.1) dl"(X)-E"-l/2’(t,-F 1/2)
Let

(1)l.(x)-(x)-2"-/-r .+- x/2-%_/2(x)
where I,_ 1/2(x) is a modified Bessel function of the first kind. Then we have

o X2n

(2.2) I,(x)- 2 b2; )n--0

with b_,(g) given by (1.12). Further we let

(2.3) J,(x)-2"-’/2F + x

and

(2.4) K.(x )- xl/2-VKv_ 1/2( x )

where J,_ l/2(x) is the ordinary Bessel function of order v-1/2, and K,_ l/2(x) is a
modified Bessel function of the third kind [9, p. 5].

It readily follows that

(2.5) Axl(wx)=w21(wx), AxK(wx)=w2K(wx ) AxJ(wx)=-w2j(wx).

Further, we define

2o.-/:r(v+ 1/2)2
1-2,A )2,-2(2.6) O(x,y,z)-- (xyz) (x,y z

r(),/:
where A(x,y,z) is the area of a triangle whose sides are x, y, z if there is such a triangle
and otheise D(x,y, z) is zero. Then we have that

(.7 J(l(x,,le.(l-J(xJ(l

and

(2.8) J(xt)J(yt)J(zt) dl( ) D(x,y,z ),

valid for 0<x, y< oo, 0_<t< oo; see [20, p. 411].
Next we define Lfl(0, oo), _<p< oo, as the Banach space of measurable functions

on (0, oo) for which

[fo ’/P

Ilfll- If(x)ld.(x) < o.

We let , denote the Hilbert space L2(0, o).
DqmON 2.1. Let be a locally integrable function on [0, ). We define the

generalized translation function (x @y) by

(. ,(x)= ,(l(x,,le,(.
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Equation (2.5) yields

(2.10) l(yAlx/2)J(x):J(x (y)-J(x)J(y).

Thus it follows that operationally

(2.11) l(yAx/2)q(x)--q(x ()y)

see [7]; that is, |v(yAIx/2) is the generalized translation operator. Moreover,

(2.12) Ilo(x @y)llu-Ilo(x)ll= on,.
The generalized translation operator is extended to even entire functions as fol-

lows: Iff(x) be an even entire function with Taylor expansionf(x)-Ya,,x 2", then

(2.13) f(z ()w)-- a,,(z ()w)2"

n--0

where we define

(2.14) (w ()z)2n_ iv( wAlz/2 )z 2n

" (n) r(.++l/E)r(.+1/2)
k r(n-k+,+ 1/2)F(k+v+ 1/2)k=0

z2(n--k)w2k.

see [6, p. 7] for the details. The generalized translation given by (2.13) is the natural
notion of translation on oy, since 0y is not closed under ordinary translation of
variables. If f(x),, is an even entire function, then f(z ( w) is also an even entire
function. However, f(z () w) is not necessarily an element of

In the estimation of certain integrals, we will need the following asymptotic
expansion for the modified Bessel functions of the first and third kind"

(2.15) Iv(z)--(2rz) -’/2 e ] (-1)(T,m)(2z)- +O(Izl
m=O

+ie-Z+iv X (’,m)(2z)-’+O(lzl -m
m--O

(2.16) K.(z)- z e- X (’t,m)(2z)-"+O(lzl-m=0

1/2r<argz<1/2r,

-r< arg z <-r;

see Erd61yi [9, p. 36]. In these formulas (3,, rn) is the Hankel symbol

F(1/2+v+m)
m !F(1/2+’-m )
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3. Generalized Fock space.
DEFINITION 3.1. Let v>0. The space -3, is the Hilbert space of even entire func-

tions on C, the complex numbers, with inner product defined by

(3.1) ( flg)=f/(z)g(z)dm(z)
where dm,(z) is given by (1.11). An even entire function f belongs to 0 if and only if
Ilfll-(flf)< oo. Iff(z)--EanzEn, we define

(3.2) f#( z ) nZ2n
n--O

THEOREM 3.2. Iff, g 3 with g( z ) X.__o Cn Z 2n, then

(3.3) (f(z)[g(z))-- X a,f,,b2,,(v)
n--O

and

(3.4) ( f( z )[g( z )). =f( All9- ) g#( z ) 1 o

Proof. We have

fcf( f/2nz-2mdm(z)"I-- z)g(z)dm,(z) E anCn

The term-by-term integration is justified.by the absolute convergence of the integral
and by the Tonelli-Hobson theorem. We also note that K(Izl2) is positive. Let z-rei.
Then

f/ f0
cx:

2(n+m+2)(3.5) 2nz-2mdm(z)- r
K(rE)2rdr f2=ei(,_,)o dO

2v-l/EF(v+ 1/2) 2,r "0

n,m r4(n+v) K(r2)2rdr
2"-’/2F(v+ 1/2)

22’n !F(n + v + 1/2)
r(v+ 1/2)

where 6o,m is the Kronecker delta function. The evaluation of the integral is given by
Erd61yi et al. [9, p. 51 ]. It follows that

n =0

In order to prove the second part of the theorem, we note that g(z) can be
rewritten as
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see J. Delsarte [8] or Cholewinski [5, p. 57]. Using the first part of the theorem and
(3.5), we find that

., a,A.(O)-- E
n--O n--O

2,/t,/2 Then the family A, (en(Z))n=O forms anCOROLLARY 3.3. Let e,(z) z
orthonormal basis for .

Proof. From the proof of Theorem 3.2, we have

(3.6)

or equivalently,

(3.7)

(z2nlz2m),--b2n(ll)n,m,

(enlem),--n,m.
Thus (3.3) is an expression of Parseval’s identity, and therefore A, is complete in ,.
The Fourier coefficient off7 is given by

(3.8) (fie,).-- anb2n( t’ ) l/2.

DEFINITION 3.4. An even entire function f(z)=Zan zg-" is said to be of growth
(p, z} if and only if

2n lp/2n(3.9) lim sup -O lanl --< ’r.

Thus f(z) is entire and of order <2, or f is of order 2 and of type _<r. It follows that
f (p, r) if and only if, for every e >0,

f(z) O(e("+O12 ), Izl- .
THEOREM 3.5. Iff ,, then f is ofgrowth ( p, " ) <_ (2, 1/2 }.
Proof. Sincef, we have by (3.3)

(.o) lalZ’n!F +-+n -o().

Using Stirling’s formula a simple calculation shows that

2nlog2n
<2"lira sup

log 1/lal-

Thus f is of order _<2. Let T(n)=lal/. Another application of Stirling’s formula
yields

n
lim
n-,oo e2122,n!F(n++ 1/2)]/n 4"

By (3.10), we have la,1222"n !F(,+ 1/2 + n)_< for n sufficiently large. It follows that

lim sup T(n _< 1/4.

Hencef is of growth _< (2, 1/2 }.
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COROLLARY 3.6. Iff is an even entire function ofgrowth {p, ’} < (2, 1/2 }, then f .
Proof. Since

I/( z )12K,, (Izl o( e ’("+ 01zl:e -Iz12 )

where ,+e< 1/2, it follows that the integral form of the norm off is finite.
Thus it follows that any even entire function of order 0<2 is in eft. Furthermore,

the even entire function of order 0-2 for which ,< 1/2 also belong to o--f. The function
f(z) ez’-/2 is of growth { 2, 1/2 }. However, ez212 q 3.

Let f(z)- Y,n=0a,z
2" be an element of . Using the Cauchy-Schwarz inequality,

we find that

Therefore

,) Is(z) Ilsll, (,,(Izl )1,2.
It follows that strong convergence in implies local uniform convergence on C. Using
the standard asymptotic expansion

e.ZlI,_l/2(Izl)
t11)’2r’z"’/2

asz---, o,

we obtain

(3.12) If(z)l -<Mei/:llfll.
Let denote the ordinary Fock space of entire functions on C given by (1.3) or

(1.4) with norm I11.
TrlnOREM 3.7. Under thenatural injection 3 is a subspace of3 and Ilfll_<llfll.
Proof. Now IIz2"112- b2,(v) and IIz2"l12-(2n)!. By Legendre’s duplication formula,

we have

(2n),_22,,nl F(n+ 1/2) =bn(0).r(/2)
It easily follows that (2n)!_<b.,,(v). Hence

(3.13) Ilfll- E la.l-(2n)! < 2 la.l:b2.(")-Ilfll
n=0 n=0

4. The reproducing kernel for . Let F be a class of functions defined on a set E,
forming a Hilbert space. A function (x,y) of x and y in E is called a reproducing
kernel of F if the following two properties hold:

(a) For every yE, (x,y) as a function of x belongs to F.
(b) The reproducing property. For every yE and fF, we have

f(y) ( f(x )[(x,y ))x.
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It is well known that if a reproducing kernel exists it is unique. Furthermore, for the
existence of a reproducing kernel (x,y), it is necessary and sufficient that for every y
in E, f(y) is a continuous linear functional on F; see Aronszajn [1] for the basic theory.

Inequality (3.12) shows that the map ff(z), zC, is a continuous linear func-
tional on v. Thus v has a reproducing kernel.

THEOREM 4.1. Let

(4.1) v(z,w)--Iv(z), z,wC.

Then is a reproducing kernelfor v.
Proof. Using the standard asymptotic expansions for I_ /2 and K_/2, it follows

that v(z, w) v as a function of z for w C. Let z, w C then
oo 2n
Z2n(4.2) I(z) bE,(V)n--0

Iff(z)- ,anzEn v, it follows from Theorem 3.2 that
oo W2( f(z)llv(z))v-- Y=o a"-ff-22, b-"=f(w)"

COROLLARY 4.2. The set v-- {Iv(z)[w C} is complete in v.
This is a well-known property of reproducing kernels in general. The linear combi-

nations of elements in v are the generalized exponential polynomials associated with
the Ax operator. We call a finite linear combination of elements of v an/-function. Let
w- {wl,w_,. ",Wm}Cm with W VWE=/: VWm and let _a-(al,.. ",am}Cm, a_=/=O.
Let

m

(4.3) ga(2)-- , aklv(zk).
k=l

Then

Thus

m

Ilgall2- 2 Iv(kw)agLj>0-
k,j=l

m(w)-[Iv(wi)]i.j:
is a positive hermitian matrix. Hence, we obtain the following result.

COROLLARY 4.3. Let w--(Wl, wE,. ., win) Cm, with distinct elements w. Then

mdet[l(wij)]i,j:,>O.
Taking the product 1 (R) -3v: (R) ,, it follows that

(,)-Ivt(Zll)Iv2(Z22)""" l,(Z,,)--l(’),
where e--(v,v2,...,v,) with positive Vk, and EC’, is also a positive matrix. Thus
Corolla 4.3 can be extended to read.

m(4.4) det[l,(_ ,’j)] i,j:l >0,

with distinct elements {}7= belonging to Cm, and m an arbitra positive integer.
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This result is essentially known for w a real vector and follows from the fact that
f(x)-e-x2 is a variation diminishing kernel for the Hankel convolution. It appears to
be a new property with w Cm.

PROPOSITION 4.4. Let 3 denote the ordinary Fock space in one variable. Then

(4.5) o=o -i- { z-5-, },
where 4- denotes the orthogonal sum. Therefore
(4.6) ez=Io(z) + zI,(z).

Proof. Certainly the even and odd entire functions form complementing subspaces
of . Since (2n)!-b_n(0) and (2n+ 1)!-b2n(1 ), it follows that

e Wleve functions 10(Z) coshz,

and

eloaa functions 11(z)
sinhz

Equation (4.6) is a general addition property of reproducing kernels on complementary
subspaces. In ordinary Fock space, it is the elementary identity

e coshz+ sinhz.

5. Unitary equivalence of L,]2(0, o) and . The generalized heat polynomials and
their Appell transforms play a key role in establishing the unitary equivalence of
Lz(0, )-0C and .

The generalized heat polynomial is given by
n

Pn’(Y’t)--etAx2n-- k:02 22k( kn) F(Y(V+nZ:7+71/2 +n);7_17_i)72) x
2(-k,, k

The Appell transform of P,, (x, t) is given by

(5.2) W, (x,t) e-X2/4tPn,v(x, --t).
(2t)’+l/2

As shown in [7], Pn, (x, t) and W, (x, t) are biorthogonal in the sense that

(5.3)
22 W,,(x,t)Pm,(x -t)dtx(x)-b2,(v)in, m.

In this paper we are mainly interested in the particular case of t-1/2. A sequence of
generalized Laguerre functions is defined by

(5.4) hn, (x ) (- 1)ne--X2/4Pn, ( X, 1/2) (-- 1)neX2/4Wn,( x, 1/2).
Since P,,(x,-1/2)-(-1)"2"n!Ln-1/2(x2/2), where L-1/2 denotes the usual Laguerre
polynomial of degree n, it follows that

(5.5) hn,v(x)-- 22nn !e-X2/4tUn 1/2
T

a familiar generalized Laguerre function.
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THEOREM 5.1. Ifq , then

(5.6t /(x)-- X a,,h,,,,,(x),
n--O

(5.7) a,,b2.(v)-(q[h,,,.)

with

and

IIq ll X la.12b2.(v)
n--0

Proof. It follows from (5.3), that

(5.9) h,, (x )h,, (x ) d/z(x ) b2,( v )8,, ,.

Let k,. By the completeness of the generalized Laguerre functions (5.5) in 2((0, ot);
x2"dx}, we have

6(x)-- X a,,h,,,,,(x) in 0,,.
n--O

Equations (5.7) and (5.8) are simple consequences of (5.9). In fact, (5.7) gives the
Fourier coefficient, whereas (5.8) is Parseval’s identity.

D. T. Haimo has used similar expansions with variable t; see [12] and [13].
We define a kernel U, by

(5.10) Uv( z,x ) e-(X-2z)/4,Jv( zx ),

where z C and x->0. We have that U(z, x) is a generating function for the generalized
Laguerre functions.

THEOREM 5.2. For 0 <_x<, and all complex z,

(5.11) U,,(z,X)-n
Proof. We have

(5.12) U,(z,x)-eX2/4G,(iz,x; 1/21

where G is the source solution of the generalized heat equation; see [5]. It follows that

o 1/2)Uv(z,x) -ex2/4 X Wn’v(x’
22"b2 (v)

( 1)" z 2n

see [7] or 13, p. 739].
COROLLARY 5.3.

(5.13)
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THEOREM 5.4. For all complex z and w,

(5.14) l.(zw) U.(z,x)U.(w,x)dl.(x).

Proof. The integral may be written as

e(:+w)/Efe 2j,(zx)J,(wx)dtx,(x)-etZZ+wE)/2e-(Z2+wE)/2i,(zw)
"0

:I.(zw);

see Erd61yi et al. [9, p. 50] for the evaluation of the integral.
From (5.14) it readily follows that

(5.15 

In particular,

(5.16)

Thus we have the result.

o 2
Iu,( .x)l

COROLLARY 5.5. For all complex z, Up(z, x) and

The transformationf= U.p is defined by

(5.18) f(z)- U,(z,x)q(x)d#,(x)- U,q.(z)

for k . Using Corollary 5.5 and the Cauchy-Schwarz inequality, we obtain

(5.19)

By differentiating under the integral (which is easily justified: see [2, p. 191]) we see
that f is an entire function of growth _< (2, 1/2 }.

THEOREM 5.6. The transformation U,:f is a unitary mapping of )C, onto .
Moreover, the basis elements are related by

(5.20) Uvhn,v-2 2n.

Proof. Equation (5.20) can be obtained as a standard result from tables of integrals
[9]. However, it follows directly from Theorems 5.1 and 5.2 and Corollary 5.5, for

oo z2m (hmlh,,) -z-"U.h.,.(z)-(U.(z,’)lh.,.)- Y.
b2.,(v )m=O

for all n.

Consequently U. maps the linear manifold determined by the family (hn,.}.0 onto the
even polynomials in .. Therefore U. maps a dense set in . onto a dense set in ..



GENERALIZED FOCK SPACES AND ASSOCIATED OPERATORS 89

Further, if k , then (x) 2n=o anh n, (x), and

f()-

==o v.(. xlh. .(x l e,.(x

anz2n,
n=0

the interchange of summation and integration being easily justified by ,(5.19) and the
Tonelli-Hobson theorem. Now

Ilfll-- ull: la,I
2
b2.( v ) -I111-,

n-----0

by (5.8). It follows that U is a unitary transformation of OC onto ff. Clearly

U-f.(x) a,h,,,(x), wheref(z)-anZ2.
n-0

Letting Bw(X)-U,(w,x ) for all wC, we can rewrite the integral (5.15) as

(5.21) l,,(z)-U,,Bw.(Z ).

Thus the linear manifold determined by the family (Bw}wc is mapped onto the family
of/-functions in

DEFIrqITION 5.7. Let denote the family of even entire functions f(z) such that

(5.22) If(z)l- O(e’
for every a >0.

The family is dense in ff, for the even polynomials are in .
PROPOSITION 5.8. For all complex w,

(5.23)

Proof. Using the standard estimates of the Bessel functions, we have

If( z )I I(zW) 12K.(Izl) o( e 21(1q-a) )

for every a> 0. Thus the integral (1.10) which gives the norm off(z)l(z) converges.
The family simplifies the presentation of the inverse operator U

Theorem 5.2 suggest that U should be given by the integral equation

(5.24) U-’f. (x) fcU(z,x )f( z ) din,( z ).

Since U,(z,x),, the integral does not necessarily converge. However, if f, we
have the following result.

THEOREM 5.9.1ff= ,az2fro, then

(5.25) U,-f.(x)=fcU,(z,x)f(z)dm,(z)- ahn,(x)-(x ).
n-0
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Proof. Using the standard estimates for the Bessel functions we have, forf,
U,,( z, x )[ If( x )IK( [zl 2) -< Me-(’-x’zl

for every a >0. Thus the integral (5.25) converges locally uniformly and absolutely, and
therefore the following interchange of integration and summation is valid. We have

b2.(v) n=O (v)

X a.h.,(x),
n--O

(6.5) Af( z ) . 4n n + v--- anZ
n--O

Moreover,

by Theorem 5.2 and (3.8).
COROLLARY 5.10. Iff , then

(5.26) U-If. (x)- L.i.m. fcU(,x)f,,(z)dm(),
where the sequence { f,, } C and converges to f in .

This is clear since is dense in .. Omtrs ff. Since has a reproducing kernel, each operator on has in
general an associated kernel, whence an operator on is given by an integral equation
with a suitable kernel. The generalized Schr6dinger radial kinetic energy operator
(), the operator o[ multiplication-by-z, and functions of these operators are studied
in this section.

The mapping U induces an isomoNsm between the linear operators on and
those on . The induced mapping is also unitary on the bounded operators. The
correspondence is given by

(6.1) VvTU21-
and

(6.2) U; ITU T,

where T and are operators on and , respectively.
In our study of A and z 2, we need the following identity.
THEOREM 6.1. Iff( Z ) a,z" , then

(6.3) [[z2f(z)ii-llAf(z)ll2+b21lfi[
n:0

where both sides either have the same finite value or are infinite.
Proof. Letf with Ilfll ,-E,=oa,b2,(u). Then zf(z) E"=oanz2("+ ), and

(6.4) liz2f(z)l[- E [a.12b2(.+l) E 4(n+ 1) n+v+ lan[ b2n"

n=O n=O
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and therefore

(6.6) 4n n + u--- la.I
2

b2 )

4n n+v-- b2n,
n=O

Since 4(n/ 1)(n+ v+1/2)-4n(n + v-1/2)+ 4(v+1/2)+ 8n, it follows that

IlzV(z)ll2-11A 8 2 nla.lZbz.(")
n--O

Certainly, z2f( z
oy. Then by (6.6), Y4n(n+v+1/2)lanl2b2n(v)<oe, which implies that 8Ynlanl2b2,(v) is
finite. It follows that z2f(z).

Using induction, we obtain the following extension of the theorem.
COROLLARY 6.2. For every positive integer k,

k

(6.7) iiz=,f(z)[12=
/=1

+b2[Ifl[+8 2 n X b-t-llak-ll2b:n
n=0 1=0

where aj with a negative subscript is equal to zero.
We need the following elementary lemma, which is the analogue of a result of

Bargmann [2] for ordinary Fock space, and which holds in any reproducing kernel
space (apart from the assertion of local uniform convergence).

THEOREM 6.3. Let (f,} C3 be such that:
(1) IIfll<_Mfor somepositive M and every n;
(2) (fn(z)) is convergent for all zC.

Then (f} has a weak limitf, and (fn(z)) converges locally uniformly to f(z). If,
in addition,

(3) lim IILIl -Ilfll ,

then the sequence converges to f in .
DEFINITION 6.4. Operators Q2 and are defined forfby

(6.8) (Q-f )(z)=zZf(z) if z2f(z),
and

(6.9) (,f )(z)--Azf(Z) if Azf(Z),
where Az=d/dz + 2u/z d/dz.

Let D(Q2) and D(%) denote the domains of Q- and @, respectively.
TnEOgEM 6.5. The operators Q and @ are closed densely defined operators on

such that

(6.10) D(Q)=D(@),
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and

(6.11) @,_Q2 and (Q2),_,.

Proof. Clearly, Q2 and (R) are densely defined, for the set of even polynomials is
contained in each of their domains. Let ((f,z2fn)) be a sequence in the graph of Q2
and let (fn,zEfn)(g,h)C3X6"f. Now limlll--llgll and limllzEf.ll-Ilhll. Since
strong convergence implies pointwise convergence, we have, for every z C, h(z)--
limz2f,(z)=z21imf(z)=z2g(z). It follows from Theorem 6.3 that Q2 is closed.

By Theorem 6.1, we see that D(Q2) D((R),).
Let gD((Q2)*). Then there exists a h, such that

(6.12) (z2f(z)lg(z))- (f(z)lh(z))
for everyfD(Q2). Let g(z)-,gnz2n and h(z)-,hnz2n. Then by (6.12) we have

2 ann+lbz(n+) anfinbzn.
n=0 n=0

In particular, taking f(z)-z2n, we get gn+lb2(n+l)-hnb2n, and therefore hn-
4(n+ 1)(n+v+1/2)g+. Hence h(z)--Ag(z) and gD(). Hence

D((Q2)*)CD((R)) and

Since (02)* is densely defined (even polynomials cD((Q2)*)), it is also closed. Next
we letfD(Q2) and gD((R)). A simple calculation shows that(z2flg),--(flAg), and
therefore gD((Q2)*) and (Q2)*g-Ag. Thus (R), c(Q2)*, which implies that (Q2),
(R),, and therefore (R), is also closed. Finally (R),_(Q2)**_ Q2 since Q2 is closed.

PROPOSITION 6.6. The operator Q2 has an inverse on 3.
Proof. By Theorem 6.1, we have

IIQV( )I!
?,,b:(’)llfll.

Therefore Q2f=0 impliesf= 0. We have domain (02)-1= Range Q2 and (Q2)-Q2f=f
for everyf D(Q2).

Let T denote an arbitrary densely defined operator on "3 with domain D(T), and
let M(z,w) be a function defined on C C such that M(z,w) belongs to 0-)-, for every
w_C.

DFINITION 6.7. The operator T is said to correspond to the kernel M(z, w),
written T,-,M(z, w), if for everyfD(T)

(6.13) Tf ( w) (f( z)lM( z, w)),,.
T is said to correspond to M(z, w) in the maximal sense, written TM(z, w), if D(T)
consists of all f in such that (f(z)lM(z,w)) is again an element of 0-)-, when
considered as a function of w, and if for everyfin D(T), (6.13) holds.

Bounded linear operators always correspond to kernels in the maximal sense. To a
given kernel there is a unique operator which corresponds to it in the maximal sense.

The following well-known properties hold for an arbitrary reproducing kernel
space. We state them for .

PROPERTIES 6.8. Let TM(z, w).
(a) If T* is the adjoint of T, then T* M*(z, w)=M(w, z).
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(b) If T--MI(Z,W) and T2--M2(z,w), then

r,r . --M( z, w)- ( Ml(s, w)lM(z,s )).
(c) If T-M(z,w), then T=T* is equivalent to M(w,z)=M(z,w), that is, the

Hermitian symmetry of the kernel M(z, w).
(d) If TM(z, w), then T is positive if and only if M(z, w) is a positive matrix.
(e) T--M(z, w) if and only if the reproducing kernel Cv(z, w)=Iv(z) belongs to

D(T*) for every w in C and M(z,w)= T*v(z,w).
See Aronszajn [1, p. 371] or Meschkowski [17] for the general theory.

Let L be a unitary operator on v, that is, LL*-L’L= I. By properties (a) and (b)
we have

(6.14)

where

Iv(z) f.L (s, w)L(z,s )dm v(s )

LL( z, w ) L’I(s) ( L’I(s)lI(se))- (I(s)ILI(s

This is an analogue of Bargmann’s result on ordinary Fock space; see [2, p. 195].
DEFINITION 6.9. Let and let denote the operator of multiplication by (z)

on v, that is,

ck(Q)f(z):dp(z)f(z) if fv.
By Proposition 5.8, ,(Q) is densely defined, for the/-functions are in its domain.

DEFINITION 6.10. Let , o. We define ,((R)/2) on ’-f by

(6.15) q((R),I/2)f. (w) :fc#(z)Iv(w) dmv(z)
where the domain of t(@:/2) is the set of all f in v such that the function given by
(6.14) is again in v. Thus k((R)/2)#(z)l(z)-M,(y2)(z, w).

If (z) is an even polynomial, then our definition agrees with the usual definition
of ,(A ). Since o, the integral (6.14) converges for all f v-

Taking f(z) l(Sz) in (6.14), a calculation shows that

(6.16) 12l(az)#(z)l(aS)dm,(z) dm,(w)-I#(a)121,(lal2).

Consequently, the/-functions are in the domain of g,(/2), and therefore ,((R)1/2) is
densely defined.

TnEOmM 6.1 1. Let . Then
(a) (Q) and ((R)l/2 ) are closed operators,
(b) (Q).=#((R)2/2) and @((R)2/2).=#(Q),

and
(c) k(Q)--M,(Q)(Z, w)=()I(z).
Proof. First of all we will show that (Q) is closed. Let ((fn, fn)} be a sequence

in the graph of (Q) such that (f,f)(f,h) in v 6v. By inequality (3.11), f,(z) and
(z)f(z) converge pointwise to f(z) and h(z), respectively. It also follows that
(z)f(z)-(z)f(z) pointwise. Using Theorem 6.3, we get h=kf, and therefore the
graph of (Q) is closed.
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Next we let {(f, ((R)2/2)f)) be a sequence in the graph of O(@l/Z) which
converges to (f, h) in . .. Then

since strong convergence implies weak convergence. By inequality (3.12), we also have
,(@l,,/)f,,.(w) h(w). Hence

It follows thatfD(q((R)/2)) and h--((R)l/2)f. Thus q(@/2) is closed.
Further,

t, . z, w =t, (w,z )= ,(w)(z).

Thus we find that for all f D(q,(Q)),

(f(z)lg()l(z)),-#(w)(f(z)lI(zW))
=#(w)f(w),.

By Property 6.8 (a), we get g((R)2/2), (Q). Likewise (Q)* (2/2). Part (c) of
the theorem is clear.

POOSITION 6.12. If%(z ) l(az), a C, then

a(@/2)f’(w)-(f(z @a)ll(z)),
for allfD(,(@2/2)).

Proof. We have % . Therefore forfD(a(@/)), with f(z) anz2n, it fol-
lows that

(2/)/.(w)-(/(z)l(z)(z))
(/()l(z( ))),

= (aw

a,(aw)

=/(a@w)..
Hence f(a w) (f(a z)lI(zW)) and the proof of the proposition is complete.

7. Commutation relations for D and x. A simple calculation shows that the
commutator of and x is given by

d(7.1) [a,x] -x-x:-a(v+)I+4x.
In this section we work with general analogues of and x on a general Hilbert space.
Due to the difficulties with domains of definition of unbounded operators, some of the
following results are of a heuristic nature. We shall formally treat the operators like
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bounded operators and use a formal algebraic procedure to derive the results. In most
cases, the stated equality of operators is equality on a linear manifold in the intersec-
tion of the domains of the given operators.

Let P and Q be operators on a Hilbert space which satisfy the Fock commuta-
tion rule,

[P,Q]-1 onD(PQ)f)D(QP),

and suppose Q has an inverse. Let , >0. We define

(7.3) D-p2+2,Q-1p,
and

(7.4) B-QP.

PROPOSITION 7.1. Let ( P, Q) satisfy the Fock commutation rule. Then

(a)
(b)
(c)
(d)
(e)
(f)

[P, QZ]-2Q,
[P,Q]-ZP,

[P:,Q2]-2I+4QP,
[D,, Qg] -b:(,)+4QP,
[Dr, Q:] -nb2(,lD;-’ +4(BD;-’ +D,BD;-:+ +Dn-B).

Proof. (a) through (d) follow by elementary calculations. We will consider (e). Now

D,, O:] (Pg- + 2Q-)Q__ 02(p:+ 2,O-P)
P:Q: + 2uQ-PQ:- Q:P:- 2uQP

=2I+4QP+2v(Q-PQ:-QP) by (d)

=21+4QP+2u(Q-(l+QP)Q-QP) by (7.2)
=2I+4QP+4uI

=b:(u)I+aQP.

Using (e), we find that

Let A -[D, Q: ]. Then by induction we obtain

(7.5) [ D,’, Q:] -AD: + D,,AD:-2+’" +D 1A.

Now k - 4DBD"-k-DAD ’- b2(,)Dn + Substituting in (7.5), we obtain

[D’,Q2]-nb:(u)D"-’ +4(BD’-’ +D,,BD"-2+ +on-lB),
which is (f).
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THEOREM 7.2. We have

(a)
(b)

[D,B]-2D,

DkBD-k- BD- +2kD-1

[D:, Q2] (4n(n + ,- I/2)+4nB)D:-,
for every positive integer n.

Proof.
Qe Z ,Qe-

[e 2, O] e+ 2vO-’POe- 2vQPQ-’P
=2p2+2,(Q-t+P)P-2,QPQ-tP by 7.1 (c),

= 2P2 +2,Q-P+2P2-2(PQ-I)Q-lp
2p2+ 4vQ-P-2D.

Part (b) easily follows from (a).
Using (b), we obtain

n--! n--I
k n +2kD-)D’BD, -k- E (BD:-k=0 k=0

nBD- +n( n -1)D ’.

Consequently,

[Dfl, Q2] _nbz(,)D-+ {4nB+4n(n- 1)}Dn-

=[4n(n+v-1/2)+4nB]Dn-I,

which is part (c). We note that AxX2"--4n(n+ ,-- 1/2)x2fn-).
Let

a2n
l,(az)

b2,,(,)
z 2"

=0

Since I(0)-1, I is a unit in the integral domain of formal power series over C. We
define

(7.6) I’(az)t- ’)-- n=o 2"(a)b2n(’’--- z 2,,

Then ’o(a) and

o a 2n o

1-1( az )l( az )(- )- -2 z2n
n=0 n=0

Z

b2, 2k(a)a2,,-,)
k=O b2(n-k)b2 -"
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It follows that

(7.7) X r(n-c+v+l/2)F(k+v+l/2)2k(a -0
k=0

for n > Thus {,(a)}.=0 is a sequence of even polynomials in a, determined by

(7.8) 2,(a)-- (--1) k F(n-k+,+l/2)F(k+v+l/2)k=0

with (a) 1.
The function I,(az)-) occurs in the generalized Weyl relations for Bessel func-

tions.
LEMMA 7.3.

2a2B[I,,( aD/2 ), Q2] a2I,,( aD/2 ) + 2v+ I,+ l( aD/2 ).

Proof. Using part (c) of Theorem 7.2, we obtain

[D 4n +-1/2),.,.D_ 4nB
_

Q2 (n v

b2, "+’,2,, D" I.

Summing, we get
oo 4nD:-.__._[l,(aO/2),Q2]-a21,(aO/2) +B X b2"n=0

--a
2a2B [ ar}l/221,,(aD/2)+2v+i Iu+ 11kt*-"v ).

THEOREM 7.4 (generalized Weyl relation). Let a, b C. Then

l,,( aD2/2 )l,, (bQ)2 (ab)2 2(ab)2

)(-)2v+l I’(aD/2 BI+l(aD/2)

Proof. Using Lemma 7.3, we obtain with the aid of (7.5)

(7.9) I,(aD/2)t-)Q21,(aD/2)=Q2-a2 2a2 I,(aD2/2)f-l)2,+ BI,+ ,(aD/z ),
which implies

(7.10) I,,(aD/2)’-"Q2"I,,(aD/2) {Q2-a2-
Multiplying by b/bzn(v) and summing yields

(7.11)

2v+2a211"(aDl/2)BI’+l(aD2/2)) ""
I,( aD2/2 )(-!’i,( bQ )I,( aD2/2)

=I, (bQ)2 (ab)2 2(ab)21,(aDJ/2)(-l)
2v+l Blv+l(aDlv/2)

and the theorem follows upon multiplication by l,(aD2/2 ),
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COROLLARY 7.5.
(a)

exp(bZQZ)I(aDl/2)
I( aDl/2 )exp{( bQ)2_ ab )2_ 2(

2,+1
ab )2Ir(D2/2 )(-l)B Ir+ 1( O2/2 )}o

(b) iff(z)_E 2,n=oa,z is an entire function, then

f(bQ)l,(aD/2

l(aDl/2)f (bQ)2--(ab)2--2(ab)21(aD/2)(-l)Bl+l(aDl/2)
2,+1

Proof. These relations follow from (7.10).
The final results of this section are based on the work of H. Tillmann; see [19]. Let

P be a closed densely defined operator on a separable Hilbert space with adjoint
P* Q, and suppose that P, Q ! on 631L= D(PQ) t3 D(QP). Then the numbers oper-
ator B-QP is selfadjoint and has a pure discrete spectrum sp QP= (0,1,2,. }, and
each eigenvalue has the same multiplicity.

Let

(7.12)

Then 631L,- (flPQf=(n+ 1)f} and

(7.13) P" 6"JIL,+ 31L, and Q "6n’-’) 6"n+
are one-to-one, onto, for each n-0, 1,2,.... If we let E(n) denote the projection of

on 63]L,, then the spectral resolution of the numbers operator is given by

(7.14) QP=fXdE(X)-
n=0

Let (e,,o} be an orthonormal basis for )ILo- (fgClQPf=O}. Then the vectors

(7.15) e,,,= (n!)’/2
Q"e,o’ n 1,2,

exist, {e,, }, is an orthonormal basis for 633Ln, and (e,,),, is an orthonormal basis for. Furthermore, the operators P and Q are determined by

(7.16) ee. nl/2e n-,, Qen-(n+ 1) ./2 ea, n+
with e, 0, for n 0, 1,2,.. -, and D(P) =.D(Q) is given by

(7.17) D(Q)- (k+ l)2l(fle,k) <o
a,k

THEOREM 7.6. Let D be given by (7.3). Then Q2Dr has an extension to a positive
selfadjoint operator, which we also denote by Q2D, with

(7.18) Q=D-fx(x+2u-1)dE(X)- 2 k(k+2,-1)E(6)ILk),
k=0
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and

Proof. Since D(D)CO, we have D(Q2D)CD(D)C 0. However,

Q2D c Q2p2+ 2uOP- Q(PQ- I)P+ 2uQP- (QP )2 + (2g- 1)QP.

Further, f(X)-X +(2-1)X is a Borel function on (-, ). Thus by the operator
calculus (see Nagy [18]), we have

(7.o) f(o)=ff(X)dE(X) 2 (+e-)E()
k=0

(Q?)2 + (2,- 1)QP- Q2D,.

By the operator calculus, it also follows that the domain of QD is given by (7.19).
Proceeding in the same manner, we obtain the following result.
Cooga 7.7. e have

with

that

D(D,Q-) E ((n+2)(n+2v+1))2l(fle,) <o

Writing f(,)-)2+ (2v 1),-(,+(v- 1/2))2-(v 1/2)2, we obtain from (7.18)

v-- +Q2D,- E k+ v-- E(,).
k=0

Thus Q-D, is a generalized correlation of the numbers operator B-QP.
Finally, the elementary equality

x2Ax(v)x’-k(k+2v 1)x*
relates the eigenvalues of QD with the Bessel coefficients.

8. Generalized Fock spaces of several variables. The generalized Fock space the-
ory presented in this paper occurs naturally in n-dimensional systems invariant under
the orthogonal group. In systems presenting a multiple orthogonal invariance, the
following product Fock spaces occur.

Let n be a positive integer and let E-(v,v,. .,v,) with v>0 for all k. We let
m (m, m_,. .,m 9L", where 9L denotes the nonnegative integers. We define

m

1-I b2m,(,/ )b2m( )
,=

where

b2m,(Vl)__22m,ml! r(m,+ v,+ 1/2)
r(v, + 1/2)
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is the Bessel coefficient,

(8.2) K,(z)-K,,(zl)K,2(z/)... K,.(z, 1,

and

(8.3) l,(z)- I,(zl)l,2(z2)... l,.(Zn).
We also introduce the product measure

(8.4) dm,(z)-dm,,(Zl)dm,(z2).
The Fock space 9, is the Hilbert space of "even" entire functions on C" with inner
product given by

(8.5) a,.,,(z).

If f, g , have Taylor series expansions

(8.6) f(_z)-- a,,,z_ 2- and g(z_)- c,,,z_ 2-’,
m gC m.9"t,

2m., thenwhere_z2" z " z z,

(8.7) (flg)_- ] amb2m(_).
mO’

The reproducing kernel in 9", is given by

(8.8) ,(z, w)- l,,(z,,)l,(z22).., l,n(Znn)--’I,(g_’_).
We have

(8.9) f(w)-(f(z_)lK,,(z,w)),, for all wC",

and therefore the product of the modified Bessel functions is the generalized Dirac
delta function in 9,. Moreover, (f(z)lg(z)),=f(Alf2)g#(Z)lz=o.

Further, the bsic inequality

(8.10)

is also valid. If f,, then the growth of f is <(2,1/2) where 2-(2,...,2) is the

associated order and 1/2-= (1/2,..., 1/2) is the associated type.
We define

(8.11)

(8.12)

2m.f(z)"z,(8.13)
Letting 1 (1, 1,..., 1) %", we have that

(8.14) ( ,_ .f( z )lg( z )),, (f( z ) Iz -:Z-g( z)),,;
thus A1/2 and z2 are adjoints in .
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Let dtx(x_)=dtt(x)dlx2(x2)...dl,(xn), and let -L2[R+,dt(x)]. Further,
define generalized Laguerre functions by

Then the (h_,,_lm q)Ln } form a complete orthogonal family in

_
and

(8.16) f _,m_+hm_,_(x_)h,2_,_(x_)dl.(x)-b2n_(e)8n
Let

(8.17) Up( z_, x_) = e-<_"_-2.)/4j( z_.x )

where z_.z-z21+z22 + +z2,, in the exponential. Then for all zC and xR_, we
have

hm,,(x)

and

(8.19)

Finally we let

l,(z_.w) =fR U(z_ x) U(w, x) d/x,(x_).

(8.20) f(z)=fR U(z,x)(x)d#(x)- U,,.(z_) for all%.

Then Uk=fis a unitary mapping of 0C onto and Uhm ,:g2m.
With these basic definitions and Yesults,-the mdin-suits of this paper can be

extended to .
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AN INEQUALITY FOR THE BESSEL FUNCTION J,,(,x)*
R. B. PARIS

Abstract. An inequality for the Bessel function J,,(ux), u>0, 0<x_<l involving both upper and lower
bounds is derived. Inequalities for the modified Bessel functions are also obtained.

Most of the known inequalities for the Bessel function J,,(,x), when the argument
is less than the order, are upper bounds. The purpose of this note is to draw attention
to the simple inequality involving both upper and lower bounds

J,(,x) e,(i-x)(1) 1_<_< t,>0, 0<x<l

The inequality (1) is quite sharp in the limit x--, 1, although it does not actually
provide any useful information when x= 1. This results, of course, from the fact that
the expressions for the bounds themselves contain the term J(,). Kapteyn’s inequality
[5,p. 268] (extended to ,>0 by Siegel [3])

xexp (,(1--X2) I/2 )J,,(’x)< ,>0, O<x_< 1,

for example, is not particularly precise as x--, 1, though it provides a better upper
bound than (1) in the limit x 0 whenever 2J,(u)> 1, or roughly when ,>-32 The
inequality [5, p. 49]

(,x/2)"L(,’x)< ,,>0, x>0

is similarly not very sharp for x (especially for large ,), but is in general more
restrictive in the limit x--,0 than the right-hand side of (1). However, as the chief
interest in such inequalities is for functions of argument almost equal to their order, (1)
would seem to be of possible interest.

To derive (1), we first observe that

XP J ,+I(PX) XP(2) 0<2 +2< <1’ O<x_<l.

The lower limit follows from the recurrence relation J,(z)-k-J,+2(z)-2(g-k 1)J,,+ l( Z )/Z
and the fact that both J,,(z) and J+2(z) are positive for ,>0 and 0<z_< 1, since the

*Received by the editors June 15, 1982, and in revised form September 13, 1982.
*Association Euratom-CEA, D6partement de Recherches sur la Fusion Contrbl6e, Centre d’Etudes

Nuclaires, 92260 Fontenay-aux-Roses, France.

203



204 R.B. PARIS

smallest positive zeros j, and j+2,1 of J(z) and J+2(Z) respectively satisfyj+2,1 >Jr,l
> . The upper limit can be deduced from Sonine’s integral [5, p. 373]

J,+(,x)=,x a,t,x sinO)sin+ OcosOdO

)for/2sin+< vxJ,,(vx 0 cosO dO

_.- x J(x) ,>0 O<x<_ 1,
,+2

since J(z) is an increasing function of its argument for 0<z< ,.
Then using the recurrence relation J,,+l(z)/J,,(z)=,/z-J,(z)/J,,(z), we obtain

from (2) the result

o<l-J(r’x-’----’)’<l, ,>0, O<x<l,
x

where the prime denotes differentiation with respect to the argument. Integrating over
the interval [x, 1] then yields

o<

whence the inequality (1) immediately follows. This result can be sharpened by employ-
ing the more restrictive bounds in (2) to find

V2(1 --X2) --<exp v->0, 0<x_<exp 4v+4 x"J,,(v) 2v+4

It is possible to establish in a similar manner the following inequalities for the
modified Bessel functions, using the results O<I,,+l(X)/I,,(x)< for x>0, ,>-1/2 [4]
and K,,+l(x)/K,,(x)> for x>0, v>-1/2. This latter inequality follows immediately
from Schlafi’s integral representation for K(x) [5,p. 181]

K,,(x ) =f0exp( x cosht )cosh ,t dt.

Then integrating over the interval [x,y], wherey>x>0, we find

(3) K,,(y)
>eY-X y>x>0, ,>-

and

(4) 7 eX-Y<i(Y) 7 y>x>O, ,>-.
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The inequalities (3) and (4) have been derived previously by Ross [2] and Bordelon
[1] by different methods. It should be remarked, however, that the upper bound of (4) is
sharper than that given by Ross, since it does not contain the additional factor
ey-x> 1.
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ON THE SQUARE
OF THE ZEROS OF BESSEL FUNCTIONS*

/kRP/t,D ELBERT AND ANDREA LAFORGIA:l:

Abstract. Letj, denote the k th positive zero of the Bessel function J(x) of the first kind. We define the
function j for all s>0 in such a way that j is the kth positive zero of the cylinder function C(x)=
cosaJ(x)-sinaY(x) by some a and k, for 0---<a<r and k= 1,2,.... Let xo=inf{; x>0,j> where
the (prime) indicates the derivative with respect to v, then we find 0<x0< (for ,-->0).

Our main result is that the functionj is a convex function of , for ,->0 and x-->s 0. This result proves
also the conjecture of J. T. Lewis and M. E. Muldoon [SIAM J. Math. Anal. 8 (1977),pp. 171-178], thatj2, is
convex for v_>0 and k= 1,2,.... Finally we give some applications of this result and we show that the
validity of this convexity cannot be extended to the whole interval -s-<,<

1. Introduction. Many authors have studied the monotonic properties of the k th
positive zero Jk of the Bessel function J(x) of the first kind where k-- 1,2,.... More
precisely, R. McCann in [6] and J. T. Lewis and M. E. Muldoon in [4] showed
independently that the functionjk/V decreases as , increases and ,>0. Later, E. Makai
[5] proved the same property with an ingenious application of the Sturm comparison
theorem. In [4] the authors conjectured thatjg is a concave function andj2 is a convex
function of v, when ,>0, at least in the case k- 1, and they showed the convexity ofj
only for 3_<,< o. One of the present authors proved in [1] thatj is concave on the
extended domain of the definition ofjk, -k<_,<.

In this work we generalize the notation ofj toj with x>0 and real. Our main
result is that functionj2 is convex with respect to , for ,_>0 and x_>x

0 with some x0,

0<go< 1. This result cannot be extended to the whole domain of the definition ofj,
at least not for k--2, 3,.... Finally we give some applications of the results obtained
here.

2. On the inequalityj’-dj/dv> 1. From [8, p. 508] we know that

d. f0(2.1) -vj,,,-2j,,t, Ko(2j,sinht)e-2"tdt, k-1,2,-..,

where Ko(u is the modified Bessel function of order zero, and it has the following
integral representation [8, p. 446]"

(2.2) Ko(u) e-’cshzdz.

For u_>0 we use ck to denote the kth positive zero of the general cylinder function

C,,( x ) cos aJ,( x ) sin aY,,(x ),

where ct is fixed, 0<_ct<r and Y(x) is the Bessel function of the second kind. The
definition may be extended to negative values of v in such a way that c varies

*Received by the editors September 18, 1981, and in revised form July 16, 1982. This research was
supported by Consiglio Nazionale delle Ricerche, Italy.

rMathematical Institute of the Hungarian Academy of Sciences, 1053 Budapest, Redtanoda u.13-15,
Hungary.

*Dipartimento di Matematica dell’Universith, Via Carlo Alberto 10, 10123 Torino, Italy.
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continuously with u, c.k 0 when u a/r-k, and on the interval

--k<u<--k+l,

Ck is the first positive zero of C(x); see [8,p. 508; 2].
The function c,k satisfies the differential equation (2.1) if we change j,, to c,k

there. This fact suggests the following generalization: let j, be the solution of the
differential equation

(2.3) -vj-2j Ko(2jsinht)e-Ztdt

for x>0 with the boundary condition

lim j(,) =0.
--x+0

Then for x--1,2,.., we obtain the known functions j,. If k-1 <x<k, we have
j,-ck with a=(k-x)rr. For example, j,.k_/2=y,, k-1,2,..., where yk denotes
the kth zero of Y(x). It is not difficult to show that the right-hand side of (2.3) is
Lipschitzian with respect toj forj>0. Concerning the casej:0, we have lim_._+0j
--0 for every x>0, and hence the relation lim,_._+0j,,=0 implies x’=x. Therefore
we have the uniqueness of the solutions for any initial value problem. Moreover this
uniqueness implies that if 0<’< x", then

In what follows we shall need the next result.
LEMMA. If 0 <-- ,< o andj, >_ , + 1/4, then

-j,> 1.

Proof. Let us consider the domain D-((,,j); 0_<v<, j>_,+1/4). By (2.3) we
must show that

(2.5) I-I(,,j)-2j Ko(2jsinht)e-2"tdt> l, if (v,j)D.

Making the change of variable u-- 2j sinh t, we have

(2.6) I=fo Ko(u) e-2rarcsinh(u/2j)du.
+ u2/4j2

On the other hand we know [8, p. 388]

oKo(
u )e-u du 1,

and hence it is sufficient to show that

e- 2,arc sinh(u/2j)

1 + u2/4j2
>e foru>0, (,,j)D.



208 /i.RPAD ELBERT AND ANDREA LAFORGIA

This is equivalent to

+1 log(Ix+X2) <j’

where x-u/2j. Since for x>0

lo (x+
x

<1;
log(l+x2)<1,

x

the lemma follows.
By computation we could provide a larger domain for the validity of the inequality

j’> 1. Let us choose an initial point (0,jo) D. Then the solution j=j(v; 0,jo ) remains
in D for all v>0 and this solution can be continued to the left until v= -x(jo), where
lim_-(o)+oj(v; 0,jo) = 0. Hence we havej(v; 0,jo) =j,(o).

On account of the uniqueness of the solutions of the differential equation (2.3) we
have that the function r=r(Jo) is an increasing function of Jo. By the lemma we
conclude that (r,L,,/4))D for all _>0 and therefore j:,> for all x_>(1/4). Since

Jo = 2.40... > 1/4, we have 0<(1/4)< 1. If o is defined by

(2.7) xo=inf{g; x>O,X> 1, for all u>O}
then we get 0_<to<r(1/4 ). By (2.6) we have limj_.+oI(O,j)=O; hence by (2.3)j’(0,A)<
ifjo is sufficiently small and therefore to>0.

Remark 2.1. A consequence of the definition of ro by (2.7) is

(2.8) L,>jo+ v, v>0, x->Xo.
This inequality generalizes the similar result in [2] obtained only for k= 1, 2,...

Remark 2.2. Concerning the role played by xo we have

(2.9) lim 1, r-->0.

In fact, by (2.8) and (2.4) the functionj, satisfies the inequalities

Jo+ v<j<j,tl+
where [x] denotes the greatest integer less than or equal to x.

Tricomi’s asymptotic formula [7] states for k= 1,2,-..

.k P’+" ak pl/3 d- O( p- /3 )

where ak is independent of v and then (2.9) follows. On the other hand by (2.5) one has

I(v, v) 2VfoKo(2, sinht)e-tdt

and recalling that the function Ko(u) is decreasing as u increases we get

I(v,v)<2v Ko(2vt)e-2"tdt Ko(u)e-Udu 1.

Hence the solution j(v; vo, vo) cannot cross the line j- v any more; thus j(v, Vo, vo)< v
for v> vo and j( v; vo, vo ) =j.,z with some g (vo )< o.
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3. The main result. J. T. Lewis and M. E. Muldoon [4] proved the convexity of the
functionj for v_> 3. Now we prove the following more general result.

THEOREM. Let the functionj be defined as above. Then j2 is a convex function of v
for v >_ 0 andfor every r >_ o.

Proof. It is sufficient to show that

(3.1) T +jj">0.

Using the differential equation (2.3) we have by differentiation

(3.2) j" 2 j’foOKo(2j sinh ) e- 2vt dt 2t- 2jfo’K(2j sinh )2 j’ sinh te-2t dt

4JfoKo(2j sinh t)te-2t dt.

In view of (2.3) we can write the three terms on the right-hand side of (3.2) in the
following form

jr2
(3.3) j" =--:-+ ll I2.J

By the substitution u-2j sinh the integral I becomes

u
Ii--2J’fog(u)dp(’ ) du,

where

2 arc sinh

,(x) -xe
il+x

An integration by part gives

(3.4)

with

(3.5)

and then

Recalling that

(u)I,-2j’ Ko(u)k 0-7 r(u)’l" u
du,

1-2vxi+x
(1 -}- X2)3/2

2 arc sinh xe

e 2 arc sinh

qV(x) < <1, x>O,
(1 + x 2 )3/2

O(log(1/x)),
Ko(x)-

o(e-X),
x>O,
x>>l,
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we have that the first term in the right-hand side of (3.4) is zero. Then we get

(3.6) I,---fo K(u)+’(- ) du"

Similarly, for I2 we have

arc sinh( u/2j)(3.7) I2--2foKo(u) il + u=/4j2 e-2arcsinh(u/2J)du--17 fog(u)u/( u
du

where

arc sinh x 2arc sinh
X e

il+x 2 x

It is easy to see that

hence

(x)<(O)-- 1, x>O,

(3 8) I=<1- foKo(u)udu-1j j’

where the value of the integral may be found from [8,p. 388]. By (3.3), taking into
account (3.6), (3.7), (3.8) andj’> we have in (3.1)

j2 u )
and therefore it is sufficient to show that

I3=j’-foOKo(u)dp’( u
du>O.

By (2.6) and (3.5) we have

13 foOCg(u) e_2varcsinh(u/2j,

+ U2/4j2
1+ 1--2it(u/2j)ill + U:/4j:+U2/4j-

where the quantity between the brackets is clearly positive for u>0. This completes the
proof of the convexity ofj2 for x>_x

0 and v_>0. D
COROLLARY. In the particular case x--k-1,2,.-., the function j2 is convex for

v>_O.

4. Concluding remarks. Since j2 is convex, the graph of jf lies below the chord
0 .2 p, :2joining the points (,J0) and ,j.). This gives the inequality

2 wjgx
It*J" -Jg" <J* 0<It<

It It*

i.e., the function (jz_j)/It increases as It increases, for It>0. Next we consider the
0 .2 .2chord joining the points (,J0) and (1/2,Jl/2,) on the graph ofj2 as a function of It. The
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convexity of the graph gives

fi2 <jff,, + 2v 2rr 2 -jg,,

where the inequality becomes equality only for v-0 and v-1/2. Similarly, by the
convexity offi2 it follows that

j2 >jo2,, + 2Jov P>O,
0

and slncej,> for -->r0,

j’ >j,, + 2 jo,, V v>O.

The convexity offi2 can be used to find many other inequalities too.
Finally one might ask the natural question, whether the validity of the convexity

could be extended to the whole domain of definition orris, i.e., to the interval (-r, m).
Let us consider only the cases when r is a natural number, i.e, k 1,2,-... Then for
the zerosLk of the Bessel function J,(x) we have [8, p. 15]

O-(v+k)F(v+ l) J(fik)

(, 2J,,k/2)
=(v-+-k) 1-1!(v+l) +...

2kJ,k/2)
k!(v+ l). (v+k- l)

(’*/2)2(k- 1)

Hence in the right neighborhood of v- -k we have

(4.1) (Lk/2)2k

v+k

J,k/2) +....
(k+l)(u+k+l)

--k’(k-1)’(’-e)(1-)"" (1-k_i)
(.k/2)2

1+--+...+
k-l-e

2(k-- 1)(Jvk/2)
(k-1)!(k-l-e)...(1-e)

2S,k/2)
(k+ 1)(1 +e)

where e- v + k.
Letting e--, 0 andfik 0, we obtain

2kJ,,k/2)
lim

,,-k+O v+k

We can write this relation in the form

--k!(k- 1)!.

2

-[k!(k-1)!(v+k)]’/k[1 +o(1)], v -k.

In the case k-2, 3,-.. by (4.1), we have the more precise approximation

J"k/2) =k’(k--1)’ l+
2k

v+k k2-1
[k!(k-1)!e]’/k[1 +o(1)] }.
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Hence

--[k!(k--1)!(,+k)]/k+k22 [k!(k-1)!(,+k)]2/k[l+o(1)]

,-k, k=2,3,....

For k we get

-,+ +- (,+ 1)2[1 +o(1)],

These approximations indicate that the functionj2k cannot be convex on the whole
interval (-k, oo) for k-2, 3,. . Whether the functionj is convex on (- 1,0), too, is
not known, but we expect that it is.
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ERRATA:
AN INTEGRAL EQUATION CONNECTED WITH THE

JACOBI POLYNOMIALS*

B. F. LOGAN"l

In the abstract, (ii) should read

k( ) alt -+ bit -sgn t, Itl>0
and after (ii) delete "nonzero" before "real numbers".

In (1.13), P’/(t) should read P,#)(t).
Equation (2.23) should read

Equation (2.31) should read

-x x k,,#(x)-(-1) (v-m)nxm-nl,,#(x).
For clarity, a "cut" in the integral sign (), should be inserted to indicate a

Cauchy principal value (at t=x) in equations (3.19), the first integral of (3.26), (4.8),
(7.5), (7.7), (7.14), (7.15), (8.61), (8.64), (11.22), (11.23), and (11.24).

In the heading of {}8.5, n should be replaced by v. In the second line of (8.5.10), the
coefficient of xf(x ) should be (2 , -/).

In (10.10) the second factor of the integrand should be (1 + t)t/2-1/4.
On the right in (10.18), the exponent n should be replaced by m.

*This Journal, 14 (1983), pp. 269-322.
Bell Laboratories, Murray Hill, New Jersey 07974.
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FREQUENCY PLATEAUS IN A CHAIN OF
WEAKLY COUPLED OSCILLATORS, I.*

GEORGE BARD ERMENTROUT" AND NANCY KOPELL*

Abstract. A chain of n+l weakly coupled oscillators with a linear gradient in natural frequencies is
shown to exhibit "frequency plateaus," or sequences of oscillators having the same frequency, with a jump in
frequency from one plateau to another. We first show that the equations for the coupled oscillators admit an
invariant (n + l)-toms on which the equations have a special form, one in which an n-dimensional subsystem
is approximately invariant. We then show that when the linear gradient becomes too steep to allow
phaselocking, there emerges a large-scale invariant circle in this n-dimensional system which corresponds to
the existence of a pair of plateaus, and whose homotopy class within the n-toms corresponds to the position
of the frequency jump. Also discussed are the effects of anisotropic and nonuniform coupling.

1. Introduction. We shall study a chain of n + weakly coupled oscillators which
are uniformly dose. For much of the paper, we shall assume that the coupling is nearest
neighbor, isotropic (symmetric), homogeneous in k and linear. Thus, the k th oscillator
satisfies an equation of the form

X,-- F( Xk) + eRk( Xk, e) =--Fk( Xk, e)

where SkRm, F: Rm-’->R and (1.1), with e-0, has a stable limit cycle solution of
period 2r/,00. The full equations are

(1.2) X--Fk(Xk)+eD(Xk+l--23"Xk+Xk_l), Xo--O--Xn+2,

where D is an m m-matrix, e << and 3’-0 or 1. If 3’- 1, the coupling is of the kind
associated with diffusion; if 3’-0, .the coupling is of "direct" type used to describe
some electrical interactions.

Let c0k be the frequency of the limit cycle of (1.1)k. By hypothesis, 0k--00+ O(e).
We first show, in 2, that there is an (n+ 1)-dimensional submanifold of Rm(n+l) which
is attracting and invariant under (1.2). This manifold is an (n + 1)-dimensional torus
Tn+l; we prove that variables 01, 02,-..,0n+1 may be chosen on the torus so that, if

k Ok+l--Ok, then the equations for 01 and the {q’k} take the form

(1.3) O;--s +eH(,)+O(e2),

+’k--e[Ak+H(+k+l)+H(--+k)--H(+k)--H(--+k_l)] + O(e2),
).

Here H is 2,r-periodic and eA k --0k+ ak. The O(e2) terms may depend on all the
variables 0l, ,.-.,0. H depends on D, on the form of the coupling and on the
dynamics of (1.1) in the neighborhood of the limit cycles. Note that the equations for
the (k} are, to lowest order, independent of 01. Thus, through O(e), we may treat the
phase space as T’, with variables tl,""" n"
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216 GEORGE BARD ERMENTROUT AND NANCY KOPELL

The results of 2 are rigorous generalizations of calculations made by Neu [1], [2],
Holmes [3], and Holmes and Rand [4]. Neu’s calculations [1] were for a general pair of
oscillators with diffusive coupling; Holmes and Rand [4] computed q/for a pair of Van
der Pol oscillators, also with diffusive coupling. Holmes [3] worked out examples in
which H() sin q. Now sinq is an odd function of its argument. Also, for two coupled
oscillators, H may just as well be odd, since from (1.5) we have that q/= e[A- 2H0(q)]
+ O(e2), where H0 is the odd part of H. However, H need not in general be odd. In {}2
we give examples to illustrate which features of the dynamics or coupling lead to a
function H which is odd. We compute H for A-to oscillations and Van der Pol
oscillations (in the nearly sinusoidal regime) with various kinds of coupling.

The symmetry, or lack thereof, of H turns out to play an important role in the
behavior of (1.4). In this paper, we shall study only the case H odd; later papers will
take up the effects of lack of symmetry. If H is assumed to be odd, the governing
equations immediately become simpler" letting et and dq/d-(1/e)(dq/dt)
(1/e)q/, to lowest order, (1.4b) becomes

(1.5) -flA+KH(q)

where =(tl,"" ",n)t, A’-’(AI,"" ",An)t H()=(H(ql),...,n(n)) and K is a tridi-
agonal matrix with Kii=-2, Ki+i,=K,+ 1. The parameter fl_R has been intro-
duced, so we may consider (1.5) as a one-parameter family of equations with A fixed
and fl measuring the strength of the "detuning."

We prove in 3 that for fl sufficiently small, there is a unique stable equilibrium
point for the n-dimensional system (1.5) which corresponds to "phase-locked" behav-
ior, i.e., all the oscillators move at the same frequency, with fixed (in time) phase
differences between any pair. (For the full (n + 1)-dimensional equations (1.3), (1.4), the
critical point of (1.4) or (1.5) corresponds to a stable limit cycle whose period is the
shared period of the coupled oscillators.) The main result, proved in 3 and 4,
concerns "frequency plateaus" which emerge for (1.3), (1.4) when the stable critical
point of (1.5) disappears. By a frequency plateau we mean a sequence of oscillators
whose frequency is the same; this does not mean that the phase differences within the
plateau are constant in time. It is shown that when the stable critical point coalesces
with another critical point and disappears (as fl is increased), a large amplitude stable
limit cycle for (1.5) emerges (not by a Hopf bifurcation); this can be interpreted to
correspond to the existence of a pair of frequency plateaus with different frequencies.
The homotopy class of this cycle (as a point set within T") indicates the position of the
discontinuity in frequency. For this we need more assumptions on H (it must be
qualitatively similar to sin q) and A which we detail in {}3. The methods used involve
the construction of a large invariant region for (1.5) on which a set of inequalities hold.
These inequalities are reminiscent of those used by Hirsch [5] in his study of coopera-
tive systems. The proof also requires algebraic results about matrices of the form KA
where A is diagonal; these are given in the Appendix.

The existence of the large amplitude limit cycle for (1.5) is done in 3; the relation
of this to frequency plateaus is discussed in 4. Also done in 4 are a calculation of the
size of the frequency jump as a function of the amount of detuning, and numerical
computations showing the existence of further plateaus as the spread of natural fre-
quencies increases. Section 5 contains calculations concerning related models: we con-
sider the effect of anisotropy in the coupling, and a gradient in the strength of coupling.
For these cases, we consider only phase-locked solutions.
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Other papers treating phase-locking in coupled nonlinear oscillators are [6]-[11].
References [2], [3], [8], [9] deal with more than two oscillators. Of these, the approach of
Holmes et al. [3], [4], [8] and Hoppensteadt and Keener [9] are closest to ours, using
equations governing phase differences. Hoppensteadt and Keener derive their equa-
tions under the assumptions that each oscillator is a perturbation of a harmonic
oscillator. Their analysis then requires them to make further assumptions about the
algebraic relationship of the frequencies; these assumptions are unnecessary in our
formulation. References [1], [2], [3] noted that if the natural frequencies of a pair of
coupled oscillators are too far apart, the oscillators may lose synchrony. To the best of
our knowledge, there has not yet been a mathematical analysis of the fact that, when
there are many oscillators, the loss of synchrony can be local, i.e., the frequency may be
constant over many oscillators.

This paper was partially motivated by certain phenomena observed in mammalian
small intestine, which consists of layers of smooth muscle fiber. It is known that the
muscle fibers support travelling waves of electrical activity which run from the oral to
the aboral end [12]-[15]. These, in turn, trigger waves of muscular contractions [12],
[13] via high frequency electrical spikes. The spikes, which have much higher frequency,
are considered to be consequences of the slow waves, so we are concerned only with the
slow electrical waves.

The connection with the above mathematics is as follows" If a section of the
intestine is sliced into pieces of length 1-3 cms., each piece is capable of supporting
spontaneous oscillations at a constant frequency, with a wave form that is close to
sinusoidal [15]. (The origin of these oscillations is controversial [13].) Furthermore, over
a substantial section of the intestine there is a linear gradient in the frequency of these
oscillations, higher in the oral end than in the aboral. In vivo, the measured dectrical
activity along the (intact) intestine displays the frequency plateaus discussed in this
paper. (There are usually more than two plateaus.)

In [16]-[20], this system was modelled by a chain of loosely coupled Van der Pol
or related oscillators in the sinusoidal (nonrelaxation) regime, and simulated either
digitally or electronically. These papers showed that, with a variety of different cou-
plings (usually anisotropic), and with gradients in frequencies and couplings, frequency
plateaus can be produced. Such plateaus share with the physiological data the property
that the plateaus lie above the curve of natural (uncoupled) frequencies. (See Fig. 1.1.)
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FIG. 1.1. A schematic representation of frequency measurements in an intact mammalian intestine

top,piecewise constant), and after cutting a 30-cm. segment into 8 slices. Diagram after Diamont and Bortoff
[15]. The positions of the plateaus do not remain constant in time [15].
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This paper is the beginning of an attempt to understand in a more general context the
underlying reasons for the existence and properties of frequency plateaus. For example,
we wish to show that the observations of [16]-[20] can be accounted for by phase
models, with all the relevant information about the oscillators encoded in a set of
2r-periodic functions H (which may depend on k). This first paper is aimed primarily
at the existence of plateaus. There are other aspects of the physiological data and
simulations that cannot be accounted for if H is assumed to be odd and the coupling is
isotropic. In particular, if H is odd, the coupling is uniform and isotropic, the natural
frequency gradient is linear, and fl is small enough that phase-locking occurs, then the
phase-locked frequency is the average of the natural frequencies; if fl is large enough so
there are plateaus, these plateaus must be arranged symmetrically with respect to the
average frequency (not above the curve of natural frequencies). Even if nonisotropic or
nonuniform coupling is allowed, it is shown in 5 that the phase-locked frequency lies
strictly between the highest and the lowest of the natural frequencies. We show in a
later paper [21] that plateaus lying above the curve of natural frequencies can be
derived from a phase model, provided that H is allowed to have a nonodd component,
and n is large. Ultimately, this physiological system should be understood in terms of a
continuum model.

2. Equations on an invariant torus. In this section we show that, for e sufficiently
small, there is an (n+ 1)-dimensional invariant submanifold Tn+l(e) of Rm(n+l) which
is an (n+ 1)-dimensional torus. On T+l(e), the motion is parametrized by phases 0k
associated to each oscillator. We also show that, to lowest order in e, the equations have
a special form which will enable us to analyze their behavior as the amount of detuning
is increased.

It is easy to show that there is an invariant torus T+ l(e) if e is sufficiently small.
For if e--0, the cross products of the limit cycles of (1.1) for each X/ forms such a torus
T+ i. Furthermore, since each limit cycle is exponentially stable, this invariant mani-
fold is "normally hyperbolic," i.e., in a neighborhood of Tn+ 1, trajectories approach
the invariant manifold at an exponential rate. (See [22],[23] for more precise and
general definitions.) It follows that there is an e0 such that, for e_<e0, the invariant
manifold persists [22], [23], i.e., there is an invariant Tn+ l(e) close to T+ 1.

We now show that coordinates 0l, qbl,...,n may be chosen on T+ l(e) so that the
equations for {} have the form (1.4). We first make a preliminary change of varia-
bles:

LEMMA 2.1. Suppose that

(2.1) X’=F(X)

has a stable limit cycle with period 2r/0, where XR" and F: RmR" is C. Then
there exist smooth coordinates OS, YRm- in a neighborhood of the limit cycle of
(2.1) such that (2.1) becomes

(2.2) 0’-oo Y’-L(O)Y+O(IYI)
where the O(I Y]) term may depend on O.

Proof. The basic idea is to use coordinates in a neighborhood H of the limit cycle
that are adapted to certain codimension-1 submanifolds which are known in the
context of oscillations as "isochrons" [24], [25] and more generally as "leaves" of a
"foliation" [23]. These leaves are transverse to the limit cycle and have the properties
that each leaf gets sent onto another leaf under the action of the differential equation,
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and that any two points on the same leaf approach each other exponentially as t- o.
It can be shown that there are such manifolds, and that they vary smoothly with points
on the limit cycle [23]. 0(X) is defined by requiring that the motion of (2.1) be uniform
on the limit cycle, and 0 be constant on each leaf of the foliation. (0--0 is chosen
arbitrarily.) Since the flow takes each leaf into another leaf at each fixed time, (2.2)
holds not only on the limit cycle, but in the entire neighborhood. Also, since the
foliation is smooth, 0(X) is smooth. The Y coordinate may be defined more arbitrarily
on each leaf, provided only that Y--0 on the limit cycle and Y(X) is smooth. []

Lemma 2.1 shows that there is a smooth transformation X--G(0, Y) which takes
(1.1), with e 0, into (2.2). Denote the Jacobian matrix by J(0, Y). In a neighborhood of
the limit cycles, J is invertible, so (1.2), k v 1, n + may be written as

( )
’-,o[a(Ok+l, Yk+l) --2"ya(Ok, Yk)["a(Ok-l, Yk-l)] }-

There are similar equations for k- 1, n + 1. By hypothesis,

(2.3a)
(2.3b) )J-(Ok, Y)F(G(O, Y ))- L(O)Yk/O(lYlZ,e)
The right-hand side of (2.3a) may be written as

o:,+eR(Ok, Y,,e)
where

f02R-’( Ok O, e)dOk O( e)

and ,, as stated before, is the frequency of the limit cycle of (1.1),. Let h(Oi, Ok)
denote the 0 component of J- (0,, Y,) DG(Oi, Y) at Y/= 0 Y,. h is 2 r-periodic in each
of its arguments. Also let q,0k+ -Ok and Sk- Yk/e. (The latter change of variables
"blows up" an e-neighborhood of T"+ (e).) Then (2.3) becomes

(2.4a)

(2.4b)

where $.AktOk+l--tOk and the O(e2) terms may depend on all the variables 0,
and (Ski. (Equation (2.4b) is true for k-2,...,n-1. To get the equations for k-1
and k-n, set h(Oo,O)-O-h(O,,+,O,).) Note that, to lowest order, the fight-hand side
of (2.4a, b) is independent of the (Sk}. Thus (2.4) may be thought of as the dynamical
system on T"+l(e). (There is a dependence on {Sk} in the O(e2) term. However, on the
invariant manifold, Sk-Sk(OI,...,0,+ 1), and so the {Sk} may be eliminated.)

Note also that there are two time scales in (2.4a, b)" 0-O(1) in e and ,= O(e)
for all k. Thus, the (0h) form an n-dimensional "slow system" within Tn+l(e). How-
ever, there is not necessarily an n-dimensional submanifold of Tn+ l(e) invariant under
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(2.4). Nevertheless, using averaging theory, the difference in time scales can be ex-
ploited to write equations for the {qk} which, to lowest order, are independent of 0.
Denote by (2.5) equation (2.4) with the expressions 0k+ , Ok+ 2 and 0 k- replaced by
0k + qk, 0k + qk + qk+ and 0k- qk- respectively. Using the fact that 0k tOot + O(e)
and q-O(e) for all k, we may now use the averaging theorem [26]. This theorem
asserts that there is a near-identity change of coordinates such that, in the new
coordinates the right-hand side of (2.5) may be replaced, to lowest order in e, by its
average with respect to over one period. But, by the periodicity of h and the fact that
,/,’ o(e),k

(2.6) tOo f02,Oo

2 o

A similar computation holds for the other terms of (2.5). Define

(2.7) fo2 [h(O+,,O)-vh(O,O)]
We have shown the following:

THEOREM 2.1. There is an (n + 1)-dimensional submanifold T"+ I(E) invariant under
(1.2). Variables 0 l, kl,...,rkn may be chosen on Tn+(e) so that, on the invariant

manifold, ( 1.2) has the form (1.3), (1.4), with H 2r-periodic.
We now explicitly calculate the function H for several classes of examples. The

first has a natural polar coordinate system representation. However, as we shall see, the
natural representation is not the one used in the proof of Theorem 2.1. Consider m--2
and

(2.8) Fk(y)-- ’ --tO (y) D--
tO , d3 d4

where )k--l--(X2-+-y2), tO--tOkq-gO(X2q-y2), 0: RI-+R1, &(1)-O, and tOk--tOo+O(e)
for all k. In the usual polar coordinates (x-rcosO,y-rsinO), X’-F(X) is

r’--r,(rg),

Thus tO(r) is an amplitude dependent angular frequency. The representation used in
Theorem 2.1 has the form 0’-tOk, where tOk is a constant (independent of amplitude).
To achieve this, we make the coordinate change (0, r) (0, r), where 0 0 +/(r) and

g(r)=
?(1_72 )

Again we let Sk be a "blown up" normal coordinate, i.e., rk-1 + eSk. Using trigono-
metric identities, it can be checked that, in Sk, 0k coordinates, (1.2) is

(2.9) O[,--tO,+e[&’(1)Sk+H,(Ok_,,O,)+Hl(Ok+,,Ok)] + O(e2), k-2,...,n,

(2.10)
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where

HI( Ok _+1, Ok ) dl sin(Ok +_ ,- Ok) + ( d4 d )sin Ok+ 1C0S0k
"+" ( d,- d4)sinOcosO,+ d2 (d2 + d, )cos2 O,

a,_ os(o _+, o ) + (a, +d)oso +_, oso,
n2( Ok ___1, Ok ) dl cos( Ok +_ 1-- Ok ) +- ( d4 dl )sin 0k sin 0k __+l

-d -(da-dl)sin20k
+d2 sin(0k _+ + 0k) + (d d2 )sin 0k cos 0k _+

(d2 + d )cos0k sin 0k.
Now O---O+’(rk)r--O+et’(1)S’k+O(e2)--O--1/2ef’(1)S’k+O(e) and k-----,+l--
0k. Using (2.9), (2.10) and averaging as before the equations for k, we get

PROPOSITION 2.1. For example (2.8),

(2.11) H(k)-[(dl+d4) g’(1)4 + (d-d:)2
+[(d-d)&’(1)4 + (d+d)2 sink"

Remark. H() is an odd function only when the coefficient of cos(k)-’ vanishes.
This can happen, for example, if ’(1) =0 and d d. ’(1)= 0 implies that (infinitesi-
mally) there is no frequency dependence on amplitude, while da=d if the "diffusion"
matrix D is symmetric. It is interesting to note that the frequency dependence on
amplitude and the nonsymmetry of D may cancel each other to produce a function H
which is odd.

We now consider a chain of coupled Van der Pol oscillators in the almost-sinusoidal
regime, i.e.,

(.1) 2+(x- )2+x=0
with << 1. Using polar coordinates X=rcosO, 2= -rsin0, (2.12) is

(. ,-( o 0)(in 0),

0-- + (1 r cos 0 )(r sin 0 cos 0).

By averaging techniques [26], it can be seen that (2.13) is equivalent to

rr-r V + 0()’ 0- + 0().

Thus, for fixed small, (2.12) is equivalent (up to O()) to a system of the form (2.8)
with the special property that -0. Allowing detuning and coupling, the full equations
have the form:

(.4

2+(X-1)2+ (1 +)X--e[b(2+l--22+2_)



222 GEORGE BARD ERMENTROUT AND NANCY KOPELL

The terms involving the b, c, d represent, respectively, resistive, inductive and capacitive
coupling. As before, 0k+--cok= O(e). Then H() can be computed as above, and we
get

(2.15) H( ck ) b sin ck + ( c- d )[cosck 1].

Note that, since 0, all the terms of H() come from the coupling, and not from the
frequency dependence on amplitude.

Remark. In [4], Rand and Holmes compute H for a pair of coupled Van der Pol
oscillators, for i fixed and small. Their formulation is somewhat different, but in terms
of our notation, they allow eb and e(c-d) to go to zero at different rates as e--, 0. If the
coupling involves substantial resistance, i.e., if e(c-d)--,O at least as fast as eb (as
e--, 0), then for small e, their result agrees with ours; i.e., to lowest order, H is a multiple
of sin q. (When n 2, the even part of H(ck) disappears from (1.4), so (2.15) is effec-
tively b sin q.) However, if the resistive coupling is significantly smaller than the com-
bined effect of inductive and capacitive coupling, then a more complicated expression
may be obtained which is equivalent to the result of carrying out the computation of
H(q) to order e2, with (c d ) O(1) and b O(e). We note that the same expression is
obtained if one works with oscillators of the form (2.8), since (2.12) has been approxi-
mated by such an oscillator.

3. Existence of a large amplitude invariant circle. We now restrict ourselves to
functions H() which are odd, i.e. H(-) H(), and consider (1.5). Since H is
2w-periodic as well as odd, we have H(0)= H(rr)= 0. We shall assume about H that it is
qualitatively like H=sinq, i.e., that H>0 for 0<q<rr, H<0 for -r<<0, that H
has a single maximum M and a single minimum rn at t and m respectively, that H’ is
monotone increasing from m to 0, and that H’ is convex on (q,,,, 0), i.e. that H"’(q)=/= 0
for qb (era, 0).

LEMM 3.1. For fixed A, there exists o such that, for/</30, (1.5) has 2 critical
points. Of these critical points, one is a sink and n are saddle points having one positive
eigenvalue and n- eigenvalues with negative realpart.

Proof. The critical points of (1.5) are solutions to

(3.) /() =/C- l(-a).

Equation (3.1) has a solution if every component of K-l(--/3A) lies between m and M.
Let

#o max{ #lm <_K- ( A) <__M

If/3 </30, then for each there are two distinct solutions q? (/3) to H(q)-K-1(_/A)i
with Iq,l<cr; q,- denotes the solution with smaller absolute value. (Note that H’(q/-) >0
and H’(q+)<0. See Fig. 3.1.) Thus there are 2 critical points. Let i=i([), i-- 1,’" .,n,
denote the critical point whose kth component ik(/3) is -, kg=i and ;i- q+;/j0(/3) is
the critical point with k th component 0k(/3)= q,- for all k. We will show that/J0 is a
sink, and is a saddle having exactly one eigenvalue with positive real part.

The linearization of (1.5) around one of the critical points/j has matrix KH’(6)
where H’() denotes the nXn diagonal matrix whose kth entry is H’(ik ). Now if
J=0, then the kth entry is H’(ok)=H’(-)>0 for all k. By Proposition A.1 (see
Appendix), the eigenvalues of KH’(/j0 ) all have negative real parts, so/J0 is a sink. If
/J=5 for some i, then H’(u)<0 but H’(ik)>O for k4=i. Thus, by Proposition A.3 i
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H()

FIG. 3.1. The two possible choices k: for the ith component of a critical point of (1.5).

is a saddle having exactly one eigenvalue with positive real part. (Note that these
stability properties of the critical points cannot change as/3 increases unless H’(ik(/3))
changes sign for some i; this does not happen for fl< fl0.)

We now further restrict our attention to a linear gradient in frequency; such a
gradient is equivalent to a constant vector A for (1.5). The vector -fl(1, 1,..., 1)
corresponds to a linear decrease in frequency for increasing k, as in the measurements
on mammalian intestine. For simplicity, we assume n is odd, so there is a unique
"middle" phase difference qj. The main result is as follows. We shall later show that the
theorem implies the existence of a pair of frequency plateaus, with a jump in frequency
between thej and (j+ 1)st oscillators.

THEOREM 3.1. Suppose that A- -(1, 1,..., 1)t and that n 2j- 1 in (1.5). Then for
fl <- flo, flo- fl sufficiently small, the closure of the two branches of the unstable manifold of
forms a smooth attracting invariant circle which is homotopic to the circle qk--O, k vj,

0 <_ ck2 <_ 2 or. This invariant manifoldpersists for fl> flo, fl flo sufficiently small. (See Fig.
3.2.)

k kj

SINK

o

SADDLE .’k

- 0 r

FIG. 3.2. Schematic representation of the dynamics of (1.5), with a unique sink o and a saddle j which
coalesces with Io as fl flo. The two (one-dimensional) branches of the unstable manifold ofj form a smooth
invariant circle.
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Proof. We require several lemmas:
LEMMA 3.2. Assume the hypotheses of Theorem 3.1. Then
(i) ++, (fl)<0 Vk and all fl <- flo.
(ii) m<K-(-flA)<O Vkvj, fl<-flo. For k=j,
(iii) The eigenvector vj. of the unique positive eigenvalue of tj satisfies sgnvj-

sgn vjj Xlk 4=j and all fl <_ flo.
Proof. (i) The critical points are solutions to (3.1) and K-(A) has k th component

k(n + k)/2. Thus all the components of K- l( flA) are negative. Since H()>0 for
0<<r and H()<0 for -r<<0, the solutions to H()- -ilk(n+ 1-k)/2, with

I1<r, are negative.
(ii) If n-2j- 1, then k(n + 1- k)/2 takes its largest value for k-j. (/30 is then

defined by rn flo J(J+ 1)/2.)
(iii) This follows from Proposition A.5 (see Appendix), as soon as we establish that

H’(j) has the form diag(al,a2,...,aj_l,aj, aj_l,...,a), where a>0 for kvj, aj<0,
al>a2>...>aj_, and a_l+a+l<2a for k-2,...,j-1. Now H’(j) is a
diagonal matrix whose k th entry is H’(#), where j,, the k th component of jj, is
h-(fl) for kq=j and -(fl) for k=j. ((fl) are defined by H()=K-l(-flA)
-ilk(n+ k)/2.) Thus a-a,+_,. The signs of the a follow from the definition of
/j. Furthermore, k(n+ l-k)/2 is an increasing function of k for k<j, so
increases with k (i.e,-- -Iq’-I decreases with k). Since H’ is monotone increasing on
[oh,,,0], this implies that a>a2>... >aj_. Also, the convexity condition for H’
(i.e., H’"v 0 on (,,,, 0)) implies that (ak_ +ak+l)/2<ak.

From Lemma 3.2(ii), we see that I+--I-0 as/3--,/o. Thus, as /-’/o, all
critical points coalesce in pairs, and for fl>flo there are no solutions to (3.1). (Recall
that each of the 2 critical points has as its k th component either - or -; thus each
point is matched with another point with which it agrees except at thejth component.)
The critical point j has the distinction of being the one that coalesces with the sink
its components agree with those of0 except for thejth, with oj-Cj- and jj-q.

We shall focus separately on the two branches of the unstable manifold of j,
which we shall refer to as the left or right branch, depending on whether the jth
component vjj of the tangent vector is negative or positive. We shall show, for flo-fl
sufficiently small, that both of these have the sink in their closure, and hence form an
invariant circle. The next lemma deals with the fight branch. This is the easier part,
since for flo-fl small, j and 0 are close, with 0 to the right of j.

LEMMA 3.3. For flo--fl sufficiently small, the right branch of the unstable manifold of
lj contains 1o in its closure. Furthermore, at to this manifold is tangent to the eigenspace of
the least negative eigenvalue ofKH’(o).

Proof. o and coalesce as fl flo. The techniques of [27] show that, under certain
hypotheses, this implies that for fl0- fl sufficiently small, there is a trajectory joining 0
and j. The unstable manifold of jj is one-dimensional, so that trajectory must be the
unstable manifold of j. It follows from the construction of this trajectory that its
tangent at o(fl) is the eigenvector of the unique eigenvalue of KH’(o) which tends to
0 as fl--, flo-

The hypotheses on (1.6) needed to apply the technique of [27] are those of
[27, Thm. 2.2]" we write (1.5) as

(3.2) (h-KH’(lo)(Ck-Oo)+(fl-flo)A+Q(ck-ao,-ao)+p
where /o-O(flo)-(flo) is the saddle-sink at the critical value of fl, Q is a vector-val-
ued quadratic form containing the terms quadratic in -/to and independent of fl, and
t9 o(/3 flo, leo -/to12). Then we must have
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(i) KH’(ao) has rank n- 1.
(ii) [KH’(/to),A has rank n, where [P,Z] denotes the n(n+ 1)-matrix formed

by adjoining the n-vector Z to the n n-matrix P as the last column.
(iii) [KH’(/jao), Q(V, V)] has rank n, where V is an eigenvector of the zero

eigenvalue of KH’(/ao) and Q(V, v) is the n-vector obtained by evaluating
the quadratic form Q on the vector V.

Now (i) and (ii) follow from (i) and (ii) of Proposition A.2. To establish (iii), we
note that V=(Vl,-. ",t)n) with vk-O, kvaj, and v.- 1. Hence Q(V, V) contains exactly
those terms depending only on ,. (and not qk,kvj). In particular, there are no such
terms in the k th equation of (3.2) with kvj, j- 1. For k-j--+ 1, the k th coordinate
Q(V, V)k of Q(V, V)is 1/2H"(q]-(flo))(qj-q]-(flo))2;

Q( V, V )j H"( dpj- ( flo ) ) ( dp/ dp}- ( flo ) ) 2

Thus Q(V, V) is a multiple of Z-(z,’",zn) with z/--2, zj_-z/+-l, Zk--O,
k #:j, j--+ 1. Then (iii) also follows from (ii) of Proposition A.2.

We now turn to the left branch of the unstable manifold of j. For fl near fl0, the
,hi component must change by nearly 2r before entering the sink 0. Thus we shall need
estimates on this branch that are not local. These estimates are contained in the
following: Let ok H(q) H(q;+ 1)"

LEMMA 3.4. Let R--{(dl,’’’,n)ldn+l_k--k Vk; ;k<fm, kvj, n(j)>
H(), j<0, H(qk)<_H(tkk+l)+Ok, k<_j-1}. Then the left branch is contained in R.
All trajectories which start in R tend to the critical point to as

Proof. We shall show that (i) the above statement is true for a neighborhood of
(i.e.,jjR, the closure of R, and the left branch points into R), and (ii) R is invariant
under (1.5) for t>0, with all trajectories tending towared
-(1, 1,. ., 1) the invariance of (1.5) under ’kon+ 1-k implies that the points on the
one-dimensional unstable manifold of./j satisfy Cn+ l-k--Ck for all k. Furthermore, on
the (initial piece of the) left branch, Cj<0 by hypothesis, and k>0 kvaj by Lemma
3.2. Since qk--q-(kvj) at the critical point, we have -<k<’M (kvJ); also j<0
implies H(,)>H(;) H(+). (See Fig. 3.3.)

To finish (i), we have left to show that

(3.3) H(,kk)<H(,kk+)+Ok, k-1,...,j-1,

along the left branch of the unstable manifold, and in a neighborhood of j. By
definition, H(k) H(k+ )+k at the critical point. Thus, it suffices to show that

nt(Clk)knt(tlk+l)k+l, k-1,...,j-1,

along this part of the unstable manifold. Equivalently, we may show that

(3.4) akt)jkak+lt)j,k+l, k- 1," ",j- 1,

where ak--H’(-), kC:j, aj-H’(f), and (vj,,...,vj,,,)-vj is the eigenvector of the
eigenvalue )t>0 of KH’(/j.). But the {ak} and {vjk } then satisfy the hypotheses of
Proposition A.5, so (3.4) holds.

We now go to (ii). The relationship +l-k=k for all k is invariant under (1.5) if
A-- --(1, 1,..., 1)t, SO we shall assume it. We first show that a trajectory cannot leave R
through the boundaries Ck=- or Ck=M, kj. The vector field (1.5) does not cross
k t for any k. For at k ’,

+k-- --+H(k-l )- 2M-+- O(Clgk+ 1);
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(a)

p < <
k k W

H(o) (b) H()

H( > H(’)

(c) H() (d) H()

k+l k

FIG. 3.3. Some of the constraints on the {k} in order that tk@R: (a) q- <qk<qm; (b) H(epj)>H(ck-);
(d) H(tkk)<H(ckk+l)+ok, where ok is defined as in (c).

since H(k-+ l) M, k<0. The surface k--k- can be crossed by the vector field, but
not inside R. For

’k-- --/3 + H(qk_ ,)- 2H(qk) +H(qk+ l)"

The right-hand side of (3.5) vanishes at all critical points. If q,-__+ < k--+ <(DM, we have
H(qk+_l)>H(q-+_l); SO if we also have k--q-, then qk>0 and the vector field points
into R. Note that this argument works even if k-j--+ 1, because all that is needed is that
H(qk-+ l) -> H(___ l). Now on the surface qk-q-, we may have -0 at some time 0,

i.e., if q,_+ -q-__+ (j+ if k--+ =j). But

(3.6) +k+t-- --fl+H(Ckk)--2H(Ckk+t)+H(Ckk+2)

and H(qg+2)_>H(-+2 ). Hence, if qk--q)- and (Dk+l--(#l (; if k+ l=j), we have
k+l>0 (SO H(thk+l)>H(q-+l) for t>to, t--to sufficiently small) unless H(q+2)-
H(q-+2 ). Following this argument, we conclude that unless qk-q- for all k=/=j and
qj- qj+, even if k--0 for some time t, we will have q- _<qk for succeeding times.

We next show that trajectories may not exit through surfaces of the form

(3.7) H(ePk)--H(qk+,)+ok, k- 1,... ,j-- 1.
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For suppose that (3.7) holds for some k at some 0. Then (3.5), (3.6) become

(3.8a) -(3.8b) ,+,- -+o,-H(q,+,)+H(ck,+).

We now use the inequalities (3.3) for k +- 1. These imply that

(3.9a) kk <--fl--o,+Ok_,, k- 1,... ,j- 1,

(3.9b) k+l>_--fl+Ok--O,+l, k- 1,... ,j-2.

But (3.7) and hence (3.8) hold at the critical point/jj, where k-,+ 1-0. Inserting the
components of jj. into (3.8), we get that

fl-o, + o,_ -0- fl + o,--ok+

Thus (3.9)

+_<0, +k+_>0, k- 1,. .,j-2.

This implies that, even if (3.7) holds for some t, the trajectory does not exit R through
the surface (3.7) with k- 1,... ,j- 2. For k=j- 1, the deductions from (3.8a), (3.9a) are
still valid. We replace (3.8b), (3.9b) by

(3.10)

-fl+2%_.

As be.fore, by inser.ting =j into (3.10) we see that the right-hand side of (3.10) is zero,
i.e., q,j=0. Since qj__<0, we have that the trajectory does not exit R through the
surface (3.7) with k=j- 1.

Trajectories may also not exit through the surface

(3.11) O- fl+H( qj_ ) 2H( qj ) +H( qj+ )
along which +j-0. For we have just seen that (3.1 l) is equivalent to (3.7) for k=j- l,
and that a trajectory may not exit through this surface.

Finally, trajectories may not exit through the surface qj-q,j+ or q,j=qj-, the
boundaries of/-I(+j)>H(glf--). Atj:gl=gl; qj=q+ since +,<0, +j must decrease monotonely,
and so cannot pass through Also, qj cannot decrease past q,j.-q- 2r. For at

q’J q’7 (mod 2r),

(3.12) +j- -fl+ 2H(,j_,)- 2H(,7).
Since the right-hand side of (3.12) vanishes at the critical point, and H(j_)>H(7_ l),
the right-hand side of (3.12) is ->0 at j=+j- (mod2r). But j_<0, so trajectories
cannot reach j-j- (mod 2rr) unless j_ =.j-_ . Furthermore, by (3.5) with k=j- 1,
j q,j- (mod 2r)., and q,j_ 7- , we have j_ >0 unless g_2 7--; for later times,
this implies that j>0, and so contradicts j_<0. Hence j-2-j--2-A similar argument
shows that if J- q’7, then-- for all k. Thus trajectories of R do not pass through
J (])7 2r, but rather tend to o as + . V]

Lemmas 3.3 and 3.4 together show that the two branches of the unstable manifold
of }j form an invariant circle. We next show that the circle is smooth. Since (1.5) is C,
so is the unstable manifold [23]; thus, smoothness need only be proved at }o where the
branches join. We know from Lemma 3.3. that the right branch approaches 0 tangent
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to the (left branch of the) eigenspace of the eigenvalue ,0 which is closest to zero. In
such a circumstance, the degree of contact of the trajectory with the eigenspace is
bounded below by the ratio 1/,0, where l is the next smallest (in absolute value)
eigenvalue of (1.5) at 0; this ratio goes to o0 as fl- fl0. Thus, to prove that the
invariant circle is smooth at 0 (with arbitrary smoothness for flo-fl sufficiently small),
it suffices to prove

LEMMA 3.5. The left branch of the unstable manifold of enters o tangent to the
(right branch of the) eigenspace of the eigenvalue o.

Proof. Generically, trajectories approaching a sink do approach tangent to the
eigenvector of the least negative eigenvalue. The exceptional trajectories approach
tangent to the span of the remaining eigenspaces. We shall show that trajectories of R
are not exceptional.

.By Lemma 3.4, trajectories in R satisfy qbk>qb- (kvj), where.qb- is the kth
coordinate of/J0; hence, as a trajectory in R approaches 0, we have qbg<0 for all k.
Now 0 is a hyperbolic critical point, so trajectories near it behave like those of the
linearization of (1.5) around 0. Since trajectories in the eigenspace of a pair of complex
eigenvalues oscillate around the critical point, and we have <0 for all k, the
trajectories in question must in fact approach 0 tangent to the span of the eigenspaces
of the remaining (real) eigenvalues. Because the real eigenvalues are ordered, trajecto-
ries of the linear system approach tangent to exactly one eigenspace, and, furthermore,
to an eigenvector within that eigenspace. Thus, to rule out that trajectories of R are
exceptional, it suffices to show, for any real eigenvalue ,=0 and associated eigenvec-
tor Z---(Zl,.. ",zn) that the z’s cannot all have the same sign. (Sgnz----sgnz for all k
is necessary if we are to have k<0 for all k.) But the linearization of (1.5) around 0
has the form KA where A=diag(a,a2,...,a) with a>0 (kvj), a+_=ag. For
fl=flo, a2=--H’(ck2(flo)) =0, so the result follows from Proposition A.6. For fl-flo
sufficiently small, it follows by continuity.

To finish Theorem 3.1, it remains to show that the smooth attracting invariant
manifold persists for fl> flo, fl-flo sufficiently small, and that the circle is homotopic
to k=0 for all k vj. To prove the first assertion, we perturb (1.5) around/3--flo. For
the invariant manifold to persist and be C, a certain "Lyapunov-type number" must
be < 1/r [22]; this number measures the ratio of the asymptotic (exponential) rate of
contraction on the manifold to that of the asymptotic rate of approach to the manifold.
This number is determined only by the to-limit set on the invariant manifold, which, for
(1.5) fl= fl0, is the unique sink-saddle. For this case, the tangential contraction rate
tends to zero as fl 0 from below, but the normal contraction rate stays bounded
away from zero. (Equivalently, only one eigenvalue of the linearization at 0 tends to
zero as the sink and saddle coalesce.) Thus, the invariant manifold persists for fl> fl0
and can be made arbitrarily smooth by taking fl-flo small.

To see that the invariant circle is homotopic to the circle qbk--0 for all k vaj, we
recall that, along the left branch of the unstable manifold of/., we have qb- <g<,
kj. Also, the right branch is arbitrarily small for flo-fl small. Thus, as qb. changes by
2r along the closure of the two branches, stays in a neighborhood of qbg--0 having
length less than 2 r. It follows that the closure of the trajectories can be deformed into a
circle for which 0, for all k =/=j. U]

Remark. The attracting invariant circle of (1.5) (or equivalently (1.4b)) corresponds
to an attracting 2-dimensional torus for (1.4), with variables 01 and qb2. The dynamics on
this torus is an O(e2) perturbation of an uncoupled flow, with 01(t ) satisfying O-0 +
eH(ck) and qb(t), .(t) the values along the (slow) limit cycle of (1.5), written in the
original time variable t.
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4. Frequency plateaus. In {]3, we proved the existence of an attracting invariant
circle for (1.5) on Tn. We now show why this circle corresponds to a pair of frequency
plateaus with a break between thej th and (j+ 1)st oscillators. (Recall that n + -2j.)

The "frequency" of an oscillator coupled to others requires a definition; one
reasonable definition is

(4.1) lim forO
over some trajectory of (1.3), (1.4), provided that (4.1) converges. Note that this
definition yields O’ if O’ is constant, and is, a priori, dependent on the trajectory. To
compute (4.1) requires going to the full equations (1.3), (1.4). However, to lowest order,
the frequency difference

(4.2) lim f0T’
can be computed from trajectories of (1.5). For any trajectory in the basin of attraction
of the limit cycle of (1.5), (4.2) reduces to

To
where To- To(r) is the period of the limit cycle, and the integration of k is done along
the limit cycle. By the fundamental theorem of calculus, (4.2) may be written as

+/-
To

where k(’) is the covering map of O,(*) (i.e.,values of ,(-) are not identified
mod2r). It was shown in {}3 that the invariant circle is homotopic to the circle
k=/=j, 0_<Oj_<2r. Thus k(To)--Ok(To), k=/=j. (We may assume that k(0)--Ok(0) by
choice of covering map.) But 0k(T0) 0k(0) by the periodicity of O along this solution.
Thus (4.1) vanishes for k=j, i.e., for <_k<_j, the frequency of the k th oscillator is
independent of k; similarly, this is true for j+ <_k<_n. However, for k=j, we have
j(To) j(0) + 2r. This implies that the jump in frequency between the (j+ l)st +jth
oscillators is 2re/To (in ordinary time).

On each of the two plateaus, the phase differences Ok are periodic in time rather
than constant in time. That is, the oscillators remain phase-locked "on the average"
rather than at every instant; some authors refer to this phenomenon as "phase-trap-
ping" [28]. Furthermore, the frequency on each of the "plateaus" is not exactly
constant, for (1.5) are valid only up to O(e) (in the scaled time, or O(e2) in the original
time scale). For H=sinO, plateaus emerge when fl>flo=2/j2=8/(n+ 1)2. This im-
plies that the total change in frequency from oscillators to n+ 1, for flflo, is
neflo-Sen/(n+ 1)2- O(e,). Thus, for a fixed total change in frequency, the larger the
n, the harder it is to phase-lock. This contrasts with a nonodd function H, e.g.
H=sinO+i[cosO-1] for which the total change in frequency just prior to loss of
phase-locking is O(e), but does not go to zero as n-o o [21 ].

To understand how the size of the frequency jump varies as fl increases, we first
note that T0-o oo as fl fl0. Furthermore, we claim that TO varies like 1/fl-flo. For
consider the phase-locked solution (-) to (1.5), r= fl0, and choose a small interval I
around the unique critical point. For fl-flo sufficiently small, the large interval Sl- I
is traversed in a finite amount of time (bounded above independent of fl). Within I, a
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fl-dependent coordinate k may be chosen so that the equation takes the form -ka+
,(fl) where ,(fl0) 0, ,’(fl0)> 0. If a, b> 0, the time it takes k to go from a to + b is

-l[tan ()=b- -0( ).P /1 k-- fl--fl0
Since the time it takes to traverse I dominates the finite time to cross S1- I, we see that
7"0- #0 as #ft.

The above computation shows that, as fl fl-, the period TO passes continuously
to + oo from a finite number. Thus the jump 2rr/To in frequency between the two
plateaus changes continuously as fl is varied and tends to zero as fl fl-. In particular,
there need be no rational relationship between the frequencies of the two plateaus. The
calculation also suggests at first glance that the frequency jump is never piecewise
constant as fl is changed (for fl-flo small). However, this last conclusion is suspect: as
mentioned above, the calculations are accurate only up to O(e2) (in the original time
scale). For fixed e small and fl tiff, the effects of the nonzero e could lead to piecewise
constancy of the frequencies over some (small) intervals in ft.

In Fig. 4.1 we show numerical calculations of equations (1.5) for/3 near/30 and a
larger value of fl, i.e., a steeper gradient in natural frequency. Note that more plateaus
emerge. We conjecture that when there are k+ plateaus, there is a k-dimensional
subtorus T* of T corresponding to k degrees of freedom at the jumps. It is less clear
how to analytically define the frequencies on these plateaus.

2O (a)

uncoupled

coupled

\

\

20
uncoupled

%,

(b)

coupled

10 10
Oscillator # 32 Oscillator / 32

FIG. 4.1. Frequency vs. k for k: 10/31 +8[sin,/,,+l-2sinqk+sinq,_ ] for (a) 8=32, (b) 8: 18,.

Note that decreasing 8 and leaving thefrequency difference 10/31 the same is equivalent (under a change of time
.scale) to increasing the frequency difference.

5. Nonuniform or nonisotropic coupling. In this section we consider some of the
effects of relaxing the hypotheses that the coupling be isotropic and uniform; we still
assume that only nearest neighbors are coupled, and that the coupling is weak.

5.1. Nonisotropic coupling. In the previous sections, we assumed that adjacent
oscillators have symmetric influences on one another. Suppose instead that the forward
coupling has a constant (independent of k) ratio a to the backward coupling (see Fig.
5.1.a). The equations for the , (with H odd as before) then have the form
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(5.1) 1---fl+H(4)2)-(et+ 1)H(q,),
h,- --fl+H(4)k+l)--(a+ 1)H(q)k) + aH(q),_,), k-2,. .,n-1,

q,,=-fl-(a+ 1)H(q,)+aH(q),,_l).

These equations reduce to (1.5) when et= 1. Note that et> implies that forward
coupling is stronger and a< means backward coupling is stronger.

(a) (b)

k

ik+

k

FIG. 5.1. (a) Nonisotropic coupling. The forward coupling has a constant ratio t to the backward coupling.
(b) Nonuniform coupling. There is a gradient in coupling strength, e.g. the diffusion coefficient associated with
pair of cells varies with k.

PROPOSITION 5.1. Let Yk H(dpk ). Then the criticalpoint of (5.1) satisfies

(n+ 1-k+ka"+’-(n+ 1)-g)
ft.(5.2) Yk-- (1- a)(1-a"+1 )

Proof. Insert (5.2) in (5.1) and check.
Once we know the phase-locked solution of (5.1), we may compute the frequency

of entrainment from the first equation of (1.4)" when there is phase-locking, the
frequency is ik for any k, and

(5.3) t w, + eH(q, ) + O(e2)

=, +e [n(ct--1) +et(1--et")] fl+O(e2).
(1--a)(1

(For a= l, (5.3) reduces to 0 to-enfl/2, the average of the frequencies. (5.2) reduces
to y, ilk( n + k)/2.)

Figures 5.2 and 5.3 graph yk vs. k for several et, and/li vs. ct when n-9 and n- 29.
We see from the formulas and the pictures that one effect of e.g. increasing et is to skew
the peak of the graph of Yk VS. k toward the higher k (lower frequency) end. thus, when
fl is large enough that phase-locking is no longer possible, we would expect a break in
frequency to occur at the lower frequency ezd. Changing et also changes the frequency
of the phase-locked solution. For example, if a> 1, then for n large the frequency is
close to, but less than, 0. Figure 5.4 shows a pair of graphs of frequency vs. k for
frequency gradients sufficient to form plateaus. Note that the plateaus are not symmet-
ric with respect to average frequency.
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-H(k (a)

0 9 15 29

(b)

FIO. 5.2. The graphs of--H(dPk) vs. k for various a. (a) n=9, (b) n=29.

FREQUENCY

n=29

6)1 +

6)n
a=l 8

FIG. 5.3. The frequency of the phase-locked solution as a function of the amount of anisotropy, n-9 and

n-29.
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(a) (b)

20
coupled

U_

uncoupled uncoupled

10 10 "
Oscillator 32 Oscillator # 32

Fie. 5.4. Frequency vs. k for anisotropic coupling, equation ,--10/31 /[.8sinq,,+- 1.8sing,k +
sin q,,_ ], with a) 8 24 and b) 8 10. The forward coupling is stronger, and the plateaus are shifted upward.
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5.2. Nonuniform coupling. We now assume that the coupling is isotropic, but
varies with k. That is, we suppose that the coupling is diffusive, but that a different
diffusion coefficient is associated with each pair of oscillators. (See Fig. 5.1.b.) The
phase difference equations now take the form

(5.4) k- --fl+lZk+lH(hg+l)--ElzH(hk)+g-H(-),
H(-o)-O-H(n+l).

The critical point of (5.4) may easily be found: If we let wk-tzH(), then, at
phaselocking, the w satisfy

O-a+KW
where A----(1, 1,’-’,l)/, W--(w,-- ",w,,) and K is as in 3. Hence, as before, w=
-flk(n + -k)/2, so the critical point is given by

(5.5) H()- -ilk(n+ l-k)
2/Xk

It can be seen from (5.5) that a gradient in coupling changes the value k0 of k at which
maXkH(dPk ) occurs. (If /x(x) is monotone increasing (resp. decreasing), k0 decreases
(resp. increases).) This suggests that if fl is increased sufficiently to prevent phaselock-
ing, and a pair of plateaus results, then the break will be in the high frequency range for
/x(x) increasing, and low frequency range for/x(x) decreasing.

The frequency of the phase-locked solution is computed from

From (5.5), we see that H(4,) is independent of the coupling coeffients (g}, so that
the frequency is the same as for uniform isotropic coupling, i.e./l--enfl/2.

5.3. Nonsymmetric coupling function H. Finally, we give a few simulations (Fig.
5.5) to show an effect of allowing H() to be nonodd. Note that if H()-sin((/)+ (I)o)
for (I)o>0, the plateaus may lie entirely above the line of natural frequencies.

2O

(a)

coupled
2O

O

g

uncoupled

,,
32

(b)

coupled

10
Oscillotor # Oscillotor /

uncoupled

32

FIG. 5.5. Frequency vs. k for H() sin(+ (I)o), (I)o>0. (a)k 10/31 + 14[sin(bk+ +.2)--2sin(bk +
.2) + sin((hk_ +.2)]. (b) k 10/31 + l[.2sin(k+ +.4)-- 1.2sin(g,k+.4) + sin(k_ +.4)].
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Appendix. We wish to prove some results about eigenvalues and eigenvectors of
matrices of the form KA, where K is the nn tridiagonal matrix with Kii--2,
Ki,i+ Ki+ l, and A is a diagonal matrix A diag(a l, a 2," ", a )-

PROPOSITION A. 1. No eigenvalue of KA is pure imaginary. If a,>0 for all k, then all
eigenvalues ofKA have negative real parts.

Proof. KA is a tridiagonal matrix with (KA)ii- 2ai, (KA)i,i+ ai/ l, (KAi+ l,i)
-a. By the Gershgorin theorem [A1], any eigenvalue of KA must satisfy

(A.1) IX + 2akl<-- 2lakl
for some k. Since the ak are real, (A.1) rules out pure imaginary eigenvalues. If ak>0
for all k, then (A.1) implies that Re,_<0. Now Re,-0 can happen only if , is pure
imaginary, or if ,-0. But det(KA)-detA- detK:/=0, so :/=0 and Re<0.

PROPOSITION A.2. (i) Suppose that aj-- 0 for somej, ak :/: 0 for k :/:j. Then there exists
a unique zero eigenvalue ofKA.

(ii) Let [KA,Z] denote the n(n+ 1)-matrix obtained from KA by adding the
n-vector Z as the last column. If {ak} is as above, then [KA, Z] has rank n for Z--
(l, 1,..., 1) and Z-(z,. ",Zn) with zj- -2, Zj/I--Zj_ and zg-O, k:/:j,j+-- 1.

Proof. (i) Det(KA)-detK.detA-0, so KA has a zero eigenvalue. It can be
checked by direct computation that KA has a unique null-vector V-- (Vl,- -, vn), with

v-1, vk-O, k:/:j. (The equations for the {vk} split into two systems for Vl,...,v_
and Uj_I, L3j/I, I)j/2,’’’,V respectively. The first has v=-.- =vj_-0 as its only
solution; using V_l-0, the other system has vj+=.-. =v,-0 as its only solution.)
Furthermore, if W is the unique null-vector of (KA)t, it is easy to show that W:/: 0, and
hence V. W:0. This implies that KA has a simple zero eigenvalue.

(ii) The rank of [KA, Z] is the dimension of the span of its columns. Since the k th
column of KA is ak times the kth column of K, the rank of [KA, Z] is the same as that
of [K/., Z], where I is the identity matrix except for the jth column, which is zero. To
show that [KI, Z] has rank n, it suffices to show that W-Z:/:0, where W--(w,..-, w,)
now denotes the null-vector of (K/.)t. Thus Wl,..-, wn satisfy the equations

--2W -k W2--0
Wk_ 2Wk -l- Wk+ O

wn_ 2w. O

with thejth equation omitted. From (A.2), we see that w determines w2,..., w.; indeed,
(A.2) implies that wk=kw for k<_j. Similarly, w determines w,...,w_. It follows
that the {w,} all have the same sign, and so W- (1, 1,.-., 1) v 0.

To see that IV. Z 0 for z.- 2, z_ zj+ 1, z,-- 0, kj, j--+ 1, we note that
IV-Z=0 implies that (A.2) is supplemented by the jth equation w._l-2W+W.+l =0.
But the full set of equations k= 1,..-,n of (A.2) is the system KW-O. Since K is
nonsingular, and IV is nontrivial, this is impossible.

PROPOSITION A.3. Suppose that ay<0 for somej and a>0 for all k :/:j. Then there
exists a unique eigenvalue ofKA with a positive realpart.

Proof. We define a path K between KA and KA, where A--diag(al,a2,...,
lal," ",an) as follows: K=KA except for thejth column, and (K)i=(KA)i. Thus
K_=KA and K KA. The only value of " for which detK=0 is ’--0. By Proposi-
tion A.2, K has a simple zero eigenvalue at ’-0. Since, by Proposition A.1, all
eigenvalues of K, ’<0 have negative real part, then for ’>0, K must have a unique



FREQUENCY PLATEAUS 235

positive eigenvalue. Since K has no pure imaginary eigenvalues for any ’, this is the
only eigenvalue with positive real part.

The comments of Charles Johnson were helpful in proving the following:
PROPOSITION A.4. Assume that A diag(a,. .,a2_ , -a2,a2+ ,. ",an), with n+

-2j, ak>O for all k. Then the unique positive eigenvalue h ofKA satisfies X<_2a2.
Proof. Instead of KA, we shall consider B-D-KA, where D-

diag(d,d2,...,d2_l, 1,d2+,,.-.,d,), with di-(a2/ai. B is a tridiagonal matrix with

Bii---2ai, Bi,i+-Bi+,i-/aiai+ i- 1,...,j--2 and i=j+2,...,n. The 3 3-matrix

Bik,j- <i, k<j+ 1, is

(A.3) aj laj 2aj /ajaj+
0 --ajaj+ --2aj+

To get the estimate A<_2aj, we shall estimate the spectrum of C-1/2(B+Bt), and
then relate this to the spectrum of B. Since B is symmetric except in the 3 3-block
(A.3), B C outside of that block. Cik, j- <i, k<j+ 1, is given by the 3 3 diagonal
matrix diag(--2aj_l,2aj, --2aj+). Thus C splits into the direct sum of two (j-1)
(j-1)-matrices Ct, C2 and the 1-matrix with entry 2a2. Thus the spectrum of C
consists of 2a2 plus the spectrum of the Ci. We now show that the spectrum o(C) of Cl
is entirely negative. Let U=(u,...,uj_). Then

j--I j--2

{ C,U, U ) --2 2 aiu2i +2 2 aiai+ gliUi+
i=1 i=1

j--2

2 f-iiui--/ailUi+l --alU21--aj--lU <0,
i--1

so C is negative definite. Similarly, so is C2. Thus maxa(C)=2a2.
Let (-, .) denote the usual complex inner product and (C)-{(Cz, z)lz C,llzll-

1). Since C is a real symmetric (hence Hermitian) matrix, )(C) is the convex hull of
a(C) [A2]. In particular, max3(C)=maxo(C). But C is the symmetrization of B, so
(Cz, z)- Re(Bz, z). Thus max.(C) max Re’)(B). But for any matrix B, o(B)=d(B).
Hence max Reo(B)_<max Re(B). Since B is known to have a unique real positive
eigenvalue , it follows that <_maxo(C)=2aj.

PROPOSITION A.5. Let A diag(a,..., aj_ 1, aj, aj_ 1,’" ", a ), with a > O, k =/=j and
aj<O. Assume that al>_a2>_. >--aj_ and that a_ +ak+ <2afor all k=2,...,j- 2.
Let V-(v,’",Vn) be the eigenvector of the unique positive eigenvalue of KA. Then
sgn vj- -sgnvgfor all k=/=j. Also, akVk <--ak+ lVk+ for k<_j-- 1.

Proof. The eigenvector V is a nontrivial solution to

(A.4) --(2a --x)t) + a2v2-- 0

ak-lt)k 1-- (2ak + A )t)k .o_ ak+ lVk+ ---0,

an_lVn_--(2an+,)vn=O.

If v >0, then v2 >0 by the first equation of (A.4). Also

2al +, 2a2+A(A.5) t)2---t)l >’" t)l >2t)l
a2 a2
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Furthermore,

(2ak+,)Vk--ak_lVk_
(A.6) v+--v= --v

ak+l

_2ak+X--ak+m
vk_ 2ak_-_-ak+lak+l

Now ,>0, ak>ak+ implies that (2ak+,--ak+l)/ak+l>l, k-2,...,j-2. Also,
a_/(2a+X-a+)<a_/(2a-a+)<l. (The last inequality is equivalent to

a_t +a+<2a wch holds by hypothesis.) Hence, from (A.6) we have

v+-v>v-v+
wch implies that sgnv sgn v , k 1,. ,j- 1. By symmet, v+ -v. Finally,
for k =j we see that

(A.7) aj_,vj_, +aj+,vj+,-(2aj+X)vj.
The left-hand side of (A.6) is positive, since v,, a, >0. By Proposition A.4, X12al.
Since a< 0, this implies that v<0.

To show that

(A.8) akvk<_ak+lvk+l, k- 1,... ,j- 1,

we first consider k =j- 1. By (A.7) and symmetry, 2aj_ 1vj_ m-(2a2+ X)v2<_2a2v2 (since, >0, vj< 0). For k- 1, (A.8) follows from (A.5). Also

ak+ lVk+ 1-- (2ak + ’ )vk- ak- lvk- >--akvk + ( akvk-- ak- lvk- )"

Thus, by induction, we have (A.8) for k 2,.. ,j- 2. []

PROPOSITION A.6. Let A diag(al,-.., a, a_ 1," ", am) with a O, ak> O, k =/=j. Let
Z--(z,... ,zn) be an eigenvector of any real eigenvalue < 0 of KA. Then for some k 1,

k2, sgnzk, =/= sgnzk2.
Proof. If for some kvj we have sgnzk =/: sgnzl, we are done. Otherwise consider

(A.4) with k-j:

aj_ Zj_ -- aj+ Zj+ kzj

Since aj._+_ > 0, t< 0, we have sgn zj 4: sgn zj._ 1. U]
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NEWTON’S ALGORITHM
AND CHAOTIC DYNAMICAL SYSTEMS*

M. HURLEY" AND C. MARTIN":

Abstract. We show how Newton’s method for finding the roots of a real function f leads to chaotic
dynamics (infinitely many periodic points and positive topological entropy) for a large class of functions f.

Introduction. This paper contains a description of how "chaotic" dynamics arise
in a class of discrete time dynamical systems on the real line. Much is known about
these types of dynamics; expositions of the general theory can be found in [CE],
[BGMY] and [G]. Our specific concern is the study of the dynamics of the maps
defined by the Newton algorithm for finding the real zeros of a function. In this paper
we give a simple geometrical description of how complicated dynamics must arise when
Newton’s method is applied to any map that has at least three simple real roots. In
particular we show that if any root-finding algorithm which shares certain features of
the Newton algorithm is applied to a map that has three or more simple real roots, then
the function defined by the algorithm will have periodic points of all periods and
topological entropy greater than zero. (Definitions of the technical terms are given
below.) In fact, we calculate lower bounds for the topological entropy which are larger
than those that are obtained by applying the estimates for the general case that are
found in [BGMY] and [B]. We also indicate one way of constructing algorithms that
avoid this complicated behavior.

Given a continuously differentiable function f: R R, the Newton function for
f, Nf, is given by

Nf:x-[ f(x)
f’(x)

As first year calculus students are shown, if x0 is close enough to a root p of f and xk is
defined to be Nf(X_l) for all k_> 1, then the sequence {xg} will converge top, but for
certain "bad" choices of x0 the algorithm may "blow up" or it may generate a periodic
sequence and thus fail to converge to any root of f. The study of this nonconvergence
of Newton’s method has a long history. B. Barna, in a series of papers [Bal]-[Ba4],
analyzed the situation when f is a polynomial all of whose roots are real. More recently
there have been S. Smale’s paper [S], and a paper written by D. Saari and J. Urenko
[SU]. The latter paper contains an elementary description, of how to use symbolic
dynamics to describe the orbit structure of Nf for a large collection of maps f. Some of
our results overlap those of Saari and Urenko; consequently our proofs (especially in
2) are somewhat abbreviated. We strongly recommend their paper to the reader who is
interested in a more detailed explanation.

A key concept in the study of discrete dynamical systems is that of chaos or
sensitive dependence on initial conditions. There have been several definitions of chaos,
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for example, in [BBW]:
DEIINITION 0.1. A discrete time dynamical system g is said to display chaos if it

has a periodic solution of each sufficiently high period and an uncountable family of
aperiodic solutions with the property that if x and y are distinct members of the family
then there exist >0 and a cofinal sequence of k’s such that d(gk(x), gk(y)) >/. (Here
gk(X) is the kth iterate of x by g, gE(x)--g(g(x)),g3(x)--g(gE(x)) and so on;x is
periodic of period m> if x g"(x) but x v gJ(x) for _<j<m.)

Other definitions are found in [LY] and [G]. One problem with requiting the
existence of periodic points in definitions of chaos is that they do not generalize well to
dimensions bigger than 1. A map can be made more complicated and at the same time
eliminate all periodic points. (Let g: S - S be an irrational rotation; thenfg has no
periodic orbits for any f.) One is left in the awkward situation of having "chaotic"
maps that are at least as complicated as "nonchaotic" ones. One way of avoiding such
problems is to replace periodicity conditions with the requirement that the topological
entropy be strictly positive. There are several equivalent definitions of topological
entropy; the following one is due to R. Bowen [Bo2]. Suppose (X, d) is a compact
metric space and that g maps X into itself. Let a positive constant i and a positive
integer n be given. A subset E of X is said to be (n, 8)-separated if for any pair of
distinct points x,y in E, d(gJ(x),gffy))> for some j in [0,n). Note that since X is
compact, any (n, )-separated set must be finite.

DEFINITIOr 0.2. Let X and g be as above. The topological entropy, h(g), of g is
given by

h ( g ) lim lim sup -1 log(s( n ,8 ))
3--,0 n--, o n

where s(n,) is the maximal cardinality of any (n, 8)-separated subset of S.
Remark 0.3. The definition of topological entropy can be interpreted as follows:

one observes the dynamical system (X,g) and would like to know "how many"
different types of behavior there are. One might attempt to obtain an answer by
viewing the system for a finite amount of time, 0,n), through instruments that have
imperfect resolution, so that any two initial points whose first n iterates stay within 8 of
each other are indistinguishable. In this setting, the largest number of "distinct" orbits
that can be observed is s(n, ). One then computes the asymptotic exponential growth
rate of this number as length of observation and resolution approach the ideal case.
One can see intuitively that the number h(g) should be larger in a case where there are
points x with the property that the approximate location of gk(x) is not well predicted
by knowledge of the approximate location of x; such a map is said to display sensitive
dependence on initial conditions.

Remark 0.4. Definition 0.2 may not make sense if X is not compact since the
numbers s(n, 8) might be infinite. In our main applications we will use Definition 0.2
where g is some Newton function Nf and X is a compact, Nf-invariant subset of R.
Occasionally we will make enough assumptions aboutf to ensure that Nfis well defined
on the one-point compactification ofR, and in this case we can let X be the circle
Rtd t" o }. (Definitions of topological entropy for noncompact spaces have been given
but we do not need to use them in this paper.) For further details on this, see
[DGS, Chapt. 14] or [Bo ].

Remark 0.5. There are connections between topological entropy and the collection
of periodic orbits of a dynamical system. For one,class, the so-called Axiom A diffeo-
morphisms, it has been shown that h(g) is equal to the asymptotic exponential growth



240 M. HURLEY AND C. MARTIN

rate in the number of fixed points of gn as n goes to infinity. In fact, the lower bounds
for entropy of Newton functions that we give in [}3 are lower bounds on the growth of
the number of fixed points of (Nf). On the other hand, wheneverf and g are maps on
compact spaces, h(fg)>_h(g) [DGS], so one cannot reduce topological entropy by
adding factors to a given map. In particular, iff is an irrational rotation of a circle, then
it is possible for h(f g) to be large even though fg has no periodic orbits of any
period.

Remark 0.6. For us, then, a chaotic dynamical system is one whose topological
entropy is positive. There is a weakness to this definition, namely that it allows the
chaotic behavior that causes topological entropy to be positive to occur on small sets
(say of Lebesgue measure zero). In [S] Smale remarks that this is the situation for the
map Nfwheneverf is a polynomial with all of its roots real. The physical significance of
this type of chaos is uncertain; see [CE, p. 21 ], for a fuller discussion.

On the other hand there are a great many Newton functions Nf for which there are
entire line segments composed of points x such that (Nf)k(x) does not converge to a
root of f. The easiest way for this to happen is for Nf to have an attracting periodic
point. In {}4 we show how such attractors can arise and we give some examples.

The outline of the paper is as follows. In 1 we list some general properties of
Newton functions and indicate certain feature of their graphs. Section 2 contains our
description of how periodic orbits must occur for Nf provided that f has at least three
real roots. In 3 we use these results to obtain an estimate of the topological entropy of
Nf. Section 4 is a discussion of the phenomenon of attracting periodic points, and in [}5
we indicate a way of constructing a root-finding algorithm for polynomials that is
nonchaotic (there are practical problems with the implementation of this algorithm; they
are discussed in 5).

As we noted above, the chaotic dynamics of Newton’s method have been described
by other authors, Barna and Saari-Urenko in particular. What is new in our approach
is, first, the emphasis on topological entropy, and second, the description of how chaos
can be caused not only by f having several real roots, but also by f having a critical
point larger (smaller) than the largest (smallest) root of f (plus certain other technical
conditions; see 3 for a full description).

1. Basic properties of Newton functions. Throughout this paper f will denote a
map from R to R. For convenience we shall assume that f has two continuous
derivatives. We also make the following nondegeneracy assumptions.

Assumption 1.1. (a) Iff(x ) 0, then f’(x ) v 0.
(b) Iff’(x)-0, thenf"(x)v0.
As before, Nf=x-[f(x)/f’(x)] denotes the Newton function associated with f.

The fundamental property of Nf is that it transforms the problem of finding roots of
f(x) into the problem of finding attracting fixed points of Nf. Note (Nf)’ =ff,,/(f,)2.

Remark 1.2. f(x) 0 if and only if Nf(x) x. Moreover, if f(p) 0 then (Nf)’(p)
0, so (Nf)k(x) -p for all x near p. We now list some properties of the function Nf

that will be used in later sections. The proofs are elementary calculations which we
leave to the reader.

Remark 1.3. Nf has a vertical asymptote at each real solution x-c of f’(x)-0. At
each such point limx_c+Nf(x)- -limxc-Nf(x)- +--.

If c < c2 are consecutive roots off’(x), then the interval (c, c2) is called a band for
Nf. If f’(x) has a largest (respectively, smallest) root c (resp. b), then the interval (c, )
(resp. (- , b)) is called an extreme band for Nf.



NEWTON’S ALGORITHM AND CHAOTIC DYNAMICAL SYSTEMS 241

Remark 1.4. If (1,C2) is a band for Nf that contains a root of f(x) then
limx-,. Nf(x) +, lim cNf(x) o.

Remark 1.5. If (c, c2) is a band for Nf that does not contain a root of f(x), then
limx-. Nf(x) lim Nf(x) +- o.

Remark 1.6. If a band for Nf does not contain a root of f(x), then one of the
adjoining bands or extreme bands also contains no roots of f(x). This last property
often holds for extreme bands as well (for example, when f is a polynomial), but it may
fail for extreme bands, as the example f(x)--xe-x shows. Later, in 2, we will give
sufficient conditions that Remark 1.6 holds for extreme bands as well as for bands,
namely that f"(x) is bounded away from 0 as Ixl- o.

Remark 1.7. Nf is undefined when f’(x)=0; the local extrema of Nf are the points
wheref(x)f"(x)=O.

Combining these facts, we see that a typical graph of Nf(x) looks like the graph in
Fig. 1. In that figure the bands are labelled B through B5 and the extreme bands are Bo
and B6.

Bo

y-x

Fu3.1

2. Nonconvergence of (Nf)k(x)--periodic orbits. The simplest way that the se-
quence (Nf)k(x) may fail to converge to a root of f is when this sequence becomes
undefined at some finite stage, i.e., when some iterate of Nf maps x onto a vertical
asymptote of Nf. By the mean value theorem this type of nonconvergence must occur
wheneverfhas more than one real root.

The next simplest way that nonconvergence of (Nf)k(x) can occur is when x is
periodic or eventually periodic under Nf: x is periodic if Nf(x)v x but (Nf)k(x)- X for
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some k bigger than one, its period is the least value of k for which this holds; x is
eventually periodic if (NjOm(x) is periodic for some m. A point p of period k is called
attracting (respectively, repelling) if the distance from x to p is greater than (respec-
tively, less than) the distance from (Nf)k(x) to p=(Nf)k(p) for all x in some open
interval containing p. Note that p is attracting if I( d/dx)(Nf)k(P )l< and is repelling if
I(d/dx)(Nf)k(p)[> (it may be attracting, repelling, or neither if this derivative is equal
to 1). In 4 we will discuss the existence of attracting periodic orbits for Nf.

For the remainder of this section we concern ourselves with estimating the number
of periodic orbits of Nfin terms of the number of roots of f(x). We begin with a simple
lemma.

LEMMA 2.1. If (C, C2) is a band containing a root p off(x), then (c, c.) contains a
period two orbit {z, Nf( z ) ).

Proof. From our knowledge of the shape of the graph of Nf it is not hard to see
that the graph of (Nf)2 must look something like the graph in Fig. 2; that graph shows
that the points labelled z and Nf(z) form a period two orbit. Note that the graph shows
that (d/dx)(Nf)2(z ) is at least 1.

The following lemma is our basic tool for counting periodic points; a more
sophisticated version (Theorem 3.1) will be the key to our estimates of topological
entropy.

LEMMA 2.2. Let g be a map R R and suppose that 11, I2,. ,Ik (k >_ 2) are pairwise
disjoint compact intervals with the restriction of g to lj continuous for each j and the union

of all the Ij’s contained in g(Im) for each m. Then g has periodic points of all periods. In
fact, g has at least k n points satisfying gn(x)=x for each n and the closure of the set
composed of all these periodic points is uncountable and is mapped onto itself by g.

Proof. An elementary argument shows that if a compact interval I is mapped
continuously over itself by some function h, then h must have a fixed point in I. Our
assumptions suffice to ensure that for any j between and k and any positive integer
n, there is a compact subinterval of/j. that is mapped continuously over itself by gn.
Indeed, we can require more. Let T(n; k) denote the set of all finite sequences (xi)’=0
with each xi chosen from the set (1,.-.,k}. Given such a sequence, we can find a
compact interval J such that

(i) g is continuous on J for _< i_< n,
(ii) g(J) is contained in Ix, for O<_i<_n, and in fact g(J)-Ixn (go is the identity

map).

z

P

FIG. 2
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By (i) and (ii), if Xo-X, then g maps J continuously over itself, so g has a fixed
point P((xi)) in J. Moreover, if (Yi) is a second sequence with Y0-Y, but with yj
for some j, then the disjointness of the intervals Ii combined with (ii) ensures that
P((x))vP((y)). Thus the number of fixed points of g is at least as great as the
number of sequences (xi) in T(n;k) with Xo-X,, and this number is clearly k w. See
[SU] or [BGMY] for more details. The final assertion of Lemma 2.2 follows from the
fact that the set T(oo;k)-((x)=oleach xl,2,...,k} is uncountable (the finite
intersection property for compact sets ensures that given any (xi) in T(o; k) there will
be at least one point Q((xi)) with gi(Q((xi))) contained in Ix, for each i).

PROPOSITION 2.3. Suppose f(x) has at least 4 (distinct) roots. Then Nf has periodic
points of allperiods; the set ofpoints not converging to a fixedpoint ofNf is uncountable.

Remark. Barna [Ba2]-[3] gives a proof of this fact in the case that f(x) is a
polynomial with all real roots.

Proof. If a band B contains a fixed point, then Nf maps B continuously onto R
(Remark 1.4). Iff(x) has at least 4 roots, then there are at least two such bands. With a
little care one can choose compact subintervals 11 and I2 of these bands satisfying the
assumptions of Lemma 2.2, and so there are periodic points of all periods. To see that
there is an uncountable set not converging to a fixed point, note that the subset
S- ((xi)lx is not eventually constant} of T(oo; 2) is also uncountable (for each m the
set ((xi)lx,,-x,,+ ) is countable), and if (xi) is in S, then Q((xi)) (defined in
the proof of Lemma 2.2) does not approach a fixed point under iteration by Nf.

In fact, we can sharpen this last result.
THEOIM 2.4. Define integers a, fl as follows:
(1) a is the number of extreme bands for Nf that

(i) contain no fixed points of Nf, and
(ii) are mapped onto R by Nf
(so a-O, 1, or 2).

(2) fl is the number of bands for Nf that contain fixed points of Nf.
If a + fl is at least 2, then there is an uncountable set ofpoints x such that (Nf)k(x) does
not converge to a fixed point of Nf as k goes to infinity. If in addition fl is at least 1, then
Nfhas periodic points of all periods.

Proof. Suppose a+ fl>_2. If fl is 0, then et must be 2, so Nf has no fixed points at
all and the assertion is trivially true. If fl_>2, the result follows from Proposition 2.3.
The remaining case is fl-1, a-1 or 2. Here one uses the assumption that there is an
extreme band B with Nf(B)-R to select two compact intervals, I in B and 12 in the
band containing the fixed point, such that

I t3 I2 CNf(I2 ) and 12 cNf(I ).

(This is like the selection of the intervals in the proof of Lemma 2.2.) The remainder of
the proof in this case is like that of Lemma 2.2, although the details (which we omit) are
a bit more cumbersome.

Remark 2.5. It is not hard to find fairly general conditions on f that ensure that
condition (1)(ii) in Theorem 2.4 is met whenever (1)(i) is met. For instance, one can
require that f"(x) be bounded away from 0 for Ix[ large and x in the extreme band
under consideration. (In particular, this is the case wheneverf is a polynomial of degree
at least 2.) To see that this condition on f"(x) suffices, suppose for definiteness that
B (c, oo) (the other case is similar). The assumption onf" then shows that eitherf and
f’ both approach oo or else they both approach -oo as x goes to o. Thus for x large
f(x)/f’(x) is positive, and so Nf(x) is less than x for all x>c. Now by 1.3 we
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see that Nf(x) goes to -oo as x approaches c from the right. On the other hand,
since f’(x)+ oo as x- oo, we can use l’Hrpital’s rule to show that Nf(x)
xf’(x ) -f(x)]/f’(x) goes to infinity as x does.

Remark 2.6. In the case a= 2, fl=0 of 2.4, Nf will have periodic points of all
periods greater than one. The proof of this result requires slightly different techniques
than those used in the proof of 2.4, and so we omit the proof.

Remark 2.7. It is possible for Nf to have periodic points of all periods > even
when a+ fl=0. We shall give an example of this at the end of the next section
(Example 3.5).

3. Topological entropy. In what follows we indicate a way of getting a lower
bound on the number of fixed points of (Nf) in terms of the numbers a and fl defined
above. We then use these bounds and the fact that under certain conditions the
topological entropy of Nf if bounded below by limk- o- log(the number of fixed points
of (Nf)k) to obtain lower bounds for topological entropy. This will show that the
topological entropy of Nf is strictly positive under fairly mild conditions on f. We refer
the reader to the introduction for the definition of topological entropy and other
related definitions.

Let f, Nf, a, and fl be as in Theorem 2.4, and define M= fl + 2. We define an
M M matrix A, called the structure matrix,

V

where V is 2 M,

0
V=

0

0 0
V=

0 0 0

0 0 0
V=

0 0 0

l) if a-2,

01) if a-1

0
if a-0.

W is fl 2; it is composed entirely of ones if a-2, its first column is entirely ones and
its second column is entirely zeros if a- 1, and it is composed entirely of zeros if a-0.
Finally, W is the/3 fl matrix composed entirely of ones.

THEOREM 3.1. Let f, Nf, and A be as above. Then there is a constant [>0 such that
for each k there is a collection Sk offixedpoints of (NjOk satisfying

(a) Sk contains at least trace (Ak) points, and
(b) ifx andy are distinct points in Sk, then for some i, O<_i<_k, the distance between

( Nf)i(x ) and (Nf)i(y) is greater than /(so Sk is a ( k, y)-separated set ).
Proof. We describe the proof in the case a-2; the other cases are similar. Let c be

the smallest critical point of f(x), and c2 the largest, lim_c?Nf(x)-- , lim_.Nf(x)
--o, and Nf maps each extreme band onto R, so we can choose x <c and X2C2
with Nf(Xl)<C, Nf(x2)>c2. Then [c, o)CNf((x,c)) and (-,c2] CNf((CE,X2)).
See Fig. 3. Now choose compact subintervals I c(Xl,C) and I2 ([[(C2,X2) with [c,x2]
CNf(I) and [x 1, c2] CNf(Ia).

The definition of fl implies the existence of fl disjoint open bands contained in
(c,c2), each containing a fixed point of Nf, and each mapped onto R by Nf. Hence
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Points on the line y x are identified by their first coordinate.

Here fl 1.

FIG. 3

there are/3 pairwise disjoint compact intervals 13,’’’,Ifl+2, each of which is mapped
continuously over [xt,x2] by Nf. Including the two intervals 11 and 12, we now have
fl + 2 pairwise disjoint compact intervals.

Since a function has a fixed point any time that it maps an interval continuously
over itself, the number of fixed points of (Nf)k is no less than the number of distinct
ways any of these fl + 2 intervals is mapped over itself by (Nf). This is the number of
sequences of the form (J))k= 0 subject to the conditions

(i) eachji is an integer in the range 1, fl + 2],
(ii) Ji+ vJi wheneverji is or 2,
(iii) J0-J,-

Another way of expressing (i) and (ii) is to say that Ji+l can be any integer m in the
range l, fl + 2], provided that the entry in row Ji and column m of the matrix A is one.
From here it is easy to conclude that the number of such sequences is trace(A*). (The
proof is a standard argument that we do not reproduce in full. To get a feeling of how
it goes, note that the (i,i) entry of A2 is the number of pairs (i,j) such that both the
(i,j) and Q’,i) entries of A are equal to 1. In this case, we know that Nf maps I
continuously over/, and/ continuously over I. Thus there is a fixed point xj of A2 in
I with Nf(xj) in Ij..) See [W1], [W2], [DGS], [P] or [Bo2] for more detailed treatments.
This establishes Theorem 3.1(a).

Theorem 3.1 (b) now follows by choosing -/>0 to be less than the distance between
any two of the intervals I, and noting that if x and y are fixed points of (Nf)
corresponding to the distinct sequences (Ji)0k and (j/*)0k, then there is an withj vaj,.*, so
that for this value of i, [(Nf)(x)-(Nf)g(y)[>_ the distance between Ii and Ij.,.. > /.

COROLLARY 3.2. The topological entropy ofNf
(i) _>log(fl) ira is 0,
(ii) >_ log( fl + ( fl E + 4fl )l /2 )/2 ira is 1,
(iii) _>log(fl+ +(flE+6fl+ 1)/2)/2 ira is 2.
Proof. As noted in part (b) of Theorem 3.1, Sk is a (k, 3’)-separated set for each k,

and so s( k, ) >_s( k, ,/ ) >_ trace(Ak) whenever -<3’. From the definition it follows that
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the topological entropy of Nf is bounded below by lim suplog trace(Ak), which in turn
is equal to log(the largest positive eigenvalue of A) [P]. To compute this eigenvalue, it
suffices to find the largest positive eigenvalue of a matrix B where B is related to A as
follows: A --PQ and B QP, where P and Q are matrices, not necessarily square, all of
whose entries are nonnegative integers [W ], [W2]. We list appropriate choices Of P and
Q in each of the cases (i)-(iii); from there the result is just a computation. In each case
Q has/3+ 2 columns,

(i) Q-(0 0 1), P: QP=(fl);

0 1)(ii) Q-
0 0

P-

(iii) Q=
0 1

0 )
0 0

0 0
0 0

0 0 1
t0 fl

fl

COROLLARY 3.3. If a >_ 1, then Nfhas positive topolo#cal entropy.
Proof. For definiteness we may assume Nfhas an extreme band B=(-c,y) with

Nf(B)--R, so that Nf(x)>x for all x in B. Let C denote the band or extreme band
that is immediately to the right of B, so C-(y,z), y<z <_ oo. By Remark 1.6 and the
condition on f" in the definition of a, Nf(x)<x for all x in C. There are two possibili-
ties; either Nf(C)=R or Nf(C)C(-oo,a] for some finite a. If Nf(C)= R, then C must
be an extreme band and a-2, so Corollary 3.3 follows from Corollary 3.2. Thus we
assume that Nf(C) is bounded above. There are several cases.

Case 1. See Fig. 4. Assume C is a band and Nf(C) contains the closure of B. Since
Nf(B)--R, there is a compact interval B0 in B such that Nf(B0) -closure(C). Similarly
there is a compact interval B in B such that Nf(B1)-Bo. As in Theorem 2.4 we can
choose a compact interval CO in C such that Bo UB CNf(Co), and as in Theorem 3.1
these three intervals give rise to the structure matrix

0 0)A- 0 0
0

As in Corollary 3.2, the entropy of Nf restricted to the union of these 3 intervals is
bounded below by the logarithm of the largest eigenvalue of A, which is approximately
log(1.325).

Case 2. Assume C is an extreme band with the closure of B contained in Nf(C). In
this case we replace C by a bounded subset C* which also satisfies closure(B) c Nf(C*).
We then define B0 and B in terms of C* instead of C, and proceed as in case 1.
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y--x

ni

C

FI. 4

Case 3. If Nf(C) does not contain the closure of B, then we have to work a little
harder. Let B0 be defined as in the previous cases. Since Nf(x)>x for all x in B and
liminfx_._ooNf(x)= oo, we can choose a sequence of compact intervals Bj,j>_ 1, such
that

(i) Bj CB for allj,
(ii) Nf(B) Bj_ I,

(iii) if we choose an element x of B for eachj, thenj>i if and only if x<xi, and
lim.__.xj oe

Condition (iii) ensures that for some n, Bn t.J Bn_ CNf(C). By using the intervals B0,
B l,.-., B,_ 1, B, C, we obtain a structure matrix

0 0 0
0 0 0

0 0 0
0

(this is an n + 2 n + 2 matrix).

By expanding A-xI along its first column, it is not hard to check that the characteris-
tic polynomial of A is

p(x)--( 1)"x’)+z+(1)"+ ),,+ ),, ,,+2x+(--1 --(--1 [x --x--l];

the expression in the square brackets is -1 when x is 1, and it tends to infinity as x
goes to infinity, so p(x) always has a root bigger than 1. Thus the topological entropy
of Nfis bounded below by log(X)>0.

COROLLARY 3.4. Suppose f(x) is a polynomial with n real roots (all distinct), where n
is at least 3. Then (Nf)k has at least (n- 2)’ fixed points for each k, and the topological
entropy ofNf is at least log(n 2).

Results like Theorem 3.1 and its corollaries are true generally. If et-2 then it
follows from Theorem 2.4(1) that Nf can be extended to a continuous map of the circle
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viewed as the one-point compactification of R. (Saari and Urenko treat this type of
Newton function in [SU].) In this situation, a theorem of L. Block states, among other
things, that if g is a continuous map of the circle to itself that has a fixed point and a
point of some other odd period m, then it has periodic points of all periods k bigger
than m. See [B] and [BGMY]. The same references provide estimates of the topological
entropy of such maps; however these estimates are not in general as sharp as our
estimates in Corollaries 3.2 and 3.3.

Example 3.5. We give an example where Nf has periodic points of all periods
greater than even though a +-0. The graph of Nf is given in Fig. 5. The essential
features of that graph are

(1) Nf(B) contains B2 and B4,

(2) Nf(B2) contains B,
(3) Nf(B4) contains B and B2.

As before, we can choose compact subintervals of B, B2, B4 that map over each other
according to the same scheme as (1)-(3), and so obtain the structure matrix

0 1}A- 0 0
0

It is not hard to see that the trace of Ak is strictly positive for all k bigger than 1. In
fact, by computing eigenvalues one can determine that the topological entropy is at
least log[(3+ 1)/2].

FIG. 5

y-x

4. Nonconvergence of (N/)(x)--attracting periodic orbits. On one hand the re-
suits of the previous two sections are satisfying in that they indicate how for many
functions f, Nf has a complicated dynamical structure, including an uncountable num-
ber of points x for which (Nf)(x) does not converge to a root of f. On the other hand,
as we mentioned in Remark 0.6 this uncountable set may be small in the sense of
Lebesgue measure, perhaps even measure 0. In such a case one would not expect (in a
probabilistic sense) to encounter these nonconvergent points in practice. Consequently,
in this section we turn our attention to the existence of attracting periodic orbits (recall
that under our definitions a fixed point is not considered to be periodic). If Nf has an
attracting periodic orbit then there is an open interval I such that if x is in I, then
(Nf)(x) does not converge to a root of f; instead it accumulates on the periodic
attractor. Thus points in I are well-behaved from a dynamical point of view, but badly
behaved from the point of view of Newton’s method as a root-finding algorithm.
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Probably the oldest and best known result in this area is Barna’s theorem that if f
is a polynomial with all of its roots real, then Nf has no attracting periodic orbits. The
proof relies on Julia’s theorem that an attracting periodic orbit of a rational function
r(x) of degree at least 2 must attract some critical point of r(x), where r(x) is thought
of as acting on the complex plane.

For other types of functions f, attracting periodic orbits of Nf certainly can occur.
As an example, in Fig. 6 we have sketched the Newton function of a map with four real
roots. The interval AB is mapped inside itself by (Nf)2, and both I(Nf)’(x)l and
I(Nf)’(Nf(x))l are less than for all x in AB. Hence Nf has an attracting periodic point
in AB of period 2.

Nf(A

(Nf) (A)

Similarly one can fashion graphs of Nf with attracting periodic orbits of arbitrary
period. That these graphs are the graphs of Nf for some functions f is assured by the
following.

PROPOSITION 4.1. Suppose g is a map from R to R that satisfies
(1) g has two continuous derivatives except at a finite number ofpoints (ci} at which

g is not defined, and limx_,lg(x)l
(2) limx_,+g(x)=-limx_c;g(x),
(3) g has a finite number offixedpoints, each of which is a critical point of g, and any

two of which are separated by an element of (ci),
(4) g has only finitely many critical points.

Then there is a continuously differentiablefunction ffrom R to R such that g--Nf.
The proof is elementary, although tedious, and is left to the reader.
PROPOSITION 4.2. Given k> 1, there are polynomials whose Newton functions have

attracting periodic orbits ofperiod k.
Proof. Combine Proposition 4.1, the Stone-Weierstrass theorem, and the local

stability of attracting periodic points under C perturbations.
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Example 4.3. f(x)- 3x5- 10x 23x.
Example 4.4. f(x) (x 2 9)(x - 4)(635x 2363x: + 2413x 973).
Both of these examples yield Newton functions Nf satisfying Nf(1)- 1, Nf(- 1)

1, and (Nf)’(1)- 0, so each has { 1, } as an attracting periodic orbit. Example 4.3
has only one root, x-0, while the roots of Example 4.4 are --+2, ---3, and approxi-
mately 2.4070. Barna [Ba3] lists two similar polynomials, lx6- 34xa-q 39x: and x5-

10x -k 69x; each of these has only one real root.
Besides the situation described in Fig. 6 there is a second way for period 2 orbits to

occur, when the graph of (Nf)- within a band that contains a fixed point of Nf is as
shown in Fig. 7. Here A and A’ form an attracting periodic orbit of period 2. Note that
Example 4.4 is of this type.

a

FIG. 7

5. Alternate algorithms. The discussion in 2,3 makes clear that_ chaotic dy-
namics and the consequent nonconvergence are inherent features of Newton’s method.
This prompts one to look for algorithms whose dynamics are better behaved. We give
below an example that works nonchaotically to find roots of polynomials. It is offered
as a motivating example only; we do not suggest that it is a very practical computa-
tional device for finding roots of polynomials. We hope that it gives some idea of how
chaos-avoiding algorithms can be obstructed.

First consider what we must give up to avoid the complicated dynamics of
Newton’s method. Supposef is a smooth map from R to R and that associated to f is a
map Tf defined on all but finitely many points of R, smooth where defined, and
satisfying Tf(x) x if and only if f(x) 0 and ITf(x)l as x approaches any of the
points where Tf is undefined.

LEMM 5.1. If each of the fixed points of Tf is attracting, then Tf exhibits chaos
similarly to the Newton function Nf.

Proof. The condition on the fixed points forces the graph of Tf to cross the line
y--x from left to right at each fixed point. Hence Tf must have discontinuities, and
therefore asymptotes, between any two fixed points. Now arguments analogous to those
of 2 serve to establish the existence of chaotic behavior of Tfjust as they did for Nf.

This result tells us that to avoid chaos we must not insist that every equilibrium be
attracting. Consequently, in order to find all of the roots of f we need a finite set of
algorithms Tlf,..., Tkf such that each T/f is nonchaotic and each root of f is an
attracting fixed point for at least one of the T,.f. An obvious candidate for such a
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system of algorithms is Euler’s method applied to the differential equations x’-f(x)
and x’=-f(x). The problem with this approach is that if the step size in Euler’s
method is too large one might overshoot several roots and thus not detect them. The
way to avoid this difficulty is to ensure that the step size is small enough, but it is hard
to say how small "small enough" is without some fairly detailed a priori knowledge of
the graph off. For these reasons we present the following alternative which works when
f is a polynomial. It also involves the choice of a step size, but this constant can be
calculated directly from the coefficients of the polynomial.

THEOREM 5.2. Suppose f(x) is a polynomial of degree at least 3 and with no multiple
roots. For 1,2 define

Tif(x)-x+(-1)ik f(x)
)2 ]l+f’(x

where k is a constant between 0 and whose choice is described below. Then" (1)
Tif(x)--x if and only iff(x)-O, i- or 2;

(2) the fixedpoints of Tfare alternately attracting and repelling;
(3) p is an attracting fixed point of T f if and only if it is a repelling fixed point of

T2 f;
(4) given any x in R, (T f)m(x) tends either to +--oo or to a root off as m goes to o.

In particular, at least one of the two sequences (T f)m(x), (T2 f)m(x) tends to a
root off, provided thatfhas a root.

Proof. Part (1) is clear; (2) and (3) are just direct calculations. To define k and
establish (4), note that if f has degree n, then each (Tf)’ is a rational function of the
form + k( 1)ip(x)/q(x), where p and q are polynomials of degree 3n 3 and 4n 4
respectively. To identify p and q more precisely, note first that we may assume that the
coefficient of x in f is 1/n. Then using the quotient rule we see that p-f’ +(f,)3_
2ff’f" and q-[1 +(f,)212, and we can conclude:

(a) q(x)_> for all x,
(b) the leading term of p is [(2-n)/n]x3n-3 and the leading term of q is X4n-4.

Now let A be the largest absolute value of any coefficient of p, and let B be the largest
absolute value of any coefficient of q. By (b) A is at least 2/n and B is at least 1.

LEMMA 5.3. IP(x)/q(x)l<A(A + 2B)3n-2 for all x.
Let k be 1/[A(A + 2B)3n-2], so that by the lemma (Tf)’>0 for all x. From this it

is not hard to conclude that any sequence (Tf)g(x) is mon6tonic and so must either
converge to a fixed point for Tfor else diverge to plus or minus infinity.

Proof of Lemma 5.3. Several times in the calculations below we use the fact that if
y> 2, then yJ<ym+ 1.

Case 1. If Ixl>A + 2B,

Ip(x)/q(x)] A E Ixl / -lxl
j=O

4n--5 )
< ( a Ixl 3,-2)/(ixl4,-4 n[xl4,- nlxl4,-)
 /(ixl

<A/[(A + 2B)’-(A)] 1/(A + 2")n--<l

<A(A + 2B)3"-2 by (b).
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Case 2. If Ixl<_A + 2 B,

Ip(x)/q(x)l<_lp(x)l (by (a))
3n--3 3n--3

_<a E Ixl E (a / 2B)J<A(A + 2B)3n-2.
j=0 0

Remark. The obvious practical obstacle to implementing this algorithm is that the
step size k is quite small even for fairly tame polynomials of reasonably low degree.
This has two consequences; first that the algorithm will require a large number of steps
to converge to a root (on the order of 1/k steps), and secondly that the distance
x-Tf(x) may be small compared to the round-off error involved in computing this
quantity.
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Abstract. In recent papers [SIAM J. Math. Anal., 11 (1980), pp. 848-862, 863-875] D. Schmidt and the
author studied the connection problem for two neighboring regular singular points for quite general linear
complex ordinary differential equations. In the present paper these results are generalized in the case that one
singular point is irregular singular, but of rank and the leading matrix has n distinct eigenvalues; one
singular point is regular singular; and there may be several other singular points. The main result is a limit
formula for those connection coefficients which are essential in some specified way. An application to the
generalized Heun equation is given.

1. Introduction. An important task in the investigation of the global behaviour of
solutions of a linear differential equation in the complex plane consists in finding
connection relations between the local solutions. D. Schmidt and the author studied the
problem in [12] and [13] for very general differential equations in the case of two
neighboring regular singular points. In the present paper we allow one singular point to
be irregular, but of rank and not too complicated. Then the method of [12] must be
combined with the saddle point method to get comparable results. The Stokes phenom-
enon for the irregular singular point causes some technical difficulties.

We consider the linear complex differential equations in C

/ _1A(1 1) y’(z)-- |
\ Z

0-[-
)2 B"-Z--1 1-Ji-’G(z) y(z)

where Ao,A and B are complex n by n matrices and G is a matrix-valued function
holomorphic in the open disk 9t {z C lzl< r }, where < r< c. We assume that B
has n distinct eigenvalues or that without loss of generality

(1.2) B-diag(Xl,.-.,,,, ), Xj::/:, forj=/=k.

Then 0 is a singular point of the first kind of (1.1), is a singular point of the
second kind, in general irregular. is neighboring to 0 in the sense that only outside
Izl_< there can be further (and arbitrary) singular points of (1.1).

It is the main result in this paper, that a pair of singular points can be handled
separately from the others. As far as I know, papers ([1],[5],[8],[11],[15], etc.) only
study connection relations involving an irregular singular point, if there is at most one
other singular point in the whole complex plane (but on th.e other hand some allow
higher ranks than 1). [6] is the first to admit two additional singular points.

The scope of applications of our results is extended largely by transformations of
the independent variable. If e.g. for a complex differential equation a simple singular
point and one of rank lie within any circle not containing further singular points we
achieve the form (1.1) by a transformation z (aw+ b)/(cw+ d ), ad- bc v O. Likewise

Received by the editors December 14, 1981.
Universitit Essen-GHS, Fachbereich 6-Mathematik, Universititsstrasse 3, D-4300 Essen 1, Federal

Republic of Germany.

253



254 REINHARD SCHFKE

that is possible if is of rank and in an arbitrary halfplane there is only one simple
singular point. Section 4 contains an example for this.

Unfortunately not all pairs of singular points can be separated in this way. By
conformal transformation, however, we can map any domain containing two singular
points onto a circle and apply our results. If, for example, 0 is a singular point of the
first kind, is of rank and ]0, 1[ contains only regular points the form (1.1) for the
w-equation can be attained by

(1 +e--w)l/n--el/n
(1 +e)l/n--el/n

for e>0 small enough and n N sufficiently large. The disadvantage of such transfor-
mations compared with the former one consists in the fact that in most frequent
applications, i.e. differential equations with rational coefficients, the recursion formulas
for the coefficients of the power series solutions are much more complicated for the
w-equations.

The local behaviour of the solutions of (1.1) near 0 is known, there exists a
characteristic fundamental system (see [2, p. 120] or [3, Vol. II, pp. 163ff.]). Because of
the assumption on B we can characterize in almost every semicircle Ho= (zl0<lz-
r-1, larg(1-z)-01<r/2} a fundamental set of solutions by their asymptotic be-
haviour as z (see [14, Chap. IV, XI]); the dependence upon t9 in general is com-
plicated (see [4]).

Now the problem arises, how the fundamental system near 0 is connected with the
one in H0 (or n,ll>0 small if necessary). In the present paper this problem is solved
for the special case where no logarithmic terms appear in the solutions near 0. The
general case could be treated then by a reduction method similar to that of [13].

More precisely, we consider a Floquet solution Y0 of (1.1) at 0,

(1.3) Yo(Z) =z’ X z’d,
k-0

where a is an eigenvalue of A0 and dkCn. At we have no convergent power series
solutions of (1.1), but there are unique formal solutions Pl," ",.9n of (1.1) of the form

(1.4) .9j (z)- exp
1-z )*(l-z)’ X (1-z cj(k) (j-1,...,n)

k=O

where aj C and cj(k) C ", cj(0) e is thejth unit vector.
Further it is known that there exist solutions y(z),...,y,,(z) of (1.1) defined in

H= (zl0<lz- l[<r- 1, larg(1-z)l<r/2} which satisfy

(1.5) yj( z ),.pj( z ) (Hzl,j=l,...,n),

i.e., for every rnN and e, 8>0 there exists/z>0 such that for zH satisfying 0<
Iz- 11</ and larg(z- 1)l-<r/2 <8 the inequality

( )
mX. ),exp 1--z (1--z)-’JYJ(Z)-- X (1--z cj(k)
k=0



CONNECTION PROBLEM FOR SINGULAR POINTS 255

holds. These results can be found in [14, Chap. IV], written for a singular point in
instead of 1.

From [4, 6] we conclude that the yj. are uniquely determined by (1.5) if and only if
the differences ,j.-,, jvk are not real. Section 7 shows, that in every case for
sufficiently small positive 8 there exist solutions y-(z),... ,y+ (z) of (1.1) which are
defined in H+= (zl0<lz- ll<r- 1, -r/2<arg(1-z)<r/2+ 21) and satisfy

(1.6) yj.+ ( z ) ".9s ( z ) (H+ g z o 1, j 1,... n )

Likewise we have solutions y-(z),...,y-(z) defined in H-=H+ which satisfy

(1.7) yf- (z),’-’.,fj(z) (n- 3z 1,j-1,. .,n).

If no difference ,j X k, j 4: k is real, clearly yf (z) =y+ (z) =yk(z) for z H. In general
(cf. [4, p. 76]) we have

(1.8) yj.+ (z) --yj- (z)+ E ajlY- (z) (z.n,j-1,...,n),

where we use the notation

(1.9) l-<j if and only if Xj.-,t ]0, [.

Now we have a solution at 0 and (even two) fundamental systems near 1, and the
connection problem arises. Y0 can be written as a linear combination of the yj-+,

n

(1.10) yo( z ) "r yj+- ( z )
j=l

( z H, Izl< 1, larg zl<
where 3,f

+C are called connection coefficients. Relation (1.10) tells us how the
solution Y0(Z) known near z-0 behaves when z approaches 1. From (1.8) we have

(1.11)
t>-j

The main result of 2 is an asymptotic formula for the power series coefficients d of Y0
which contains the 3’. To obtain this formula we use the idea of [12] together with the
saddle point method (see [9]). In 3 we deduce explicit limit formulas for some of the

-/ that are also useful in applications. In [}4 we apply our results to the generalized
Heun equation

1-/xo( ) y"(z)+ +. +
z z-1

"lZ2 + a] y’( z )
a

0 -[- 1Z -1" 2Z2
z(z--1)(z--a) y(z)-O’

where aC\(0, 1) and a4:0 and/j.,fl are complex parameters. This equation with
three regular singular points and one irregular singular point at 0, 1, a and has been
discussed in [12]. There connection relations for pairs of finite singular points have
been derived, here we add connection relations for a finite singular point and o.

The main results of the paper are Theorems 2.8, 3.1, 3.7 and 4.15. They seem to be
new even when restricted to the spheroidal wave equation, where only the complicated
connection relations of [7, pp. 295ff.] are known.
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2. Asymptotic formula for the power series coefficients dk. The Cauchy formula
yields for k N

-k-cx-lyo(z)dz"

Now z-yo(z) can be analytically continued to t \[1,r[, and we can write

z -"-yo(z)dz(2.1) dk 7-c
where and are the two curves of Fig. 1. Here A- 1- roe-i*, E- 1- roei* and O> 1,
0< r0<r- and q r/2 + r/, with 0<r/< i to be specified later.

Now the y+ can be continued to 0<lz-ll<r-1, [arg(1-z)J<r/2+6, but the
asymptotic formulas for them in general are only valid in H+ z 1. Since lies in the
new domain ofyf we can use (1.10) and get

(2.2) dk-d+ yd (kEN),
j=l

where

fz-k- (z)dz (kN)(2.3) d -- ly0

and

(2.4) dk-- 2r--- z (z)dz (kN,j-1,. .,n).

Since Izl-o on , we obviously have

(2.5) d- O(
The asymptotic formulas for d are more complicated. They are stated in the following
lemmata; their proofs are postponed.
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LEMMA 2.6. Let h.C\]- c,0] and suppose that ro>0 and r/>0 are sufficiently
small. Then

1=0

where a[ C ", in particular

1___ eX,/2,3j/2+a
2- /4ej

as k o

The powers ofj are determined by argXj ]-r, r[.
LEMMA 2.7. Suppose that ro>0 and *1 >0 are sufficiently small. Then for any t

1+__]-- o, 0] there are sequences (gk )kN in C n, such that

dJ-gJ+ +gJ- + E ajtgt (k)

for allj { 1,... ,n) with Xj ]- o, 0], and that the following asymptotic formulas hold:
a) If <0 then

’--+--. exp( + 2iVy- V-)k-’/2-3/4 E k-m/2-’+/-gk um
n-O

as k c

where a Cn, inparticular a o eX’/2(lklle ri)a’/2+l/4e1.

b) If h=0 then gt- 0 and

g+- E r(k+a-a,-m)
m--O r(k+a+ l) F(-a,-m) c’(m) as k o.

Together with these lemmata (2.2) immediately yields
THEOREM 2.8. Suppose that the general assumptions of 1 hold. Then for .C\

(dk)keN and for kj]--OO,0] exist sequences (g )ko, O] there exist sequence
such that for k t

,.]- oo ,0] b.]- oo ,0] .]- oo ,0[

where "-- + Y,.j,x,<_oatjy and where asymptoticformulas for dJ and gJ+/- are given in
(2.5)-(2.7).

This theorem is unsatisfactory in that it is not symmetric with respect to yf and
yf and that not all of the summands are essential for the asymptotic representation of

dk. This restriction will be removed in 3.
Proof of Lemma 2.6. We proceed similarly to Perron in [10], who studied the

asymptotic formulas for k o of the confluent hypergeometric functions. Thus in (2.4)
we substitute z- -s/V and get

(2.9) d[- I, + I2 + 13 + 14,
-k-a-I

S
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where the curves c, are sketched in Fig. 2. Here k-rovei/2+), A-re/2+),
C-re-/-+), B-e-/2+) and k-rove-’/2+), r is chosen later. Thus c and
4 depend on k, c and 2 are independent of k.

B , c

FIG. 2.

In the following I will be evaluated asymptotically using formula (1.6); 12, 13 and
I4 will be estimated. First we write

(2.10) )
-k--or--

-.j- lf s
el-

where

(2.11) (z) 2 (1--g)mcj(m) (H+zl)
m--0

Hence for s on c, n N and k N we have

(2.12)
S S -n-1

1---- m-O-- cj(m)+v/-- (n,s,k)

where (n,s,k) remains bounded as k--, uniformly for s on c . The power series of
the logarithm yields

(2.13) -exp(sv-+ s2) (1+ t(s)k-t/2)
1-1

for Isl<v and hence for s on c and k sufficiently large. From (2.11) and (2.13) we
obtain for n1

S

=exp sv/- + s2 2 k-m/2bjm(s)+k(-n-l)/2Rj(n,s, k)
m--0
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where bj,,,(s) are polynomials with bj.0(s) ej and Rj.(n, s, k) remains bounded as k o

uniformly for s on c 1- Insertion in (2.10) yields for n N

k(_,._ i)/2(2.15) I -where

k-m/2jmq-k(-n-
m--0

(2.16)

(2.17)

Jm- fc,eXp f- s + sajeS2/2bjm(S) ds,

J,,- exp - s+-- s’Je/R(n,s,k)ds.

Now we obtain the asymptotic representation of Jm from [9, Chap. IV, Thm. 7.1].
Somewhat simplified for our application this theorem says that

-zp(s)q(s)ds2e-zp(s) F l+- atz
/=0

as z oz on argz =0 with ao=q(so)(2p"(So))-1/2, if
(i) p and q are defined and holomorphic on a neighborhood of the finite smooth

path c,
(ii) p’ has a simple zero at an interior point So of ,
(iii) Re(eip(s ) eip(so)) is positive on c except at so,
(iv) with a parametrization s tp(t), [0, of satisfying so q(t0)

]argp"(So)+O+2 lim arg((t)-So)] < rr

tXto 2

Now (2.16) can be written

(2.18) J,,,- fc e-’(S)q(s)ds,
wherep(s)- s ,/s and q(s ) s’e/2b,,(s ).

The zeros of p’ (in C\ {0}) are +- fj.. In order that one of them lies on c we now
choose r- [l. If />0 is sufficiently small then the principal value s0- is the only
zero of p’ on 1. Then (i) and (ii) are satisfied. Since the limit in (iv) is rr/2 + 1/2 arg?y
(principal value), this condition is satisfied if p"(So)--2,-f /z takes as argument
-r- 1/2 argh.

Towards the essential assumption (iii) on Rep(s) we show
(2.19) For s-rei, [-r/2-r/, r/2 +l] the inequality

Re s+-- _<2Resos

holds. Equality is only possible for s so.
If we put so rei, Iql<r/2 and thus ,j-r2e2, we get

Re(s +,/s 2s0 ) 2r cos+(1 cos( rr ))
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and this is negative because of Iql<r/2 if k :q. Statement (2.19) now says that
Rep(s)> Rep(s0) for sso on C and that is the key assumption of Olver’s theorem.
We obtain

) -t-/
(2.20) Jm’exp(2j--) 21-’ ’+ V- c as k-) o

1=0

where

(2.21) hj/2kajj/2+ l/4ej,c? C n, in particular c- -e

and again all powers take their principal values.
Since Rj(n,s,k) is uniformly bounded on as k- o, (2.19) immediately yields

the estimate

(2.22) an O(exp(2-- ) ) as k o.

(2.15) together with the last two formulas then gives the asymptotic representation
of the first part I of d:

(2.23)

where

,,...,exp(2vj f-)k-’J/2-3/4
1--0

/2 /2+1eXJ J /4ej(2.24) a.tC", in particular a0= 2V/_

_
Now we estimate the integrals 12,13, I4 of (2.9). For the first factor of the integrand we
show that for e r/4, r/4[ there exists ro> 0 such that

(2.25)
S

for s satisfying 0<lsl<rov/ and args]-cr/2-e, -r/2 +e[ tO ]r/2-e, cr/2 +e[. This
follows from the fact that e2gez-<ll +zl2 if IRezl_<llmz with 0<< and Izl_<r0 with
ro depending on . Thus if r0 is appropriately chosen dependent on r/we have with a
constant C for v- 2, 3, 4:

C fce-(2.26) II 1-< [,
For ,-3 we can now use the asymptotic formula (1.6) fory and obtain



CONNECTION PROBLEM FOR SINGULAR POINTS 261

for s on and kN. For v= 2, 4 we use the Stokes’ relation (1.8) and the asymptotic
series (1.7) of the y-(z) to obtain

for s on 2 or c 4 and k N. In all cases we have for k N

(2.27) 1/[-< .7%--ge-’ exp Re s + 7 V- Is[  ’ld l.
I<j c

Next we estimate the argument of the exponential term.
(2.28) Suppose that *1 > 0 is small enough and ,j- ,t [0, c[. Then for s on c ,

v-2,3 or 4

Re s+-- _<a<2Re
s

with a independent of v,s, l.
Proof. First for s, under consideration we have

Re s+-- _<Re s+-- +(.-j)-sinl.s s r

Hence it suffices to prove (2.28) for l=j and then to reduce rl>0 if necessary. For
l-j we put j-rei+, I@l<r/2. On c2 we have s-rei with I0+r/21<rt and (2.19)
yields the assertion. On c we have s=tiexp(i) with rtro and thus

(J) rZ
Re s+-- --tsin+ sin(26- )

If sin(26-)0 then we can choose a=0 else

Re s+-- r(-sinn+sin(2-n))2rcossin(-n)
s

<2rcos-2Re

since Iql< ,r/2. Similarly (2.28) can be proved for s on c 4. From (2.27) and (2.28) we get
immediately

I-O(kae’) ask--o, v-2,3,4

with some B R and a< 2 ReX-. Afortiori for all n N

(2.29) exp(-2jf-)l,-O(k-") as k oo, v-2,3,4.

Formulas (2.23) and (2.29) finally yield the assertion of Lemma 2.6.
If we tried to carry out this proof for , ]-c, 0], we would meet with three

difficulties: Both zeros -+- of p’ lie on the imaginary axis and have equal rights, on
the circle Isl-I.1 we have Rep(s)-0 and an estimate like (2.28) also fails. In the
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proof of Lemma 2.7 we therefore subdivide the path of integration, deform it in a
different way and take the summands from the Stokes’ phenomenon into consideration.

Proof ofLemma 2.7. First let ,j o, 0[ i.e. j. 4: 0. Then we replace the path c of
Fig. by the sum of the paths c +, c- outlined in Fig. 3 and obtain

(2.30) d- 2ri + +_z (z)dz.

FIG. 3.

We substitute Stokes’ relation (1.8) into the integral along c- and get

(2.31 ) dJk gJk + + E ajtgtk- + gJk--
l.<

where

(2.32)
_

fc k-a-l -+gg 2ri +_z- Yt ( z ) dz.

1+/-By a modification of the proof of Lemma 2.6 we shall show that gk have the
asymptotic representation given in Lemma 2.7. We only have to do this for g+; the
proof for g- is completely analogous.

As in the proof of Lemma 2.6 we put z= 1-s/v/- in (2.32), deform the path of
integration and obtain

(2.33) g+ I, + I2

[ s s

I"--i’c, 1-- y: 1--- --ds,
where the paths c and c 2 are sketched in Fig. 4. c is independent of k and para-
meterized by s--p()ei, q ]0, rr/2 + r/] where p() is strictly increasing and p(0 + )-
0, 119(’//’/2)- Ijl. C 2 is a line segment and part of the ray args-rr/2 + r/, its endpoint is

flk-rov/- ie. We can proceed as in the proof of Lemma 2.6 and only have to show the
following three statements:

(2.34) Re(s+)t/s) <_ 0 for s on c equality holds only for s f[.
(2.35) Re(s+ Xt/s) o as s 0 along c.
(2.36) There exists a<0 such that Re(s + Xt/s) <- a for s on c.
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Im

0

FIO. 4..

The first two assertions follow from

and the choice of p(p). For the third we put s ein with E Po, roy/ ], Po P(r/2 + r/)
and obtain

Re s+--- -t sinr/< --P0 sinr/<0.s Po

Now suppose ,.-0. Before we can substitute by c + / c- as in (2.30) we must separate
the singular part of y+ to ensure the convergence of the integrals. We choose a
sufficiently large m N and put

(2.37)
m

yj--(z)-- 2 (l--z)+qcj(q)+rjTn(Z )
q=O

where

rjn(Z)--o((l--Z)aj+m) as H-z 1.

By substitution in (2.4) we obtain first

(2.39) d- 2ri
z (l--z)aJ+qdZ cj(q)

q=0

fc k-a-! +
2ri ++c-z- 5m(z)dz

and then Stokes’ relations (1.8) yields as before

(2.40) dJ-- gJk+ + X ajtg-,
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where the gt- for l-<j are given by (2.32) and

zi+-
m

/’Z--’-(2.411 2ori 2 2
l(1--z)aJ+qdzcj(q)

q:0 -c

2ri +
z-k-"- ’rs+m( z ) dz- _z- ’-m( z ) dz.

We note that here any sufficiently large m N can be chosen. Completely analogously
to the proof of 12, (1.15)] it can be shown that for arbitrary a,/3 C

(2.42) fc k- -( r(k+a-/3) +O(o-k) as k-o o
2ri

z- 1-z)Odz-
r’(k+a+l)F(-)

and for the proof of the remaining part of Lemma 2.7 we only have to show

fC z)dz--O(k-m-Reaj-l) as k o(2.43/ +_z-k--’r( -0

The boundedness of rj(z).first allows us to deform the paths + and c- into line
segments 1E and A1 and then to estimate rj, there. Insertion of the parametrization of
A, 1E yields

f <Mf00l tieinl-k-Rea-ltReaj+mdt.

Since l1-tiein] >- + sinr/the substitutions= + sinr/gives

+Z
-k-a- rjm(Z)dz ]I S

k-Rea- S--11 rods

with A independent of k. Insertion of s-r- yields the first Euler integral and thus

--1 +/-

+_Z -k-" rjm(Z)dz-- 0
F(k+Rea-Re%-m) ).F(k+Rea+ 1)

The Stirling formula finally furnishes the assertion (2.43).

3. Limit formulas for some of the connection coefficients. We begin this section by
stating which summands in Theorem 2.8 are essential for the asymptotic behaviour of
the dk. The limit formula for one of the connection coefficients -Q+ that we obtain here
will be extended such that all connection coefficients which are essential for the
behaviour of Y0(Z) as H z -o can be computed.

From Lemma 2.6 we see that d grows more rapidly than d for large k iff Re Vs
is larger than Re. The k-powers in the asymptotic formulas are inessential here
because exp(a-) for Rea>0 grows quicker than all powers of k. On the other hand,
if Re and Re-2 are equal then the leading terms only differ by an oscillatory
factor exp(i3v/-) and neither series can be neglected. This leads to the following:

THEOREM 3.1. If there exists j { 1,..., n } such that j C\] oo, 0] and " =/= O,
then
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and with

the following assertions hold:
1) y--yf- forj;
2) forjO there exist sequences (d[)kN such that

V dZ
j

and

dJk,exp(2j)k-aj/2-3/4 k-m Jam
m=O

(k-),

where

eXj/2 /2+1am - Xaf /4ej

Proof. Assertion 1) follows from (1.10) and the fact that j 992 and j-< imply
yt+ -0. 2) is an immediate consequence of the preliminary remarks.

If ,/f v 0 in (1.9) only for j with hj ]-, 0], then in (2.8) the first sum vanishes
and, similar to the above proof, (1.10) yields 9j.-’f in the third sum. Thus the
assertion becomes symmetric in -/j.+ and -/f in this case, too.

THEOREM 3.2. If 7; =Ofor allj such that XjC\]-o,0] then

,;l- o,01

where the asymptotic behaviour of the sequences (g+-)kN and (d) is given in
Lemma 2.7 and (2.5).

If Rej. attains its maximum only at onej then Theorem 3.1 can be written as a

limit formula for 3,
+

COROLLARY 3.3. Suppose that C\]- o, 0] and

y--O or Ret<Re-j (lvj).

Then --’y and

"y? ej--2fe-X;/2-faj2-1/4 lim exp(-2jr-)ka/2+3/4dk
k--,

Moreover the above sequence with limit ej has an asymptotic series, involvingpowers of
1/v/

Different from the result of [12] for regular singular points, not all connection
coefficients can be computed from the (known) coefficients dk of the power series Y0(Z),
in general only one. In order to determine some more of them by limit formulas we
investigate how a transformation

( x )y(z)y(z)--exp
z

of (1.1) changes Corollary 3.3.
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The Floquet solution at 0 is transformed into

X yo(z)=z X zkk(’)(3.4) Y(z)- exp 1-z
k=0

where the coefficients ak(,) may be computed in the same way as the coefficients d of
Y0 by substitution in (1.1), B now replaced by B-X. It is easily shown, too, that

(3.5) yy-(z)-exp 1-z y-(z) (zH +-)

are the solutions of the transformed equation having asymptotic series as H---9 z- 1.
Thus in (1.4) all ,j have to be replaced by ,j-X. In the transformed form of (1.9), the
connection coefficients are the same

n

(3.6) )70(z)- X 3,)7(z)
j=l

(z Izl< [argzl<r/2).

Now we apply Corollary 3.3 to the transformed equation and get
THEOREM 3.7. Suppose that the assumptions of 1 and (3.4) hoM. Letj { 1,. .,n}.

Assume that there exists C with ,j- ) o, 0] such that

,/t-O or Re)kt-)k<Rej-)k (l(1,...,n)\{j)).

Then ---’y- and

j/2- /4y-ej:2f-exp(- -(Xj-A))(,j-X)
lim exp(-2Xj-, /fz)kJ/2+3/4dk( ).
k

Moreover the above sequence with limit V; e has an asymptotic series, involvingpowers of

Next the question arises which of the y can be deterned with the aid of
Theorem 3.7, i.e. how the corresponding+ can be characterized.

PROPOSITION 3.8. Letj { 1,.-., n }. Then (1) and (2) are equivalent.
(1) There exists A C such that

Re/)kj- , >max { Rev/,,- , II=j, t+! ::)/:: 0 }
(2) There exists ]-r/2, r/2[ such that

Re(,e-i)>max{Re(X,e-i)llj, ;- 0}.
Remark. (2) implies that in a sector

{zl Iz-  l<r 1},
e>0 sufficiently small, for l=j

,t+--0 or exp --Xj 1--z Yi-(z)--((1--z ) (S(e)z 1, nN).

Thus (2) means, that y+ in some subsector or the semicircle [z-l[<r-1, Rez< is
dominant among those solutions Yt--- of (1.1) such that ,t+ 40. So aside from some
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exceptions we can compute 3’f by Lemma 3.7 exactly for j such that the summand

3’f Yj.+ in (1.9) is relevant for the asymptotic behaviour of yo(z) as Hz 1. The
exceptions only occur if three or more )j lie on one straight line.

Proof of Proposition 3.8. By the well-known formula

Rej-,-

(1) is equivalent to
(1’) There exists , C such that

Ix -xl/ ReX>max{ IX,- XI/ Re’,Ill:/:j, /- :/:0).
To prove that (1’) implies (2) we put

(3.9) ?-)-Rei’ withR>0, p]-r,r[

and for !:/:j such that 3,t
+ 0

(3.10) )-?,-rteiq’’ withrt>0 p,[-r,r[.

Then for :/:j with 3,t
+ :/: 0 we get

IX,- ,I->R r, cos( p,-- p )

and using the addition formula for the cosine (1’) implies

2"

This means, that for lCj and ,h
+ : 0

Re( ( ,j ,t ) e-iq’/2 ) rtcos ( tp,-- ) > O

and (2) is proved for=k/2.
For the proof that (2) implies (1’) we conversely choose ? such that (3.9) holds for

P--29. With (3.10) we have here

I,+- 21+ ReX,-]Xj- ’l- Re)j-IR rte’(’--2+)I- R rtcos

Now as R + c

(1tIg- r+e’<+’-:+)l R rtcos(p,- 2) + O -and thus as before

(1tIX,-Xl/Re,z-l,-,l-Re?,j.- -2r,cosqcos(p,-)+O

In the case j.- 2, o, 0] we have Re /,j 0 and because of (1) -/t
+ vanishes for all 4:j. Hence

in (2) is arbitrary here.
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Because of p ]-r/2, ,r/2[ and (2) this implies (1’), if R has been chosen sufficiently
large.

4. Application to the generalized Heun equation. If the results are applied to
differential equations of second order with rational coefficients, the computation of the
connection coefficients is simplified considerably. We demonstrate this for the gener-
alized Heun equation of [12]

( 1-/o 1--1 1-2 ) 0"+"IZ -- 2Z2(4.1) y"(z)+ + + +a y’(z)+ =y(z)--O
z z-1 z-a z(z-1)(z

with a C {0, ), a C {0} and further complex parameters ,. Formula (4.1) has
singular points of the first nd in 0, and a; the corresponding indices are 0 and 0, 0
and , 0 and , respectively. is an irregular singular point of (4.1) or rank 1. In the
first part we shall transform the connection problem between and by z 1/(1- t)
to achieve the form (1.1) and solve it if Rea<. Then we explain how the connection
coefficients between a finite singular point and can be computed if those between
the finite singular points are known from [12, 3].

Because a 0 ts is the assumption on (4.1) corresponding to (1.2) (4.1) has
formal solutions belonging to of the form

2
k=l

1+ 2
k=l

and insertion in (4.1) yields

(4.3) 1-- ----, 2--0+1+2-3+-

More exactly then in general we know for second order equations like (4.1) (cf. [9,
Chap. 7, 2]) that there exist uniquely determined solutions Yl(Z) and y2(z) defined in

(4.4) S z Izl>max(1,lal), arg(--a)-<argz<arg(-a)+

N- Iz>max(1,al), arg-<argz<arg+2
where arg(m) are chosen in [-,[, such that

From [12] we know that (4.1) has exactly one solution y0(z) holomorphic near
with y0(1) if N, wNch can be analytically continued to a neighborhood of
[1, m[. Then the following connection problem arises

(4.6) yo(z)-ylYl(Z)+yxy2(z) (z]l, [,z sufficiently large).

With the aid of the transformation y(z)=(z-1),(z) it can be shown that the
connection coefficients of the solution to the index l near can be obtained by
computing and 2 for the problem (4.1)-(4.6) with altered coefficients l,flo,fl and

f12. Analogously the transformation y(z) e-y(z) shows that a limit formula for 2 is
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sufficient because then 7 can be obtained by replacing a by -a and fli by/i, which
come from the transformed equation. For either transformation the form [12, (3.1)] of
the coefficient ofy is particularly useful.

In order to apply the results of {}3 to the determination of ’2 we use the transfor-
mations

(4.7) z-=’y( z ) v( ), z 1----t

The factor z-oo, serves to simplify the recursion for the computation of 72 to a
four-term recursion, v satisfies the differential equation

(4.8) v"(t) + a /xo2-/Zl -/z

(t_l)2+ t-1 + +1-/x2 v’(t)

/0 -F-/l t-F-/2 t2
at(t-gt)(t--1)2 v(t)-O

with ti- 1- 1/a and

(4.9) /0-flo+fll +fl2-/xoo,(1-/Xl)(a-1),-- --flo+afl2+loo[(a 1)(/Zo--/zo) +a(1 --/z) +

/2-a/oo(/oo,-/o).

The singular points z 0, 1, a, oo are mapped to oo, 0, 1/a, respectively. 0 and
are neighboring, i.e., (4.8), aside from its scalar notation, has the form (1.1) if l1 1/al>
(i.e. Rea<1/2).

yo(z) is transformed into the solution Vo(t ) of (4.8) holomorphic near with
Vo(1) 1, which we write

(4.10) Vo(t)-- E dktk, do-1-
k=O

Insertion in (4.8) supplies a four-term recursion for dk,

(4.11) (1--1)(k+a 1)(k+ 1--)dk+

=%(k)dk+p,(k-1)d,_, + 992(k- 2)dk_2
do- 1, d_-d_2 O,

where

(4.12)

qo2( k)-(k+#o-/z, )(
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yl(Z) and y2(z) pass into local solutions v-(t) and v-(t) of (4.8) at the irregular
singular point 1:

3
(4.13) v-(t)--l+ Cl(k)(1-t)*[arg(1-t)+arg(-a)]<-r, t- 1,

k=l

( I:v-(t)exp -1-t
k=l

3arg(1 t) + arg al<- or, - 1.

Both of the asymptotic sectors contain H/ of 1; hence v is exactly the solution fixed
in 1.

Furthermore the connection relation (4.6) corresponds to

(4.14) Vo(Z)-/lV(Z)+/2v(z ) (z ]0, 1[).

Corollary 3.3 immediately applies to (4.8)-(4.14) and yields
THFORF,M 4.15. Let Y2 be the connection coefficient for the connection problem

(4.1)-(4.6). Assume that I ({1,2,3,--. }, eta[0, oo[ and Rea<1/2-. Let the sequence dk
be determined by the recursion formula (4.11). Then

.t2- 2fe/2(-ot)(02-0’-2)/2 lim exp( 2-f- k3/4+(oo’-oo2)/2di.
koo

Moreover the above sequence with limit 3/. has an asymptotic expansion, involving powers
of /.

Below (4.6) we already explained how all connection coefficients between and
could be computed if a formula for 3’2 were known. Now (4.15) makes this possible if

1 (7)’, O(R and Rea<1/2.
With the connection coefficients between the finite singular points already known

from [12] we can determine all connection coefficients between 0 and and between a
and oo, too, if additionally/0 7/,/2 7/, resp., and la- 11 1.

If Re a>1/2, however, we first transform z-1- and then use the above results. If
Rea-1/2 and lal< 1, then we first transform z-a and, because of Re l/a>1/2, we obtain
all connection coefficients, too. More information about these transformations is con-
tained in [12, 3].

Finally we remark that the above conditions (except a=/=0, and ave0) are not
essential. If aR\{0} then we use (3.2) and (3.3). For the excluded a we can substitute
z (1 it)/(1 t) in (4.1) and again obtain the connection coefficients, but the recur-
sion formula has more terms. If some j 7/we could use a reduction method similar to

[13], but that would be much work. Even the case a--0,/32 =/=0 in (4.1), where subnor-
mal formal solutions occur, can be treated by z- 2 with success.
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ON BOUNDARY VALUE PROBLEMS FOR HAMILTONIAN SYSTEMS
WITH TWO SINGULAR POINTS*

D. B. HINTON" AND J. K. SHAW :

Abstract. A linear Hamiltonian system of differential equations is considered on an open interval (a, b)
where both a and b are singular points. A Green’s function is defined by a limit of such functions of regular
problems. It is proved that solutions of the differential equations defined by the Green’s function satisfy
Titchmarsh’s k-dependent boundary conditions at the singular points. A formula linking the Titchmarsh-Weyl
matrix m-coefficient to certain square integrable solutions is established for separated boundary conditions.

1. Introduction. Boundary value problems with two singular endpoints occur in
many physical problems. An important example is the radial equation for the hydrogen
atom which has singular points at 0 and . Recent contributions to the second order
scalar case have been given by Krall [15] and Burnap, Greenburg, and Zweifel [3]. We
consider two singular endpoint problems for the 2n 2n Hamiltonian system

(1.1) Jy’-[,A(x)+B(x)]y, a<x<b,

where y is a 2n-vector and , is a complex parameter.
It is our purpose here to develop a theory of ,-dependent boundary conditions for

(1.1) which parallels the Titchmarsh theory [20] for the second-order scalar equation. In
so doing we will show the equivalence of the limit-point definition used in [7] with the
usual one (see below) and extend to (1.1) the form of the Green’s function and
characteristic matrix used in the second order scalar case.

The coefficients A, B, and J satisfy:

(1.2) A(x) and B(x) are 2n2n Hermitian matrices of locally Lebesgue integrable
functions, A(x)>_O, and

J-
I, 0

where I, is the nn identity matrix. A solution of (1.1) is said to be of integrable
square if fy*Ay<, and we denote this by yE,](a,b) or simply yE,]. We also
assume Atkinson’s definiteness condition [1,p. 253], i.e., if y is a nontrivial solution of
(1.1), then

(1.3) f.ay*Ay >0 foralla<c<d<b.

We allow the endpoints a and b to be finite or infinite.
The basic theory of (1.1) may be found in Atkinson [1, Chap. 9] and Kogan and

Rofe-Beketov [14]. We recall now some of this material. The regular boundary value
problems associated with (1.1) are of the form

(R) Jy’-[)A(x)+B(x)]y+f, c<_x<_d,

y(c)-Nv, y(d)- N_v
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where v is a 2n-vector and N and N2 are 2n 2n matrices such that

(1.4) NJN NJN2, Nv =Nzv-- 0v 0.

The number 2 is called an eigenvalue of (R) if for 0 there is a nontrivial y satisfying
(R). The symmetry condition (1.4) implies that all eigenvalues are real.

If h is not an eigenvalue of (R) and is Lebesgue integrable, then (R) has a unique
solution y given by

(1.5)

where

y(x): K(x,t,X)f(t)dt

(1.6) K(x,t,,)- ( Y(x’X)[F(X)J+(1/2)I]Y(t’X)-J-’ x<_t,

Y(x,,)[F(X)J-(1/Z)I]Y(t,,)-IJ -l, x>t,

and

Y is the fundamental matrix for (1.1) with Y(c,) I,

(1.7) F-- F(,) Y(d,)-’Nz[N Y(d,X)-’Nz]-’J- + (1/2)J -1

F is the characteristic function of Atkinson. The symmetry condition (1.4) implies for
Im),=/=0 and f=Ag, where g E2(c,d), that

y*Ay_<(Im?)-fcg*Ag
when y is given by (1.5). (See the proof of [14, Lemma 2.1].)

The matrix function F lies on the locus

(1.8) [F+(1/2)J-’]*(J/i)[F+(1/2)J-’]
[F- (1/2)J-l] ,( y(d, X )*JY(d, , )/i)[F-(1/2)J-1].

To consider two singular endpoints, it is convenient to introduce a fundamental
matrix Z of (1.1) where Z(e, ,) I with e fixed as c-- a and d b. If we define

’=P(X ) Z( c,h )- F(X )JZ( c,X )J- l,

then the formula for K in (1.6) becomes

t,,)-’J -l, x<_t,(1.10) K(x,t,,)-
Z(x,h)[’J-(1/2)l]Z(t,’)-l-l, x>t.

The matrix function/ satisfies the inequality (with equality holding for/ given by
(1.9))

(1.11) [/+ (1/2)J-’] *( Z*( c,X )- JZ( c,X )-’/i) [/+ (1/2)J-1]
_> [/- (1/2)J- ’] *( Z*( c,, )-- Z*( d,X )JZ(d,X)Z( c,X )-’/i)

[/-- (1/2)J-l].
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Further the set ’cd of matrices P satisfying (1.11) is nested, i.e., -c’d’ C -cd if C’ < C<d<d’
and is bounded independently of c, d, and 2, when , is restricted to a compact set not
intersecting the real axis. This yields that there are functions~/(A), defined and
analytic for ImP, 4:0, which are sequential limits of functions/--- F(c,d, Nl,N2,A ).

If now Koo is defined by replacing P with /o in (1.10), then by the proof of
[14, Lemma 2.1] (which treats one singular point)

(i) K*oo(x,t,X)A(t)Koo(x,t,X)dt<o

(ii) if f fi(a,b) and

(1.12) y(x)= Koo(x,t,,)A(t)f(t)dt,

then y EZa(a,b), y satisfies Jy’ (?A + B)y +Af, and

fab -2fabf*Af.(1.13) y*Ay_< (ImX)

We consider now two questions. The first is what boundary conditions does y
defined by (1.12) satisfy at a and b and in what sense is y unique? The second is can the
singular structure of Foo for separated boundary conditions be determined from the
singular structure of two boundary value problems, one on (a,e] and the other on
[e, b). In particular, can the formula, for the Green’s function for the 2nd order scalar
equation (cf. [20, p. 42]) be extended. We consider these questions when N and N2

above represent separated boundary conditions. For the first question we allow only
the limit-point or limit-circle case. To define these set

N(X ) dim (y E2. y satisfies (1.1) }.
Then N()) is constant in Im)t>0 and in Imh<0 [14]. In analogy to the classical case
considered by Weyl [21], we call N(i):N(-i):n the limit-point case and N(i):
N( i): 2n the limit-circle case.

In 2 and 3 below we develop the necessary theory to answer these questions. The
boundary value problems are discussed in 4. Theorem 2.1 is the extension to the
system (1.1) of [20,Lemma 2.3,p. 26], and Lemma 4.1 shows that y given by (1.12)
satisfies boundary conditions of Titchmarsh’s h-dependent form (cf. [20,p. 31]). Note
that even in the limit-point case when no boundary conditions are imposed to obtain a
self-adjoint operator, the function y still satisfies ,-dependent boundary conditions.

Independently of the work of Titchmarsh, Kodaira [13] developed a theory of
eigenfunctions expansions for second-order scalar equations based on Hilbert space
methods. We mention also that Kim [12] has developed an eigenfunction expansion
theory for singular Hamiltonian systems in the limit-point case.

Finally we note a useful identity for (1.1). If

Jy’= [,A(x)+ B(x)]y +f
and

then

(1.14)

Sz’= [.a(x)+ +g,

(y*Jz)’ (/z- X)y*Az +y’g- f*z.
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2. The Titchmarsh-Weyl coefficient for a singular endpoint. We return to the
regular problem (R) with separated boundary conditions. Let al, a2,
matrices such that

(2.1) rank[a,,a2]=rank[Bl,B2l=n, 0/i0/--0/20/, 1 ]2]t.
If we define

then the conditions (1.4) are equivalent to (2.1), and (R) can be written as

(R*) Jy’= [XA(x) + B(x)]y + f,

[a,,az]Y(c)=O, []3,,]32]Y(d) =0.

We assume without loss of generality that aa’ + a20t -In (since aa’ + ot2a’ >0) and
define Y to be the fundamental matrix of (1.1) satisfying Y(c, )k) E,, where

Note that E- E*. We decompose Y into n n blocks by writing

Then some calculation (cf. [9]) yields that F given by (1.7) satisfies

(2.2)

where

E21[FJ+ (1/2)I] E,,
0 0) --In O)E’[FJ-(1/2)I]Ea---M 0

(2.3)

Note that Mt is the matrix analogue of the Weyl circle at a regular point (cf. [4, p. 226]).
Substitution of (2.2) into (1.8) (note: Y(x,X)= Y,(x,)t)E l, E*JE,=E,JE*=J) and
additional calculation yields that

O-- --I,, -M [-ir.(d,X)*JY(d ),)1 -Ma 00 0

and hence

i](2.4) O-[I,M][-iY,(d,X)*JY,,(d,?t)] M"
Alternately, (2.4) follows directly from the definition (2.3).

If we define the solution Xt of (1.1) by Xt- Y,[,], then (2.4) is equivalent to
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(2.6)

Further, (2.3) shows that Xa satisfies

(2.5) [fl,,flz]Xa(d)-0.
Suppose now M is a matrix such that

O-[I,M*l[-iY(d,A)*JY(d ,)1[ I]M
If we define

[1,2]- I, M*] Y(d,X)*J,
then rank[ ill, f12 n and

thus flfl--2?" Note also

[fll,2] J[l,fl2]*

I,M*IY(d,X )*JY(d,X )[ /,I
=0;

from which it follows that

Hence the M’s given by (2.3) are the only ones that satisfy (2.6).
It is convenient to write (2.4) in the matrix-circle form (cf. [2], [19]) and recall some

of the basic facts about this representation. Define for ImX 4: 0.

(2.7) (d,X)

__{--iY*(d,X)JL(d,X),iY*(d,X)JL(d,X),
ImX>0,
ImX<0,

E(M)-Ed,x(M)-[I,M*]

The above calculations show E(M)-O iff M-M for some [1,2] as in (2.3). We may
also write

E(M)-M*@M+M*+*M+C

(M+@- )*(M+@- 163"3 )

(M- C)*R-2(M- C) -R2
2
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where

C- C(ct,a)-
R1-R(d,)-6-/2,

)

To see that @>0, we have from (2.7) and (1.14) that

d(2.8) @--i(sgn(ImX))(d,X)*J(d,X)-ZllmX] A.
We now show that

(2.9) @(d,X )*@(d, X )-@ (d, X )- (d, X ) @(d, X) -1

To establish (2.9), we follow the argument of McIntosh, Hehenberger and Reyes-
Sanchez [17] for the discrete case and [2] for the second-order matrix case. From (1.14)
it follows that

(2.10) Y(d,X )*JY( d,X)=J.
Reversing the order of the terms and using J-- -J gives

(2.11) JY(d,X)JY(d,X)*J= -S.

Using (2.11) in (2.10) gives

form wch we conclude that

o- a,x a,X ) + a,x ).
From these equations we have

from which (2.9) is immediate. We use (2.9) in the form

Note that if A(x) is real, then Y(d,X)- Y(d,a) and hence @(d,)-@(d,X). Equa-
tion (2.8) shows that @ increases as d increases; hence as db, R(d,X) and Rz(d,)
decrease to nonnegative lits. Further, it can be shown C(d,) also has a limit [2, 19].
The equation E(M)-0 can be written as
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so that

(2.13) M=C+RIUR.
for some unitary matrix U.

Finally, we note that for X- Y[], it follows from (1.14) that

(2.14) E(M)= -i(sgn(Imh))X(d)*JX(d)

-i(sgn(Im,))X(c)*JX(c) + 2lima fcaX*AX.
This relation yields that the sets

$(d,X)--(M:E(M)<_O)

are nested, i.e., g(d2,X) cg(dl,, ) if d2>d1. Members M of g(d,X) have the represen-
tation M=C+RVR2 with V*V<_I,. This shows g(d,X) is compact. If E(M)<_O, then
(2.14) yields

(2.15) fcdx*AX <-i[ M* M]/2

since X(c)*JX(c)=M*-M. This inequality can be used to establish the existence of
EA2(C, b) solutions of (1.1). The number of linearly independent such solutions is related
to the rank of the limit as d b of R(d,)) and is discussed in [2].

LEMMA 2.1. Let t(d) be the minimum eigenvalue of (d,)). If the limit-point case
holds for (1.1), then t(d)--, c as d b.

Proof. Suppose/x(d)_<T< c for all d. Let vd be a unit eigenvector of (R)(d,X)
corresponding to/x(d). Set Xd= dd" Application of (1.14) and (2.8) yields

2ilmX tAXd v,JO,vd -i(sgnlm,)/(d)

or

f.dX*dAXd-(d)/21ImX <-- T/2]ImX

By considering a convergent subsequence of (Vd}, we then obtain a solution X--v,
v:/:0, such that f,.bX*AX<o. However, the limit point hypothesis yields n linearly
independent E(c,b) solutions of the form Y[t] for appropriate M [7], [9]. Since v is
not a linear combination of these, a contradiction has been reached.

It is an immediate corollary that

(2.16) lim R,(d,X)-0
d--, b

if the limit-point hypothesis holds.
LEMMA 2.2. ff II" denotes the euclidean vector norm, then

df,Af l/2/[2llmXl !/2

for f (c,d).
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Proof. For 1 a unit vector and tu,=@(d,h)-l/2], application of the Cauchy-
Schwarz inequality gives

/2 af,At
/2

[.*@(d, X)./2]ImXl] ’/2 fdf*Af] 1/2

=[1/21ImXl]’/[,*A,] /.
The choice =g/llgll where g=@(d,X)-/afAt completes the proof.

The proof below is a direct generalization of [20, Lemma 2.3].
To 2.1. Suppose (1.1) is in eiNer the limit-point or limit-circN case at b. Let

M(X) be an analyticNnction on ImX0 determined by a sequential limit, i.e.,

for some d, b. Then for all X, not real,

I

Pro@ We consider first the limit point case. Set B(n)=[B,,BI and let

Then by (2.5), ,.,. [0.(d., X) + O(d., X)M,.] -0,

which implies [9, p. 223] for some F,

O.(d. X)+O.(d. X)Ml.-- L lrl._t.

Similarly,

and hence

(2.17)

O,,(d,,)+O(d,,l)M2,-[ fl" ]_. r,

[0,( d,, h ) + ,( d,, A )M,n] *J[ 0,( dn ) + ,(dn tx )M2n -0.
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Equation (2.17) may be written as

(2.18) O-[O(d,,,)+O(d,,,)Mo(A)]*J[O(d,,l)+O(d,,bt)Mo(l)]

+ ( M,.-M(X )) *,I, do ,X )*J[ 0( d., ) + ,I,( d., )M.].
The proof will be complete if we show the second and third terms of this equation tend
to zero as n . To consider the third term we use (2.13) to write

M,,,-Cn+RlnU,,R2n, M(X)-Cn+R,nVnR2n
where Un*U,,--I, V.*V.<_I, C,,--63(d,,,,)-(d,,,,), R,,-R(dn,,), and
R 2(d., A). Hence

(2.19) (Mn-Mo())*Oa(dn,,)*J[O,(dn,la)+,(dn,lz)M2n]
---R2n(V:- Yn*)6(dn,k) -1/2

[-,,leo +(.-X)

where we have used (1.14). By (2.15) we have a bound on

which is independent of n; thus by Lemma 2.2 and the fact that Rz,-Rl(d,,2t)O as
n, we see that the right-hand side of (2.19) tends to zero as n . Similar
considerations apply to the second term of (2.18) and the proof is complete.

The limit-circle case is much easier. We need only use the facts M,M(,) as
n, Mz,Moo() as n--, z, and (1.14) to represent the other terms.of (2.18) in
terms of integrals of 2 functions.

COROLLARY 2.1. LetM be as in Theorem 2.1 and set X- Y[M]. Then

(2.20) lim X(dn)*JXoo(d,)-O.
n--

Proof. Set/- in Theorem 2.1.
COROLLARY 2.2. Let Mo and Xo be as in Corollary 2.1. Then

(2.21) fcbXAX-i[M()*-Mo()]/2Im.
Proof. This relation follows by application of Corollary 2.1 to (1.14) with y z X.
Equation (2.21) plays an important role in relating the singular structure of M(;k)

to the spectrum of differential operators [5], [8], [9].
COROLLARY 2.3. Equation (1.1) is in the limit-point case at b iff

limX,(d)*JX2(d)-O
d+b

for all E(c,b) solutions X and X2 of (1.1) for -, and ’-2 respectively, where )
and 2 are arbitrary except for Im2 =/= 0, Im, 2 =/= 0.

Proof. The necessity is proved in Theorem 2.1 since in the limit-point case M(),)
is the limit as d+ b of (2.3) rather than being a sequential limit. (Recall R(d,) 0 as
d-+ b.) The sufficiency is proved in [7]; in fact only )2- need be considered.
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Corollary 2.3 shows the equivalence of the limit-point definition (for even-order
systems) used in [7] and that used here. Since the quantity X*JX is the Lagrange
bilinear form for self-adjoint scalar equations when put in system form [18, Chap. V],
Corollary 2.3 provides an alternate proof (without using the theory of maximal and
minimal operators) of this well-known fact for scalar equations [18,18.3], [ll,p. 19].

3. A formula for/(A). Let NI, N2, E be as in {}2; let Z be as in 1, and let
Z Z(c, ), Zd Z(d, ). Then from (1.7) and ( 1.9) we have (note that Y-- ZZ,7 l)

(3.1)

We write

/J- (1/2)1- Z. lFJZc- (1/2)1

Z21N2[NI ZcZ2 IN2] Zc

Z-IN2[E-IN E’ZZ IN2] -IEazc.

and from (1.14), Z(x,X)*JZ(x,X)=J; thus we compute

(x,X), 0(x,X),
Performing the indicated computations we find that

E INI E21ZcZ IN2
**

where

Since

0

-[OtldP(c,X)Wot2(c,X)][O(d,X)*fl +i (d,X)*fl].

further calculations (the ** terms are unimportant) yields

(3.2) J-(1/2)I- ( *fl{ +*fl’ )0" "nt-i*
u)(--A-l)(r,s)=(v

where u,v,r,s are the terms of (3.2). Consider now the nXn block

(J- (1/2)1)11-- --u ’r-- --u[ ru-- sv l- ’r
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where following the notation of {}2,

MB( X ) ld#( d,, ) +2(d,X )] fllO( d,X ) + fl2 (d,,)],

Recalling the property M(A)*-Mp() [7], we have

( J-- (1/2)I )l M,x( , ) -Mp( )] M,( ).

Similar calculations give (with ,’s suppressed)

(3.3) ’J-(1/2)I- ( [Mfl-Ma]-lMa
Mp[Mp-Ma]-lM, -Mp[Mp-M,] -l

Ma
From (3.3) it follows readily that

(3.4) J+(1/2)I- Ma (Mp-Ma) I(MB,-I).

Note that the boundedness of/, independent of c and d, ensures that det(Mp-M)
is bounded away from 0, independent of c and d. Use of the limiting values of (3.3) and
(3.4) yields a representation of the Green’s function (see (4.4) below) which is the same
as the second order scalar case. Further, solving (3.3) for / yields a form of the
characteristic function which reduces to a known formula in the second order scalar
case (compare with [4, pp. 251] and [13, p. 926]).

4. Singular boundary value problems. Suppose now Cn, do, Nl(n), N2(n) are such
that c a, d --, b as n-+ oe, and for ImA =/= 0,

/()-- lim (co,do,Nl(n),N2(n),X )

is analytic on ImS0. Suppose (using the notation of 3)

and

(4.3)

M+(,) lim Mp(dn,, )

Then by (3.3) and (3.4),

and

M-()= lim M,(co,;k ).

.ooj_(1/2)i_ ( I ) M+ --1(M+ ( -M-) M-,-I)

-{
I )(M+ M_)-, M+M- ( --I).
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If we allow each endpoint to be limit-point or limit-circle, there are four possible
cases. We consider here only the case where a is limit-circle and b is limit-point. The
other cases are similar. Using the formulas for Z given in 3, we see from (1.10) that
K may be written as

+(I--M-(?)]-’Pb(t,X) *, x<_t,
(4.4) Kc(x’t’X)-

*b(x,?t)[M+(X)-M-(X)]-la(t,X)*, x>t,

where

a(x’X)-Z(x’X) M-())
I

b(X,?t)--Z(x, x) M+())

(4.6) y(x,?t)-- Koo(x,t,X)A(t)f(t)dt.

Then y 2 andfor all I with Im/ :/: O,

lim y(X,X )*Jb(X,I)--O-- lim y(x,X )*Ja(x,l).
x--,b x--,a

Proof. The property y2 is stated in (1.12). Consider first the limit-point case at
b. Let fa be f restricted to (a, d ], and let Ya be given by (4.6) for f replaced by fa. Then
for x> d,

Yd(X,,)--*b(X,X)[M+(t)--M-(,)]-l fadcya(t,X)*A(t)f(t)dt.
Hence by Theorem 2.1 (note that Z- Y if c-e and E-I),

(4.7) lim Ya(X,X)*Jb(X,l)--O.
x---,b

From (1.14), with b-- (’,/),

(4.8)

Now by (1.13),

(4.9)

Ya*Jble ( -X) yffAb- fcAb.

fat’(Y Ya )*A(y Ya ) _<(ImX )-2f;f*Af
since f-fa-f on [d, b). Further, the formula (4.4) shows Ya converges uniformly to y
on compact sets as d b. Now let x --, b in (4.8). By (4.7) we obtain

(4.10) --ya(e,2t)*J@b(e,lx)--(tx--X)febyA@b-- feaf*A@6.
Application of (4.9) to (4.10) yields

feb febf*AOb(4.11) --y(e,?t)*JffPb(e,)--(#--X ) y*A.b-

Note that E(e,b).
LEMMA 4.1. Suppose each of a and b is in the limit-point or limit-circle case, ImX :/:0,

f , and
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On the other hand, if d b in (4.8) we have
x x

(4.12) y(x,X)*Jb(X,lX)--y(e,X)*Jb(e,l)--(#--X ) Y*Atb-- f*AtYPb.

By letting x b in (4.12) and comparing with (4.11), this completes the proof.
The above argument is not necessary in the limit-circle case since all functions are

2. The representation,

y(X,X)--b(X,X)[M+ (X)-M-(X)]-l faXa(t,X)*A(t)(t)dt
-F*a(X,X)[M+(,)--M-(X)]-I fbx b(t,X)*A(t)f(t)dt,

permits a direct application of Corollary 2.1. The proofs for x --, a are similar.
THEOREM 4.1. Suppose (1.1)-(1.3), (4.1)-(4.5) hold, Imh v 0, L is an n-vector, and. Let (1.1) be limit-circle at a and limit-point at b. Then there is a unique y 2 such

that

(4.13)
and

(4.14)

Jy’- [XA(x)+ B(x)]y +A(x)f

lim y(x)*Ja(X,X)-L*.
x-*a

Moreover, y is given by

andfor all I with Im/ 4: 0,

(4.16) lim y(x,X)*Jb(X,l)--O.
xb

Proof. Except for (4.14), the other properties of (4.15) have already been estab-
lished. By (1.14)

(4.17) b(X,,)*Ja(X,X)--b(e,,)*JdPa(e,X)
--M+ (,)*-M-(X)-M+(,)*-M-(,)*

since M(,)*-M() [7]. This matrix is nonsingular by construction of F.
If y and y are E] solutions satisfying (4.13) and (4.14), then Y3-Y-Y satisfies

(1.1). Since (1.1) is limit-point at b, y3(x) tIb(X, ,)V for some n-vector v. By (4.14), 73
satisfies

lim Y3(X)*Ja(X,)-O,
x--a

which is contrary to (4.17) unless v--0.
In the limit-point case at a, the boundary condition (4.14) is dropped. Uniqueness

follows from the fact that the difference 73 of two solutions Yl and 72 has the representa-
tions Y3(x ) b(X, )V and Y3(X ) a(X, )u. Invertibility of M+( ) M-(2 implies
u--v--0. In the limit-circle case at b we may impose also a boundary condition,

lim y(x)*Jb(X,)-L.
x--,b
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In the limit-circle case we may also consider a nonhomogeneous boundary condi-
tion

(4.18) lim y(x)*JOa(X,X)-L*
xa

To impose the boundary condition (4.18) in place of (4.14) we need that the matrix F
defined by

lim Ob(X,X)*Ja(X,A)-F
x---.a

is nonsingular. Now W--(Oa,b) is a fundamental matrix since M+(,)-M-(,) is
nonsingular. Thus by Corollary 2.1,

(o(4.19) lim (x)*(x- rx---a

Since W satisfies (1.1),

(det W)’-(trace[J-’(2A +B)])det W.
Now trace J-I[(Re,)A +B] is pure imaginary since A =A* and B-B*; hence if A is
real, Idet 1 is constant and A given by (4.19) is nonsingular. The unique solution
y E] of (4.13) and (4.18) is then given by

y(x,A)-Ob(X,X)F*-’L+ K(x,t,A)A(t)f(t)dt.

The boundary condition (4.16) is a direct generalization of the A-dependent condi-
tion considered by Titchmarsh [20, p. 31 ]. In the limit-circle case Fulton [6] has given an
equivalent formulation of the boundary conditions which is ,-independent. The authors
have recently extended Fulton’s formulation to the case of a Hamiltonian system [10].
However, for our purposes here it is more convenient to consider the Titchmarsh form.

Finally we develop the analogue of Corollary 2.2 for two singular endpoints. From
Corollary 2.2, we have for Xoo

and thus by multiplication of appropriate factors,

(4.20)

{[M+_M-I-,(I,M-)}, M+ J
M+

2Im, {[M+-M-]-(I’M-))

=fet’(Z( / M+ -l

M+ )( -M-) (I,M-)}*A{Z( I M+- --1M+)( M-) (1, M-) }
However, we may rewrite (4.20) as

{/oo -(1/2)J-} *J{Poo -(1/2)J-}/2 Im2

fb(z(.oo (1/2)j-l)) *A (Z(Poo (1/2)j-l)).
"e-
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Similarly, it follows that

{/o + (1/2)J-’} *J{/o +(1/2)J-’}/2Im,

fae(Z(/oo + (1/2)J-’) }*A (Z( + (1/2)J-) }.

Adding these two equations and simplifying yields the analogue of Corollary 2.2,

2Im =e{Z(+(1/z)J-’)}*A{Z(+(1/z)J-’)}
+ 6{Z( (1/2)J -) }*A {Z( (1/2)J-’)}.
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ON THE BOUNDARY VALUE PROBLEM FOR
SYSTEMS OF ORDINARY SECOND ORDER DIFFERENTIAL
EQUATIONS WITH A SINGULARITY OF THE FIRST KIND*

EWA WIlVitLLRt

Abstract. Analytical properties like existence, uniqueness and smoothness of continuous solutions of
nonlinear boundary value problems are considered. Fredholm theory for linear boundary value problems is
established. The results are applied to two practical examples from the theory of spherical shells.

1. Introduction. We investigate the nonlinear boundary value problem

(1. la) y"(t)----t-y’(t ) y(t):f(t,y(t)), 0<t_< 1,

B(y(O),y’(O); y(1), y’(1)) 0,(1.1b)

where y, f are vector-valued functions of dimension n, B is a vector-valued function of
dimension m<_n and A0, A are constant nn matrices.

The numerical solution by difference methods of the scalar problem has been
examined by different authors; see Jamet [5], Natterer [10], Russel and Shampine [14].
Brabston [1] and de Hoog and Weiss [2] have considered first order systems of ordinary
differential equations with a singularity of the type considered here. In our analysis we
shall rely heavily on the techniques developed in [2].

The present paper provides a study of basic analytic properties of (1.1) like
existence, smoothness and uniqueness of the solutions. Particular attention is paid to
the structure and properties of the boundary conditions (1.1b) ensuring the existence of
such a solution. We establish a Fredholm theory for the case when (1.1) is linear.

An outline of the paper is as follows: 3 deals with analytic questions for the linear
problem (1.1) with constant coefficients. In 4 we consider linear problems where the
matrices A0, A depend on and Ao(t ), A(t) are continuous on [0, 1]. In 5 we study
the nonlinear problem (1.1) and extend the results to the case where f is a function of
the form f(t,y(t)/t). This kind of fight-hand side occurs in problems from the nonlin-
ear theory of spherical shells; see Keller and Wolfe [7]. Finally, we apply the theory to
two examples given in Keller and Wolfe [7] and Rentrop [13].

2. Preliminaries. The following notation will be used. We denote by X the space
of complex-valued vectors of dimension n. We use l. to denote the maximum norm in
X

CP[0, 1] is the space of complex n-vector-valued functions which are p times con-
tinously differentiable on [0, ], and Cfl(0, is defined similarly. For each y C,[0,
we define the norm

Ilyl]- max ly(t
0_<t_<l

*Received by the editors March 8, 1982, and in revised form December 16, 1982.
Institute for Applied and Numerical Mathematics, Technical University, Vienna, Austria.
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Occasionally, we use the following norm on [0, 8], 8 >0;

[]YlI-- max [y(t)[.
0_<t_<8

Cfn[0, 1] is the space of complex-valued nn matrices with columns from Cf[0, 1].
For A C,n[0, 1], IIAII is the induced norm. When there is no confusion, we shall
delete the subscripts n and call C C[0, 1] C[0, 1], C(0, ]- C(0, ]. Let G be a
2n2n matrix. We denote by G the n2n matrix consisting of the n first rows of G
and by G2 the n 2n matrix consisting of the n last rows of G.

3. Analytic results for the linear problem with constant coefficient-matrices A 0 and
A 1. Here we consider the boundary value problem of the form

A Ao(3.1a) y"(t)----t-Y’(t)-.2Y(t)=f(t), 0<t_< l,

BoY(O) +B Y(1) fl(3.1b)

where Y(t)-(y(t),y’(t))r, yC[O, 1]N C2(0, ]. Ao, A are constant nn matrices, B0,

B are constant m 2n matrices, fl is an m-vector andf C. The number m of rows of
Bo and B!, that is necessary for (3.1) to define a well-posed boundary value problem,
will be specified later.

As a first step in the analysis of (3.1) we consider the linear system

_A A0(3.2) y"(t)- y’(t)---y(t)=f(t), o<t_< 1.

The linear transformation z(t)=y(t), z2(t)--ty’(t ) applied to (3.2) yields to the first
order system of size 2n for the vector z=(zl,z2)r

1Mz(t)+tf(t), 0<t_<l(3.3) z’(t)=7
where

(3.4) M= Ao I+A, ](t)-- f )

The fact that the structure of the general solution of (3.3) depends on the eigenval-
ues of M, suggests representing this matrix in its Jordan canonical form. Let E be the
matrix of (generalized) eigenvectors of M such that M-- EJE- 1. Then (t) E- z(t)
satisfies the equation

(3.5) q/(t)---[Jq(t)+tg(t), 0<t_<l,

with g(t)= E- l](t). The general solution of (3.5) has the form

(3.6) (t) l,(t) + (t)c- tSfts-Ssg(s ) ds + tSc,

where c is a constant 2n-vector, %(t) is the solution of (3.5) with %(1)--0 and

t(t)=tS=exp(Jlnt), O<_t<_ 1,
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is the fundamental solution matrix which satisfies

t,(t)_71Jdp(t), O<t_<l, (1)--I,

cf. [2, Lemma 3.1]. To analyze (3.5) we first assume that J consists of only one box of
the form

J- ". -o+i

and consider separately the three cases" o_<0, ,-0, o>0. Since the matrix s will
frequently occur, we note that it has the form

(lnt)-lnt
2!

(3.7) tJ-tx
(2n-- 1)!

In
1

O_<t_<l.

Case 1. o0.
LEMM 3.1 For every gCP[0, 1], p>O, there exists a unique solution q of (3.5).

Furthermore, y-- Elq is a solution of (3.2), y C’+2 and the following estimates hold:

ly(t)l<_tZDllgll, ly’(t)l<_tDIIgll, ly,,(t)l<_Dllgll, 0_<t_<l, D-const.

Proof. Let g C. According to (3.6) the unique, continuous solution p of (3.5) is

(3.8) q)(t)-tJfotS-sg(s)ds-t2folS-Ssg(ts)ds.
We substitute (3.8) into (3.5) to obtain

q’( t)-Jtfols-sg( ts) ds+ tg( t).

The estimates for y(t) and y’(t) hold now due to zk)(t)-Eqk)(t), k-0, and the
estimate for y"(t) follows from (3.2).If gCp, p>_l, we can differentiate the last
equation, so

qo"(t) ( J-I)jfls-ssg( ts ) ds + G(t),
"0

where G(t)--(J+I)g(t)+tg’(t) andy"(t)=--(t), where C’ if gCp. [q

Case 2. --O.
LEMM 3.2. For every gC[0, 1], p>_O, there exists a unique solution q) of (3.5)

subject to the terminal condition (1)=. Furthermore, y=Eq) is a solution of (3.2),
y C+2 and the following estimates hold:

ly(t)lO{t-Ilgll/ll}, ly’(t)lDtllgll, ly"(t)lDIIgll, 0_<t_< 1, D- const.
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Proof. The general solution of (3.5) is

cp( ) tJ{ fotS-Ssg( s ) ds +

Hence, tp C iff

and this implies the following form of any continuous solution of (3.5):

0
cp( ) t2j.ls-Jsg( ts ) ds +(3.9) n-const,

which yields tpk(0) 0, k---2,--.,2n and

The result follows now as in Case 1, on noting that

q’( ) tJfols-ssg( ts ) ds + tg( ).

Remark 3.1. When dealing with the solution z of (3.3) we do not use formula (3.9)
directly, but first we rewrite it in an equivalent form. To make this clear, we consider
the system (3.3) and assume, that all eigenvalues of M are equal to zero. Let X0 be the
eigenspace of M and R be a projection onto Xo. Let us define

H=I-R.

For simplicity we select a basis in which M is reduced to the Jordan form and use it to
construct the projections R and H. Then the following formulas are equivalent:

and

z(t) t2f01s-ns(ts)ds+d#(t)Ry, Ry-Rz(1) foIRs-Msj( s ) ds

z(t )--t2folnS-Msj(ts )ds + tMfltRS--Msi(S )ds+ (t)R, RI=Rz(1)

where (t)= ttR. This follows immediately on noting that

M tRs-Msf(s)ds Rs-Msf(ts)ds (I)(t)

Case 3. o> O.
LEMM 3.3. For every g CP[0, 1], p>_O, there exists a unique solution q of (3.5)

subject to the terminal condition q(1) 7. Furthermore, ify Ecp then y(O) O, y CN
Cp+2(0, and the following estimates hoM:
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(i) For 0<0<2,

lY(t)lt( + [lntl2"-’)D(llgll+ Il),
ly’( )lt-’( + Iln tl2"-)D(llgll+

[Y"(t)[<-t-2( + Ilntl="-a)D(llgll/ Il),

(ii) For o 2,

[y( )lt2(1 + Ilntl2)D(llg[l+
[y’(t)]t(1 + [lntl2")D(llgll+ ]l),
lY"(t) 1--< ( + Iln tl

2" )D(llgl[/

(iii) For o> 2,

(iv)

(v)

0_<t_< 1, D-const.

0<t<l, D-const.

lY( t )l<t2D( llgll+ I1),
[y’(t)ltD(Jlgll+ lwl), 0_<t_<l,

ly"(t)l-<D(llgll+ Inl),

(a) If -<p<o<p+ 1, then

]y’+ )(/) [_<const./o-,- (1 + Ilnt[2"- ),
(b) If =p+ 1, then

]y(’+’)(t) I-< const. (1 + Iln/12"),
(c) Ifo>p+ 1, then yCP+[O, 1].

(a) Ifp+ <o<p+ 2, then

]y,+2)(t)l<_eonst.to--2(1 + iln/12"- t),
(b) If o=p+ 2, then

lyre+ 2)(/)]_< const. (1 + [In tl :"),
(c) Ifo>p+ 2, then y C’+2[0, 1].

D= const.

0<t_<l.

0<t_<l.

0<t_<l.

0<t_<l.

Proof. According to (3.6) the general solution of (3.5), which satisfies the terminal
condition, is

(3.10) p(t) tsflts-Ssg(s) ds+
and C tq Cp+ 1(0, yields y Cf C"+2(0, ]. Clearly,

(t)] Dt(l+llnt Ilsasllgll/ "-’) 0_<t_< 1, D--const.
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For the integral term we have,

sds<-const.(ItJl+t2) for o2

sds<_const. Ilnl/llnl } foro-2

This yields the estimates (i), (ii) and (iii).
We now establish (iv) and (v). For the case p= 1, gC[O, 1] and (iv) (a), (b) and

(c) are contained in (i), (ii) and (iii). Since ’(t) is a solution of

"(t)-f (J-I)’(t)+G(t ),

where G(t) 2g(t) + tg’(t) C, the estimate for y’"(t) can be obtained as the estimate
for y"(t) before. Ts process can be continued for p> 1.

We now consider the problem (3.3)

z’( )-+Mz( ) + tf( ), 0<t_<l.

Remark 3.2. The special structure of the matrix M yields to the following de-
pendancy between the upper and lower rows of the matrix E:

This follows immediately from

[0ME-EJ Ao

E2=EIJ.

I+Al E2 E2
J"

We use this fact to write the solution y of (3.2) and its first derivative in the form

(3.1 la)
(3.1 lb)
or equivalently

y( ) 1, z( ) Elq0(t ),
y’( ) 12(z(t)/t) E J(q( )/t )

y’( )= I,z’( ): Elq0’(t),
where 11 and 12 are n 2n matrices consisting of the appropriate rows of I.

Before we discuss the problem (3.3) we introduce following notation.
Let d(,) be the dimension of the largest Jordan box of M having eigenvalues X.

Let o/ be the smallest of the positive real parts of the eigenvalues of M and d/ be the
dimension of the largest Jordan box of M which is associated with an eigenvalue whose
real part is o+.

Let X0 be the eigenspace of M corresponding to the eigenvalue 0 and X/ the
invariant subspace associated with the eigenvalues with positive real part. Let P be a
projection onto X0 X+. Define

P=R+S,

where R and S are the projections onto X0 and X+, respectively. In addition, let

Q=I-P.
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Let X be the eigenspace of M corresponding to the eigenvalue h- and X+ the+
invariant subspace associated with the eigenvalues whose real parts are grater than one.
Let U and V be the projections onto X+ and X+, respectively and define

T=S-U-V.

As before (in Remark 3.1, following Lemma 3.2), we select a basis in which M reduces
to Jordan form and use this basis to construct the projections.

The following two lemmas, stated without proofs, are consequences of Lemmas
3.1, 3.2, 3.3 and Remark 3.2.

LEMM 3.4. Let z C be a solution of (3.3) with f C. Then

Qz(O) =0 and Sz(O) =0.

LEMM 3.5. For every fG C and a constant vector 7, there is a unique solution z C
satisfying (3.3) and the terminal condition Pz(1)= P7. This solution has theform

z(t)=(Hf )(t)+(t)P/,
where H: C C is a linear, bounded operator and

(Hf )(t)--t2folQs-Ms](ts)ds+ tMfltpS-Ms](s)ds,
dP( ) tMp.

The corresponding two lemmas for the solutiony of (3.2) are:
LEMMA 3.6. Let y(t):z(t)C be a solution of(3.2) withfC. Then

(3.12a) yQ(O)-- QI2(0)- 0, y6(O)- Q,z’(O)-0,

Ys(O)=S,z(O)=O,
(3.12b) y(O) S,z’(O) lim Tz’( ) + Uiz’(O) + Vlz’(O),

where

limTlZ’(t)=, Vz’(0) :0.
t--,0

LEMM 3.7. For every fG C and a constant vector ", there is a unique solution y C
satisfying (3.2) and the terminal condition

PY(1)-P(y(1),y’(1))r-P.
This solution has theform

Y(t)=IlZ(t),
where z is the solution of (3.3) defined in Lemma 3.5.

Let us consider the boundary value problem

1Mz(t)+t](t), 0<t_<l(3.13a) z’(t)-
(3.13b) BoY(O)+BY(1)=.
We shall now look for conditions which are necessary for (3.13) to define a well posed
boundary value problem. Before we discuss this question, we note, that by (3.12b) T0
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implies the discontinuity of the first derivative y’ at t-0, and therefore, we have to find
an additional condition which yields

nolrlZ’(O) -’0,

where B01 is the m n matrix consisting of the last columns of B0. This is done in the
following remark.

Remark 3.3. We denote by Te the n matrix consisting of nonzero columns of
ETE, say ,j,j 1,...,i, where/-rank [T]. Then, it follows immediately, that

BoTz’(O)-Oo, t(,jKer[Bo ], j= 1,., .,i.

For the subsequent analysis we make the following assumption.
A.3.1 If T0, then el,jKer[B0],j 1,...,i,/-rank[T].
We can now give the condition which is necessary for the uniqueness of a solution

yC of (3.13), i.e. to (3.1). For any projection matrix W, let us denote by lg/the 2ni
matrix consisting of the linearly independent columns of IV, where i= rank[W]. Then
we have the following theorem.

THEOmM 3.1. Let y C be a solution of (3.2) defined by Lemma 3.7. Then y is a
solution of (3.1) iff the m m matrix

UIM
-}" B

is nonsingular.
Proof. Since, for every Py there exists a unique vector aXm such that

we can write the solution z of (3.3) in the following form:

(3.14) z( ) (Hy )( ) + ( tMP)ffa-( ) + Z( )a.

Then we have

Pz(1) PY(1) ffa,
Qz(1) QY(1)- Qe(1) fit2( f ),
ye(0) PI z(0) RlZ(0) RIZ(0) -bR1/o R,( f ) + RI/0,
yt2(0)--0,
y,(O)=P,z’(O)=S,z’(O)= TlZ’(0) -- UlZt(0)

TIZ’(O) + U13’(O) + UIZt(O)ol Tz’(O) + fit/,( f ) + UiMfft,
y(O) -0.

By substitution into (3.1b) we obtain

B UIM PBI ----B flv,(f ) --BIQ(f )

and the result follows. [2]

Remark 3.4. Notethat Theorem 3.1 implies m=rank[P], i.e., B0 and B have
rank[P] rows.

Finally, we shall derive the most general boundary condition of the form (3.1b)
which yield a Fredholm alternative for the problem (3.1).
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We define the differential expression

1Mz(t), 0<t_<llo(z)-’(t)-7
and associate with it the operator L0 defined by

Zo-/o(),
if

zD(Lo)- zeClo(z)-tf(t),fC,Bo +B,z(1)-0ZI(0)

THEOREM 3.2. If the assumption A.3.1 holds and

(3.15) rank Bo UM ,B =k,

then Lo is Fredholm with index rank [P]-k.
Proof. [2, Thm. 3.1] and Theorem 3.1.
Clearly, if we assume that m=k, then L0 is Fredholm with index zero iff m-

rank[P].

4. Analytic results for the linear problem with variable coefficient-matrices A o(t)
and A l(t). Here we study boundary value problem of the form

(4.1a) y"(t)---[A,(t)y’(t)- Ao(t)y(t):f(t ), 0<t_<l,

BoY(O) +BY(1) fl,(4.1b)

where yCfqC2(O, 1] and B0, B, t, f are defined as before in 3. Section 4.1 deals
with the case when Ao(t ) and Al(t)CfqCl(O, 1] and in 4.2 we assume Ao(t ) and
A(t) to be in cl[0, 1]. Finally, we consider two special cases, which have to be studied,
as a first step in the analysis of the nonlinear problems. Before we construct the general
continuous solution y of (4.1a), we prove the following lemma.

LEMMA 4.1. Given >0, v>0 andf C[0, 8], consider the linear system

1Mu(t)+t-l](t),(4.2a) u’(t)-7
(4.2b) Pu(8 ) P/.

Then

O<t<:8, uC[O,6],

u(t)=(Kf )(t)+ U,(t)c,

where K: C[0, 8] --, C[0, 8], is a bounded linear operator, c X’, rn rank[P], and

Ilg]l,-<const.

Proof. Consider

u’( t) -{Ju( t) + tV-g( t).
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Case 1. a_<0. For u C[0,/] we have

u( ) tfols-Js- g( ts ) ds

and hence

lu(t)l<-t max Ig(t)[. const. -tllgll const.
0_<t_<#

Case 2. X-0. For u C[0, i] it follows that

s -lg(ts)ds+r

and analogously

lu(t)l t llgll const. + I l-
Case 3. a >0. The continuous solution u, with u(i)-r/has the form

u(t)-tJ -Js-lg(s)ds+ - r/-t(t)+ - r/

and in a similar way, as in Lemma 3.3, we obtain the following estimates for z(t):

ifov,, then la(t)l_< t+6 Ilgll,’O, D-const.,

if o- v, then In - Ilgll" D, D- const.,

and hence

The general continuous solution u of (4.2) has the form

u( ) t"folQs-Ms’- ’i( ts ) ds-l- tMtps-Ms’-’(s ) ds-[- P ffc

=(Kf)(t)+ U#(t)c,

since for each Pu(#)-PV, there exists a unique c X", such that P/- Pc, and we have

We shall now construct the general continuous solution of (4.1a).

4.1. Linear problem with Ao,A CN Ca(0,1 ]. The matrices Ao(t ) and Al(t ) are
chosen to have the form

(4.3) A,(t)-Ai+tC(t), CC[O, 1], i-0, 1.

If 0<,< 1, this is a simple characterization of the fact, that A CN C1(0, ].
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Let 0<v< and consider the system (4.1a) with (4.3). Applying the linear trans-
formation z( t ) ( y( ), ty’( ))r we obtain

1M(t)z(t)+t/(t) 0<t_<l(4.4) z’( ) ---[
where

[ 0

Hence (4.4) is equivalent to

/ ] [oI+al(t ) --M+t Co(t )
0

where

(4.6) (7(t)- Co(t ) Cl(t) ](t)- f )

LEMMA 4.2. For every f C and (7 C there exists a unique, continuous solution of
(4.5) subject to the terminal condition Pz(1)---PI. This solution satisfies Qz(0)-0 and
zCl(0, 1].

Proof. According to Lemmas 3.5 and 4.1 the general continuous solution z of (4.5)
satisfies for 0<t_<,

(4.7) z( ) ( KCz )( ) + (Hf )( ) +

where

( KCz )(t)- tfolQs-gs-(ts )z(ts ) ds + tMfIps-Ms (S)Z(S ) ds

and by Lemma 4.1, KC: C[0,6]--, C[0,6] is a bounded linear operator with

D- const.

Hence, for $<6o<_(1/2D)l/ the operator KC is contracting and z C[O, ],

z(t)-(I-KC)-((Hf )(t)+dP(t)Prl)-(t)+ Z(t)Pl.
We note, that for small enough, rank[Z]=rank[], since

(I-KC)-’-I+KC X (KC)"
n--0

and I[KCIIn-<const. 8.
This solution can be continued uniquely to t= 1. Clearly, Qz(0)=0 and by sub-

stitution of z into (4.5) we have z cl(0, ], which completes the proof. 7q

We now consider the boundary value problem

(4.8a) z’(t)-Mz(t)+t-I’(t)z(t)+t](t), 0<t_<l,

(4.8b) BoY(O) + B,Y(1) =/3.

1Mz(t)+t-l(t)z(t)+tf(t) 0<t_<l(4.5) z’( ) ---
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Before we formulate a criterion for the existence of a unique solution z C of (4.8)
we need the following result.

LEMMA 4.3. The general solution of (4.8a) has the form
z(t)-(t)+Z(t)a, 0_.<t__<

where ( ) is the unique continuous solution of

M(t ) t 1( )( t ) tj( t ), P(1) 0(4.9) g’(t)--7
and Z( ) & the unique continuous 2n >( m matrix solution of

(4.10) Z’(t)-MZ(t)-tp-l(t)Z(t)-O, PZ(1)- ff

Proof. By Lemma 4.2, (t) and Z(t) are solutions of (4.9) and (4.10) respectively
iff

(4.11)

and

(4.12)

.(t) tfolQs-ms-1( ts ),( ts ) ds 21- tMftps--Ms l(s ),(S ) ds

-t-.t 2fol aS--MS]( tS ) ds .-I- tMItps-Ms](s ) ds

=(KC)(t)+ (Hf )(t)

Z(t)- tVfolQs-Msv-l( ts )Z( ts ) ds + tuftps-s-"l 1(S )Z( s ) ds + (tmp).

The existence of continuous unique solutions of (4.11) and (4.12) is obvious by Lemma
4.2. The result follows now, since z must satisfy

z(t)-(KCz)(t)+(Hf )(t)+(tmP)Pz(1)

and for every Pz(1) there exists a unique a X’ such that Pz(1) P((1)+ Z(1)a) fla.

Remark 4.1. By Lemma 4.2 and (3.1 lb), y’(t) can be written as

n

y’(t)--t- eii(t ),
i=1

where {ei}, i= 1,-..,n are linearly independent and i(t)C, i= 1,...,n. So we have
to assume, B01 =0. With this assumption we have the following theorem.

TrlEOREM 4.1. Let y(t)-----Zl(t). Let z C be a solution of (4.8a) defined by Lemma
4.3. Then y is a solution of (4.8) iff the mm matrix [BooRIZ(O)+B[QZ(1)+P]] is
nonsingular.

Proof. From Lemma 4.3 and (3.11) we have

Pz(1)-PY(1)-tx,
Qz( 1)- QY(1) Q(1)+ QZ(1)ct,
ye(0) Pz(0) R (0) +R Z(0)t,
yo(O) Q z(O) O.
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The substitution into (4.8b) gives

BooR,Z(O) + B, [QZ(1) + if]] a- fl- BooR,(O) BIQ2(1 )
and the result follows.

As in 3, we see from Theorem 4.1, that m--rank[P] is the necessary and sufficient
condition for the uniqueness of a continuous solution y of (4.8), where P is a projection
onto the eigenspace of M(0) corresponding to the eigenvalue zero and the invariant
subspace of M(0) associated with the eigenvalues with positive real parts, cf. (4.5).

4.2. Linear problem with Ao,A C[0,1]. Using Taylor’s theorem we can write
Ao(t) and A(t) in the form

A,(t)=A,+ tC(t), i=0,1,

where Co, C C[0, 1]. This is equivalent to (4.3) with ,= 1. The corresponding system
of the first order is

1Mz(t)+(t)z(t)+tf(t), 0<t_<l(4.13) z’(t) 7
and by Lemma 4.2 we have the following result.

LEMMA 4.4. For every fG C and C there exists a unique, continuous solution of
(4.13) subject to the terminal condition Pz(1)=Py. This solution satisfies Qz(0) 0.

We now investigate the smoothness properties of the solution z of (4.13). Let
f CP[O, 1], and consider separately three cases o_<0, 2 =0, o>0.

Case 1. o_<0. Let 7CP[0, 1]. According to Lemma 4.1, the solution z can be
written as

z(t)=t(t), (t)GCP[O, 1].
Hence, the system (4.13) is equivalent to

1Mz(t)+t[’(t)l(t)+](t)],’(t)-7
and by Lemma 3.1, y Cp+2[0, 1].

Case 2. -0. Let C’[0, 1]. Then z has the form

z( )= tl( ) + Rv,

where t(t) is the solution of (4.13) and R, is the solution of

1Mz(t).’(t)-7
Hence, (4.13) can be written as

I ]1Mz(t)+t[d(t)(t)+fi(t)] + Co(t)R,vz’(t)=7

and by Lemma 3.2, y Cp+2[0, ], if C0(t) C’+ t[0, ].
Case 3. o>0. From Lemma 4.1 we have for C_CP[O, 1],

z(t)-tvl(t)+t+(1 +(lnt)a+)l(t),
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If 0<o_< 1, then yCf"ICp+I(O, 1]. If o> 1, then z-t(t), and (t)CP[O, 1]. Hence,
(4.13) can be written as

and by Lemma 3.3 we have

if <o<2, thenyC’+fqCp+2(O, 1],
if o> 2, then y C’+2.

Hence, the following result is obvious.
LEMMA 4.5. For every t,fCP[0, 1], p>_O there exists a unique solution yC of

(4.13) subject to the terminal condition PY(1)-P/ and
(i) if o+ >p+2 and Co Cp+ , then y C+2,
(ii) ifp+ <o+ _<p+2, thenyC+l tq C’+2(0, ],
(iii) ifp<o+ <_p + 1, then y C tq C+ (0, ].

Consider the boundary value problem

(4.14a)

(4.14b)

1Mz(t)+(?(t)z(t)+t](t),z’(t)-7
BoY(O) +BIY(1)- fl.

O<t<l,

By Lemma 4.3 we have immediately
LEMMA 4.6. The general solution of (4.14a) is

z(t)-(t)+Z(t)a, O__<t__<l,

where ( ) is the unique continuous solution of

1M(t)-(t)(t)-tf(t),(4.15) U(t)--- P2(1)-O

and Z( ) is the unique continuous 2n m matrix solution of

(4.16) 1MZ(t)-’(t)Z(t)-OZ’(t)-7 PZ(1)-ff.

From (4.11) and (4.12) we have for and Z

(4.17)

(4.18)

(t)--tfo’QS-M(ts)(ts)ds+ tMtps-M(s)(s)ds+(Hf )(t)

Z(t)--t Qs-Md(ts)Z(ts)ds+tM tps-Md(s)Z(s)ds+(tMp)ff.

This yields

(4.19a)
(4.19b)
(4.20a)

Pz(1)-PY(1)-a,
Qz(1) QY(1)- Q2(1)+ QZ(1)a,
yp(O) P, z(0) R 2(0) -+- R Z(0)a.
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Using (4.14a) and Lemma 4.5 we have finally

(4.20b) y(0) Tz’(O) + UM(O) + UMZ(O)a,
(4.20c) y6(0)--0.
The next result is a consequence of A.3.1, (4.19) and (4.20).

THEOREM 4.2. Let y(t) Zl(t) and z(t) C be a solution of (4.14a) defined by
Lemma 4.6. Then y is a solution of (4.14) iff the m m matrix

B0 UlM
Z(O)+B,[QZ(1)+]

is nonsingular.
Finally, we define the operator L with domain D(L)=D(Lo) as

L=L0+ (,
where is a bounded linear operator given by

(Z)(t)--(t)g(t), Z(t)--(gl(t),tg(t)) T.
Now we extend the result of Theorem 3.2 to L.

THEOREM 4.3. If the assumption A.3.1 holds and

(4.21) rank Bo UM ’BI -k,

then L is Fredholm with index rank[Pl-k.
Proof. From Lemma 3.5, Lo is compact. Since d is bounded, d is Lo compact and

the result follows from the second stability theorem for Fredholm operators [6]. F-1
At the end of this section two special cases will be discussed. For the case when

(4.22) A(t)=--At and Ao(t)=Ao+tCo(t)
where CO C110, ], the above theory can be applied.

We have a similar situation in the second case when

(4.23) A,(t)=Al and Ao(t)=Ao+tZCo(t),
where Co C[0, ]. Now the corresponding system of the first order is equivalent to

Mz(t) + t[(t)z(t) +](t)](4.24) z’(t)-7
and it is clear that all results from this section are also valid.

5. Nonlinear problem. We now consider the nonlinear boundary value problem

A

_
(5.1a) y"(t)----t-y (t)-- y(t)=f(t,y(t)), 0<t_< 1,

(5.1b) B(y(O),y’(O); y(1),y’(1)) O.

Because of the problems that appear in practice, we consider the case when y is in
C tq C2(0, and furthermore make the following assumptions.

A.5.1. T-----0.
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A.5.2. f: D X" and B D2 Xm are nonlinear mappings and D C [0, 1] X S",
D2 CX"X"X"X" are appropriate open sets. As in linear case, we take m-
rank[P].

A.5.3. Problem (5.1) has a solution yC1N C2(0, 1]. For this solution we define
the spheres

Spl(y(t))-

and the tube

T- {(t,v)lO<--t<l, vSpl(y(t)) }
A.5.4. f(t, v) is continuously differentiable with respect to v and fv(t, v) is continu-

ous on T. B(u,u2; u3u4) is continuously differentiable on S,(y(O))S,(y’(O))
S,i( y(1)) S2( y’(1)).

A.5.5. The solution y of (5.1) is isolated. This means that

AI(5.2a) u"(t)---u’(t)--(Ao+tg-Co(t))u(t)-O, 0<t_<l, uC,

 ooU(0) + u’(0)+ 0,(5.2b)

where

Co(t):fv(t,y(t)),
Boo-Bu,(Y(O),y’(O); y(1),y’(1)), Bo-Bu2(Y(O),y’(O); y(1),y’(1)),

Bo-Bu3(Y(O),y’(O); y(1),y’(1)), Bl-Bu4(Y(O),y’(O); y(1),y’(1)),

has only the trivial solution.
The main aim of this section is to show that if the assumptions A.5.1-A.5.5 hold,

then the solution of (5.1) is stable as defined in [8]. To prove it we rewrite the
problem (5.1) as follows.

Let/; be the unique rn 2n matrix such that ffff-P. Then, as in Lemma 3.5, any
continuous solution of (5.1) satisfies

y(t)- I { (Hf(. ,y(. ))) (t) +
a:a-B(y(O),y’(O); y(1),y’(1)),

where a- ff Y(1), a Xm. Equivalently, we write

x=N(x),
where x (y, a), N Uo, X C is a compact nonlinear operator, Uo, {u C[u(t)
Sp,(y(t)), 0_<t_< } and cm=cxm. For C we define I[xl[=max{l[y[I, la[}, and hence
C is a Banach space. Let denote by F* the Frechet derivative of N at x*-(y,[Y(1)),
then it follows by A.5.5, that (I-F*)- exists. This together with A.5.1 and A.5.4
yields the result, el. [8, Thm. 2.6].

The smoothness results for the solution y of (5.1) follow in a straightforward way
from Lemmas 3.1, 3.2 and 3.3. Let by fG CP[To] denote, that f(t, v) is p times continu-
ously differentiable on To. Then we have

LEMM, 5.1. Let f
_
C T], p >_ O. Then

(i) y G C"+ 2(0, ].
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(ii) If all eigenvalues ofM are nonpositive, then y Cp+2[0, ].
(iii) Ifp + <o+ <p+ 2, then

[y(’+E)(t)l<_const.t+p-2(1 +
If o+ =p+2, then

ly+2’(t)[< const. (1 + Iln tla+),
If o+ >p+2, then y C+2.

We now consider the first example 13], n 2,

0<t_<l.

0<t_<l.

(5.3a) y"(t)+3-Ity’(t)-F(t,y(t)), 0<t_<l,

[1 0 00](5.3b) y’(0)-0, BY(1)- 02/30 Y(1)-0’

Yl(t)Y2(t)- #2y2(t)- 23’ 1where F( t,y(t)) 12
-Yl ( t ) +#2y( )

and #, 3’ are problem parameters.
Since A00 and A 31 we have

O 10 -1 01[0 I ], j_ 0 E= 0 0 -1M-O-2I -2 0020"
-2 0 0 0 2

We consider now the Fr6chet derivative of the nonlinear operator defined by (5.3)
and show that it is Fredholm with index zero. Let y C be a solution of (5.3). Then

(5.4a) u"( ) +--- u’( t ) Co( t )u( ) -0,

(5.4b) u’(0) =0, BU(1) =0,

where Co(t )
y2(t) yl(t)-#2]--y(t)+#2 0

Defining v(t ) (u(t), tu’( ))r we have

1Mv(t)+t(t)v(t)(’ ’(-7
(.su .’(o =o, V(ll=O,

h d()- c.() o"

Since S0, any continuous sNution u of (5.5a) can be written as

O<t__<l,

u(t)u(t)- u’(t)

(5.6) u(t):I’t2 ’(Q+R)s-ms(ts)v(ts)ds+c o
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and

(5.7) u’(t)-IMtfo(Q+R)s-ts(ts)v(ts)ds, u’(0)-0.

Hence, we recognize the condition u’(0)=0 to be necessary for u to be continuous.
Furthermore u C2. Finally, T=0, B0 =0 and

rank[ B rn 2-- rank[R ].
The result follows now by Theorem 4.3 and the nonlinear problem (5.3) is well posed.

Since in this case M has no eigenvalues which are positive, f(t,y) is continuous
with respect to for 0_< t_< and all y C, we can reduce the boundary value problem
(5.3) to an initial value problem. Hence the existence of a continuously differentiable
solution of (5.3) follows by a contracting argument. Since Q+R --= I we have

where

s-MsP(ts,y(ts))ds+ c2,

y(O)
c, ]_lY(1)_BlY(1)_ -y(1)
C2

-Y2(1) ---Y(1)

Furthermore, by Theorem 5.1, y C [0, ].
We shall now consider the case when

A, ,(

_
y(/),) O<t<_l, y_Cl(5.8a) y"(t)------y t)-- y(t)--f t,

(5.8b) Bo(Y(O),y’(O); y(1) ,y’(1)) =0.

Since the proof of the main result is based on exactly the same arguments, if the
assumptions are chosen properly, we shall be satisfied with their formulation and treat
the example from [7] in detail.

A.5.3. We have to change the definition of So,(y(t)) to

s ( Y(t) )- (vxnv, Y(t) I<-P’P>O)
Clearly if v So,(y(t)/t), then v S0,(y(t)).

We assume, that y(t)/t C[0, ], y(0) 0 and define

T- (t,v) 0_<t_<l, v.So,

A.5.5. The only change is the structure of the term in parentheses, which now has
the form

Ao+ tCo( ) Co( ) fv ( y( ) )
The other assumptions remain valid with reference to the above definitions. Note, that
if y(0) 0, then y(t)/t

_
C is equivalent to y C.
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Consider the following problem [7], n--2.

(5.9a) y"(t)+--[y (t)--y(t)-F t,

0 0
(5.9b) y(0)-0, BIY(1)- 0 -1/3 0

0<t_<l, yC,

where

t(fl+y(t___). Y2(t) )

and , B are parameters.
Ao I and A -I, so we have

M= 0 I] j_ E- 0
I 0]’ -1 0 0

-1 0 -1

The system corresponding to (5.5) is

1Mv(t)+d(t)v(t), 0<t<l(5.10a) v’(t)-
(5.10b) u(0) =0, B,U(1) =0,

where ( C,

0 0
Co(t)_ a(7(t)-- Co(t ) 0 2Yl(t ) 0

Since R-0 and S--U, any continuous solution of (5.10) has the form

u(t)--I t Qs-M (ts)v(ts)ds-t-I tM tUs-M (s)v(s)ds+clt o
U(0)=0.

Hence, the condition u(0)= 0 is the regularity condition for the solution of the problem.
Furthermore, u C i. Since rank[B 2 rank[U], the problem is well posed.

The transformation of (5.9) to the first order system yields

( Zl(t )(5.1 la) z’(t)--Mz(t)+tP t,

(5.1 lb) B,Y(1)--

and any continuous solution of this problem can be written in the following form

y(ts)(5.12) y(t)-lt:l’Qs-sP| ,s
ts

dS+ ItMftUs--Mspl S, ) [c,y(s)
ds+

s c2
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where

c
c2

(0-B,)Y(1) + 0

Y(1)+ 12
3Y2(11

The existence of a solution of (5.12) can be shown by contraction and y CIo Since
z"(t) is the solution of

where

z"(t)--f (M-I)z’(t) + G(t),

+t PG(t)-2P t,

and since z =y C implies/ C 1, it follows from Lemmas 3.1 and 3.2 that y C2o
These lemmas are valid, because the eigenvalues of M-I are nonpositive. Straightfor-
ward application of this argument yields y C.

Finally, we extend the results of Lemma 5.1 to the solution of (5.8).
LEMMA 5.2. Letf C’ T], p >_ O. Then
(i) y C’+2(0, ].
(ii) If all eigenvalues ofM are nonpositive then y C’+2[0, ].
(iii) Ifp+ <o+ <p+ 2, then

/fo+ =p+ 2, then

ly,,+2)(t)l_<const, t+-’-2(1 + Ilntla+- ), 0<t_<l.

ly<+2)(t)l_<const. (1 + Ilntld+), 0<t< 1.

If o+ >p+2, then y C’+2.

Acknowledgment. I am indebted to Richard Weiss for bringing these problems to
my attention and for several helpful discussions.
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OSCILLATION THEOREMS FOR DAMPED DIFFERENTIAL
EQUATIONS OF EVEN ORDER W|TH DEVIATING ARGUMENTS*

S. R. GRACE1" AND B.S. LALLI""
Abstract. New oscillation criteria for the damped diffcrcntial equations with deviating arguments of the

form x"(t) +p ).v ’’ i( + q( )f( x[gt( t)], x[g_( t)],..., x[ gm(t)]) 0 are established.

1. Introduction. In this paper we are dealing with the oscillatory behavior of the
n th order differential equations with deviating arguments of the form

x")( +p( )x("- ’)( ) + q( )f( x[ g,(t)] ,x[ gg.(t)] ,""" ,x[ gin(t)]) --0,

where n is even, f_C[Rm, R--(-oo, oo)], gi,p,qC[[to, oo),R] and i-- 1,2,. .,m, and
such that:

(i) the functions p,q are nonnegative on the interval [t0, oo) and q(t) is not
identically zero on any ray [t*,

(ii) the function f is nondecreasing on the set Y, where Y--{(y,y2,.. ",Ym): YiR
and either y;>0 or y<0, i--1,2,...,m}, i.e. for every i--1,2,.--,m, y<_z implies
f(y,y," ",ym)<--f(zl,z2, ",Zm) and

f(y,y,.. ",ym)>0 ify>0 for all i,

f(y,y,.. ",ym)<0 ify<0 for alli,

(iii) for every i- 1,2,. -,m,

gi(t)oo as t---> oo.

Without further mention we will assume throughout that every solution x(t) of (1)
that is under consideration here is continuable to the right and is nontrivial, i.e. x(t) is
defined on some ray Tx, oo) and sup{lx(t)l: t_> T} >0 for every T_> T. Such a solution
will be called oscillatory if its set of zeros is unbounded and will be called nonoscilla-
tory otherwise.

Recently C. C. Yeh [9] gave some oscillation criteria for the second order differen-
tial equation

(2) g. +p(t)Yc + q(t)f(x)-O,

where f_C[R,R], p,qC[[to, Oo),R and xf(x)>O for x4:0. His results improve
previous oscillation criteria obtained in [8] for the undamped case (p--0) and in [4], [7]
for the undamped linear case (p--0, f(x)--x). On the other hand, these theorems fail
to describe the oscillatory behavior of solutions of the equation

k2

(3) 3e +-Th-x- 0
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according to the values of the constants a,k and a> 1. So we offer here the following
two theorems which unify and improve the results in [9] and can be used to investigate
(3). The proofs are similar to those of [9, Thms. 1, 2 and 3] and hence we shall not
include them.

THEOREM A. Let f’(x) exist andf’(x)>k >0 for x =/: 0, (’ :d/dx). If

lim supt-mfti(t--u)’n-3ut
+m--1 du=oc>(t--u)2q(u)--- (t--u) p(u)---

for some integer m >_ 3 and some constant 1, then every solution of (2) is oscillatory.
THEOREM B. Let q(t)>_O andf(x)/x>_k2>O for x=/=O. If

(a2) lim supt-mft(t-- U)m-31u
"to

k2(t-u)2q(u)- u - +m-1 du-

for some integer m >_ 3 and some constant l, then every solution of (2) is oscillatory.
We have combined conditions (Cl) and (C2) of [9, Thm. 1] into one condition,

namely (al). In (3), if we let k= and a 2, then condition (a) is satisfied for l- 1,
but (C).) of [9, Thm. 1] is not. A similar remark holds for [9, Thms. 2 and 3].

In this paper we are interested in extending Theorems A and B to (1) with the
restriction that the functions p and q satisfy (i). In fact nothing much of significance is
known regarding (1) when q has a variable sign (see an open problem XIII in [5] and
an example in [2]).

The following three lemmas will be needed in the proofs of our results. The first
two can be found in [3], [6] and the third appeared in [5].

LEMMA 1. Let u be a positive and n-times differentiable function on an interval
[to, oo). If u(’) is of constant sign and not identically zero on any interval of the form
[t*, oo), then there exist a t4>-to and an integer l, O<_l<-n with n+l even for u
nonnegative or n+l odd for u(n) nonpositive and such that l>0 implies u(k)(t)>0 for
t>_t4 (k--0, 1,...,l- 1), and l<-n implies (- 1)t+ku(k)(t)>O for t>--t4 (k--l,l+
1,. .,n- 1).

LEMMA 2. If the function u is as in Lemma and

utn-)(t)u<)(t)<_O for every

then for every X, 0 <)k< 1, we have

(4)
2l-"

u(Xt)>_ (,,, 1)! u("-l)(t)l for all large t.

LEMMA 3. Let

(5) lim /exp p (’r) dr ds oo for every ;>- o
t--,m
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Then ifx( ) is a nonoscillatory solution of (1), we have

x(t)x(n-)(t)>O for all large t.

2. Main results. In the sequel we assume that there exist real valued functions
oiC[[to, ), (0, )] for i= 1,2,. .,m such that

(6) oi(t)-inf (min{s,&(s) }),

oi(t)-* as t-, .
THEOREM 1. Let conditions (i)-(iii), (5) and (6) hold,

Of(Y,,Y2," ,Ym)
exist, i= 1,2, .,m,

and

(7) f(Yl,Y2," ",Ym)
>_ai>O forYi=/=O, i-- 2 .,m.

OYi

(8)
lim sup -m t- u

(t--u q(u)-- n-- -i=;-o-_2-(-6-i-- du-oo

for some integer m >_ 3 and some constant 1, then every solution of (1) is oscillatory.
Proof. Let x(t) be a nonoscillatory solution of (1), say x(t)>0 for t>_t _>t0>0.

Then there exists t2>_t so that x[o(t)]>O for t>_t2, i-- 1,2,- .,m. By Lemma 3, there
is 3_>t2 such that

xn-l)(t)>0 fort>_t3.

From (1) and (ii) we obtain

x<)(t)<_O for t>_t3.

Moreover q(t)O on any ray t*, m) ensures that x{")(t) also has this property. Notice
next that the hypotheses of Lemma are satisfied on [t3, m), which implies that there
exists t4 >- t3 so that

:t(t)>0 and x<"-)(t)>0 for t-->t4.

It is easy to check that we can apply Lemma 2 for u-:t, 2-1/2 and conclude that there
is a t5 -> t4 such that

] 22-2" -2( )x. 1)Y -o,(t) > [oi(t)]--(n- 1)!
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for every t>_t and i- 1,2,...,m. Notice also that

((X(n- I)(t))2)" 2xt- )(t)x)(t)<0

for t>_t3, so the function x(n-l)(t) is nonincreasing on [t3, ). Therefore for every t>_t

we have for each i- 1,2,..-, rn that

(9) ] 22-2n
Yc oi(t ) >(n 11! fl-2(t)x("-’)(t)"

Define

w(t)-- tlx(n-l)(t)
f(x[1/2Ol(t)],’’’,X[1/2Om(t)])"

Then w(t) satisfies

f(x[gi(t)],’’’,X[gm(t)]) __[p(u)__]w(t)rb(t)----ttq(t) f(x[1/2o,(t)]7 ;7-120"m(t)])

2 f(x[1/2ol(t) ,x[1/2Om(t)]) .= ’i

Using (ii), (7), (9) and the fact that x is a nondecreasing function, we obtain

21-2n m

w(t)_t_,w2(t) otitl_2(t)di(t )(10) (t)<_--ttq(t)-- p(t)-- 7 (n--1)! i=1

Thus

fti(t-um )m--lulq(u)du

--w(u dut--u p(u)
u

Since

we get

(n-1)i
t--u)m-lu-I X Oiffi U 2(

fti(t--u)m-l(u) du--(m--1)fti(t--u)m-2w(tl)du-(t-t5 )m--lw(t ),

ut[(t-u)2q(u)U)m-3

-22"-3(n 11’
[(t--u)(p(ul--l/u)+(m--1)] 2

i=
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<tl-m(t--ts)m-lw(ts)

--tl-mft(t5 (--n--21-2n rn )1/21)--------((t--u)m-lu-’ 20tiO;-2(U)(li(u) W(U)
i=l

2

(t--u)m-2((t--u)[p(u)--l/u] +rn-- 1) du

2
(n-1)! (t-u u- Zi_.liOi (u)0i(u)

w(t5) =-- a finite number as o,

which contradicts condition (8). This proves the theorem.
COROLLARY 1. Let condition (8) in Theorem be replaced by

(11)

and

lim sup t’-mfti(t-- U )m-luiq( U ) dig oo

(12) lim tl-mfti(t-u)m-3ul [(t--u)[p(U)--//U]--m-- 1] 2

for some integer m >_ 3 and some constant 1. Then the conclusion of Theorem holds.
TrIEOREM 2. Let conditions (i)-(iii), (5), (6) and (7) hold. If

(13) f 2"a;o; tuot ]du-lim sup rut q(u)-22"-3(n-1)! ---.-;._-7-V,ut-, to i=

for some constant 1, then every solution of (1) is oscillatory.
Proof. Suppose that x(t) is a nonoscillatory solution of (1), say x(t)>0 for

t>_t_>to>O. Proceeding as in the proof of Theorem 1, we get (10). Thus for t>_t5 we
have

(14)

rP(t)<_-ttq(t)+22"-3(n-1)!t [p(t)-l/t] 2

,-2(
2

( 21_2n m )!/2(n 1)-t-t aio2-2(t)Oi(t) w(t)-- P(tl--l/t
i=1 21-2n -12: .-22

(n-1) lioi (t)Oi(t)

<_--ttq(t)+22"-3(n--1)!t [p(t)-l/t] -
i:lOt, O‘ (t)6i(t)
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Integrating (14) from to we obtain

m(P(u)__l/u)2 ]du<_w(ts)_w(t)ftu’ q(u) 22"-3(n 11!
i= -ai-i"---(uS;;i u)t5

<w(ts),

which contradicts condition (13). Thus our proof is complete. 73
In order to obtain our next results we assume that there exists a real valued

function o Cl[[ o, ), (0, o)] such that

(151 o(t)--inf ((mins,gl(s),.. ",gm(S))},
set

(t)>0,
o(t)-ooo as/--, o.

THEOREM 3. In addition to conditions (i)-(iii) and (15), assume that there exists a
real valued function ckC[R,R] such that xck(x)>O for x4=O, ok’(x) exists, q/(x)>_a>O
for x 4:0 and

(16)

if

(171

If(Y,Y," ",y)l>-I(y)l for all (t,y)[to, oo)R- {0}.

ftl )m-3 [ )2 -3(n 11’limsuptl-m (t-u u (t-u q(u)-22n

t---,oo

[(t-u)[p(u)z(l/u]+(m 1)] 2

aon- u)O(u)
du-

for some integer m >_ 3 and some constant 1, then every solution of (1) is oscillatory.
Proof. Let x(t) be a nonoscillatory solution of (1) with x(t)>0 for t>_t >_t0>0. It

follows as in the proof of Theorem that there exists ts>_to such that .2(t)>0,
x("- O(t)>O and

22-2n n-2(o(t) --> )! o tlx("-l)(t), t>_t5.(18t .2 - (n--1
Letting

w(t)- ,(x[1/2(t)])
we have

vP(t)-- --ttq(t) f(x[g(t)]," ,X[gm(t)] )
,([1/2o(t)]) w(t)

w(t)lo(t )]6(t )ok’ ( x[ o(t )] ) ck(x[1/2o(t )])
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Using the hypotheses of the theorem and (18), we obtain

l 2 -2n

w(t)--(n_l)on-2( )# ( )t-tw2( ).

Thus

fti( fti(- u’q(u)duI--U U)m-I

U

u (u)O(u u)du(t--u)m-I-/on-2 )W2(

As in the proof of Theorem 1, we have

tl--mfti(t__u)m--3Ut[(t__u)2q(u)__22n--3(n__ l) [(t--u)[p(u)--l/u] +m--1] 9-

,o-( ulO ( u )
du

<_ l--t- w(ts)_t,_,
5

I/22’-2n 2( )u-t(t-u )m--I W(U)tO U

(t--u)"*-3/2[(t--u)[p(u)--l/u] +m-- 1]
21-2n

(n-- 1)!
1/2

--!

t5 )m--I<-- ---- w( ) -- w( ts ) a finite number

as oo, which contradicts condition (17). Thus our proof is complete.
The following theorem concerns the case when

m

f(x[g,(t)]," ",X[gm(t)] ) fi(x[gi(t)]),
i=l

where fC[R,R], xf/(x)>0 for x4:0, i-l,2,-..,m and f/, i-l,2,...,m are not
required to be differentiable.

ThEOReM 4. Let conditions (i), (iii) and (15) hoM and

(19) f(x)_>c,>0 forx4:O, i- 1,2,...,m.
X
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(20)

fti( )m--3 ’I (t u)2q(u)limsupt-m t--u u c

[(t-u)[p(u)-l/u] +m- i] 21)

for some integer m>_ 3, and some constant and c= im=lci then every solution of (1)/s
oscillatory.

Proof. Let x(t) be a nonoscillatory solution of (1) with x(t)>0 for t>_t _>t0>0. It
follows as in the proof of Theorem 3 that there exists ts>to such that :t(t)>0,
xtn- (t)>0 and

o(t ) on-2(t)xn-)(t ) t>_t5.5 -->
(n-- l)

Letting

we have

W(t): ttx<n-’)(t)
X[1/2o(t)]

’ f(x[gi(t)] ) [ ] []1(t)--tq(t) 2 p(t) -1 w(t)-
i:1 x[1/2o(t)] " d: "o(t) 0(t)x[o(t)].

Thus

w(t) __l)"n--2(t)O(t)w2(t)"(t)--ttq(t) Ci- p(t)-- (ni=1

The rest of the proof follows exactly that of Theorem 3 and is otted.
Remarks.
1. The results of the present paper are presented in a form which is essentially new.

We also mention that we do not stipulate that the functions g(i= 1,2,... ,m) in (1) be
either retarded, advanced or xed type. hence our theorems may hold for ordinary,
retarded, advanced and mixed type equations (see example below).

2. It is obvious that Theorems A and B include the results of Yeh [9], [8, Thm. 2],
Wintner [7] and Kamenev [4].

3. Theorems and corollaries similar to Theorem 2 and Corollary can be easily
obtained for Theorems 3 and 4. Hence we omit the details.

To illustrate our results we consider the following example.
Examp&. Consider the mixed equations

(2) x’) + t-x’- ) + 22’( n + 1)!t

sinhx[t+sint]+x -- exp x -+xtt] coshx + x[ t2 log(e+ x2[t 2 l)] -0
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and

(22) xt") + t-Ix(n--i) .+. 22n(n + 1)

7

+x [t +cos t] log(2e + sinx [t + cos t])] 0,

where n is even, t_> 1. It is easy to check that (21) is oscillatory by Theorem for 1= n
and m-3 and that (22) is oscillatory by Theorem 4 for l= n and m-3. We may note
that the oscillatory character of (21) and (22) are not deducible from any other known
oscillation criteria.
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BOUNDARY AND CORNER LAYER BEHAVIOR
IN SINGULARLY PERTURBED SEMILINEAR SYSTEMS

OF BOUNDARY VALUE PROBLEMS*

MARK A. O’DONNELL

Abstract. The existence and asymptotic behavior as e--, 0+ of solutions of the boundary value problem
ey" h(t, y), a< < b, y(a) and y(b) prescribed, are studied in the case where 0h i/OYi>m >0 in the domain
of interest (m a constant, i-- 1,...,n). A mild assumption on the reduced solution essentially decouples the
system and allows the application of the scalar theory of singularly perturbed boundary value problems to
each component of the system. The components of solutions are shown to exhibit essentially two types of
asymptotic behavior:

(i) boundary layer behavior when the reduced solution is smooth and/or
(ii) comer layer behavior when the reduced solution has a discontinuous first derivative in (a, b). Several

illustrative examples of both types of behavior are discussed. The results are established by using the theory
of differential inequalities for systems of second order boundary value problems.

1. Introduction. We consider in this paper nonlinear boundary value problems of
the form

(1.1) ey" h(t, y), y(a) =A, y(b) =B,

where y, h, A and B are n-vectors and e>0 is a small parameter. The objective is to give
sufficient conditions for the existence of solutions of (1.1) and to study the boundary
layer and corner layer behavior of these solutions as e 0+.

The principal assumptions are that the reduced system

0-’h(t,y)

has at least one solution u=(u(t),...,u(t)) which satisfies

(1.2) O=hi(t,Y,,’",Yi-,ui,Yi+l,’"" ,Yn), i’-1," .,n,

for all yj in some region of interest (R)j, j :/: i, in [a, b] and that the continuous partials
Ohi/Oyi satisfy

(1.3) Ohi
)Yi ( t’ y) >mi>O’ i- 1,... ,n

in the region [a, b] (R)1 (R)n. Condition (1.2) on the reduced solutions allows us
to use the scalar theory due to Brish [2] to give componentwise estimates for solutions
using only (1.3), without having to examine the off-diagonal terms of the Jacobian
matrix (Ohi/Oyj).

Several authors have studied problems of this form. In particular, Howes [6] and
Kelley [9] have shown existence under slightly weaker conditions and they have given
estimates on the behavior of Ilyll as e- 0+. However, when (1.2) obtains, componentwise
estimates may not only provide more insight into the behavior of the system (1.1) but
also extend and improve the norm estimates. (See Example 4.1 below.)

Note that condition (1.2) obtains for the rather general class of systems of the form
n

eY[’ =jI-Il fij ( t,yj ) i-- 1,- -,n,

Received by the editors June l, 1982, and in revised form November l, 1982.
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with

O=fii(t,ui), i--1,...,n.

Several examples of such systems are given in 4.
2. Preliminaries. Our primary tool will be the following theorem which extends

the scalar result of Habets and Laloy [3]. It is proved in [11].
THEOREM 2.1. Consider the system

(2.1) y" =h(t,y), y(a) =A, y(b) =B.

Suppose there exist n bounding pairs (ai,fli) of piecewise C2) functions on [a,b], i.e.,
there are n partitions, (t/. }j=0?’ of [a, b] with a: <t <... <t’: b such that on each
subinterval [t/-, t/] the boundingfunctions a and fli are twice continuously differentiable.
(At the partition points, t/- and t/, the derivatives are right-hand and left-hand deriva-
tives, respectively.) Suppose that

(2.1.1) ai(a)<_Ai<_fli(a),

and

(2.1.2) ai(t)<_fli(t), tin [a,b],
and that on each subinterval t:f , t/],j- 1,..., m

(2.1.3) a’>-hi(t,Y," ,ai," ,Yn),

t,( b ) <-Bi <-fli( b ), i-- 1,...,n

i--1,...,n

for all yj in [ aj( ), flj( ) j=/= i.

fl;’ <-hi( t,Y," ,fli," ,Yn),

Further suppose that for each in a, b],

(2.1.4) D,ai(t)<-Drai(t ) and D,fli(t)>--Drfli(t )
where D and D denote left-hand and right-hand differentiation, respectively. Finally
suppose that h is continuous in the region (R)- a, b] II ’= l[ ai, fli].

Then (2.1) has a solution y=(y(t),...,yn(t)) of class C2[a,b] with ai(t)<_yi(t)<_
fli(t) for in [a,b] and i-- 1,. .,n.

Note that if the bounding functions et and fl are of class C2[a, b], then condition
(2.1.4) is satisfied and Theorem 2.1 reduces to the more standard existence theorem
proved in [1, Chapter 1]. Using this result, the problem of studying the existence and
asymptotic behavior of (1.1) reduces to the construction of appropriate bounding pairs

3. Boundary layer and comer layer phenomena. We begin with a result which
guarantees the existence of a solution of the boundary value problem

(3.1) ey" =h(t,y), y(a) =A, y(b) =B,

where h, y, A and B are in R, which exhibits boundary layer behavior as e- 0+ The
distinguishing characteristic here is the existence of a reduced solution u=
(u(t),...,u(t)) of class C2)[a, b] which satisfies condition (1.2).

TnroREt 3.1. Assume that
(1) the reduced system has a solution Ii--(Ul(t),.. ",Un(t)) of class C(2)[a,b] which

satisfies O=hi(t,y,...,ui,...,y) for i-- 1,...,n and for all (t,yl,...,yi_,yi+l,.. ",Yn)
in a, b II ji (R) ( (R) as defined below);
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(2) the functions h;, i--1,...,n, are of class C() with respect to t,yl,...,y in the
region (R)-[a,b]II’]=l(R)i, where for i-1,...,n (R)i={Yi’[yi-ui(t)l<_di(t)}, for d a
smooth positive function such that di(t):lAi-ui(a)[+$ on [a,a+8/2], di(t):
IBi-ui(b)l+6 on [b-6/2,b] and di(t):8 on [a+8,b-6], for >0 a small constant (see
Fig. 3.1a);

(3)for all (t,yl,. ",Yn) in 6

--y; ( t,Yl," ,Y.) >mi>O,

for a positive constant m;, 1,. .,n.
Then there exists an e0>0 such that the boundary value problem (3.1) has a solution

y=(y(t,e),. ",yn(t,e)) whenever 0<e-<eo. Furthermore, for in [a,b] we have that

yi(t,e)-u;(t)+(A;-u,(a))exp[- (t-a)]
+(Bi-u(b))exp[-/ m--2 (b-t)]

for i= l,. .,n.
Proof. For definiteness, we construct bounding functions ai, fl for the th compo-

nent under the assumptions that u(a)<A and ui(b)> Bi. The other bounding pairs are
defined analogously.

Define for in [a, b] and e>0 the functions

oti(t,e}--ui(t}+ Vi(t,e)--e

and

i( t, e) Ui( ) + Wi( t, e) k- e

where Vi(t,e)- (Bi- u;(b))exp[-/i/e(b- t)] andWi(t,e)-(Ai-ui(a)).
exp[- mi/e (t- a)] and ei- e/i/mi, for i a positive constant greater than Mi-
maxta,bllU’(t)[.

Observe that the region between a and fl, that is, the set ((t,y)’t in [a,.b],
a;(t, e) _<y; -< /3; ( t, e) } is contained in the region a, b] (R); (regardless of the choice of
>0) when e is sufficiently small. (See Figs. 3.1a, b.) Similarly, for %,flj defined
analogously forj :/: and e sufficiently small, we have that

a, b >( aj( t, e), flj( t, e)] C_ a, b j.

It is clear that for a and fig defined as above, (2.1.1) and (2.1.2) hold. It remains to
show that the conditions (2.1.3) hold. First we consider the differential inequality for
Oi"

ea’--hi(t,Yl,. ,ai,. ,yn)

--eu’ +eVff -hi(t,y,,. ,ai,. ,Yn)

>_ eM +miVi hi(t,Y ,..., u ,... ,yn ) -Yi (t’yl"" " Oi"’" ’y" )" ( Vi ’i )
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Yi
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i

ui(a) i
(b)
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i

t=a t=b

Ai+i

(a)

Yi

FIG. 3.1a FIG. 3.1b

B
i

Bi’ i
t=b

where Oi-ui(t)/O(Vi(t,e)-ei), 0<8<I. Now since 0 is between ti and fli, it is
therefore in (R)i for e sufficiently small. Thus for aj_<yj_< flj, j:/: we have yj in j for e

sufficiently small, and so

hi( t,yl,. ci,. ,Yn) >- -eMi+ miVi( ’, e) miVi( t, e) +mie

since )’i is greater than M.
The argument for fli is analogous:

>--hi(t,Yl," ",ui," ",y,)+yi (t,Yl," ",l,," ",y,)" (Wi+ei)-eMi-eW

where l-U+l(W+ei), 0<,1<1. Arguing as above, we see that for e sufficiently
small, aj<yj<_flj,jvi, implies that (t,y,"’,*li,’" ",y,) is in (R). Hence, it follows that

hi(t,Y ,"" ,fli,"" ,Y,) eft;’ >miW+ mie eM miW e(’ti- Mi ) >0.

Therefore, we deduce from Theorem 2.1 that the boundary value problem (3.1) has
a solution y (y(t, e),..- ,y,(t, e)) for 0<e-<e0, e0 sufficiently small. Furthermore, for
in [a,b]

yi(t,e)-ui(t)+ Wi(t,e)+ Vi(t,e)+O(e),

for i= 1,---,n, since Theorem 2.1 guarantees that a<-y<-fl for in [a,b] and i--
l,- .,n.

In contrast to boundary layer behavior, corner layer behavior in a component is
characterized by the existence of two reduced solutions ui=ui(t) and u_i=u2(t )
which intersect at a point T in (a, b). Different components will in general have corner
layers at different points and can exhibit boundary layer behavior simultaneously.
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Our main result is the next theorem.
THEOREM 3.2. Assume that
(1) there exist functions u =(Ul(t),.. ",Uln(t)) and u2 =(UEl(t),." ",UEn(t)) with Uli

and uzi of class C(2) on [a, Ti] and [T/, b] respectively, satisfyingforj-- 1,2 and i- 1,. -,n:

hi(t,yl,...,uji,...,yn)-0 for in [a,b] and Yk in k (as given below), k=/=i; moreover,

ui(Ti)-UEi(T/) and ui(Ti)<U’Ei(Ti), T in (a,b);
(2) each function h is of class C(0 on the region (R)=[a,b]@ >( X@n, where

@i- (Yi" [yi-ui(t)l<-di(t)} and
ttli(t a<--t<--Ti,

ui(t)-- u2i(t) Ti<--t<--b,

for d a smooth positive function such that di(t)=lAi-ui(t)[+$ on [a,a+6/2], di(t)=
IBi-ui(t)l+6 on [b-6/2,b] and di(t):$ on [a+6,b-6], for $>0 a small constant

(see Fig. 3.2a);
(3)for all (t,y,. .,y) in (R)

Oh
O/(t,Yl,’’’,Y)>mi>O,

for a positive constant m, i: 1,. -, n.
Then there exists an e0>0 such that for each e,0<e-<e0, there exists a solution

y=(y(t,e),. .,y,(t,e)) of (3.1). Moreover, for in [a,b]

lyi( t, e) ui( )l<- ui( ) + IA,- u,( a )[ exp i m--- (t-a)

+lBi--ui(b)lexp[-- Im--2 -+" O(,EI/2 ),

for i-- 1,...,n.
Proof. We define bounding functions ai, fli for the th component. The other

bounding pairs are defined analogously. We then verify that the conditions of Theorem
2.1 obtain.

For in [a, b] and e> 0, define

Oti( t, e) ( uli( ) Wi( t, e) Vi( Ti, e) ei,

u:,(t)- v,(t,
a<_t<_ Ti,
Ti<_t<_b,

and

fli(t,e):

u,i(t)+ Wi(t,e)+Xi(t,e)+ei+(b-t)Wi’(Ti,e)
+ V/(T/e) + (b- T/) V/’(T/, e), a<--t<-Ti,

uzi(t)+ Vi(t,e)+Xi(Ti,e)+ei+(b-t)Vi’(Ti,e)
+ Wi(Ti,e)+(b- Ti)Wi’(Ti,e), Ti<-t<-b,
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where

W(t,e)-IA,-u,(a)lexp

li(t,e)-IBi-ui(b)lexp /m--2i (b-t)]

and where ei- ev/m, for 3’ a positive constant such that >M-max(maxta,r,llU’l’i(t)l,
max r,, b llU’2’i ( )l )

We note that the angular behavior of the reduced solution u demands these
somewhat more complicated bounding functions so that the condition (2.1.4) of Theo-
rem 2.1 will be satisfied. In fact, straightforward calculations show that a(a,e)<_A<_
fli(a,e), oti(b,e)<_Bi<_fli(b,e), oti(t,e)<_fli(t,e) for in [a,b], and that Dloti(Ti,e)<--
Drai(Ti,e), Dtfli(Ti,e)>_Drfli(Ti,e) for e sufficiently small. We verify the differential
inequality (2.1.3) for a. On [a, T] we have that

ea’-hi(t,y, ",ai, ,Y.) eui ,y.)
)h

Oy (t’Yl" ’01i’"" "’Y)" (- W- (T,.,e)-e,),

where Oli-Ui-O(Wi+ li(Ti,e)+ei), 0<0< 1.

Note that for e>0 sufficiently small, O is in (R), and if yg is in [a,flg], then y is
in (R), for all k v i. (See Fig. 3.2b.) Thus, for e small enough.

eot’ h ( t,y ai y ) >-- eM eW’ +miIi -I- mii ( Ti e) + mie

>-- ( Ti- Mi )e +mili( Ti, e),

since eW/’ miW/-- 0. Now observe that V/(T/e) -IBi- u.i(b)l exp[ //e (b T/)] is

transcendentally small, and so since ),>Mi, we have that

Yi

Uli(a)
2i

(b)

t=a t=b

Uli(a)

A
i

B
i

FIG. 3.2a FIG. 3.2b
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eo;’ h i( t,Yl ,’’’, ai, ,Yn ) >--( Yi- mi )e+ T.S.T. >0

for y, in [a,flk ], kvi,t in [a, T/] and e>0 sufficiently small.
The verification of this differential inequality for ai(t,e) when is in [T,.,b] is

analogous, so we omit it and turn our attention to fl,.. On [a, T/] we have that

h i( t,Yl ,fl,,

=hi(t,Yl," ,Uli," ,Yn) +yi (t,yl," ,llli," ,Yn)

(Wi+Xi+ei+(b-t)Wi’(Ti,e)+ Vi(Ti,e)

+ (b- T) ’(Ti, e))
W;’,Uli

where l U + l( li+ Xi+ e + (b )Ii’( Ti e) + Vi( Ti ) + (b T/ )V/’( T/ e)), 0<r/< 1.
As before, for e>0 sufficiently small, ’//li is in (R)i, and yk in [a,fl] implies y in

(R)k, k v i. Thus, we continue with the inequality

h i( t,Y fli, ,y, ) efl;’

>miIi+miX + miei+ mi(b- t) li’( Ti,e)
+ Vi(Ti,e)+(b- Ti)Vi’(Ti,e)-eMi-eWi"-eX;’

> ( Yi mi ) e +m ( b ) li’( Ti e) + Vi ( Ti e) + ( b Ti ) Vii’( Ti e)
since eWe’ miIi- 0 and eX"i- m Xi- O. Now observe that the terms V/(T/, e)
]B, u,(b)] exp[-/m,/e(b- T)], (b- T,.)V’(T,.,e) --/m,/e V(T,e) and mi(b-
t)Wi’(Ti,e) are all transcendentally small on [a, T/]. Hence, for e>0 sufficiently small,
the inequality y>Mi implies that

h ( Y fli Yn ) efl’ > ( Ji mi ) e + T’S"T" >0,

foryk in [ak, flk], in [a, Ti] and e small enough.
The verification of this differential inequality for fl(t,e) when is in [T,b] is

analogous. Therefore, by Theorem 2.1 we deduce the existence of a solution y-
(Yl(t,e),"" ",Yn(t,e)) for 0<e_<e0, e0 sufficiently small. Furthermore, since ai<_Yi<_fli,
we have that for in [a, b] and for i- 1,-..,n

]Yi(t,e)--ui(t)[< Wi(t,e) + li(t,e) + o(el/2).
If some of the derivatives of the functions Ul and UEi satisfy the opposite inequali-

ties u’(T)> U’Ei(T), then it is possible to obtain results analogous to Theorem 3.2. (See
Fig. 3.3.) We simply make the change of dependent variable y-y and apply
Theorem 3.2 to the resulting system. For the sake of clarity we state this result as a
theorem.

THEOREM 3.3. Make the same assumptions as in Theorem 3.2 with the exception that
in assumption (1), Utli(T ) =/= ut2i(T ). Then the conclusions of Theorem 3.2 obtain.

We remark that the three results given above may be combined in the following
sense. Some components of the system (3.1) may exhibit the boundary layer behavior of
Theorem 3.1, some may exhibit only corner layer behavior and others may exhibit both
boundary and corner layers as in Theorems 3.1 and 3.2.
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Y

u2t.(b)

t:=b

Fro. 3.3

4. Examples. In this section we consider several examples which illustrate the
boundary layer and corner layer behavior of the theorems in the preceding section.
Throughout this section a "stable reduced solution" will be a reduced solution u-
(Ul(t),.. -, un(t)) which satisfies the inequalities

Oh
Oy (t,u," ",u)>mi>O,

for in [a, b] and m a positive constant, 1,. .,n.
We begin with a simple example of boundary layer behavior.
Example 4.1. The boundary value problem

(4.1) eYe’ =yl(1-Y2), Yl(a)--Ai, yl(b)--Bl,
eY(z’=y2(1--Yl), y2(a)-A2, y2(b)=Bg_

has two reduced solutions ul 1,/2--0 and u =//2 1.Since

0h2
--Yl,0y10hI --Y2 and

0y2

u -u2-0 is the only stable reduced solution and so from Theorem 3.1, if A,A2,B,B2
< 1, the problem (4.1) has a solution y=(y(t,e),y2(t,e)) such that for in [a,b]

v[mi(t-a)]+Biexp[-/mi(b-t)]+O(e),Yi ( e A exp -- -"e-

where 0<mi<min{ -Ai, -Bi}, i- 1,2.
Note that the unstable reduced solution u- u_- is a strict upper bound on the

boundary values A,A2,B, and B2 which admit boundary layer behavior.
We now show how our estimates are an improvement over the norm bound results

of Howes [6] and Kelley [9]. Their results require the existence of a positive constant rn
such that the quadratic form

Q(y)-yt’(j[h]-mI)y
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is nonnegative definite in (R). Here J[h]-(Oh/Oy) is the Jacobian matrix, I is the
identity matrix and (R) is the set ((t,y,y2)" a<t<_b and y +y22<_d(t)}, where d---d(t)
is a smooth positive function on [a,b] which is such that max(llAIl, llBll)<d(t) <_

max(llAll, llBll } +8, for a<t<a+5/2 and b-5/2<_t<b, and d(t)<5 for a+iS<t<b
-8, 8>0 a small constant.

Since

J[hl-mI-[ (1-m)-y2-y2
we rewrite Q as Q(y)-y/-Hy where

-ym

(1--m)--y,

(l_m)_y2
Y+Y2

2
YI+Y2

2 (1-m)-y

is a symmetric matrix. Thus Q is nonnegative definite whenever the two conditions

(4.1.1) (1--m)--y2>_O

(4.1.2) ) )detH-(1 m -(1-m)(y+y2)-1/4(yl-Y2 >--.0

obtain in the region (R). Conditions (4.1.1) and (4.1.2) imply 1-m>0 because u

uz-0 is the .stable reduced solution and so we have that >Y2 and >Yl. Using
these conditions it can be shown that condition (4.1.2) implies that max(llAll, llBll} <
2(v/--1)(1-m), and since 0<l-m<l, we have that at best max(llAIl, llBII)<
2(v-- 1)0.83. This condition is stronger than max(IAll,lBl,lA2l,]B2l) <2(-- 1), and
so the norm estimate is noticeably cruder than the componentwise estimate, especially
for negative boundary conditions. Such improvement is usually the case when .assump-
tion (2) of Theorem 3.1 is satisfied.

Example 4.2. Consider the boundary value problem

(4.2) ey,’-(y3-yl)(y+ 1),

;’- 5-. (+ 1),

Here we have nine reduced solutions:

U --0, /,/2--0, U --0, U2- -,
U1--, U2--0 .U,----,

y(a)--A,y(b)-B,

yg_(a)-A2,y2(b)-B2.

U1-0, U2--f,
Ul f U2- V[
U U2-- r

and we have

0ht

)h 2

(yl-- 1)(y+ 1) >m>0

(y-- 1)(yl+ 1) >m>0

when lYll> 1,

when ly=l> 1.
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Therefore, among the nine reduced solutions we find four which are stable:

Since the partials 0h l/0Yl and Oh2/)y2 must remain positive, any solution y =y(t, e)
must have components which stay outside the region [vii> 1, i= 1,2. This will be true if
and only if A and B are both larger than or both smaller than -1, for i--1,2.
Geometrically, if A and B are both above or both below the cross-hatched region in
Fig. 4.2a, then ui=v or respectively ui= -v- supports boundary layers, 1,2. The
precise result is summarized below.

Case 1. A,B > and A2,B2> 1. In this case there is a solution of (4.2) satisfying

where 0<m<min(Az- 1,B2-1), i-1,2. (See Fig. 4.2b.)
Case 2. A, Bl > and A2, B2< 1. For this range of boundary conditions there is

a solution of (4.2) satisfying

and

Im--L (b-t)]
Y2(t’ e)- --/-T (A2+#)exp[-- Im--2

+ (B2+ #)exp im--2e (b-t)] + O(e),

where ml,m2 are as above. (See Figs. 4.2b and 4.2c, respectively.)
Case 3. AI,B <- and A2,B2> 1. This is the reflection of Case 2. There is a

solution of (4.2) which satisfies the estimates of Case 2 with the indices and 2
reversed. (See Figs. 4.2c and 4.2b, respectively.)

Case 4. A1,B < and A2, B2< 1. The problem (4.2) has a solution which
satisfies

]Yi(t,e)_ _fr+ Ai+ r) exp (t--a)

+(Bi+)exp[-m (b-t)]
where m is as above, 1,2. (See Fig. 4.2c.)
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FIG. 4.2a Fu. 4.2b
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Next, we consider an example which exhibits both boundary layer behavior and
corner layer behavior.

Example 4.3. Consider the boundary value problem

(4.3) eye’-- y,-- t-(a+b) (y+ 1), y,(a)-A,, y,(b)-B,,

( l(a+b)-t[-1)(y21+l)’eye’-- y2+ 3 yE(a)-A2, y2(b)-B2.

The reduced solution u-It-(a+b)/2I, u2-1-1(a+b)/3-t (shown in Figs. 4.3a
and 4.3b) is stable since

i)ht =y:+ >_ 1 >0 and )h2=y2+ >_ >0.
OY OY2
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Therefore, Theorem 3.3 guarantees the existence of a solution y (Yl(t, e),Y2(t, e)) for e

sufficiently small which satisfies the componentwise estimates"

<_(A--la-bl) exp ----e (t-a)

( )+ B--lb-al exp +o(/2),

Y2 + -(a+b)-t-1 <_ A2+-lb-2al-1 exp -----e (t-a)

+ B2+ ’1 la-2bl- exp (b-t) --- O(e1/2),
for all possible boundary values At,B,A2 and B2. See Figs. 4.3a and 4.3b.

Finally, we look at an example which combines the results of Theorems 3.1, 3.2
and 3.3.

t--tl t:---b

FIG. 4.3a

h
2

FIG. 4.3b

Example 4.4. Consider the boundary value problem

eye’- (y,)(2 -Y2)(Y32 + 1),
ey’-(Y2-ltl)(y?+ 1)(y32 + 1),
eye’-- (1/2y33 --Y3 ) (2--Y2)(yt- K),

ey’-- ( Y4-- E + ltl)(E--Y2)2,
y3(- 1)-A3,

y4(-- 1)=A4,

y,(1)-B,
y2(1)-B2,

Y3(1)-B3,

y4(1)-B4.
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The relevant partial derivatives are given by

3h (2_yE)(y+ l) Oh2
OYl OY2
aha (y3- 1)(2-y2)(yl-K) 4

}Y3 )Y4

(y2+ 1)(y32+ )

There are three reduced solutions

u,--o, u--ltl, u3---o, U4--2--ltl,
u,-O, u-Itl, u3-

, U4-2- Itl,

u-O, u2-1tl, u3- -, u4-2-ltl,

and their stability depends upon the sign of K. It is convenient to divide the discussion
into three cases.

Case 1. If K>0, the reduced solution u =0, u: =ltl, u3-0, u4 2-It] is stable. For
A 1, B <K, A2, B:<2 and <A3, B3 < l, Theorems 3.1, 3.2 and 3.3 combined imply
the existence of a solution of (4.4) satisfying in [- 1, ]:

where

O<m,<min{(2-A2)(A+ 1), (2-B2)(B+ 1)},
0<m2<l,

0<m3<min{(A- 1)(2-A 2 )(A,- K ), (B- 1)(2- B2)(B-K )},
)2(2 B2)20<m4<min{(2--A2 }.

and

(See Figs. 4.4a-d.) We note that there are no restrictions on the boundary values A4

and B4.
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-1

Y3=Y3 (t ,)

t -l

0

B
3

FIG. 4.4g

Case 2. If K<0, the reduced solutions u =0, u2-- Itl, u3- v, U4 "--2-1tl and u --0,
ug=ltl, u3- -v, u4=2-ltl are both stable. For A,B>K, Az,B2<2 and A3,B3> 1,
we know from Theorems 3.1-3.3 that there is a solution of (4.4) which satisfies the
above estimates for y,y2 and Y4, and

y3(t’e)-V/-+(A3-v/-)exp -i m-’-3 (‘+1)]e
+(B2--f)exp[--Im-3

for m3 as in Case 1. (See Figs. 4.4e, b, f and d, respectively.)
For A,B>K, AE,B2>2 and A3,B3 < 1, it follows from Theorems 3.1-3.3 that

there is a solution of (4.4) which satisfies the estimates of Case 1 for Y,Y2 and Y4, while

for m as above. (See Fig. 4.4g.)
Case 3. If K=0, then i)h/3y=(y-l)(2-y2)y=O along all three reduced

solutions, and our theory is not applicable.. Concluding rmarks and extensions. As the examples in {}4 illustrate, the theory
in {}3 can be effectively applied to analyze the rich and varied behavior of a general
class of systems of nonlinear singularly perturbed boundary value problems. These
results may be significantly improved and they may be extended in several directions.

In the case of semilinear systems such as those above, these results have been
extended in three ways.

(1) By relaxing the condition (i)hi/i)yi)(t,y,...,y,)>m>0 to

Jh

iy/
(t,y, .,ui, ,y,)--0 for O<j<_2q,
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and

02q+hOyi2q
(t’Yl’"""

for q a nonnegative integer and i-1,-.-,n, one may obtain results analogous to
Theorems 3.1-3.3, the only difference being that the boundary layer terms are no
longer exponential functions but rather algebraic functions, as the scalar theory sug-
gests. (See Howes [4], [7].)

(2) By replacing the condition (Ohi/OYi)(t,y,...,yn)>mi>O with
(Ohi/Oyi)(t,y,...,ui,...,y)>mi0 along with certain integral inequalities (cf. Howes
[5]) to insure boundary layer stability we may improve the above results dramatically.

(3) Again by assuming that appropriate integral conditions hold, one may analyze
interior behavior of the shock layer type for such systems; cf. for example [5], [7].

Similar results may be obtained for both quasilinear and quadratic systems of
nonlinear singularly perturbed boundary value problems, including the analysis of
turning point and shock layer phenomena in such systems. These extensions of the
above results may be anticipated from results in scalar theory. (See, for example, [4], [5]
and [7].)

All these results for such nonlinear systems will appear in the author’s forthcoming
doctoral dissertation 11].
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SINGULARLY PERTURBED HYPERBOLIC
EVOLUTION PROBLEMS WITH INFINITE DELAY
AND AN APPLICATION TO POLYMER RHEOLOGY*
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Abstract. We prove an existence theorem locally in time for quasilinear hyperbolic equations, in which
the coefficients are allowed to depend on the history of the dependent variable. Singular perturbations, which
change the type of the equation to parabolic, are included, and continuous dependence of the solutions on the
perturbation parameter is shown. It is demonstrated that, for a substantial number of constitutive models
suggested .in the literature, the stretching of filaments of polymeric liquids is described by equations of the
kind under study here.
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1. Introduction. In a recent paper [23] I proved an existence theorem (locally in
time) for solutions to a class of quasilinear parabolic differential-delay equations that
can be used to model the stretching of filaments of polymeric liquids. Such equations
arise, if the constitutive law is such that, besides an "elastic" part which is a functional
of the strain history, the stress has also a Newtonian part. For many materials, e.g.
molten polyethylene, however, this latter contribution is small. This warrants a theory
that can treat the Newtonian contribution as a perturbation rather than as the "lead-
ing" term in the equation.

In the present paper, I shall give a partial solution to this problem. Mathemati-
cally, we are concerned with differential equations of hyperbolic type with a small
perturbation changing the type to parabolic. A mathematical theory applicable to such
problems was developed by Kato [12], [14]-[16]. (My results in [23] were based on the
theory of Sobolevskii [25].) Since Kato’s theory is more easily applicable to pure
Cauchy problems than for mixed initial-boundary value problems (some results con-
cerning the latter are in [16]), we confine our attention to the former class of problems
here. Physically, this means that rather than a filament pulled at its ends, we will study
the deformation of infinite filaments subjected to longitudinal body forces. It is hoped
that further research will lead to similar results for the boundary value problem and
also for more general (in particular more than one-dimensional) flow geometries. It is
clear that the results we obtain apply to other one-dimensional problems in continuum
mechanics, e.g., those discussed in [6], [9].

In [}2, I quote those results of Kato’s theory that are needed in this paper. One of
Kato’s results will be mildly generalized. In 3, these results are applied to a class of
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singularly perturbed quasilinear hyperbolic differential-delay equations, which have the
following form

(1.1) Putt...t--’l’l.(f.Uxt...t)x-t-h.uxxt...t-3t-k--I--, xR.
n n-1 n-2

Here /is a small nonnegative constant, is a given function of x and t, and f, h, k are
functionals of the histories of derivatives of u which are of lower order than those
displayed. It is assumed that f and h take positive values. Under appropriate assump-
tions, we prove that the initial history problem associated with (1.1) has a unique
solution locally in time and, moreover, that this solution depends continuously on
even as r/ 0. In representing differential-delay equations as abstract evolution prob-
lems, we follow the method outlined in [23] rather than the classical approach [11].

Section 4 deals with the problem of stretching filaments of polymeric liquids. We
use a one-dimensional approximation to this problem based on the thinness of the
filament [23]. Various constitutive models suggested in the rheological literature [1]-[5],
[8], [10], [13], [17]-[22], [27] are discussed. It is shown that, for all these models, an
equation of the form (1.1) is obtained. Section 4 can be read independently of the
preceding sections, and physically oriented readers are encouraged to read it first.

The diversity of the models studied here illustrates the fact thatup to nowthere
is no particular constitutive law describing successfully all the phenomena in polymer
rheology. Whether or not one constitutive law can fully describe a substantial number
of materials, is not yet known. As pointed out in [26], a "theory of theories" is needed.
In [26] particular attention is focussed on special flow geometries, for which the precise
nature of the constitutive law is not very important. The situation under study here
does not seem to be of such a nature, and we do need some specification of the
constitutive law. It turns out that a number of popular rheological models all lead to
equations of the form (1.1).

The reason for this common mathematical feature lies basically in smoothing
properties: If a function is convoluted with a smooth kernel, then the result is once
more often differentiable than the function itself. The same applies if a first order
differential equation is solved. Since the strain histories appear in expressions of such a
form, we can, after some differentiations, obtain a form in which the highest derivatives
occur only by their present values rather than their histories. More precisely, for some
n N, the n th time derivative of the stress depends linearly on the n th and (n + 1)st
time derivatives of the strain with coefficients depending only on lower order deriva-
tives. One may regard this as a generalization of the old idea that there is a superposi-
tion of "elastic" and "viscous" contributions. Instead of a linear superposition as
suggested in the oldest models, we have here what may be called a "quasilinear"
superposition. It is essential in our development that the integral kernels occurring in
the constitutive equation are smooth everywhere, in particular, that they are bounded.
This assumption has also been made by other authors [9], [30], [31]. Both molecular
theories and experiments suggest, however, that the kernels may have a singularity (see
the remark at the end of 4). This leads to pseudo-differential operators of nonintegral
order, that is, to terms whose differential order is intermediate between the two terms
included in (1.1). Further research needs to be done on such equations.

2. Abstract hyperbolic equations. In this section, I summarize the results from
Kato’s theory that will be needed in the following. One of Kato’s theorems will be
generalized.
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We study an evolution problem of the form

(2.1) ft-A(t,u)u+f(t,u), O<__t<_T, u(O)-q,,

where u takes values in a Banach space X and A(t, u) is a linear operator depending on
and u. Our assumptions will involve further Banach spaces Y and Z such that

YcZCX with continuous and dense embeddings. It is assumed that Y, Z and X are
reflexive and separable. Let W denote an open set in Y.

First, we quote [12, Thm. I] in a simplified form (with assumption N being
obsolete). It is assumed that the following estimates hold for t,t’,... E[0, T] and
w, w’, E W (K denotes a genetic constant independent of and w):

(S1) There is an isomorphism S( t, w): Y X satisfying

IIS(t,w)llr, x<-g, IIS-l(t,w)llx, r<g,
IIS( t’, w’) S( t, w)ll , x<- g(It- t’l / IIw w’ll z).

(A1) A(t, w) generates a quasi-contraction semigroup in X uniformly with respect
to t,w" Ilet’w)llx, x<er’.

(A2) S(t,w)A(t,w)S-l(t,w)--A(t,w)+B(t,w) where B(t,w)B(X), IIB(t,w)llx, x
<_K.

(A3) A(t,w)B(Y,Z) with Ila(t,w)llY, z<_K and Ila(t,w’)-A(t,w)llY, X <_

gllw’- wllx. The mapping tA(t, w) B(Y, X) is norm-continuous.

(A4) There is some y0 W such that A(t,w)yo Y and IlA(t,w)Yolly<_g.
(fl) f(t,w)Y, [[f(t,w)llY<_K, [[f(t,w’)-f(t,w)llx<Kllw’-wllx. Moreover, the

mapping f(t, w) EX is continuous

[12, Thm. I] reads as follows.
THEOREM 2.1. Let (S), (A1)-(A4) and (fl) hold. Then there are a positive O and a

positive T’<_T such that for IIq,-Y011Y_<, equation (2.1) has a unique solution u
C([0, T’]; W) fq cl([0, T’]; Z). O and T’ depend only on K and the distance ofyo from the
boundary of W.

The second theorem stated in this chapter is a continuous dependence result. It
generalizes [12, Thm. II] insofar as it allows S to depend on w. We adopt the following
assumptions"

($2) There is an open set IV’ cZ such that WC W’ and the following holds. The
definition of S(t,w)B(Y,X) can be extended to wW’. Moreover, we have uni-
formly on [0, T] W’:

IIs(t,w)llY, xg, IIos(t,w)llz,,x)g, Ilots(t,w)llY, xg,
IIs(t, w’) S(t, w)ll , ,<-gllw’- wile,
IlOwS( t, w’) OwS( t, w)ll,, ,o -< gllw’- wll,
liBra( t, w’) OtS( t, W )II , ,-< gllw’ wile.

Here Dw and D denote the derivatives with respect to and w.

(a5) liB(t, w’) B(t, w)llxgllw’- wll.
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(A6) IlA(t, w)-A(t, w’)ll r, zgllw’-wllr,

(f2) Ill(t, w’)-f(t, w)llrKllw’-wllr,

Let us now consider a sequence of evolution problems (n

(2.2) ftn=A(t,un)un+f(t,un), O<_t<_T, un(O)=dpn.

THEOREM 2.2. Assume (A1)-(A6), (fl), (f2) are satisfied uniformly in n and assume
(S1), ($2). (The operator S shall not depend on n.) Moreover, assume IIq,-YollY<p,
IIq,-Yollr<p with p as of Theorem 2.1. Finally, assume that for t,w[O, T]X W

An(t, w)A(t, w) strongly in B(Y,Z),
Bn(t,w)B(t,w) strongly in B(X),
f(t, w)f(t, w) in Y

as n o. If k k in the Y-norm as n o, then there is a T"< T such that (2.2) has a
solution unc([O,T"]; X)fqC([O,T’’] W)for any n. Moreover, u(t)u(t) in Y,
uniformly for [0, T"]’, where u is a solution of (2.1).

Proof. The proof essentially follows the same line of argument as that in [15].
Theorem 2.1 yields the existence of solutions to (2.2) and the limiting equation (2.1) on
some interval [0, T’] with T’ independent of n. It is moreover proved precisely as in [15]
that uu uniformly in in the X-norm. To prove convergence in the Y-norm, we rely
on [14, Thm., IV]. This involves estimating a number of terms. Most of those estimates
go as in [15] or are straightforward, and my exposition will focus only on those terms
that present difficulties. As in [15], we use the fact that u solves the linear equation

(2.3)

with A"=A"(t,u") and f"=f"(t,u"). The limit u solves the linear equation

(2.4) ft=Au+f

with A =A(t,u), f=f(t,u). From [14, Thm. IV], we have the estimate

+ g(ll(s"(0) S(0))11+ II(s"- s )Jql ,,+ I1( s"- S )ull o, )
/K( I1( B= n )gull ,,/ I1( c=- c )gull ,, )
/K(II(u=- U)(g)ll,).

Here S" denotes S(t,u") and B" denotes B(t,u"). The symbol C stands for S-. The
U, U" are the evolution operators associated with A, An. Finally, q denotes S(0)q,, and
g stands for Sf+ (C-B)Su. The indices and oo indicate the L- and L-norms on the
interval [0, T"]. On the fight-hand side of (2.5), the term IIq"-Ollr converges to zero by
assumption and we are left with seven more contributions. Of these, the first, fifth and
seventh have been dealt with in [15], and no change in the argument is needed here. The
second, third and fourth terms are estimated in terms of I]q"-Ollr and I]u"-ullo,z by
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virtue of (S1). Now, note that

Ilu- ull., z K(II ,llz+ I1" 111, Z )
g(11" 11 + IIA" u" +f" Au -j[ ,, z ).

The last term will be estimated below. We may thus focus on the term

ll(n-- )ull 1, X"q" ( s-,)sull ,,
By ($2), n is bounded in B(Y,X), and by (S1), I[(Sn)-l--s-ll[x, Y can be estimated
by Ilu- nile, z- This takes care of the second term. For the first term, observe that

d S(t,u(n(t)-- t))-_(t un(t))-l-OuS(t un(t))lln(t)

=(t,un(t))+DuS(t,un(t))(An(t,un)un+fn(t,un))
and likewise

We have

and

(t)-(t,u)+DuS(t,u)(A(t,u)u+f(t,u)).

I1(( t, un) ( t, U))ull ,, I1( t, u) ( t, u)ll ,, , 11 nil,
gll un ull,, KII un Ulll, Y

I[( DuS(t’ un(t)) DuS(t, u(t)))(A"(t, u’(t))u’(t) +f"( t, u" (t)))I1,,, x)

--< I1( OS( t, u(t)) DS(t, u(t)))II ’, z, , )IIA u /fn[I ,z

<-Kiln ull ,, <- gllu ull ,, .
Finally,

oS( t, u(t))( A" u +f"-hu-f )11 ,, (, x)

o.s( t, u(t))II, z,.(, x)lla u" +f" hu -fll,, z.

This last term can be estimated by

IIA"(t,U)u--A(t,u)Ulll,Z+ IIf"(t,u)--f(t,U)ll,Z
/ II(A"(t,u")-A"(t,u))ull,,z/ IlA"(t,u")(u"-

+
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It follows from assumptions (A6), (f2) that the last three terms can be estimated by
Ilun- Ulll, r- The first two contributions converge to zero because of the assumptions of
the theorem. This concludes the proof.

3. Application to delay equations. In this section, we shall apply the preceding
results to differential-delay equations of the following form:

(3.1) u,_l)-r(f(,ft, ,lx(n_4))Ux(n_2))x
+ h( ax,axt, ,ax(n-3); "O )Uxx(n-3)
+g(ax,... a,""" ,a_4; )+(t,x).

Here, the index (k) stands for k-fold differentiation with respect to the time variable t,
and the hat denotes the past history" ftx(t,x)(S ) u(t+ S,X) for S(- o, 0 ]. The jr,
/ and / are smooth functionals on a history space, the topology of which will be
specified later.

Differentiating (3.1) with respect to x, we obtain

(3.2) Ux(n_l)--rl(f(lx,lxt, ,llx(n_4))Ux(n_2))xx
Oh

,a_3; rl)U_3-lX’lgxx(n_3)
-t-(k(ax,’" ,axn-3; a,""" ,an-4; ))/q,(t,x),

where q-O/Ox. In the following, we need only be concerned with equations of the
form (3.2). For applying the results of 2, it is convenient to rewrite (3.2) as a system of
equations. Let us put Vk--Uxk, Wk--Uxk. We thus obtain the following system
equivalent to (3.2):

(3.3) Vkt--Vk+l, k--0, 1,.-. ,n-3,

Wkt-’-Wk+l, k=0,1,... ,n-4,

v,_a,,-n(f(eo,...
---(k(/)o,... ,/)n_3; WO Wn 4 ’O x -’-

Wn-- 3, l)n- 2, x

It will be advantageous to make some further substitutions. Let us put v,_=fv,,_:,
w,_ =fvrwn_3 +f/v/- k. Then we obtain the following system:

(3.4) Vkt--Vk+l, k=0,1,-.. ,n-4,

t-2
l?)n-3, t-- f
Wkt=Wk+l, k=0, 1,... ,n-5,

k
w"-4" t- --f- w’’- h

v, fv, +/-w’-2, ’O -2, xx n-3,x

+ -l-x -h -x w"-3 + 0-" f
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3, lJt- 2’ x f 0x

Next, let us define the history spaces, in which (3.4) will be analyzed.
DEFINIXION 3.1. For a given Banach space Z, let l(z) denote the space of all

functions (- oo, 0 Z, which are the sum of a constant element z0 Z and a function
z(t), which is square integrable and has a square integrable derivative (in the Bochner
sense). Analogously, let 2(z) be the space of all functions (-oo,0]Z which are the
sum of a constant and a square integrable function.

In particular, rl shall denote Lrl() and m shall denote /-l(Hm(l)) where
Hm() is the Sobolev space of all functions , which have rn square integrable
derivatives. Analogously, let 2,,_ 2(Hm())"

Remarks. 1. In [23], I used the space Cim (the space of bounded continuous
functions having a limit at -oo). The reason why this space cannot be used here is that
it is not reflexive as required by Kato’s theory.

2. The choice of the space * seems to impose rather restrictive conditions on the
given history. However, as in [23], one can allow histories in more general spaces, e.g.
"fading memory" spaces [7], by reducing the problem to one that has a history in 1,
but is equivalent to the given one for >0. The only modification necessitated by this is
that f, h, k must be allowed to depend explicitly on x and t. This modification presents
no major difficulties.

As in [23], we define a shift operator Ts on" Tsq(t)-q(t+ S) for S(- oo,0 ].
Our assumptions on f, h, k in (3.3) are as follows:
(i) The mappings f:(/-l)n-3---)l, h’(/-l)n-3xl---)l and k’(/-l)2n-3xl---)

are smooth (i.e., sufficiently oftencontinuously differentiable) and the induced opera-
tors f,/,/ defined by f(q)(S)=f(Tsq) map into and depend again smoothly on
their arguments. Moreover, f and h take strictly positive values: f>-e>O, h>_e>O, k
vanishes if its arguments are zero. Moreover, the Fr6chet derivative Df is a linear
operator from (/52)"-3 into which depends smoothly on the arguments of f (in the
topology of ), and the corresponding operator Df maps into and again depends
smoothly on the arguments of f. Analogous conditions hold for h and k.

The following lemma is easily proved.
LEMMA 3.2. If (i) holds with a sufficient degree of differentiability, then f defines in a

/_1 ]n-3natural way (acting pointwise in the space variable x) a smooth operator from ( m a
into 1712, +. Here rn is a given integer greater than of equfll to 1. The same holds for h,
and an analogous statement also holds for Df, Dh, Dk (regarded as linear operators
(2)n-3 or (2)2n-3 ._/2).

Remark. Since we are concerned with existence theorems locally in time, it is
clearly sufficient that condition (i) holds in a neighborhood of the prescribed initial
condition.

Let us also note that

where D denotes the Fr6chet derivative w.r. to the th argument. Analogous manipula-
tions are possible for the oherr x- and t- derivatives of f, h and k that occur in (3.4).
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As in [23], let us assume that the given initial history up to time t-0 satisfies the
equations (this can be achieved by appropriately changing ). We can then rewrite (3.4)
in the abstract form

(3.5) kt--k+l, k-0,1,’" ,n-4,

kt--k+l, k-0, 1,. ,n-5,

t3_2

wn-3
Wn--4,’-- iv/- ]’

"" +v-,t nfv._,.

w_3, v_,
where f,/ etc. are defined as in Lemma 3.2. Now let the spaces X, Y be as follows:

~! "2 2n--5 ~1 ~2 2nX-(H fq L4) Y- (H,, N L,+3) where rn is an odd number greater or equal
to 3. Finally, let Z=(/-)_2L2m+)2"-5. When identifying (3.5) with the abstract
system (2.1), we incorporate in A only those terms that contain derivatives w.r. to x,
everything else is included inf. With this identification, the conditions (A3), (A4), (fl),

-2 is a Banach algebra)(A6) and (f2) are rather obvious, (note that, for m_>3, tlmNLm+3
providethat the following holds:

(ii) q, takes values in/-)m (it follows automatically that it is continuous into/-)m ),
and the initial condition at t-0 lies in Y.

For verifying the remaining conditions, we have to study the operator A(f,t),
defined by

The operator S is defined by S--(02/OX2--k)(m-l) for XIFI large enough. With
this choice of S, conditions (S1), ($2) are obvious.

Moreover, one sees easily that

yields an expression involving only first and second order derivatives of 3, if, f and/.
From this it is not difficult to conclude (A2) and (A5). (Note that T"A-AT"=
Tn-I(TA-AT)+ Tn-2(TA-AT)T+ and apply this with T=(fO/Ox2-k)). For
(A1), we have to show that Re(A(3,), (t3,))(fil)__<C((3,), (t3,))(fil)2, which fol-
lows from a simple integration by parts in the x-variable.

We have thus proved"
THEOREM 3.3. Let (i), (ii) be satisfied. Then there is a T>0 such that (3.5) has a

solution =(30, t31, ,ff,-2) Cl([0, T]; X) C([0, T]; Y). depends continuously
on rl [0, rl0] in the norm of Y.
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4. Stretching of filaments of viscoelastic liquids. We are studying the motion of an
infinitely extended filament of an incompressible viscoelastic liquid under the influence
of a longitudinal body force. It was shown in [23] that, if the filament is thin, this
problem can be modelled by a one-dimensional approximation, where only longitudinal
motions need to be studied. Let u(x, t) denote the position of a fluid particle at time t,
which is at the position x in certain reference state. For simplicity, this reference
configuration is chosen to be one in which the filament has uniform thickness. I showed
in [23] that the evolution of u is governed by the following equation

0 II(4.1) PUtt---(UxVlT N;2,lr 22

In this equation p denotes the density of the fluid (i.e., a constant), is the given body
force, and rr l, rr 22 are the longitudinal and transverse components of the convected
extra stress tensor (i.e., not including the pressure, which was eliminated in the deriva-
tion of (4.1)). The tensor r is related by a constitutive law to the right Cauchy-Green
tensor , (in our notation we follow [22]). In the approximation leading to (4.1), -/is
given by

2 0 0Ux

0 u- 0

0 0 u-
In the following, we discuss various constitutive laws that have been suggested in the
rheology literature and the corresponding equations (4.1) that they lead to. It will be
shown that all these equations can be transformed to the form (3.1). In particular, we
shall check the positivity of the functionsf and h. (It will always be understood that u is
the sum of a given function Uo(X,t ) and a function tending to zero appropriately as
x
___ , moreover, u is always assumed uniformly positive. In comparison to 3, the

variable called u there will be identified with u-u0(x, t) in this section.) The notation
used in the original papers cited here is often different from ours, and we have
transcribed the constitutive laws appropriately. Tables of some (but not all) constitutive
assumptions discussed here can be found in [2] and [22].

a) The rubberlike liquid of Green and Tobolsky [10] and Lodge [19], [20] and
modifications of Ward and Jenkins [27] and Lodge [21]. In these theories, the constitu-
tive law has the following form:

O_ f_t f_t l(t)dSr--*l-(y )+ a(t-s)/ l(s)ds- b(t-s),{-(t)/(s)’/-

The first term is a Newtonian contribution, the second is the one given by the
rubberlike liquid theory [10], [19], [20]. The third term accounts for a modification
suggested by Ward and Jenkins [27], and the last two represent corrections of Lodge
[21]. (Lodge finds c--2d from a molecular theory, but we shall make no use of this.)
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With this constitutive law, (4.1) assumes the following form:

)U 3"0 x t "x
+ {ux3(t).ft (C(,_S)__d(t_S))u;4(S)dS

+ (b(t-s)+d(t-s))u-’(s)ds

f.’_o a(t s)ux(s)ds

( b( t-s) + c(t-s) + 2d( t-s))uZx(s) ds}
In order to obtain the form (3.1), we differentiate this once with respect to time. This
yields

l Uxx
PUtt 3"0. Uxxtt- 6"0 .3 uxtt

tlx blx

Ux+Uxxt. -12.-3- +3ux" ( C( t--S ) -+- d( t- s ))u-4( s ) ds

+ a(t-s)u-2(s)ds

q- 2u_ ft a(t-S)Ux(Slds

f 2(s)ds} "q-+3u-4(t) (b(t-s)+c(t-s)+2d(t-s))ux

Here, as always in the following, the dots indicate terms involving only lower order
derivatives of u and the derivatives of q (q always assumed "smooth enough"). We
have assumed that the kernels have derivatives in L so that

a(t-s)f(s)ds- ft_ a’(t-s)f(s)ds+a(O)f(t).

The equation above clearly has the form (3.1), and the coefficient of Uxx is positive if
the kernels are positive and "0 is small enough.

b) The model of Kaye [17] and Bernstein, Kearsley and Zapas [1]. In this model,
the constitutive law has the form

r-- a(t--s,I,,I2) ’(s)ds- b(t-s,I,,I2) ’(t)T(s)’ ’(t)ds.
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I and 12 are the invariants of 3’- (t)3’(s) I tr(q,(t),- (s)) and 12 tr(3,- (t)’/(s )).
In our special problem, we thus have ll-U2x(t)u-2(s)+2u-(t)Ux(S) and 12-
U2x(S)U-(t)+2u-l(s)Ux(t). Both are thus functions of the single variable 1-
ux(t)/ux(s ), and we shall use the obvious notation a(t-s,I), b(t-s,1). The dynamic
equation (4.1) assumes the form

O{ ft 2( ftPUtt-- Ux(t ) a(t-s,I)u- s)ds+ b(t-s,I)u-(s)ds

a(t_s,i)ux(s)ds_u_3(t), ft b(t_s,i)u2(s)ds }
By differentiation with respect to time, we find

PUtt Uxx a(t s,I)u-2(s)ds+2u-3(t)

__U_3(l)ft Ob

A Newtonian term can be added to this as before. Suppose the kernels a, b are positive.
Then the coefficient of Uxx is positive in two cases:

ct). If Oa/OI, Ob/i9I are small, i.e., if the model is considered a perturbation of the
Ward-Jenkins model.

fl) If a/OI, Oa/OI2, Ob/OI, )b/OI2 are positive. It would be interesting if this
condition has a physical interpretation.

c) The Bird-Carreau model [3], [5]. In this model, we have

rr- 1-
2 a(t-s,I(s))’ l(s)ds

e_.ft a(t_s,i(s))._,(t)(s)._l(t)ds2

where I(s) tr(?(s)/ (s)/(s)/ l(s)) 2 2--6Uxt(S)/Ux(S).
This leads to the equation

pu,t= 1-- -x ux a(t-s’I(s))u-2(s)ds

a(t-s,I(s))Ux(S)ds }
+ -x a(t-s’l(s))u-l(s)ds

u;,(,3f’ 2a(t-s,I(s))Ux(S)ds +.
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Differentiating this with respect to time, we find

)uttt--UXXt (1--’) f;ooa(t-s,l(s))u-f(s)ds
+ 2u-3(t)f a(t-s,I(s))Ux(S)ds

+ .3u. a(t-s,I(s))u.

+ - .x() -(-’())11()";

-(-.(sllx(Sl.(les

e{ a+ _(-.())Ix()";()
_.Z (_ i(Ix(.:}l+

A second differentiation yields (the kernels are assumed to be twice differentiable with
respect to time)

Ou..-Uxx. 1- a(t s I(s))u2(s)ds

+2uf3f a(t-s,I(s))Ux(S)ds }
_4s. ....]++3Ux a(t--s,I(s))Ux

For a positive kernel, the coefficient of utt is positive.

d) e Caeau model B [4]. In ts model, it is assumed that

-(1- (-(ir r),_ (
-g exp- (I(r))ds -(t)(s) (t)ds,

where I has the same meaning as in the Bird-Carreau model. We thus obtain the
following equation:

exp(f(I(r))dr).u,, {;=
[(,-
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The integral converges, if f takes strictly positive values. Differentiating with respect to
time, we obtain

[DUttt--Uxx (f_t ooexp(- fstf(I(r)) dr )
1- - (u-2(s)+2u- t)Ux(S))+ -3Ux4(t)u(s) ds

+-- exp(fsf(I(r))dr) fstf’(I(r))Ix(r)dr
[(1-

+ g(.:’(l-.:(.x

The second differentiation with respect to time yields

putttt-Uxxtt{fexp(- fstf(I(r)) dr )

1-- (u- s)+2Ux 3u-4(t)Ux

Uxt(t) ftou( ) exp, stf( I(r )) dr ,f’( I( ))12

+-(u:(-u:(t)U:x() d +....

The coefficient of Uxxtt is positive under the restriction that f’(I)-[ is not too big.

e). The Leonov model [18]. This model does not explicitly give the stress as a
functional of the strain history. Instead it is given by a system of equations as follows"

"a’-- W(lk)(Iik,I2k)C- 1- w2(k)(Ilk,I2k)V-lCkv-l--’oW(Ill,I21)’-(Y ),
k

O"-O(C--fl)----fk(llk’12k)( -1’C-1 "1 like;, )
-g(h,) -c/--

where I=tr(c-,), I=tr(-/-c). The tensors c satisfy the restriction detc= (it
can be shown that detc is an invariant of the evolution equation). In Leonov’s paper,
the analogue of c- is called c; we have changed this for consistency of notation. The
WI(, W(, W, f, g are positive scalar functions, they are not independent in
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Leonov’s model. It is convenient to introduce dk-c-7. With this, the constitutive
equation becomes

(4.2) ’n’-- X Wk(It,I2)dY- W(Ik,I2)d-Y-l

k

0
O-7 ( dk ) -A( I,k ,Izk )

-/W(I,l ,I21 )--7 (- 1),

(’ )--gk(Ilk,I2k ) -I2kd- +dk7-/.

I, and I2 are the first and second invariants of d,, and we have detd,: 1. If fk, &,
have positive values, then, for ?-0, the solution d,-id is an exponentially asymptoti-
cally stable solution of (4.2) when this equation is restricted to {d,ldetdg- }. Conse-
quently, if y-,0 as t-o, then on some interval (-o, T) there is a unique
solution dk which converges to the identity as - o. Whether this solution can be
continued up to t-0 depends on the form of fk, ,k and the history of 7. We shall
assume that (4.2) has a solution up to t--0. Then this solution is a smooth functional of
the histories of 3’ and ? "dk-F(,/). From (4.2) or, resp., its differentiated version, we
also find functional relationships of the form dk--F2([, ), dk--F3(’, )+dky-l/. For
the filament problem, 3’ is a diagonal matrix, and so is dg. Let us denote the 11- and
22-components of dg by dgl, dk2. The dynamic equation (4.1) reads now as follows

PUtt-- - U; E Wl(k)(I’k,I2*)dkl- w2(k)(Ilk’I2k)d-’
k

wt(k)( I,k,I2k )dk2 + W2(g)( I,k,I2k)d

+3"tIW(I’l’I21)- -x +"

Retaining only terms of the highest differentiation orders, we obtain by two-fold
differentiation

PUtttt-- 3TlW( Il ,I21) .2 Uxxttt-[- UxtttO( ’l )
Ux

AI" Uxxtt { O(’/) + U;2( Wl(k)dk1-1- 3w2(k)d-ll + 2Wl(k)dk2 )

+ u-2[2Wllk)( d,,- d,2 )2

+ 2W2{2,( d.21 d.l, )2 + 2( Wl{ + W2{ 1( da: da:2 )( d-2 d,’ )]}

Here wi(k)kj stands for Owi(k)/Olik For small rl, the coefficient of Uxtt is positive in
particular if Wl(’), W2(k), W(lk), W2(2k) are positive and (Wl(2k)+ W2(lk))2_<4Wl(()W2(2g).
This corresponds to inequality [1.33] in Leonov’s paper.
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f). The models of Johnson and Segalman [13] and Chang, Bloch and Tschoegl [28].
This model is described by the following system:-- a(t-s)G(s,t)y-l(s)G’(s,t)ds,

OG
t tY- l( ) ( )G’

G(t,t)=id,

The parameter a ranges between 0 and 1/2. For our problem, , is diagonal, whence 7(t’),
,/(t") commute for any t’, t". The equations for G can therefore be solved as follows.

G(s,t)-exp-a r)S/(r)dr 7"(s)7-(t).

This leads to an equation very similar to the ones studied in part a), and the discussion
follows closely the one given there. We leave the details to the reader. For a in the
range (0, ]), the coefficient of u,,xt turns out to be positive. If a is allowed bigger than
1/4, the type of the equation may change from hyperbolic to elliptic.

The model of Chang, Bloch and Tschoegl is, for this particular problem, equivalent
to that of Johnson and Segalman.

g) The model of Curtiss and Bird [8]. This model proposes the following constitu-
tive law.

r- f_t ( a(t--s)[l +vr(y(s)--y(t))v] -3/2 vvr
dv

+rift- oof (t-- s)[1 +vr(y(s) (t))V]-3/2vT?(t)V
/vTT2( )v

Here ’3(t is the set "]-(t)- (vIvTT(t)v- }. With f denoting the unit sphere, this yields
for our problem

r,i ft_ fua(t_s)[1 +(u_(t)ux(s)_ 1)w

2b(t s)[1 +(u-(t)Ux(S) 1)w?+(ux(t)ux ’(s)--1)’(w+w)] -3/

wu;3(t)ftx(t)(2w w-w) dw.

For 22, we have the same expression with wu-2 replaced by wdu.. When inserting
this into the dynamic equation (4.1), we can again achieve the form (3.1) by differenti-
ating with respect to time. The term involving Uxxtt has a positive coefficient propor-
tional to ri, the coefficient of uxx is, up to terms of O(ri).
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+ a(t--s)[" (--2u-4(tlu2x( s

+ U-l(t)U-l(s )( w22 + w32 )( W22 W? )) dw.

It can easily be checked that this coefficient is positive in a neighborhood of the rest
state.

Remark. When we differentiated equations with respect to time, we have always
assumed that the integral kernels were sufficiently smooth. Some of the kernels sug-

e-a2tgested in the literature have singularities at t-0 (see e.g. [8], where a(t)--Eodd ).
A mathematical theory accommodating such kernels would be of interest. Experimental
data on polymer melts (see e.g. [28]) also seem to suggest that the integral kernel may
be singular at t=0. Kernels with singularities are considered in [32], [33].
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Abstract. Sufficient conditions are given for the pointwise boundedness and decay of solutions to time
dependent strongly coupled systems of reaction-diffusion equations on spatially bounded domains. The
results are obtained via Lyapunov or energy methods.
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1. Introduction. Because they describe many physical situations, systems of reac-
tion-diffusion equations have been widely studied. A common topic of investigation is
the behavior of solutions as the time variable tends to infinity. Many results in that
direction have been obtained via the maximum principle and its generalizations. How-
ever, maximum principles or invariant set theorems such as those in [4], [7], [8], [9]
generally fail if the system is coupled in the highest order terms. Such systems occur in
some physical problems; see [3]. In [5], the author presented another method for
obtaining pointwise bounds for solutions, but only in the case of time independent
coefficients. That restriction on the coefficients limits the applicability of the results.

The object of this paper is to give sufficient conditions for the pointwise bounded-
hess and decay of solutions to strongly coupled systems of semilinear parabolic equa-
tions of the form

(1 1) u (a(x,t)u )x x-- x, +bi(x t)u +f(x t,u) in f(0, ),

u(x,t)--0 on0n(0,),
u(x,0)--Uo(X ) onn,

where /= 1,.-.,N, repeated Greek indices are summed from to N, and repeated
Roman indices from to n. (This convention is used throughout the paper. We will
assume n>2.) The domain fC_R is assumed to be bounded, with of class C. The
results presented here generalize those of [3] by allowing time dependent coefficients in
(1.1) and by weakening the structure conditions on the nonlinearity. Another generali-
zation of the results in [5], requiting time independent coefficients but allowing non-
symmetric coupling in the second order terms, is also derived. Note that the strong
coupling in (1.1) generally precludes obtaining pointwise bounds on u via maximum
principle or invariant set arguments; see the discussion in [5]. Since the main results of
[5] are based on a Lyapunov or energy method, it is somewhat surprising that they
generalize to the time dependent case. See [5] for further discussion and references.

2. Notation. We will assume that aff(x,t) is C in x, bi(x,t) is C2 in x,f"(x,t,u)
is C in x and u, and all these terms are C in t, with aj, b and their first derivatives
with respect to uniformly bounded. The coefficients aij are assumed to satisfy the
symmetry conditions a-a. and a/ ’a. Finally, the following condition is as-
sumed to hold" for some constant co> 0,

(2.1) a. (x,t) qi q) >-coqiq
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for any qRnN. Condition (2.1) implies that the differential operator on the right side
of (1.1) is elliptic. The system (1.1) may be rewritten in the form

(2.2) ut-A(t)u+f(x,t,u), u(O)-uo,

where A(t) represents the differential operator on the right side of (1.1). Equation (2.2)
may be regarded as an ordinary differential equation in Lp if A(t) is given the domain
W2’’ N W0TM, where Wk’p is the usual LP-Sobolev space of functions with k weak
derivatives in Lp, and W0k’’ is the completion in Wk’p of Cf(f). Let Ilull,p denote the
norm of u in Wk’p. The a priori estimates of Agmon, Douglis, and Nirenberg [2] imply
that for each p> 1, there is a constant C(p) so that Ilull2,p<_f(p)(lla(t)ullo,p/llullo,p)
for uW2,p Cl W0’. It follows that the operators A(t) are closed. Further, for each p,
there.exist constants K(p) and e(p)>0 such that if Ap(t)-A(t)-k(p), the operators
(Ap(t) -)t)- exist as bounded operators on Lp and satisfy II(a’(t) --)k)- 11-<
C2(p)/(1 +1,1) for )C with -r/2-e(p)<arg)t<r/2+e(p). The analysis is much
the same as in the case of a single equation as discussed in [6]. It follows that the
operators Ap(t) generate analytic semigroups; hence fractional powers of these opera-
tors exist. The a priori estimates of [2] combined with standard interpolation theorems
for Sobolev spaces imply that for any a (1/2, 1) there exists a constant C3(p) so that the
fractional power A(t) of A,(t) satisfies

(2.3)

for u W2,p W’p. Since the coefficients of .,p(t) are smooth in t, p(t) generates an

operator valued fundamental solution U(s,t). Let gp(X,t, u)-f(x,t, u)+ k(p)u. Then
(2.2) may be rewritten as

(2.4) u,=.,,(t)u+g,(t,u(t)), u(0) uo

Solutions to (4) in L’ may be represented in the form

u(t)-- Up( t, O)uo+fotUp( t,s)gl(S, U(s)) ds.

Since the operators Jp(t) generate analytic semigroups, U(s,t) satisfies various esti-
mates which will be used later.

3. Analysis. The boundedness conditions on the coefficients of A(t) imply that
there exists a finite value a0=inf{a: (1/2)la(x,t)qiql<--alql for all qNl aN, (x,t)f
[0, oe)}. Similarly, let B=SUPx,t[,_(bi)2]1/2 and let b0-inf{b: IBuvl<--blullwl
for all u,w Nr}. Assume that u is a solution of (1) in Le for all p (1,p0 where

P0> n. (Any classical solution has that property.) We have the following:
THEOREM 1. Suppose that u0 W02’P N Wl’l for some po>n and that f satisfies the

bounds

(3.1)
and

u.f(x,t,u)_<-/3o[ul for (x,t)>( (O, o) anduv

If(x, t, u) Ifo(1 + lair),
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where flo andfo are positive constants, and r 1, o) for n 2, r 1, ro) with ro n/(n 2)
for n >_ 3. Suppose also that the constants bo, co and flo satisfy

(3.3) 4floco> b

Finally, suppose that there exists a function G(x, u) such that for some positive constants
GO and o,

(3.4) G(x,u)--> G0[u[
2

and U. f + oil + VuGI2
0.

Then supdul is uniformly bounded in terms of u0. Suppose in addition to the above
hypotheses that f(x,t,u) and G(x,u) are such that for any R>0 there exist constants

f(R), Gl(R) so that

(3.5) If(x,t,u)l<_f,(R)lul, G(x,u)<-G(R)lul

for all u R v with lul<R. Then supulul decays exponentially as o.

Proof. The proof is similar to that for the case of time independent coefficients
discussed in [3]; for more details refer to that article. Let

Eo( ) f( Ux,Ux, +uu) dx IIll,=

and

E,(t) -aij(x t) +G(x,u)+UxjUxi - Ku" u dx.

Differentiating E(t) with respect to and integrating by parts yields

fa[ 1 , V.Gu +Ku.u]dxE{(t) ( a_Ux, )xjUt "k- aijtUxUx,-k-

fa[ lutl2+biu 1 +gll llt]dx.x,Ut + (f + XTuG ). U -JI- - aij UxjUxi

’" and be and Cauchy’s inequality yieldsUsing the bounds on aij

E{(t)--< ------ lu,I / (f + V.G)" u,+ + ao +Ku’u/] dx

for any e>O. Choose e such that O<d(e)----1-boer/2< 1, then complete the square
to obtain

-d(e) u,-- 2d(e,)
+

4d(e,) ) U + Ku Ut] dx+ -ei +aO Uxi xi

Dropping the first term, rewriting u via (1.1) in the last term and integrating by parts,

E(( ) < If+4d(e)7uG]2 + + ao u, x,

Ka,u u + Kbi u u + Ku. f| dxij xj x
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Using (2), the bounds for bp, and Cauchy’s inequality yields

(3.6) E(t) <-K -Co+----+-- ao 2e x, x,

bo 2
+u.f+ If + v,GI2 }4Kd( ’1 )

dx

for any e2>0. By (3.3) we may choose fl (0,fl0) such that

(3.7)
Let e 1- fl/flo; then by (3.1),

(3.8)

4flco> b.
u.f_< -/lul:+,3u.f.

Let e2- t_fl+Co+ l/( fl_ co)2 + b) ]/bo>O; then co + boe2/2 fl + bo/2e2- -D

where DI [fl+c0- (fl__Co)2 +b ]/2. By (3.7), D, >0. Using (3.8) and substituting
e2 into (3.6), we have

E(t)K -D,+ ao+ u:’u:’-D’lul2+3u’f a
4Kd(e,)

dx.

By (3.4) it follows that for any D (0,Dl) we may choose K large enough that

(3.9)

Thus, El(t)<_E(O). If we assume K>Go+co, then coEo(t)<_El(t ) by (3.4), so that

(3.10)
1
E ]1/2[lUJII,2--[Eo(t)]I/2<B(Uo) (0)

Co

Hence u is uniformly bounded in W1’2. Note that since p0>n, lu01 and IVxuol are
bounded by Clluoll2,p0; hence B(uo) can be bounded in terms of Ilu0112,po, independent
of the form of u0. From (3.10) it follows by the Sobolev embedding theorem that
Iluollo.p,<_Cn(uo) for pl-2n/(n-2) if n_>3 and any p>2 if n-2. (For a discussion
of Sobolev embedding theorems see for example [1 ].) Consider the case n_> 3. It follows
from (3.2) that for any fixed k, Ilku+f(x,t,u)llo,p,/r<-C(l+B(uo))r. Let ql=pl/r.
Construct .q(t) and gq,(X,t,u) as in (2.4); then the representation (2.5) holds with
p-q. Choose a so that (2.3) holds. The following estimates are standard (see [6,

11-13-II-16]):

(3.11) II  (t )Uq( t,s )ii_< c< t--s ) e-"t-) II,

where , >0. By (2.5) we may write

~a(3 12) a(t)u-Aq,(t)U(t~" 0)u0+ Aq,(t)U(t S)gqt(S,U(s))dsql
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The first term on the right side of (3.11) may be written as.,(t)U(t, O),(t)(A,(t)Uo).
_<C(1 +B(uo))r, it follows from (2.3), (3.11)Since Ilgq,(S,u(s))llo.q, IlkqU+|(x,s,u)llo,q,

and (3.12) that

(3.13)

If q >n then the Sobolev embedding theorem applied to (3.13) yields SUpxlul C(u0).
If q =p/r<n, then the Sobolev embedding theorem implies Ilullo,p=<_fllulla,q,<_f(uo)
with p2-nq/(n-q)-(p/r)/(1-p/nr). Since n(r- 1)<n(r0- 1)--pl, there exists
e > 0 so that p >_ n[(1 + e)r 1]/(1 + e); thus p/nr <_ 1/(1 + e)r so P2 ->
(1 +e)p. Let qz=p2/r; then q2>_(1 +e)qI. We may return to (3.11), replacing q and
q2, and repeat the analysis leading to (3.13). This’ process may be repeated until for
some 1, qt>n. At that step, we obtain the bound supulu]<_CllUlll,q,<_C(uo), which is
the first conclusion of the theorem. Note that if u0 is replaced by v0 such that
Ilvoll2,p_<llu0112,p for <--P<--Po and E(0) is no larger for vo than for u 0, then C(uo)_> C(vo).
Since supulul_<R, hypothesis (3.5) may apply. If so, then for some constant Ct(R),
E(t)<_C(R)Eo(t ). Thus (3.10) yields E(t)<_-(KD/C(R))E(t); thus Ei(t) and

_-Sot for some 8o> 0hence Ilull,2 must decay exponentially. We have Ilull,2_<Cllu0ll,2
The process beginning with (3.10) may now be repeated; in fact, by (3.5) we may
choose r-1. Since Ilull,= decays exponentially, so does Ilull0,p, and hence also
Ilgp,(s, u(s))ll0,p,. Combining that fact with the bounds of (3.11) yields, analogously with
(3.13), that for some 8l >0, Ilull,p,<_C(uo)e-s,t. Continued iteration leads eventually to

--< C(II0)e-st for some >0, where p>n The constant 8the bound suplul<fllull,
depends on 80 and the constants 3’ occurring in (3.11) for the values of q in the iteration.
An examination of the way C(u0) is obtained shows that C(u0)0 as sup<e_<polluoll,p

0. If n-2 then the proof is essentially the same, except that the correct choice of p
makes it possible to obtain a bound on supxdul in one step.

Remarks. In [3], f was assumed to be time independent and to have the structure

(3.14) t( x, u) M(x )u + V,H(x, u),

where M(x) is a matrix. In such a case we may choose G(x,u)=-H(x,u); then the
second inequality of (3.4) holds provided that (3.1) is satisfied. However, more general
forms of the function fcan be treated.

Example. Let u--(u l, u2), let D be a positive definite symmetric 2 2 matrix, and
let |-- ( f l( t, u),f 2( t, ll)) with fl(t,u)---(2+cost)ul-(ul)3+ulu2 and fz(t,u)=

(2 + cos t)u 2 ( u 2 )3 + u u 2. Then Theorem 1 applies to the system u (2 + sin t)DAu
+ t(t, u) with the choice G(u) [(ut)4 + (u2)4]/4. The function does not satisfy the
structure condition (3.14). A key step in the proof of Theorem is the construction of
E(t); it seems likely that such a construction may be possible in cases not covered by
Theorem 1. In particular, the function G may be allowed to depend on if the proof
and hypotheses of Theorem are modified somewhat.

We will now consider the case of nonsymmetric coupling in the second order
terms. For simplicity we will assume that the coefficients of the system are time
dependent and that the nonlinearity has the structure given in (3.14) where M(x) is a
matrix of bounded functions. Without loss of generality we may assume that the matrix
coupling the second order terms has been decomposed into symmetric and antisymmet-
ric parts. Thus we consider

(3.15) ut (af(x) up )xj+(af(x) upx,) +br(x)u +f"(x u)
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All the previous assumptions on coefficients aft(x), bff(x) and the nonlinearity remain
in force. Also, we require that aft(x) be bounded for all i,j, tx, v and that aff.(x)-a;(x),

vbut a/.(x) -aij(x). It follows that

(3.16) af(x)pp]-O.
The boundedness of the terms aft(x) and the entries in M(x) guarantees the existence
of constants mo and ao such that aff(x)pq<_aolPllq and M(x)u’w<-molullwl. We will
see the notation f/u =f and assume that

(3.17) fuu<_foll.
THEOREM 2. Suppose that uo W2,p N Wd’v for some Po>n and u(x, t) satisfies

(3.15) with u(x,0)-uo. Suppose that hypotheses (3.1), (3.2), (3.3), (3.14) and (3.17) are
satisfied, and H(x, u)_>-noM2. Then supdul is uniformly bounded in terms of u o. If in
addition If(x, u)l_<f(R)lul and H(x, u) _< nlul2 when lul<R then supxnlul decays exponen-
tially as oo.

Proof. Let

fn[l_aff.(x) 1K2lul2dx]G(t)- +n(xUxjUxi

Then we have

-,j--x, + bff u +f(x, u)

a.uud+bff +Mu’u +K "u +K2u’u)dxUxiUt lUt tt

--"ij --xi’xjt-- bi UxiUt + Mu. U

-Alaij UxtUxit- glavutUxi &lOi u Uxi u
-K2aff -g2aff )UxUx UxUx,+K2buu+K2u f &

Using (2.1), (3.16), (3.1) and the bounds on the coefficients of the system yields

]Utl
2 + vVij UxiUxjt bi UxiUt + molul lu,I

Kcou.. tu._
’
+ tc

l’i wt Wxit

/gtfolu,I
2

g2coUx,G,+g2b, u,u /01ul
2

dx

By Cauchy’s inequality and the bounds on aft and bff we have

E;(t) --1++ 2 +K, +K,fo
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If we choose e4 so that (boe4/2-Co)<O, K so that Kl((bo/2e4)+fo)< 1, I2 and e so
that the coefficient of lut]2 is negative, e so that the coefficient of UxjtUjt is nonpositive,

e5 [_flo+ Co+ (flo_ co)2 +bo2 ]/bo>0 and K2 sufficiently large, then condition (3.1)
implies that the coefficients of Ux,U, and lul= are negative. Hence we have

E(t)<_-Kf.[lu,l+u.u,+lul dx<-O

for some positive K. From this point the proof is essentially identical to that of
Theorem 1, or the results of [5].
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NONEXISTENCE OF GLOBAL SOLUTIONS
TO THE CAUCHY PROBLEM FOR THE DAMPED
NONLINEAR SCHRODINGER EQUATIONS*

MASAYOSHI TSUTSUMIf

Abstract. Solutions to the Cauchy problem for the equation iu m U -- q(lu[2) u (ia/2) u (a> 0, x @Rn,
t>0); u(x, 0)--u0(x) are considered. Conditions on u0 and q are given so that solutions do not exist for all
t>0.

1. Introduction. Consider the Cauchy problem for the equation

(1) iu, Au+lu( ia
u---u, i---- l xRn, t>0

with

(2) u(x,O)--Uo(X ), xR",

wherep> 1, a>_0 and Uo(X ) is assumed to be smooth and small at infinity.
Equation (1) has various applications in the area of nonlinear optics, plasma

physics and fluid mechanics (see [7], [13], [20]). When p= 3, n-2 and a-0, (1) shows
instability phenomena such as self-focusing of an electromagnetic beam. Global ex-
istence theorems and scattering theorems for the problem (1), (2) with a=0 have been
developed by [3], [10] and [11]. Nonexistence of global solutions of (1), (2) with a--0
has been shown first by [21 for radial solutions, the case p 3, n 2, and then by [5] for
more general cases (see also [17]).

We mention the results for (1), (2) with a 0 more precisely. When a 0, (1) has
two conserved quantities:

(3)

2
p+l flu(x’t)lp+ldx"

(All integrals are taken over R.) Using these quantifies it is shown that
i) if <p< + 4/n, there exists a global (weak) solution to (1), (2) for a datum of

unrestricted finite energy, i.e., IE(0)I<;
ii) if p_> 1 + 4/n, solution with nonpositive energy (E(0)_<0) cannot exist for all

t>0.
The first assertion i) is established by Ginibre-Velo [3]. The second assertion ii) is

established by Glassey [5] (p> +4/n) and by the author [17] (p_> +4/n). In the
proofs of ii) one of the crucial hypotheses is that E(0)_<0 which implies that the
solution has nonpositive energy, i.e., E(t) -<0 for all > 0.

For a>0 both Eo(t ) and El(t ) are no longer conserved; moreover, nonpositivity of
E(0) does not assure nonpositivity of E(t) for all t>0. We have Eo(t)=e-atEo(O), that
is, the L2-norm of solutions decays exponentially if solutions exist globally. Hence,

*Received by the editors February 16, 1982.
fDepartment of Mathematics, Indiana University, Bloomington, Indiana 47405 and Waseda University,

Tokyo, 160 Japan.
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there naturally arises the question whether or not the damping term prevents blowing
up of solutions.

Our aim of the present paper is to show that even for a>0 solutions of (1), (2)
cannot exist for all t>0 if its initial datum is of nonpositive energy, that is, E(0)<_0.

2. Nonexistence of global solutions and blow-up theorems. The Cauchy problem to
be considered is the following:

(4) iut ZXu+q(lul) ia
Ru--u, x t>O,

(5) u(x,O)=uo(x ), xR".

Assume that a_>0 and q is a real valued function defined on 0, oe). Let

DlqmmN. The function u=u(x,t) defined on [0, T]R", T>0 is called a weak
soluion of (4) if uC([0, T]:H(R)) with Q(N), q(lule)uc([0, rl :L(R")), I/lu
C([0, TI:L(R)), and satisfies (4) in the sense of distribution and (5) at t=0. Here we
assume uoH(R") with Q(luol2), q(luol2)uoL(Rn) and Ixlu0 L2(Rn).

We begin with a lemma giving several identities which will be used in the proof.
LEMMA 1. Let b R and u be a sufficiently smooth solution of (4) on 0 <_ <_ T. Then
(i)

flu(x,t)ldx-e-tfluo(x)ladx,
(ii)

ebt[f vul2dx-fQ(lul2) dx] =fl VUol2dx-fQ( lU0l 2) dx

+bf:eb flvuldx-fQ(lul)dx]ds
-age’[fl Vuldx-fq(lul-)luladx

(iii)

(iv)

where

and

e’fIxllulax+ (a-b)fote"f Ixl2luldx ds f txl l u01 dx +f0’()ebs ds,

V(t)ebt+(a--b)fotV(s)ebSds-- V(O)+fote(s)ebds,

V(t)- --4Im fx" Vu(x,t)ff(x,t)dx,

( V(O)- -4Imfx VUo(X)o(x)dx),

e(t)-8flvul ax + 4nf[Q( ]ul z) q( lul ) lul ] dx
( being the complex conjugate of u).
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Proof. Multiplying (4) by 2ff and taking the imaginary part of the result, we get

2(6) - lu

Integration of (6) over R gives

+alul=-v (2ImffVu).

O-- flul-d+af
from which (i) follows. We now multiply (6) by Ix]2 and integrate over R" to get

a flxl:lul:ax+aflxlluldx_ -4Im f(x. Vu)dx =- V(t)dt

from which (iii) follows.
To establish (ii) we multiply (4) by 2fit, integrate over R" and take the real part of

the result to obtain

at [flvuldx-fa(lul) +a f vuldx-fq(lul)luldx]-o.
Multiplying this identity by e bt and integrating with respect to t, we get (ii). It remains
to derive (iv). Integration by parts yields

dv(t)+aV(t)
dt

=-4Imf(x. Vu,)dx-4Im f(x. Vu),dx+4aImf(x. Vu)dx

=4nlm fu,aax+8Im f(. va)u,ax +4aimf(x. vu)aa.

The first term can be written as

4nlmfutdx- -4nRe f[au+q(lul2)lu]] dx

=4n[flvul2dx-fq(lu[2)lul2dx].
The second term can be written as

8 Im f(x. va)u,ax

=-8Rf(x. Vff)(Zu+q(lul)u)dx-4alm f(x Xz)udx

8fl v’uldx-4nf] vuldx+ 4nfO(]u]2) dx

-4aimf(x.
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Therefore we obtain

a -8f uldx+4ndt V(t)+aV(t) IV f[Q(lul=)-q(lul) ul=] dx
=-e(t)

from which we can deduce (iv). Q.E.D.
Our main theorem is given by the following:
THEOREM 1. Let u be a weak solution satisfying the identities (i)-(iv). Assume that

(A) e0)=f vuol-f( lUol) a_< 0,

(B) there exist constants C > + 2/n, C, > such that

CnQ(s)<__sq(s)<__CQ(s ) for alls>O,
and

(c) a(C- l) fdn- Il=lul=d+ (0)0,
where d n(C 1)/2> 1.

Then, u cannot exist for all > O.
It is easily seen (see [11], [19]) that the following continuation theorem holds:
THEOREM 2. Suppose that qC([0, o)) with q(0)=0 and uoHS(R), s>n/2

(with ruo L2(R)). Then we have the following alternatives:
1) the (smooth) solution u exists for all >0;
2) there exists a T>0 such that the (smooth) solution u exists in O, T) and

lim sup Ilu(t)ll- /
tT

for any kR satisfying n/2 <k<_s.
The solution u satisfies (i)-(iv) on the maximal time interval of existence.
Combining Theorem and Theorem 2, we obtain
COROLLARY 1. In addition to the assumptions in Theorem 1, we assume that q

C([ 0, )) with q(0)=0 and uo HS(Rn), s>n/2 with ruo L2(R)). Then, there exists
a finite time T>0, estimablefrom above, such that

lim sup Ilu(t)ll.()- +
tT

for any kR satisfying n/2<k<_s.
Ginibre-Velo [3] have shown that
THEOREM 3. Suppose that n<_3, qCl([0,)) with q(0)=0 and uoHl(R)fq

L(R). Then the following alternatives hoM valid:
1) the weak solution u exists for all >0;
2) there exists a T>0 such that the weak solution u exists in O, T] and

lim sup Ilu(t)ll,t-- /
tT
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Therefore we obtain
COROLLARY 3. In addition to the assumptions in Theorem 1, we assume that q

Cl([0, oo)) with q(0)-0 and uoHl(Rn)L(Rn) (n--<3) with ruoLE(Rn). Then,
there exists a finite time T>O, estimablefrom above, such that

(7) lira sup
tT

Ifn- 1, (7) is equivalent to

limsup Ilu(t)ll.’.)- +.
t’t T

The following blow-up theorem shows that for some initial data the singularity of
solutions occurs at x-0 like the /J-function type, as was suggested by numerical
computation of (4) with a 0 (see [7], [20]).

ThEOReM 4. Let u be a weak solution satisfying (i)-(iv). Assume that (A), (B) and (C)
in Theorem hold valid. Let O, T) be the maximal interval of existencefor u. If

then

andfor any e>0

lim ftT

(2n)liml[u(t)llz.<.)-o formax _<p<2
tr n+2’

lim
t’ T

limllu(t)llz<l<,):+ for 2<p_<.
tT

Remark. Let xoR" be fixed. Multiplying (6) by IX-Xol2 and integrating over R",
we get (iii) replacing Ixl2 by Ix- Xol2. We also have (iv) replacing V(t) by

l?(t)--4Im f(x-xo). 7u(x,t)fi(x,t)dx.

Therefore under the assumptions (A), (B) and

(C’) a(C,- 1)
d- ls flx-xol Uol2dx-4Im f(x-xo) VUo(X)fio(x)dx<-O

the singularity of the solution may occur at x-x0 if

lim fl - ol -Iu(x,t)l -dx-O,
tT

where [0, T) is the maximal interval of existence for u.

3. ProoIs.
Proof of Theorem 1. Suppose that the solution u exists for all > 0. Put
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From (ii) of Lemma 1, we have

where

E( )ebt- E(O) +fotebSg( s ) ds

g(,)- -(a-b)flvula fo( lul)a+afq( lul) lul2dx.
Using hypothesis (B) we find

provided that

which is equal to

g(t )<-- -(a-b)f vul-fO(lul ) x+ac:fO(lul)x

[ n<--(a-b) flvulax--(c.-1)fQ(lul)ax
= (a-b)el(t),

<n(a-b)(C.-1)aC/,-b- 2

(8) b<_ a<_a.

Therefore we have

E(t}e bse (s)dst<_E(O)-(a-b) e

Hypothesis (B) yields el(t)<E(t) for all t>O. Hence we get

which is equivalent to

el(t)e bt <_E(O) (a- b)fotel(s)e bS ds

d (a-b)tf ( ) bs <E(O)e(a-b)te _’el_s_e
"0

Now E(0)_<0 by (A). Hence

for (s)eSds<-Oe

By (iv) of Lemma and the above inequality we have

V(t)ebt+(a--b)fotV(s)ebSds<-- V(O)
from which it follows that

e(a-b)tfotV(s)e bs ds] <_ V(O)e(a-b)t.
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Hence

(9) bs ds< e_(a_b)--a b(1- )V(O).

Put

y( ) etflx{lu( x, )ldx.

From (iii) of Lemma and (9) we get

(10) y( ) <_f Ixl=l Uo(X )l=dx + b)t
a-b (l--e-(a-)V(O).

Set

Then by (8) 8>_0. Put

a- b
log

( a b )flxl21uo(x )12 dx + v(o)
(o)

--1

a + J logP

where

a+ ) flxl:luo(x)l:a+ v(o)]lg(o).
Note that hypothesis (C) implies P< 1. Hence T>0 and limtrry(t)-O. We have

Off Ou )flulax-- fx, u+ ,ix

if xi u2--.)O as Ixl oo. Hence from (i) we get

e-(a- b)tll UoII 2<
2y(t)

+oo as t T,

which leads to a contradiction. This completes the proof.
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Proof of Theorem 4. Let max(2n/(n + 2), 1)_<p<2. H61der’s inequality gives

flu(x,t)lPdX-Xxl> Rlu(x, t)lPdx +flxl<,[u(x,t)ldx

Ix1-2p/(2-P)dx Ixl=lu(x, )l=dx

+ ldx [u(x,t)l-dx
I<R I<R

--I- W2(R)(SIuo(X)[2dx)
p12

where

WI(R)- Const. R"-("/2+ l)p and W2(R) Const. R"(2-p)/2.

For arbitrarily small #>0 we can find R>0 so large that

For such a R>0 fixed we obtain

lim sup Slu(x,t)l"a<_.
t’f T

Hence

(11) lim Ilu(t) I1,,,.- O.
tiT

We have

(12) L>,lu(x,t)la<-- flllu(x,t)la--,o

as t--, T for any fixed e >0. By H61der’s inequality we get

e_at][
2 2

uoll ,:-(.)- Ilu(t)
2 2

Ilu(t)ll (l<)+ Ilu(t)ll

< Ilu(t)ll,.,(<i<,)llu(t)ll,.,(<i<, + Ilu(t)ll

where I/p+ I/q- 1,p,q_> 1. By (11) and (12) we have

lim Ilu(t)ll,<l<) +
ttT

Here 2<q<2n/(n-2) (n>2) and 2<q< + oo (n- 1,2). Since

q q--2
u ( )11"(<) -< u( t )11(") u( )11
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we get

Similarly we obtain

t$T

2n
for all q_>

n-2"
lim /
ttT

This completes the proof.

4. Final remarks. In recent years, various works have been published on the
blowing up of solutions or nonexistence of global solutions of the Cauchy problem and
the initial boundary value problem of nonlinear partial differential equations (in partic-
ular, nonlinear wave or heat equations). (See [1], [2], [4], [6], [8], [9], [15].) As is shown in
Theorems and 4, the nonexistence theorem for the nonlinear Schrtdinger equation
has a somewhat different character. The L2-norm of solutions is conserved or even
decays exponentially; however solutions may collapse to form point-like foci (see [20],
[21]). Analogous instability phenomena may be present in the case of the generalized
Korteweg-de Vries equation

(.) ut+(uV)x+Uxxx-O, p-l,2,...,

which has three conserved quantities:

fudx fu dx - f(Ux) dx- fu’+’dxp+l

If <p<4, we have a global existence theorem for the Cauchy problem to the equation
(,). For p>5 we only have a global existence theorem for small Cauchy data (see [12],
[16]). The question whether or not the solutions for large data blow up is still unsolved
so far as the author knows.

Acknowledgments. The author would like to express his thanks to Professor R.
Glassey and Ms. Jacqueline Barab, Indiana University for useful discussions. The
author also thanks the referee for valuable advice.
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A NECESSARY AND SUFFICIENT CONDITION FOR
THE COERCIVENESS OF A CLASS OF FUNCTIONALS

AND ITS APPLICATIONS*

PATRICK RABIERI"

Abstract. We show for a family of minimization problems for which a suitable directional growth
condition is fulfilled, how the weak sequential lower semicontinuity of the functional is closely related to its
coerciveness instead of being a completely separate property. A general example and some of its particular
cases, namely applications to semi-linear elliptic problems--for which appropriate results about Nemytskii
operators have been established here--are given.

Introduction. We recall that a functional defined in a normed space H (norm
I1" II) with values in R’-R U { + oo } is said to be coercive if and only if

lim .(v)- + o.

In this paper, we consider the case when H is a Hilbert space. Denoting by J the
"nonquadratic part" of and assuming

1) an appropriate directional growth condition (whose verification is generally
obvious in concrete problems),

2) the weak lower semicontinuity of J, we show in 1 that the coerciveness of is
related to a condition (Theorem 1.1, inequality (1.9)) which generalizes the condition of
H-ellipticity for quadratic functionals.

As in several well-known problems, the possibility for the functional to take its
values in R" yields an easy way for solving within a Hilbertian framework some
problems that are not naturally defined in a Hilbert space: in 2 we give a general
example of application using this method in conjunction with the theoretical results of
the first section. Finally, as a particular case of the example of 2, we consider in 3 the
typical equation (that can be generalized in many ways)

(--1)mAmu--kU--](U)--U* _n-m(),
usng(e),

where f is a bounded open subset of R N, , a given real number and f a Nemytskii
operator associated with some given Carathodory function f: fR-oR. Roughly
speaking and among other results, we are able to prove the existence of at least one
solution of this equation in the space H’(f), even when f(v) H-m() for each
vH’(f). It is interesting to notice in this case that our condition of coerciveness
depends upon the fact that the function y-of(x,y)/y is nondecreasing for y>0 and
nonincreasing for y<0, for almost all x f. To our best knowledg._e, this type of growth
property is usually assumed to hold uniformly with respect to x f and with a function
f(-,y) that is continuous on f for every yR. Finally, let us mention that the results
established in 1 are of importance in a general study of nonlinear problems having
exactly three solutions presented elsewhere (cf. [6], [7]) that generalizes, through a new
notion of convexity (cf. [6], [8]) recent works of M. S. Berger or Ambrosetti--Mancini
(references in [6], [7]) dealing with particular cases (homogeneous ones). Besides, the

Received by the editors April 7, 1982, and in revised form September 29, 1982.
Universit6 Pierre et Marie Curie, 4 Place Jussieu, 75230 Pads Cedex 05, France.
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existence result of three solutions (u=0 and two nontrivial ones) of the variational
problems we consider in [6], [7] is given here (Theorem 2.1 and Remark 2.1) without any
assumption of evenness on the functional under consideration.

1. Abstract results. In the following, we denote by H a real Hilbert space equipped
with the inner product (., ) and the associated norm I1" II- Let

be a given functional. We assume for every v H that the limit

exists and we set

lim
J( tv )

t+oo t2" --RU{--oo,+oo}

J(tv)(1.1) %(v) =2 lim
t+oo 2

In particular we have

(1.2) %(0) (0 if J(0) R,
+oo if J(0)-+

and a straightforward computation shows that

(1.3) %(,v)=,2%(v) for every vH and every ;k>0.

Obviously, a sufficient condition for %(v) to be well defined in R for every v H
is that J(0) R and the function

(1.4) t ]0, + oo[ J(tv ) -J(O)
t2

l"

is nondecreasing. In this case

(1.5) t%(v)-2 lim
J(tv)-J(O)

t---, + oo 2
l"

for every v H, and

(1.6) J( tv ) -J(O) < too(v)2 --for every vH and every t>0. From now on, we shall always assume that J(0)R
without further mention.

THEOREM 1.1. Let J:H" be a given functional. We assume that J is weakly
sequentially l.s.c. (lower semicontinuous) andfor every v H that the function

(1.7) t]O +oo[J(tv)-J(O)
t2 "

is nondecreasing.
On the other hand, let B and L be two linear continuous operators from H into itself

such that
(i) B is selfadjoint and H-elliptic,
(ii) L is selfadjoint and compact.
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For every linear continuousform q on H we denote by :H R" the functional
( .81

Then, the following assertions are equivalent:
(a) For every v H- {0}

(1.9) (Bv,v)-(Lv,v)+%o(v)>O.
(b) For every linear continuous form p on H, the functional (1.8) is coercive.
(c) The functional o (i.e. q=0 in (1.8)) is coercive.

Proof. (a)(b). Let be any linear continuous form on H. If the functional
(1.8) is not coercive, there exists a constant CR such that the set {vH,(v)<_C}
contains an unbounded sequence (v,). Obviously, we may assume v,v0 for every
n N and define

tn-llvnll’ %-IIvll’
in order that

(1.10) I111-- 1, limt,-- W.
By definition of (%), it follows that J(%)R for every nN. Thus, after dividing by
2t, the condition r(%)_< C may be rewritten as

J(t,%) <1 (L% %)+ C+lq(%)(1.11) -(B%,o.)+ --- -- t.tn tn

for every n . Because of the weak compactness of the unit ball in H, there exists a
subsequence of the sequence (%) that tends weakly to a limit o H. As usual, this
subsequence will still be denoted by (G). Let [>0 be given. Then, [% tends weakly to
to and J being weakly sequentially lower semicontinuous (1.s.c.) so is the functional
J/[. Thus

(1 12) lim J([%) >J(,,[o)
? ?

Now, since limG-+ o (cf. (1.10)), there exists norm such that t,->t" for every
n>_n o. For every given n>_n o, the growth property of the function (1.7) with
shows that

J( t.o ) J(O) >J(io.)-J(O)
2 2t.

and then

lim
J( t"% )-J(O) _>lim

J( [% ) -J(O)
tn

But the left-hand side of the above inequality is also limJ( t,,% )/t,2, and (1.12) provides

J( [o ) < J(O), + lim
J( t’’------))

2;2 ?2
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Since this inequality holds for each t’>0, we deduce by taking the limit when/" tends to

1 .(o ) <lim
J( tnn )

(1 13/ - t’----m 2

On the other hand, the H-ellipticity of the operator B means that there exists a
constant fl>0 such that (Bv, v)>_llvll 2 for every vH. Therefore, it follows from
(1.1 1) and IIo11 1 that

+J(tnon) < C 1
2 t.2 _-(Lo.,o.)+--+t.

and hence, since L is compact

/3 + lim
J(tn") <

From (1.1 3) we find that

(1.14)

This relation shows that o cannot be 0. Indeed, if o--0, we reach a contradiction with
(1.14) since fl >0 (recall that %(0) 0).

Coming back to (1.1 1) and due to the compactness of L we obtain

lim (Bo,,on)+
J( tnOn,), ] <t2 _- ( Lo, o ).

This inequality yields a fortiori

1
lim (Bo,, o,.) + lim

2
J(tno) <1

tn

Using (1.1 3) once again gives

(o)<- lim ( Bon on ) +- __- (Lo, o),

and finally, since the functional vH(Bv, v) is weakly 1.s.c. (because convex and
continuous)

o)- (z o, o)

which contradicts the assumption (1.9) for we have already proved that o cannot be 0.
(b)(c) is obvious.
(c)(a) Let us suppose that there exists vH-{0} such that

( Bv, v) (Lv, v) + ooo(v ) <_ O. From the growth property of the function (1.7) we de-
duce (cf. (1.6))

J(tv)-J(O) <160oo(v )9- -2
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for every >0. In other words

o(tV) -(0)-< [(v, v) (v, v) + ,0oo ( v)] _<0,

for every >0, that is to say,

o(tV)<-J(O)

for every >0, and the functional 0 is not coercive. V1

Remark 1.1. The equivalence (a) * (b) in Theorem 1.1 shows that the inequality
(1.9) is a necessary and sufficient condition for the coerciveness of the functionals $
altogether. However we emphasize that there may be some linear continuous form tp 0
for which is coercive while the inequality (1.9) does not hold.

On the other hand, let us point out that the computation of 0oo(v) is quite easy
when there is an explicit formulation of the functional J. As a matter of fact, it often
happens that 0oo(v) + oo for every v H- {0} and the criterion (1.9) yields the
coerciveness of $ immediately.

As concerns the minimization problem associated with the functionals $, we shall
now show that the criterion (1.9) is optimal.

COROLLARY 1.1. Under the same assumptions as in Theorem 1.1, a necessary and
sufficient condition for the functional (1.8) to have at least one absolute minimizer in the
space Hfor every linear continuousform p on H is that

for every v H- {0}.
Proof. The condition is necessary. Indeed, let vH-{0} be given such that

(Bv, v) (Lv, v) + ooo(v) <- O. Using (1.6) we obtain

o( tV )-J(0)_<- [(Bv, v)-(Lv, v) + ooo ( v)] _<0

for every > 0. Thus

(1.15) o(tV)<_J(O)

for every >0. Since v v 0, there is a linear continuous form tp on H such that tp(v)> 0.
From (1.15)

(tv ) -o(tv ) tp( v ) _<J(0) tqo( v ),

for every >0, and then

lim J(tv ) oo,

which proves that the functional has no absolute minimizer in H.
Conversely, it follows from our assumptions that the functional $ (1.8) is weakly

sequentially 1.s.c. (here we again use the weak lower semicontinuity of the functional
v H--,(Bv,v)) for every linear continuous form qo on H. On the other hand, this
functional is also coercive from the part "(a)(b)" of Theorem 1.1 and the result
follows from classical arguments.

Theorem 1.1 and Corollary 1.1 can be applied in various situations: for instance,
the proof of the existence of minimizers in the von Khrmhn equations which is given in
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[3, Thm. 2.2-1, p. 53] is a simple particular case of this study. Furthermore, the
criterion (1.9) is a fundamental theoretical result in a general theory of nonlinear
equations with exactly three solutions we have developed elsewhere [6], [7]. Indeed, the
same kind of arguments as in Theorem 1.1 or Corollary 1.1 are very useful for proving
the existence of at least two minimizers of the functional 0 under suitable assumptions
on the operator B-L. More precisely, due to the growth property of the function (1.4)
for every v H, we may define

(1.16) o(V) 2 lim
J(tv)-J(O)

t-,0+ 2

in order that

(1.17) J(tv)-J(O) >--0(v) for every >0 and every v H.

It can be immediately verified that the mal5 0:HR is positively homogeneous of
degree 2, i.e.,

0(xV)--2tO0(V) for every X_>0 and every vH,

and that

(1.18) J>J(O) Oo>O.

With these preliminaries, we have
THEOREM 1.2. Let J H " be a functional such that the function

(1.19) tG]0, +o[ J(tv)-J(O).
2

is nondecreasing for every v H. On the other hand, let B and L be two linear continuous

operators from H into itself such that
(i) B is selfadjoint and H-elliptic,
(ii) L is selfadjoint and compact.
(a) We assume either

(1.20) ( Bv, v ) ( Lv, v ) + oo( v ) >0

for every v H- (0), or more generally

(1.21) ( Bv, v)-( Lv, v) + %(v) >_0

for every v H when the function (1.19) is strictly increasing for every v H- {0). Then,
0 H is the unique absolute minimizer of the functional

(1.22)

(b) Conversely, we assume that the functional J is ->J(0), weakly sequentially l.s.c.,
that there exists vo H such that

(1.23) (Bvo,Vo)-(Lvo,Vo)+o(Vo)<O,

and that the condition

(1.24)
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holds for every vH- {0}. We assume also that (Sp denoting the spectrum)

(1.25) Sp(B-’/2LB-’/2)C]-oo, l[U(lXo),

with/o> a simple eigenvalue. Then, the functional o (1.22) has at least one minimizer
in the open half-space determined by the hyperplane

(1.26) B-l/Z(Ker(ttoI-B-l/2LB-1/2} -)
and containing vo.

Proof. (a) If we apply (1.17) with t- we have

(1.27) S( v ) -S(O) >--1/2too( V ),

for every v H. In fact, if the function (1.19) is strictly increasing for v 4 0, we see that

(1.28) J( v ) -J(O) >1/2too( V ),

for every vH- (0}. Then, using either (1.20) and (1.27) or (1.21) and (1.28), we find

ko(V)

for every v H-(0}, so that 0 H is the unique absolute minimizer of the functional

o-
(b) Let us first notice that the operators B’/2 and B-,/2 are well defined, selfadjoint

and H-elliptic since the same properties hold for B. It will be convenient to denote by
%0 the one-dimensional null-space

9Lo- Ker(g0I-B-’/2LB- 1/2).
Then its orthogonal is a hyperplane and so is the space B-1/2( ). Let us observe that
B-L is B-l/9(gL)-elliptic. Indeed, for vB-’/2(6") we set w-B’/Ev6]- and
get

(( B-L)v, v)- ((loI-B-’/2LB-,/2 )w, w) >-- C]I wll 2,

for some constant C>0 since (cf. (1.25)) the eigenvalues of the restriction to 9L of the
compact selfadjoint operator B-’/2LB-/2 are </x0. The conclusion follows from the
inequality Ilwll>_llvll/llB- /211.

As the functional J is _>J(0) in H, we have to0_>0 in H (cf. (1.18)) and (1.23) one
can occur with ((B-L)vo, Vo)<0 only. We conclude that v0 is not an element of the
hyperplane B-l/2(o-)L ) (because the inner product ((B-L)vo, v0) would then be _>0)
and hence vo belongs to one of the two open half-spaces determined by this hyperplane.
In what follows, we shall denote by Hvo the half-space in question.

Using the fact that J>_J(O) in H once again and from the B-/2
_

(gLo )-ellipticity of
B--L, we find that the functional o (1.22) is _>J(0)-o(0) in the space B-1/2(% ).
Thus, we shall prove that o has at least_ one minimizer in Hvo by showing the existence
of such a minimizer in the closure Hvo while o takes values <J(0) in Hvo. Under our
assumptions, the coerciveness of o follows from Theorem 1.1. But 0 is also weakly
sequentially 1.s.c. (as noticed in Cor__ollary 1.1) and possesses then at least one minimizer
in the (weakly) closed half-space Hvo. It remains to prove that 0 assumes values <J(0)
in Hvo. By definition of the map too (cf. (1.16)) and since the condition (1.23) can occur
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for tOo(Vo) [0, / oo[ only (cf. (1.18)), we deduce for every e>0

J(tvo)-J(O) tOo(19o) + e
2 2

for >0 small enough. Taking e>0 such that

we have for >0 small enough

[1 J( tvo ) -J(O)o(tVo)-J(O)-t -((B-L)vo,Vo)+ 2

2

<--[(Bvo,Vo)--(Lvo Vo)+too(Vo)+e] <O,--2

which concludes the proof. U]

Remark 1.2. Let us show how Theorem 1.2 can be used for proving the existence of
at least two distinct minimizers of the functional o. Indeed, under the assumptions of
Theorem 1.2, this result is immediate if too(-Vo)-too(Vo) because -v0 and vo do not
belong to the same open half-space determined by the hyperplane (1.26). For instance,
when the functional J is defined everywhere around 0 H and is twice differentiable at
the origin, it is not difficult to see that too(V)=J"(0). (v, v) for every vH and the
problem is solved since too is even (notice that this property is not related at all to some
assumption of eveness ofJ). In fact, the relation too(-v0)- too(V0) holds for some vo v 0
as soon as J is twice differentiable at the origin in the direction v0 and we have
too(-Vo)-tOo(Vo)-(d2/dt2)j(tvo)lt=o In this case, J need not be finite everywhere
around the origin (only around 0 in the direction Vo) which is useful in important
practical applications as we shall see later on.

We do not know (except in the case when J is even) if the assumption (1.25) on the
spectrum may be omitted or weakened.

2. A general example. We shall here study in detail a general example (and one of
its concrete applications in the next section) in which the assumption that J takes its
value R" is fully employed.

Let Wbe a real Banach space and H a real Hilbert space. We suppose that both H
and W are contained in a locally convex space X with continuous embeddings HCX
and WCX. The norms in the spaces H and W will be denoted by I1"11 and I1"11
respectively. Let

:" W--’R

be a weakly sequentially 1.s.c. functional. We define the functional

(2.1) J" vHJ(v)- ( :(v)+o if
v W,

LEMMA 2.1. We assume that one among the following conditions holds:
(i) HC W(continuous embedding),
(ii) the space W is reflexive and : is coercive on W.

Then the functionalJ (2.1) is weakly sequentially l.s.c, in the space H.
Proof. The case in which the assumption (i) is fulfilled is obvious since J is the

restriction of : to the space H. Let us suppose that the condition (ii) holds. If (vn) is a
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sequence in the space H that converges weakly to v H we have

(2.2) v,v in X,

because the embedding HCX remains continuous when both H and X are equipped
with the weak topologies. The inequality

J(v)<-limJ(vn),

is obvious if limJ(vn)= + oo and we need only consider the case when the sequence
J(v,) does not tend to + o. This amounts to saying that

limJ( t9 ) < +

and it is then possible to find a subsequence (vk) such that

(2.3) limJ( Vk ) limJ(v,, ) < +.
From the above relation we may assume J(Vnk)g for every kEN and by

definition of J

(2.4) v,,,,eW, J(v,,,)-[F(v,,,),
for every k [. Therefore, the relation (2.3) becomes

(2.5) limF(v,)- li____mJ(v,)< +

Under these conditions, the coerciveness of : on the space W shows that the sequence
(Vnk) is bounded in W and then has duster points in W equipped with the weak
topology (since the Banach space W is reflexive). From the continuity of the embedding
WcX when both W and X are equipped with the weak topologies and since the weak
topology in X is separate, it follows that v is the unique cluster point of the sequence
(vn,) in the weak topology of IV. On the one hand, this shows that v IV and on the
other we deduce that the whole sequence (v,) converges to v in the weak topology of
W (following a classical result since the bounded subsets of W are weakly relatively
compact). Owing to the fact that the functional : is weakly sequentially 1.s.c. in W we
obtain

:(v) <lim :(v,),

and from (2.1) and (2.5), the above inequality is nothing but

J(v)<-limJ(vn),

which completes the proof.
Besides the previous hypotheses on : we now suppose for every v H fq IV, v :/: 0,

that the function

(2.6) 10, + o :(tv) :(0)
2
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is nondecreasing. This immediately shows for every vH-(0} that the function
(notice that J(0) :(0) R since 0 HN W)

tU]0, +oo[J(tvl-J(O) n’,

is nondecreasing so that the assumption (1.7) of Theorem 1.1 is satisfied. Moreover, for
every v H

(2.7) %(v)- 12 t-+oolim gZ(tv)t2 ifv W,

+oo if v q W.

Then, considering two linear selfadjoint operators B E(H) and LEE(H) such
that B is H-elliptic and L compact, it follows from our general results of 1 that the
condition (cf. (2.7))

(2.8) (Bv,v)-(Lv,v)+ooo(v)>O for everyvHf3 W, vvaO,

ensures for every linear continuous form p on H that the functional

(2.9) vH(v) -1/2((B-L)v, v) +J( v ) -p(v) g’,

possesses at least one minimizer uGH provided one of the conditions (i) or (ii) of
Lemma 2.1 is fulfilled. If so, we have

(2.10)
since the minimum value of in H cannot be obtained at a point u such that
J(u)- + o (as 0H W,J and are not constantly equal to + o). The minimiza-
tion of in the space H is then equivalent to its minimization in the space HM W on
which the functional . has the form

vnn W-(v)=1/2((-L)v,v)+g:(v)-(v)n,

and possesses at least one minimizer u (cf. (2.10)).
More particularly, if the functional g: is Gteaux-differentiable in the space W and

if we write

(u) <- ( u + th ) g for every n and every h H fq W,

we find without difficulty that u is a solution of the variational equation

(2.11) ((B-L)u,h)+g:’(u).h=p(h) for everyhHCq W.

Under the additional assumptions

(2.12) Sp(B-I/2LB-’/)C]-o, 1[ t_J (/0),

with/o> a simple eigenvalue and

(2.13) :-->:(0),
a quite similar study (using Theorem 1.2 instead of Theorem 1.1) shows that there are
at least two solutions

(2.14) u.HW-(O), a= 1,2,
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of the variational equation

(2.15) ((B-L)u,h)+:’(u)--O for everyhHN W,

when the conditions

(2.16) ( Bvo vo ) ( Lvo vo ) + to( vo ) < O, oo(-vo ) oo( vo )

hold for some vo GHN Wwhere, for every v H (cf. (1.16) and (2.1))

lim
Z(tv)-:(O)

ifv W,

+ o if v q W.

When : is twice Gateaux-differentiable at the origin, it follows from Remark 1.2 that
(2.16) amounts to assuming that there exists v0 H tq W such that

(2.17) (Vo,Vo)<0.

On the other hand, we know that the solutions u, a- 1,2 minimize the functional o
(i.e. tp=0 in (2.9)) in each of the two open half-spaces determined by the hyperplane
B-l/2(Ker{tol-B-/2LB-l/2} +/-) (cf. Theorem 1.2 and Remark 1.2). Hence uva0,
a--1,2 and u and u2 belong to the space H W: Indeed, as we have proved in
Theorem 2.1, we have o(U)<o(0)=J(0)=:(0)R and in particular J(u)R,
a-- 1,2. By definition of J (cf. (2.1)) we deduce that u H W, et 1, 2, which proves
(2.14).

Remark 2.1. Let us denote by % a normalized vector (i.e. IlOolln-1) of the space
Ker(P,oI-B-l/ELB-1/2) and let o be the vector to=B-/2Oo Then, the condition
(2.16) is satisfied in the following main two cases

1) o W and :"(0)- (0,o)</o- 1.
2) :"(0)-0 and the space Htq W is dense in H.

Indeed, it is immediate that (/oB-L)o-0 and (Bo,o)- so that the first condi-
tion is readily equivalent to (2.17) with vo-o- In the second case, the result follows
from the fact that the set (v H, ((B-L)v, v)<0) is open in H and not empty since it
contains the vector o.

A particularly interesting situation is described as follows: let fl be an open subset
of v. We take

(2.18) W-Lq(’),

for some _<q_< + z. Now, for some integer rn_>0,

(2.19) H’(2 ) CHCHm(’ ),

denotes a closed subspace of Hm() equipped with the inner product (., ) equivalent
to the inner product induced by Hm(f). In this case, the separate locally convex space
X may be chosen as

X--imin(q,2)( )loc

From (2.19), we deduce that the operators B and L in H induce operators
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through the formulas

(2.20) VvCH, (v,O)-(Bv,O)
vv i,

Meanwhile, the continuous embedding

allows us to define the distribution

(1 _<q_< +)

for every v Lq().
Then, for u*n-m()--(nn()) and denoting by tp any linear continuous

extension of u* to the space H, each solution uHfqLq() of the equation (2.11) is
also a solution of the equation

(2.21) ;u--f_,u+f(u)-u*,

in the distributional sense. Let us notice that the elements :’(v) and f(v) may be
identified for every vLq() when _<q< + oo (because of the denseness of the space
(R)(f) in the space Lq()). This remains true for q= + oo if :’(v) belongs to the space
Ll(f) for every v L(f) (because each element of Ll(fl) is entirely determined by its
associated distribution).

Remark 2.2. It is easily possible to generalize this situation to the case when W is a
closed subspace of wk’q() for some integer k_>0 or a product of such spaces.

We shall now examine particular cases of equations such as (2.21) in the next
section.

3. Application to semi-linear elliptic problems. Let f: f R --, R be a Carath6odory
function; i.e.,

(3.1)
for every y R, f (., y): 2 is measurable,
for almost all x G ,f(x, ): R is continuous.

In addition, we assume for almost all x that

(3.2) f(x,y)>_O Vy>--O, f(x,y)<_O Vy<_O

(which in particular requires f(x, 0) 0) and

(3.3) the function y f(x,y)/y is nondecreasing for y>0 and nonincreasing fory< 0.

For any real number q_> we call (’)q,q.) the property

(@q,q.) there exist a function a zq*()(1/q-- 1/q* 1) and a constant
b>0 such that for almost all x2 If(x,y)l <-a(x)+blylq-I, for
every y R,

and for q= + oo we call (62oo,) the property

(o,l) for everyy,f(.,y)Ll(2).
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Remark 3.1. It is not difficult to see, when the set f is bounded, that for _<q-<q2
_< + oo one has

(q,,q*l) ==(q2,q*2 )=*(00,1 )"

From now on, we assume that the function f verifies the property (@q,q.) for some
2_<q< + oo and for every measurable function v on f, we define the measurable
function f(v) by

(3.4) f(v)(x)=f(x,v(x)),
for almost all x (the measurability of f(v) is not obvious at all, cf. [4, Prop. 1.1, p.
218]). We shall denote by : the functional

where, for almost all x f

(3.6)

for everyy R. Then, we have

f.F(x,v(x))dx,

F(x,y)- ff(x,t)dt

(3.7) fe(gq(),gq’()),
and the functional : is well defined and Fr6chet differentiable in the space Lq(2) with
derivative

(3.8) ’ =].

For 2_<q< + c, these results can be found in Krasnosel’skii [5, Thm. 2.1, Thm. 2.3,
Lemma 5.1] and are valid in a more general framework. For q-+ c, they can be
derived from the assumption ()oo,1) and the fact that the function f(x, ) is nondecreas-
ing for almost all xf (which follows from (3.2)-(3.3)) through classical theorems in
integration theory (see also [8, Thm. 1.3] for a more general result).

We shall now give a simple technical lemma.
LEMMA 3.1. Let g: [0, + oo[ [0, + oo[ be a continuous function such that the function

t ]0 g’t’

is nondecreasing (and then g(O)- 0). Let G be defined by

Then
(i) the function

t[0, +oo[G(t)-fo’g(s)ds[O, +c[.

t ]0, 2

Clearly, f cannot verify (O)q.q,) for some -<q<2 and (3.3) at the same time, except when f=0.
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is nondecreasing,
(ii) the limits

g(t)
lg lim 1G lim
t+ t+x

exist (possibly + o) and verify

lg--21G.

Proof. From the properties of g we have for >0

hence

2

(3.9) G(t)<_1/2tg(t),

for every t>0. This implies that the derivative of the function G(t)/t 2 is _>0 and
proves (i).

The existence of the limits lg and 1 follows from the growth properties of the
function g(t)/t and G(t)/t 2. Moreover, from (3.9)

G(t) < g(t)
2 --2

for every t>0 and consequently

lg

Let us now show that l>_lg/2. First, we assume that lg-- + o0: for every M>0,
there exists to > 0 such that

Then, for t_> o

t>--to=
g(t____) >--M.

G(t)-G(to)+ f,lg(s)ds>-G(to)+ ftMsds,to

or equivalently

 (t0) M_>
2 2 2 2

which proves that 1>_M/2 and then 1- +.
Now, we assume that lg" for every e0 there exists to0 such that

g(t)
l-.t>--t

Thus, for t--> o

G(t)-G(to)+ g(s)ds>-G(to)+ lg-e)sds,
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or equivalently

>
(t,-,) (t-to)a(t)  (to)

2 2 2 2

which proves that la>_(Ig-e)/2 and then la>_lg/2 since e may be taken arbitrarily
small.

As concerns the functional : (3.5), the previous lemma leads to
PROPOSITION 3.1. Under our assumptions on the function f,
(i) the functional : is convex,
(ii) for every v Lq(2) the function

t ]0, + oo[- 2

is nondecreasing,
(iii) for every 19 zq(), lim/_.+ :(tv)/t 2 exists (possibly + oo) and

(3.10) lim [tr( F(tv)
d

tv) v-- 2 lim
2t--, + x t+c

Proof. Let v and v2 be two given elements of the space Lq() and 0_<h_< a real
number. For almost all x f, the derivative of the function F(x,. ) is the function
f(x,. ) and it follows from (3.2)-(3.3) that f(x,. ) is nondecreasing. Hence F(x,. ) is
convex. Thus

F(x,Av(x)+(1-A)v2(x))<-hF(x,vi(x))+(1-h)F(x,v2(x)),

for almost all x 2. By definition of :, this provides

:(Xv /(1--X)v2)<_X:(Vl)/(1--X):(v2).

Now, let vLq() be given. Because of (3.7) we may set

(3.11) g(t)-- fj(tv)v,
for every t_>0 and according to (3.8)

g(t)-:’(tv).v,

which shows that the function g is continuous and that

0
From the properties (3.2)-(3.3) we deduce for almost all x f

f(x,tv(x))v(x)>_O,
and the function

t]0, +oo[ f(x’tv(x))v(x) n,

is nondecreasing. It follows that we may apply Lemma 3.1 to the function g (3.11) and
the proof is complete. E]
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From (3.7)-(3.8) and the results of 2, we conclude that the equation

posed in a closed subspace H of Hm(f) which contains H"(2) (m_>0 a given integer)
possesses at least one solution uHfqLq() for every u* H-m(2) under the follow-
ing assumptions.

1) The operators B E(H) and LEE(H) inducing the operators / and as
indicated in (2.20) are both selfadjoint, B is H-elliptic and L is compact.

2) One of the conditions (corresponding to the assumptions of Lemma 2.1)
(i) HCLq() (continuous embedding),
(ii) q< + oo and the functional : is coercive in tq(),

is fulfilled.
3) For every vHALq(), v=/=O

(3.13) ( Bv, v)- ( Lv, v ) + oo( v ) >0.

(Notice that the weak lower semicontinuity of the functional : in Lq() follows from
its convexity and its continuity.)

We shall give a very simple condition on the function f which ensures that the
inequality (3.13) holds. We recall (cf. (2.7) and Proposition 3.1 (iii))

(3.14) too(v ) lim If.i( tv)vt +oo t

for every v Hfq Lq(f).
LEMMA 3.2. Under our assumptions on the function f, for every real number 1 the

conditions
(i) for almost all x 2

(3.15) lim
f(x,y)

>_1,
y-_+_ Y

(ii) for every v Lq()

(3.16)z

are equivalent.

lim ( z

t+oo

Proof. Let us suppose that the condition (i) holds. From the growth property (3.3)
it suffices to prove that

lim fj(nv)v> Zllvll =L2(),

for every v_Lq(). Since (3.16) is obvious for =0, we shall assume =/=0. Let fl’ Cfl
be the measurable set

n’: {xn,v()0}.
It follows from (3.2) and the growth property (3.3) that the sequence (f(nv)/nv) is a
nondecreasing sequence of nonnegative measurable functions on the set 2’. Then, so is
the sequence (( 1/n)f(nv)v ) since (1/n)f(x, nv(x))v(x ) (f(x, nv(x))/nv(x))v2(x ) for

where IlvllL2tu)-- +o for every vLq()fqL2() when 2 is not bounded.
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every x f’. From the definition of the set f’ and according to (3.15), this last identity
shows that

lim f~(nv)v>_lv2 a.e. in f’.

Thus, from classical theorems in integration theory, we deduce

lim
1 fur( fonv)v>_l V2,
n

and (3.16) follows since the integrals over the sets fa and fa’ are the same by definition
of f’.

Now, we suppose that (ii) holds. If the set f is bounded, for every integers k_>

and n_> we define the measurable set

(3 17) k,n--(x f(x,n) <1--1}
in order that the set

(3.18)
n_>l

is measurable. Furthermore, from the growth property (3.3), ’k is equivalently defined
by

(3.19) ftk--{Xf, f(x’Y) <l--1
Y

for every y>0

Since is bounded, so is f and it follows from (3.19) for every y>0 that the
nonnegative measurable function f(. ,y)/y is integrable, with

whence

fs f(x,y) dx<(l-1 ) meas(fa),

(3.20) lim
y---, + o

f(x,y) dx<(l-1 ) meas(k)y -But taking v=Xk characteristic function of flk in (3.16) we find

lim [ f(x,t)
dx >-- meas(fk )

+ o o1

Together with (3.20) we conclude that meas(f])--0. Consequently, the measurable set
tO k_> fak is of measure 0. This means for almost all x f that x does not belong to
for any k_> 1. In other words, from (3.17)-(3.18), there exists an integer n k -> such that

Using the growth property (3.3) once again, we obtain

f(x,y)
>l-

1
y k’
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for every y_> n k. Thus

for every k_> and finally

lim
f(x,y)

>1-
1

y-, +oo y k’

lim
f(x,y)

>_1.
y+ Y

The same process shows that limy__f(x,y)/y>_l for almost all xfl and the condi-
tion (i) follows when the set fl is bounded.

When f is not bounded, it is nevertheless the countable union of a family (fin) of
open bounded subsets of R N such that fn+ ft, for every n N. If (ii) holds, we have
in particular

fo/ lim
1 tv) v >_  llvll

t-,+

for every vLq(f). According to the first step, this implies

y--,_+ Y

for almost all x f#. Since a countable union of sets of measure 0 is a set of measure 0,
we conclude

y--,_+ Y

for almost all x f and the proof is complete.
Since the function f(. ,y)/y is nonnegative for everyyR- {0} (cf..(3.2)) we can

define [[0, +] by

(3.21) /=sup{l., y--’--+lim f(x,y)y >--1 a.e.}.
With this notation, it is obvious for almost all x fl that

(3.22) lim
f(x,y) >_[,

y"-"___ Y

and the previous lemma immediately leads to
PROPOSITION 3.2. Under our assumptions on the function f, we have

lim f( 2
tv)v>_lllvll, =( ),

t-’* + oo

for every v Lq() and if denotes any real number such that

lim f( 2
tv)v>_lllvll, =  )

t--, + o

for every v Lq(), then <- [.
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It follows from Proposition 3.2 that the inequality (3.13) holds when

2( nv, v ) ( Lv, v) + Ilvll
for every vHfqLq(), v=/=O. This is in particular the case for any operators B and L
when +

Remark 3.2. Due to the definition of the property (q,q,), the case [= + oo requires
the restriction q> 2 for the values of the real number q.

We shall sum up the results we have obtained in the following theorem.
THEOREM 3.1. Let f be an open (bounded or unbounded) subset of R and rn >_0 a

given integer. Let

H()CHCHm(f)

be a closed subspace of H’() equipped with the inner product (.,.) equivalent to the
inner product induced by H’(f). W’e consider a function f: 2 ff --, ff verifying the
properties (3.1)-(3.3) and (@q,q,) for some 2<_q<_ + oo (l/q+ l/q*-- 1) and we set

(3.23) ’=sup{l, y-__+oolim f(x,y)y _>1 a.e.)[0, +oo].

Then <_ q* <_ 2 andfor every v Lq(’) we set

for almost all x f. The operatorfverifies

ie(zq(),Zq"()),
and the functional

(3.24) vLq()--):(v)- fdx foV(X)f(x,s)ds
is well defined, convex and Frchet differentiable with

(3.25) :’(v):jr(v) Lq*(),

for every v Lq().
Now, we assume that one among the conditions
(i) HCLq( ) (continuous embedding),
(ii) qv + oo and : is coercive in the space Lq(),

holds. We consider two selfadjoint operators B E(H) and L E(H) such that B is
H-elliptic and L is compact and assume that the inequality

(3.26) (Bv,v) (tv,v)+llvll
holds for ee o H Lq( ), 0.

Ten, (H,’()) and (H,’()) being defined from B and L as indi-
cated in (2.20), the euation

(3.27)

Let us recall that the case )= + oo is a frequent one.
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has at least one solution uU_HCILq() for every u*H-m(). More precisely, if p
denotes any linear continuous extension of u* to the space H, the functional

(3.28) vnotq(’)---(v)-1/2((n-t)v,v)--F(v)-fD(v)n
has at least one minimizer and each minimizer of is a solution of the equation (3.27).

If the open set is bounded and has a Lipschitzian boundary, the Sobolev’s
embedding theorems are available to decide whether the continuous embedding H’()
CLq() holds. Since we observed in Remark 3.1 that the property (q,q,) gets weaker
and weaker in proportion as q grows when f is bounded, we deduce that the most
general form of Theorem 3.1 with f bounded corresponds to the values

(3.29) q= + when 2m>N,
2_<q< / arbitrarily large when 2m-N,

2N
when 2rn <N,q= N-2m

or else

(3.30)
2N

some
N-2m

<q< + such that the functional : is coercive in the
space Lq when 2rn <N.

As concerns the case u*-0, namely

(3.31) ;u-u+f(u)-O,
we know the existence of at least two solutions uv0, a- 1,2 in the space Hf)Lq()
under some additional assumptions listed in 2. Let us recall that the first one is
concerned with the spectrum of the operator B-/2LB-I/2, namely

(3.32) Sp(B-I/2LB-1/2) C ]- , 1[ t3 (/o),

with/o> simple eigenvalues. The condition F _>:(0) is here satisfied and according to
Remark 2.1 it remains to assume (for instance) that the operator f(-:’, cf. (3.8)) is
Gteaux-differentiable at the origin of Lq() and that there exists vo Hf)Lq() such
that

(3.33) (Bvo,Vo)-(Lvo,Vo)+:"(O)" (v0,v0)<0.

It can be immediately verified that the Gteaux-differentiability of f at the origin
follows from the assumption that the function f(x, ) is differentiable at the origin for
almost all x, with derivative fy(X, 0) verifying f(., 0) L(q/2)*() (where we have
set (q/2)*-q/(q-2) for q>2 and (q/2)*- for q- + ). If so, the condition (3.33)
may be rewritten as

( Vo,Vo)-(ZVo,Vo)+ 0)v0 <0.

With the notation of Remark 2.1, this is in particular the case when fy(-, 0)-0 and
HNLq() is dense in H or else when the generalized eigenvector q0 belongs to Lq()
with ff(-,0)ko2</0 1. Since the vector koH verifies the equation loBqo-Lqo
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and hence the equation /x0/0-/_7,0, it is interesting to notice that the condition

oLq() is closely related to a regularity condition about the operator B (which has the
usual meaning when/ is a differential operator).

A classical example is the equation

(3.34) (-- 1)mAmu--XU’4r’i( U)-- U* n-m(),

where , is a given real number (or a suitable function: for instance, h L(f)) and the
set f is bounded. In this case, we have4 B-l, L-((- 1)mAre)-1 and the space H(f) is
equipped with the inner product (u, v) fu X7 "uX7 "v where X7 m mk if m 2k, X7
XTAk if m-2k+ 1. Since H-H’(f), the unique extension q of u* to the space H(2)
is u* itself. In particular, the case q-0 (for which we know the existence of at least two
solutions u0, a-1,2 in the space Hn()f’)Lq() under the suitable additional
assumptions listed above) is equivalent to the case u*-0.

Of course, we may consider more general operators and more general boundary
conditions" if the boundary i)fl is divided into two parts I’0 and I’ with meas(F0)>0
and with the choice

(3.35)
we solve, for instance,

(3.36)

H- (vH(), v-O on Fo),

Oj( aijOiu ) u-l--i( u ) u*

Ou
u-O on Fo, 0-- =g on F1,

where , is a given real number (or a suitable function), g a given element of L2(FI) and
the operator -Oj(ao.Oi) fulfills the usual conditions of symmetry (aij--aji), regularity
(aijL(f)) and uniform ellipticity. The space H being equipped with the inner
product (u, v)-fu X7uXTv, the operator B is defined by

(nu, 19)- faijOiuOjl),
for every pair (u, v) H H, which is a weak form of

--ABu-- --Oj(aijOitt),
Bu

Bu-O onFo, Ov =0 onFt,

and the operator L is defined by

--ALu--u,

Lu-O onI"o, =0 on F.

The right-hand side u" of (3.36) has to be taken in the space Ll() if N-- 1, in Ll +*(f)
for some e>0 if N-2 and in L2N/N+2(f) if N_>3 if we want the element Ou/Ov to be
well defined in the space H-/2(Of). We obtain the existence of at least one solution of

4 L has to be modified when A is a function.
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(3.36) by minimizing the functional (3.28) in which the linear extension tp of u* to
the space H is given by

for every v H. The case tp 0 corresponds then to the choices u* 0 and g O.
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INTEGRALS OF HIGH-PASS FUNCTIONS*

B. F. LOGANf

Abstract. A function h(x) whose Fourier transform vanishes over the interval (-f,2) is called a
high-pass function. This paper develops topics in the mathematical theory of high-pass functions. The
definition of high-pass functions is extended to functions h(x) which do not have Fourier transforms by
requiring that

(i) fff+ lh (t)l dt is uniformly bounded for oo <x< oo,
(ii) fEooh(x)g(x)dx=O, for all g(x) in L of the forrfi g(x)=fG(o)ei’Xdo.

For such g(x), the condition (i) insures that the integral (ii) is absolutely convergent.
Within this extended definition, it is shown that a high-pass function h(x) has a bounded unbiased

integral ht- I)(x), which is also a high-pass function, for which ht-l)(x)- h<- 1)(y) fh(t) dt. It is given by
convolution of h(x) with any L function K(x) of the form

(iii) K(x)---sgnx-g(x), where g(x) is the restriction to the real line of an entire function of exponen-
tial type

or, what is shown to be equivalent, by convolution of h(x) with any function in L of the form
(iv) K(x /2r f

_
f o ei’x do where/(0)= 1/ o for I]_>.

From the convolution representation of h-l)(x), the following results are obtained. If h(x) is a
high-pass function:

(v) The Fourier integral of h (x) is summable (C, 1) to zero in the spectral gap (- 2, f).
(vi) If lim fx+ llh t)l dt 0, then lim fh(t) dt exists.
(vii) Ih<-I)(x)l<(1/2+ l/2r)suptf/"lh(t+u)ldu.

1. Introduction. Signals commonly encountered in communication engineering, by
virtue of filtering or modulation operations, are for all practical purposes void of low
frequencies, i.e. their Fourier spectrum omits an interval about the origin, say (-2, f).
Such functions of a real variable are called high-pass functions (cf. [2]).

Our first task is to give a suitable definition of such functions. A class of such
functions which has reasonable closure properties will naturally include functions
which do not have Fourier transforms, so we cannot just define this class of functions
to be those functions whose Fourier transforms vanish over the interval (-f, 2) or
more generally over an open set E. Instead we shall use a general recipe to construct a
space of such functions, which is to bound the growth of such functions h(t) and to
require them to be orthogonal to a class of test functions g(t), i.e.

These test functions must have Fourier transforms supported on E and be of suffi-
ciently rapid decay that the integral (1) is absolutely convergent. Note that if the set E
is symmetric with respect to the origin (as it is in the case where E (-, f)), then the
space of test functions can be chosen to consist of real-valued functions g(t), and (1)
can then be replaced by

f h(t)g(t)dt-O.

We introduce the following spaces of test functions. For fl>0, B(2) denotes the
collection of functions which are restrictions to the real line of entire functions of
exponential type <fL For each p with l<p<oo, we let B,(F) denote the subset of

*Received by the editors March 10, 1982, and in revised form August 27, 1982.
Bell Laboratories, Murray Hill, New Jersey 07974.
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B(fl) consisting of those functions which are also in Le(-oo, oo). We call the functions
in Be(f) band-limited or low-pass functions. The smallest of the classes Be(f) is B1(),
since we have

Be(f)CB(f ) if l<_p<p’<_oo,

(see Boas [1,Thm. 6.7.18]). Also for _<p_<2 and g(t) in Bp(fl), we have

g( ) f?aG( )e’do

for some function G in Lq(--,), where l/p+ l/q-1. (Boas [1,Thm. 6,8,13]), so
that the spectrum of g(t) is confined to [-f, f]. (The Paley-Wiener theorem asserts
that for p 2 the converse assertion holds, i.e. all functions G L2( f, f) give rise to a
function g B2(f).)

The growth condition we impose on high-pass functions is that they belong to the
class A of uniform locally-L functions. The class A consists of all complex-valued
measurable functions h(x) defined on (-oo, oo) which are locally integrable and for
which

(2) Mr(h) sup f0rlh(x + t)l dx

is finite for all T< oo. Note that if (2) is satisfied for one positive T, then it is satisfied
for all finite positive T. Members of the class A are not necessarily bounded, but do not
grow in the sense that the function Sh(X)=(1/T)f+rh(t)dt is bounded when h is in
A. Also A contains all functions in Le(-oo, oo), _<p_< oo; and if fl is in Lel, f2 in Le2,
--<el, P2 -< o, then fi +f2 is in A, althoughfl +f2 may not belong to any Le space.
We now define the class H(F) of high-pass functions to consist of all those

(complex-valued) functions h(x) in A for which

f h(x)g(x)-O, allgB,().

We also define the classes He(f) by

riG(-

Note that since (-fl, f) is symmetric, the real and imaginary parts of any function in
H(F) (resp. He(f)) are also in H(fl) (resp. He(f)).

We can immediately check that H(fl) contains all "reasonable" trigonometric
series with all frequencies I,l_>f. Indeed the Fourier transform of an L-function is
continuous, and since the Fourier transform of a function g in B(fl) vanishes outside
[-f,f], it must vanish at --+fL In particular, then, any sum of the form ,la:eixkt,
where ’k is real and P,kl_>, that converges in A, represents a function in H(f). The
sum converges in A if there exists h in A such that

noo x k=l

The absolute convergence of the integral follows from (4), (5) and (6) below.
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2. The unbiased integral. Our first goal is to characterize the operator U that takes
a high-pass function h in H() to the unique high-pass function U(h)-h- l) having
the property that

(3) h(-1)(x2 ) h(-l)(Xl ) =fxX2h (t) dt.

We call h-1) the unbiased integral of h. For example, the unbiased integral of cosAt is
(1/) sin,t.

We will show subsequently that h-1) is a bounded function, i.e. h-1) Ho(fl).
This fact is of considerable importance in the theory of high-pass functions. Indeed we
can use it to show that the linear functional

is a bounded linear functional on H(f) whenever f(t) is a function of total bounded
variation on (- c, c) which tends to 0 at --+ c, even though the integral defining f(h)
above may be only conditionally convergent. To establish this, we use integration by
parts to obtain

y(h)-T-limo f(T)h-l’(T)--f(-T)hl-O(--T)-fT-Th-O(t)df(t)]
f h(-’)(t)df(t),

which converges absolutely since ht- 1) is bounded.
We shall show that hl- ) is given by the absolutely convergent convolution integral

h/-(t)= h(x)K(t-x)dx,

where K(t) is any kernel of the form

K(t)-sgnt-g(t), geB(a),

such that K(t)L(- oo, oo), i.e. g(t) is an L-approximation in B(fl) to 1/2 sgnt.
For convenience in describing our results, we introduce a subclass of Ll(--o, c)

denoted by Sl, which we call the class of absolutely lattice summable functions. This
consists of all functions g(x) on (-oo, o) that satisfy: For each T>0,

(4) Y’r(g) =- 2 max
nT--x--(n+ I)T

Note that if (4) holds for one T>0, it holds for all T>0. The space S has the property
that translates of members of S are also in S. Also if h is in A and g is in Sl, then

f_ [h(x)g(x)ldx<-Mr(h).r(g).
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Finally we note that if g is in Bl(f), then g is in $1 with

(6) r(g) < 4 er foo--rT 2 Ig(x)l dx,

cf. [1,Thm. 6.7.15].
Our main result is as follows.
Tn.OREM 1. Let K be a function in L(-oo, ). The following two conditions are

equivalent.
(i) K(t)-1/2sgnt-g(t), g in B(f),
(ii) K( ) (1/2r)lim, oo f A I(o)eitdofor all real t, where I(o ) 1lion, I1>_.

Furthermore any function K in L(-- oo, o) for which (i) holds satisfies:
(iii) K is in S and hence limt_+_oK(t)=O, and g in (i) belongs to Bo(f).
(iv) To each h in H(f) there corresponds a function h(- 1) in Hoo(f) given by

h(-l)(t) h(x)K(t-x)dx.

This function satisfies

h(-O(b)-h(-(a)=fabh(x)dx oo <a<b< oo.

Proof. We suppose first the existence of a function K in L(-oo, oo) that is of
both forms (i) and (ii) (with corresponding functions g in B(2) and K) and in
addition that K is in S. We later exhibit such a function.

Now let K2 be any Ll-function of the form (i): K2(t)=1/2sgnt-g2(t ), g2 in B(f).
Then K2(t)-K(t)=g(t), where g(t)--gl(t)-g2(t ) is in B(f)NL(-o, oo)--Bl().
Then g is in S, and hence KE--K +g is in S1. Since g is in B(f), it follows that
g(t)=(1/2r)fU_uG(o)eitdo, where G is continuous and G(a)=0, Il_> f, Thus

[I,(to)q--G(to)]eitdto,

with

i.e. K2 is of form (ii).
On the other hand, if g2 is any Ll-function of the form (ii):

1
2m i2()eiOtd /2()

,ca(ii) KE(t ) for Itol_>a,

then

since
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It follows that K2(t)-Kl(t)=g(t) is in B(f), and hence in BI(). Again this gives K2

in S; also

K2(t)=K,(t)+g(t)

1 (sgn t) g,(t) --g(t)]2

and g(t)-g(t) is in B(fl); i.e. K2 is of the form (i). Now any function of S must be
bounded and tend to zero at +--oo. Hence if g belongs to B(fl) and [1/2sgnt-g(t)]
belongs to S, it follows that g(t) has limits 1/2 and -1/2 at + c and -c, respectively.
In particular, g is bounded, i.e., g belongs to Boo(f).

Thus any L-function of the form (i) or (ii) is necessarily of both forms and is in
Sl, provided there is one function K of both forms and in the class S. We now
construct K1. We let

and then

Since/ is odd,

1)mf_,4Il(t)ei’tK,(t)=- dt.

lim f0A/l(t0)sintotdto.
Therefore, K(t) is odd, and for t>0,

K (t) "of"tx sin x dx + lim fu4t sin x
x

Integrating ftx sin x dx by parts gives

(7) K,(t)- (at) at +--w Alim x
dx,

Thus

K(t)- rra 9- dt r A- x

Since lim,__,oofg(sinx/x)dx=r/2, it follows that

[lfotSinxdx + d(sint)]r ( )
x a---7 -d;

Since K is odd, we have

(8) K(t)--sgnt-g(t), o<t<o,

t>O.

t>O.
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where

is in B(f). Thus K is of the form (i), provided that K is in LI(-- o, o). To see that K
is in L(- o, o0), and indeed in S, integrate ft(sinx/x)dx by parts to obtain

cos ft f cosx
lim

sinx
dx-- dx

A -,o x t X2

It follows from (7) that

sinft focoSxdx t>OKl(t)--
" (t)2 /" X 2

Since K is odd, this gives K(t)= O(1/t2) as Itl o, and since K is bounded (by (8)),
we find that K is in S as sought. Thus we have proved the equivalence of the forms (i)
and (ii) and the conclusion (iii) of the theorem.

Now let K be an Ll-function of the form (i):

K(t)=-sgnt-g(t), g in B(f).

For h in H(f), define

h(-l)(t)=f h(x)K(t-x)dx.

The integral converges absolutely, since K is in S and [h(-O(t)l<_MT(h)Er(K). For
o <a<b< o,

h(-)(b)-h(-l)(a)-f? h(x)[K(b-x)-K(a-x)] dx,

and

K(b-x)-K(a-x)- qa,b)(X)-- [g(b-x)-g(a-x)],

where qa,b)is the characteristic function of the interval (a, b). Hence g(b-x)-g(a-x)
is in B()NL B(f). Therefore

h(-l)(b)-h(-’)(a)=f" h(x)C(a,b)(X)dX-fabh(x)dx.
Iff is in B(f), then f_ooh(- )(t)f(t)dt= f_ooh(t)f*(t)dt, where

f*(t)= K(x)f(t-x)dx,

is also in B(fl). Hence h(-) is in H(f]), and thus in H(f), since Ih(-) is bounded.
This completes the proof of Theorem 1.

3. Conditionally convergent integrals and integrals summable (C, 1). We now de-
rive a number of results concerning the convergence of integrals involving functions in
H(f) as corollaries of Theorem 1. These results justify certain formal operations on
high-pass functions that would follow directly if their Fourier transforms existed. In
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particular we consider the use of the (C, 1) summation

(9) lim f’ (1-)f(t)dtT-* 00 T

as a replacement for the integral f_oof(t)dt, which may not exist. In this connection,
we note that whenever the limit (9) exists, then the Abel summation

lim e-alf(t)dt
a-.0+ woo

also exists and agrees with the former limit. In some applications it may be more
convenient to use the latter summation method in connection with the following results.

We first show that for h H(f) the improper integral fh(t) dt is summable (C, 1)
to h(- l)(0).

COROLLARY 1. For h in H(f),

and hence

lim 1- h(t)dt--h(-o(O),

lim
0

1+- h(t)dt-h(-o(O),
A-.00 A

lim f_! (1-)h(t)dt-O./1-.00 ,4

Proof. Integrating by parts, we have

,4

1---- h(t)dt--h(-)(O)+-- h(-O(t)dt.

Since h(- l is in H(f), fh- (t) dt is bounded for all A. The result follows. []

We next specialize Corollary to show that certain low-pass and high-pass func-
tions are "weakly" orthogonal; i.e. the integral of their product is summable (C, 1) to
zero. In particular, the Fourier integrals of high-pass and bounded low-pass functions
are summable (C, 1) to zero for points outside their respective spectral supports. So we
have come full circle from the orthogonality condition we used as a device to define a
class of functions whose "Fourier transforms" vanish over (-a, f), to the conclusion
that the Fourier integrals of these functions are actually summable (C, 1) to zero in the
open interval (-f, fl). Thus we could have used the latter condition to define the class
H(fl), but it would have appeared to be more restrictive than the orthogonality condi-
tion. It is easy from this point to show that the two conditions are equivalent, i.e. lead
to the same subclass of the space A of uniform locally-L functions.

COROLLARY 2. Ifg is in Boo(a), h in H(f), 0_<a<f, then

In particular

lim f_l (l_lt_lA)g(t)h(t)dt_O.
,4-*00

lim g(t)ei’tdt-O,
A-.00 A

O> OZ or o o,
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and

Proof. f(t)= g(t)h(t) is in A, since h is in A and g is in Lo. If g is any function in
B(fl), where fl f] a> 0, then

f$ f(t)g,(t)dt=f h(t)[g(t)gl(t)] dt-O,

since g(t)gl(t ) is in L and is the restriction to the real line of an entire function of
exponential type _<a + fl=f. Thus f(t) is in H(fl), and the result follows from apply-
ing Corollary to f.

We next show that limr_.ofh(t)dt exists for h in H(f), provided limr_oofrr+ll
h(t)[dt=O; i.e. if h tends "weakly" to zero.

COROLLARY 3. If h is in H(f) and iffor some T>0, limt_oo or limt__ooflh(x+ t)[
dx O, then limh(- )(t) 0, as oo, or oo, respectively, and accordingly, h(- )( )

-limA_.oofth(x)dx or h(-(t)-limA_.oft_h(x)dx. Hence ifli_ooforlh(x + t)ldx
f h(x) dx O. In particular, if h belongs to Hp(), <_p< o0, all=0, then lim,s_o s

the above assumptions (and conclusions) hold, and h(- belongs to Hp(f).
Proof. From Theorem 1,

h(-’)(t) h(x)K(t-x)dx,

where K is in S. Then

h(-’)(2A)=f_oh(x)K(2A x ) dx +fSh(x)K(2A x ) dx

s$h(2A-x)K(x)dx+ h(x)K(2A-x)dx.

Thus

Ih(-’)(2A)I<_Mr(h)ET(K) + YT(K) sup forlh(x + t)l dx,
t>_A

where

K,(t)= { K(t), t>_A,
O, t<A.

Then if limt_.ooff[h(x+t)ldx=O it follows that lim,_ooh(-)(2A)=0. Similarly, if
limt_._oof[h(x + t)[dx=O, then limA oo h(- )(-2A) 0.

The other conclusions follow from the equations

h(- ’)( b ) h(- l)(a ) =fabh(x ) dx.

Finally, if h is in Lp(- o, oo), _<p< oo, then

lim f0r[h (x + )l
p
dx 0 lim f07"1 h ( x + )1 dx,
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Also, since h(- l)- h K,

Thus for h in Hp(fl), h(-) is also in Hp(f).
Next we specialize Corollary 3 to show that the integrals of products of certain

low-pass and high-pass functions converge conditionally.
COROLLARY 4. Ifg is in Boo(a) and h in H(f), 0 _< a< f, and if either
(i) limltl_,oog(t)-O,or
(ii) limltl_oof[h(x + t)[ dx-O, then

In particular, if (i) holds, then

lim f?Bg(x)h(x)dx-O.

lim f_sg(x)ei’Xdx-O
for o> a, o< a. And if (ii) holds, then

lim f_h(x ) e dx O -f<0<f.

Proof. Since g is in Boo(a), and h is in H(f), g(t)h(t) is in H(f-a), as shown in
the proof of Corollary 2. If either (i) or (ii) holds, then

lim foT[g( x q- )h (x q- ) dx O

The result follows from applying Corollary 3 to g(t)h(t).
Next we apply Corollary 4 to obtain two results which give sufficient conditions

for sin flt/rt to be a reproducing kernel for low-pass functions.
COROLLARY 5. Ifg is in B(f) and limit Oo( g( )/t ) O, then

lim f_l g(t)sinfl(x-t)g(x)
,-.o (x-t)

at

for any fl> f.
Proof. f(t)-(g(x)-g(t))/(x-t) belongs to Boo() and limltl_oof(t)-O, and h(t)

--(1/r)sinfl(x t) belongs to Hoo(fl). By Corollary 4, limA,B_oo Bf(t)h(t)dt 0
Thus

lim f_ g(t) sin/3(x- t)
lim

,-.o =(--t) dt-g(x),,-.o sinfl(x--t) dt
r(x--t)

whenever either limit exists. Since

f sin(x- t)
dt-lim

A,s-oo J-s r(x-t)
the result follows.
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COROLLARY 6. Ifg is in Bp( ), _<p< oo, then

g(x= g() i(x-l_ ,(x-l

for any
Proof. For

f(t) g(t) g(x: )(sin a(x- t))/a(x- t)
X--t

belongs to Bl(f ), and hence to Bl(fl), and h(t)--(1/rr)sinfl(x-t) is in H(fl). Thus
f_of(t)h(t)dt-O. Hence

f_o sinfl(x-t) dt_g(x)f? sina(x-t) sinfl(x-t) d-og(t) or(x-t) oo a(x--t) r(xt)
as both integrals are absolutely convergent, and by Corollary 5,

--i sina(x-t) sinfl(x-t) dt-1.
J_
-oo (x-t) (x-t)

4. Bounds on the unbiased integral. An important characteristic of real-valued
functions in H([) is that they must oscillate infinitely often and in fact fairly regularly.
One measure of this is the bound

(10) foXh( t) dtl<- l-34 M,/u( h ),

where

M,/(h ) sup fo/Ulh (x / t)l dx,

valid for all (complex-valued) functions in H() ([2, Thm. 6.1.1 ]).
Our object here is to obtain sharper upper bounds for

I[h(-[Ioo- sup h(-(x)l

in terms of M,/u(h) for h in H(), and in terms of [[hl[oo for h in Hoo(f).
THEOM 2. For all h Hoo( f] ),

o<---(11) Ilh(-)ll 2Z Ilhllo.

The inequality (11) was first given by Bohr [3] for periodic high-pass functions and
later was generalized by Lewitan [4] and Hormander [5].

Proof. We first prove the theorem in the special case f-r. The general case
follows by a change of variable.

In order to obtain the bound (11) we construct a particular Ll-function K(t)
1/2 sgn t-g(t), satisfying condition (i) of Theorem for f- r. Let

v
(12) g(t)--lim E -N--, oo k--I

sinr(t-k) sinr(t+ k)
(t-) (t+)
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We note that g is an odd function. Since

sinrrx iwxdo
rx 2r

it is easily verified that

(13) f’ , cotg( ) ---4 - sint do,

so that g is in the class B(cr). We show now that K(t)-1/2sgnt-g(t) is in LI(--o, o).
Since

N sin ,r (t-- k) 1,lim ]
,r(t-k)N- k= --N

we have

2
g(t)--lim ,r(t-k)N--, o " k= N

lim +
N--, 2rt ,r( + k )oo

(1 (--1) k )sinrt
lim -+’7/’ N--, k--I

t+k

For x>O, 1/x=fe-sx ds, and hence for t>O,

sin
K(t)---g(t)- r

lim f0 + X (--1)ke-sk e-Stds.
N--, o k--I

Thus, this particular kernel K(t) has the representation

(14) K(t)-sinrtfo ( 1-e- )2r +e- e-tds’ t>0.

Since (1 e-)/(1 +e-S)<-s/2 for s>_0, we have

e -St ds< fOCse_St
+e ;e ---Jo ds=.

2t 2
t>0.

Hence

(15) IK(t)l_< t>o.
4,rt 2

Since g is an odd function, K is also odd, and hence (15) holds for all =/= 0. Also K(t)-
1/2 sgnt-g(t) is clearly bounded near 0. Consequently (15) shows that K is an Ll-func-
tion.

If h is in the class H(rr), then

h(-’)(x)=f? h(x-t)K(t)dt,
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since K satisfies condition (i) of Theorem for fl r. Hence

(16) Ih(- "(x )l_< (f_ IK(t)ldt) sup Ih(t)l.

Since K(t) is an odd function, it follows from (14) that K(t) and sin rt have the same
sign for all real t. Thus

IK( t)l dt=f K(t)sgn(sinrt)dt.

The function h(t)-sgn(sinrt) has the Fourier series (4/r)Z(sin(2k + 1)rt)/(2k + 1)
and hence belongs to the class H(r). Consequently

f? Ig(t)ldt- hl(t)K(-t)dt- -h- 1(0).

Now h(t+1/2) is an even function of t, and since K(t) is odd, it follows that h- l)(1/2) 0.
Then since

/sgn(sinrt ) dt-
it follows that h-)(0)- -1/2. Thus,

lK( )l dt--
Together with (16) this gives

sup Ih-’)(t)l<_ sup Ih(t)l, h inH(r).

For any fl>0, the function K(ft/r)-1/2sgnt-g(ft/r) is in L with g(ft/r) in
B(f). Hence for h in Hoo(f ),

ht-’)(x) K--t h(x-t)dt, -<x<.

Since f_lK(t/r)l dt r/2fl, the inequality (11) follows.
An immediate consequence of the proof of Theorem 2 is the following corollary.
COROLLARY 7. The function

if._g(t)---- cotsintd

is the best L-approximation to 1/2 sgn(t) by an entire function of exponential type <-r.
Proof. This follows from the inequality (16) applied to the function h(t)=

sgn(sin rrt). U]

TrIEOREM 3. For all h H( ),

<1(17) 1+ )- M,/u(h).

This inequality is not the best possible, but allows us to considerably improve the
bound - to / 1/r in (10). (See (25) below.)
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Proof. Again by a change of variable we need only consider the case fl- r. We use
the same kernel K(t) as in the proof of Theorem 2, which is defined by (14). We have

(18) Ih(-"(x)l<f IK(t)h(x-t)lat=f’ IK(t)h(x-t)ldt+fltl>’ IK(t)h(x-t)ldt
and estimate each of the integrals on the right separately. By (13),

2cotg"(t)-
4rr -slntd.

Hence g"(t)<0, 0_<t_< 1. Since g(0)-0 and g(1)-1/2, we have, for 0_<t_< 1, g(t)>_t/2,
and hence 0 <_K( ) 1/2- g( ) <_ 1/2- t/2. Since K is odd,

Ig(t)l< Itl<l2

Thus

(19) fl <1 fl (1-1tl)lh(x-t)ldt.IK( )h( x-- )l dt--- -1

Let

1, Itl<_,
g(t)-

0, Itl>.
Then

- -Itl, Itl <g.g(t)= g(s)g(t-s)ds-
oo 0, Itl> 1,

and hence

f f f(l_ltl)lh(x_t)ldt= g g(t)lh(x-t)ldt= g(x-t)/ [hl(t)dt.
--1 oo oo

We may assume that Ml(h)_< 1, so that

g* Ihl(t)-ft+l/2l"t- 1/2 h(s)lds<_l,

and since

f g(x-t)dt-1,

we have

(1 -Itl) Ih (x t)l dt
_

1.

Then by (19),

(20)
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Consider now the second integral on the right in (18). Let

max ]K(t)l= max ]K(t)l
n<--]tl<--n+ n<--t<_n+

n=l,2,....

Then since sup_oo<<oofdlh(x- t)ldt<_ 1, we have

(21) fill Ig(t)h(x-t)ldt<-2
>1 n--I

From (14), we write K(t) (sin rt)f(t), > 0, where

fol--ef(t)---- l+e_
e-Stds.

Since K’( ) rr cos ,rtf(t ) + sin rrtf’( ), K’( ) vanishes for exactly those for which

if(t)
cot rt+ f(t) O.

Now

e fo + e 2

l+e-se ds Jo Sl+e_se-Sds
-d-i f(t) foi--e

--;

foOl+e+e-se-stds +e-’---’-’e-stdS

and thus (being the form of a second moment minus the square of a first moment)

)2 1- e _,t ds

( )
(s--a l+e-sed if(t)_

min t>0.(22) - f(t) --o<a<oo /,m 1--e

So +e-----7 e

Since 1-e-/2_<(1-e-S)/(1 +e-S)<--s/2, s>_O, we have

dt f(t)-

)2 S e_St 6 2 a 2

( s a - ds
2 4

aT -t
2 2

fo(1 e-S/9_ )e-St ds 1_._1_____
t+ 1/2

for any a, c <a<. Choosing a 2/t, we obtain

t>0.

It follows that (d/dt)(f’(t)/f(t)) _< 3 for t_> 1. Then

dt f( ) sinrt f’(t)f(t) ) -<-r2+3<0



INTEGRALS OF HIGH-PASS FUNCTIONS 403

for t> 1, v integer. Consequently, for each integer n> 1, there is exactly one n,

n<tn<n+ 1, for which

f’(t)
cotrt + f(t-- O.

Then

K.-}K(t.) l- Isin rt.lf( t. ) <f(

From (22) we see that -f’(t)/f(t) is a decreasing (positive) function. It follows that
8n-n +1/2-t, is a decreasing (positive) sequence. If O<O<_t, then since in_<il, we have
t,>_t+(n-- 1)>_0+(n- 1). Then K,<_f(t,)<_f(O+n- 1), since f(t) is decreasing.
Hence

(23) K,<_ f(O+n), O<_O<-t.
n:l n:0

We shall now show that we can apply (23) with 0-47, i.e., show that 1>. We
have

fo e
f(t) =’l l+e- fo u(1-u)t-due-t ds=-- 2 u

t>0.

Since

u >1 u

k=O

and

UI-T (1--u)t-ldu-- t+3

t(t+l)(t+2)’
we have

t+3
2rf(t)>--2t(t+ 1)(/+2) t>O.

In particular, 2rrf())>. Also

foS(l+e)-f’(t)-- 2-- +e e-Stds"

Since

e
<1- s>0
l+e-- 2

and

e-2s )3 e_ e_St__s 1--- +-’-- t2 2(t+ 1)2 2(t+2)’



404 B.F. LOGAN

we have

3
2rf’(t)_<

)22 2(t+
In particular, 2rf’()<. Consequently

+ t>0.
2(t+2)’

Since r cot]r-r/r >vc > , we have -f’(-})/f()<rcot-}r, and hence <t1.

By (23), then, Y, K< 4
=l -E=of(x+n). Since

4
f -+n 1 folU(1-u)

we have

] {4 ) fo’(1--u)’/3f 5 +n --’’ 2--u
n-O

and putting u- 3"

+n ---- l+t3

This is readily evaluated by partial fractions to give

2 f -+n ---- 3- log2+ S <4----"
n-O

Together with (21), this gives fl> llK(t)h(x t)[ dt< 1/2r. Then with (18) and (20) we
have"

2r’

for h in H(r) with

sup 11h(u+ t)l du<- l.

Consequently,

(1+1)2r
sup

-<t<
Ih(u+t)ldu, -o<x<o, h in H(r).

For f>0 arbitrary and h in H(f), let h,(x)-h(rx/f), h, is in the class H(r),
and hence

Ih.(u+t)ldu.
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But

Hence

--t h(x-t)dt-r K(t)h x--t dth(-l)(x)
rr -

Thus we have the desired inequality (17).
Lastly, we note that since

- +--- sup Ih(u+t)ldu

f__(t)dt-h(-l)(Z)-h(-l)( T),

Theorem 2 implies that

(24)
7-

(t) dt 1_ a Ilhll,

and Theorem 3 implies that

(25)

h Hoo(fl),

f ( ) dtl<- ( +l ) M/n( h ) heH().
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paper.
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SOME INFINITE SERIES OF
EXPONENTIAL AND HYPERBOLIC FUNCTIONS*

I. J. ZUCKER

Abstract. The sums of several infinite series of exponential and hyperbolic functions containing a
parameter, c, are expressed in closed form in terms of the complete elliptic integral of the first kind and its
modulus. Several quadruple sums are evaluated, and from these some triple sums of hyperbolic functions are
evaluated. Certain double sums of exponential and hyperbolic functions are also given.

Introduction. Many authors have investigated various infinite sums of hyperbolic
functions. Berndt [1], [2] gives many references. The purpose of this note is to gather
together several well-known (but not widely known) results in closed form for the sums
of several exponential and hyperbolic function series, which depend on a certain
parameter, c. When c is the square root of a rational number the sums may be
expressed in terms of F-functions and other well-known transcendental numbers. Some
new results are also presented for some quadruple series and for some double and triple
series of exponential and hyperbolic series. The methods employed in obtaining these
results have been described by Glasser [3], Zucker [4] and Glasser and Zucker [5].
Considerable use is made of results from the theory of 0-functions and elliptic integrals.
The notation and procedures are outlined below.

Notation.

(1) K=f[(1-x2)(1-k2x2)]-l/2dx, k2+k’2- 1, K’-K(k’)
"0

where k is the modulus of the complete elliptic integral of the first kind, K.

(2) K’/K-c, q-e-’, K-K(k)-K[c].

(3) 02- X q(n-1/2)2 03-- X q2

04_ E (__l)n n2q 05 2 (- 1)nq(2n-I/2)2

o -o o o4- (- +
0

(4) Qo- ll-I(1--q:n ), Ql-lI1 (l+q2"),

Q2-1-I(1 +q2n-l), Q3_I-[(l_q2,,-,).

022= 2k---K= 4ql/2QQ41,

02= 2____K Q2oQ,

04
2k’K 2 4==QoQ,

05(q /2)
4K-’ Q--_-4ql/4

,(8K3kk’)
1/2

Ol 2ql/403o"

*Received by the editors March 23, 1982, and in revised form September 8, 1982.
*Department of Physics, University of Surrey, Guildford, England GU2 5XH.
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All these results (except those involving 05) are standard and may be found in Whit-
taker and Watson [6]. The following series are referred to:

(6) (s)=L,(s)= +2-+3-s+4-s+

r/(s) (1- 2’-s)’(s) 1-2-s+ 3-s-4-s+

X(s)-(1-2-s)’(s) +3-s+5-s+

fl(s)=L_4(s)= l-3-s+5-s-7-s+ ...,
L_s(s)= +3--5--7

L+s(S) 3-- 5-s+ 7-+ ....
Let mean the sum over all integer values of all indices which appear and ’ the

same sum excluding only the case where all the integers are simultaneously zero.
Denote the Mellin transform M where

Ms[ f(t)] F(s )- [t if(t) dt.
"0

It is possible to express multiple sums as Mellin transforms of 0-functions of argument
e-t, e.g.,

(7) Xt(n2)-S-ms[O3(e-t)-l],
X’ (-1)n(n-)-S-ms[O4(e-t)- 1],
X[(n--1/2):z]-S--Ms[O:z(e-t)l,
’(m2+n2)-’--Ms[O3--l],

etc. The property

(8) Ms[f(e-<t)]-c-’M[f(e-’)]
is also used. Further details may be found in [5] and the references therein.

The results presented here are exhibited in Tables 1-3 and are discussed below.

Deduction of results in Table 1. The method of obtaining the results of Table is
illustrated for (TI.1). From (4) and (5) it is easily established that

(9) Oo-q-l/l:z( 2kk’g3 ) 1/6

’7/"

Taking logarithms, the left-hand side of (9) becomes

-logO0- -log 1"-[ (1--qan) log(l--qan)-- q2nm.
m

Reversing the order of summation we have

q2m
-logQo- x rn(1-q

_o coth(rrmc)-
2m) m(e2*rmc-1) 2 m

and thus we get (TI.1). Equations (T1.2)-(T1.9) may be found in a similar fashion.
(TI.10) is not so simple to find. Jacobi [7] established it by successive transformations
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TABLE

(TI.1)

(TI.2)

(TI.3)

(T1.4)

(T1.5)

(T1.6)

(TI.7)

(T1.8)

(TI.9)

(Tl.10)

coth(rrnc)--lgQ= n(e2,nc-1)-- n

-lgQl=
n(e nc" l)

=1 (--1)"(coth(rnc)-1)
2 n

(-1)ncosech(rrnc)_rrc
-lgQ2= n 24

4k’2cosech(rnc) ,rc

log----log Q3 =- n 24 1

02log QoQ12=log qi./.42 n(e2rmC+l)
_1 l-tanh(rrnc) rc kK

--"" n =-+log--

,rc log2K3kk’
12 6 7/.3

rc k
12 121gl-

4
12 log-

i _]og2K-lgQQ=-lg03= (2n-1)[e(2n- )c+ 1] r

log QoQ log 04

1/4 log 2k’Krr1 tanh-e
(2n-l)[e’,t2n- l)c- 11

(-- 11"lg Ql( q2)/Q2( q2)
e2rnc+n( 1)

-’-1 (-l)n[l-tanh(ernc)]_,trCn4 --logl l-k’)2k
cosech[ ,r (2 n 1) c

k’logQQ=
2n-I log

sech[(2n-1),rc/2](-1)’+ =2(-1)n+tan- e-’*’t2"-l)/2=-sln k2n-I

of (T1.9). First put q
and c by c/2. Thus

1/2 for q; then if this is done k’ must be replaced by (1 k)/(1 + k)

cosech[(2n-1) ,rc/2] (1-k)(10) 2n-1 ---log l+k

Then put -q for q, whence k--, ik/k’. Further let k-sin 0. The right-hand side of (10)
becomes (since k’ cos 0)

-log k’+ik ---lg cos 0 + sin 0 --
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The left-hand side of (10) becomes

i (--1)+ sech[(2n-1)rc/2]
(2n- 1)

therefore

E (--1) n+’ sech[(2n-1)rc/2] --2] (-1)"+’tan-’q(n-’)/2-O
2n- --=sin- k"

Jacobi [7] (who does not actually give the result in terms of hyperbolic functions)
refers to this result as "quae inter formulas elegantissimas censeri debit".

Many results similar to (TI.1)-(TI.10) may be found by using the transformations
q/2, q or --q for q. We summarize the essential points below.

-k 2k1/2
q_ql/2 k’l qk k--"l +k K(1 +k)K cc/2"

2k,/2 k’ + k’qq2, k,.l+k_____.____7’ k.l+k--------7, K 2
K, c2c;

ik
r- k’r;

e.g., in (TI.10) put qa for q; then

E (--1) n+l sech[(2n-1)rc] ).+, ,q._, 1-k’
2n-

2 1 (- tan- -2 sin-l ik’

Deduction of results in Table 2. The method of obtaining results similar to those in
Table 2 has been described elsewhere [4]. The results given here are new. Some follow
quite naturally from previous results; e.g., (T2.1) may be found by representing the sum

TABLE 2
implies summation over all integer values of the indices. E’ implies summation over all integer values

of the indices excluding the case where they are simultaneously zero.

(T2.1)

(T2.2)

t(_ l)m(m + n +p2+ rZ)-s Ms[04033 11
-4fl(s)fl(s-l)-23-2srl(s)rl(s- 1)

t(_ 1)m+ n+p(m + n +p2+ r2)-s__ Ms 03403_ 1]
-4fl(s)fl(s- 1)-23-2srl(s)rl(s 1)

(T2.3) (m + (n- 1/2) + (p- 1/2)2 +(r- 1/2)2)-= M[030]
=22s[X(s)X(s l)-fl(s)fl(s- 1)1

(T2.4) ] (m + n +p2+(r_i)) Ms 033021
22s[h(s))(s l)+ fl(s)fl(s-- III

(_ i),,/n/p(m + n +p2+ (r_ 1/2)2)-s Ms 04302]
22s[ L_8(s)L_8(s- 1)+ L8(s)L8(s- 1)]

(T2.6) 1)2 -S= Ms[ O4032] (- [)m(m2 +(n- 1/2)2 + (p- 1/2)2 + (r--)
=22S[L_s(s)L_8(s 1)-Ls(s)L8(s- 1)]
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as Ms[040 1]. Using the fact that 0304-042(q2) and 032-O(q2)+O2(q2), we have

Ms[040 1]-Ms[O42(q2)O(q2) +042(q2)OZ (q2)]
2-Ms[0,0- + 0240].

The results for both M[OO4- 11 and M[040221 are given in [4], and hence (T2.1) is
found. The results for (T2.5) and (T2.6) are not so easy to establish. We use the
relations Oz(ql/2)-20204, 0(q/2)-20203, [02/2ql/4](iq)-Os/2q/4 and 03(-q)-
04.Thus

Ms[ 02043] M[2-’052( q,/2 )04] 2 Ims 052042( q2 )].

NOW 2 2 2)0203 (q -kt0 0+0 04 l, and from series given by Jacobi [71, this may be
written as

(11) 00(q2)_4_ (4n+ 1)q 2n + (4n + 3)q6’+4

ql/2 0 1--q8"+2 1--q8n+6

Putting iq for q in (11), we have

05204(q2)=4 (-1)’(4n+ 1)q2" (-1)’(4n+3)q6n+4

ql/2 -t- 8n+2
o q + q8n+6

therefore

M[O5204Z(q2)]-4X X (-- 1)m(- 1)"
o o (4n+l (2m+1/2

(-- 1)m(-- 1)
(4n + 3)s- (2m +- )

=2+l[L_8(s)L_8(s 1)+L+8(s)L+8(s-1)].

Finally,

M :3] -2S-’M[OO4(q2)]
=22[L_8(s)L_8(s 1)+L8(s)L8(s- 1)],

which is (T2.5). (T2.6) is found in a similar fashion.

Deduction of results of Table 3. Whereas the results in Tables and 2 may be
derived in a fairly systematic manner, those in Table 3 are just a collection of odd
results which appear from a variety of sources. (T3.1) and (T3.2) were obtained by
evaluating certain triple sums by two differing ways involving their reduction to double
sums. For details see Chaba and Pathria [8] who first gave them. (T3.3) was obtained
from a certain dipole sum originally investigated by Nijboer and de Wette [9], and
(T3.4) was found by Glasser [5] using contour integration. Both may be obtained by
using the identities

b2(12) mZ+b------=b+
2rb

e2*rb-
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TABLE 3

(T3.1)

(T3.2)

(T3.3)

(T3.4)

(T3.5)

(T3.6)

(T3.7)

(T3.8)

(T3.9)

(T3.10)

2 2[m2+(2n- 1)2]-l/2(exp["tr(mz+(2n- 1)2)1/21+(--1)m}-
=4-3Vtr .(1/2),8(1/2)_.68

2 2(--1)m+n(m2+n2)l/2csech[( m2+n2)l/2]-- 1/12,r

cosech{,r[m2+(n-1/2)9] /2 )
[mZ+(n_1/2)21,/2 2

cosech "# m i

22
[(m--1/2)2+(n--1/2)2] 1/2

cosech ,r m +(n-) 1/2

2 2 --V/’8--lg(r’+ 1)(2’/4+ 1)2
[1/2m2+1/4(n--1/2)2] 1/2

2’ csech[r(m2 +n2+p2 )l/2] 9 +1_ log._2

( m2+ n2 +p2 ) l/2 6 2 r

2 2 2 csech{r[(2rn-I)2-F(2m--I)2+(2P--I)2]’/2} 3|o._____g2

[(2m-1)z+(2n-llZ+(2p-l)2] I/2 32,r 64

(13) 2 ( 1) rcsech(rb )
-o m2+ b2 b

(T3.5)-(T3.10) may be evaluated using (13). We evaluate (T3.5) as an example. We
have that

(14) 2 (-l)’[m+n+(p-1/2)]-’-M,[O20304]-M[O]-2’+W(2s- I).
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For s the left-hand side of (14) may be written

rcosech{r[n2+(p-1/2)2] 1/2 }

o o cosechrln2+l,p-1/2)211/2’ ’ . o

=4r +4r cosech[(2p-l)r/2]
[n2+(p_1/2)]/ 2p-1

But from (T1.9)

2 cosech[(2n 1) r/2] 1log(f-+ 1)2p-1 2

since for c-1/2, k is (v/-+ 1) -2. For s- the right-hand side of (14) is equal to 2r, and
thus (T3.5) is obtained. (T3.5)-(T3.10) are by no means uniquemmany other similar
formulae are obtainable.

Discussion. The results in Table may be extended in a number of ways. One
method is to combine the various formulae of Table 1. For example, Berndt [2] obtains
the result

(15) E
n=l n[(--1)"e"’+ 1] 1] 8

-log2.

However, the left-hand side of (15) may be expressed for general c by the formulae in
Table 1. Indeed, for any c it is

(16) rc kk’1
(T1 "5) (T1 "7) 2(T1 "6) ---+lg 42

For c-qr-, kk’-1/4 and (15) follows. Just as neat a result then appears for c-vC-, for
then kk’-. Hence, if in (15) we replace 5 by v0-, the right-hand side becomes
r7/8 (3log 2)/2.

Another way of obtaining further formulae is to differentiate with respect to the
parameter c. It may be shown that

dk 2kk’2K 2 dk’ 2k2k’K 2

(17) -d---c ’n" -c rr

Thus for example differentiating (T1.3) gives
oo K-_ (2k2_ 1)(18) "(-1)"+’csech(rnc)cth(rncl- 12 3r 2

Each formula in Table when differentiated will give such another similar result;
many of them have been discussed elsewhere by the author [10]. There it was also
explained that when c is a rational number, K may be written in terms of F-functions,
and k and k’ are surds. Further, for special values of c, particularly attractive looking
results may be obtained.
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For example, if c- 1, k-k’- 1//-, and (2k2- 1) vanishes. Then (18) gives

(19) 2 0 2n+l(-- 1) n+ lcosech(crn)coth(crn) 2
e(2n+ l) /

Again for c- and k- 1/v/ from (T1.10) we have

(20) (_ 1),,+, sech[(2n- 1),rr/2] _,
(2n-- 1) --- sin

7/"

For c-V-, k2-(2- vc5)/4; i.e., sin-k-rr/12, hence

(21) ’ (--1),,+, sech[(2n-1)Vr-r/2] r

(2n- 1) 24"

Both (20) and (21) have been derived by Berndt [1], [2] by other methods. Here,
however, another result is immediately apparent for c- 1/v-, for then k2-(2+ vC5)/4
and sin-k- 5r/12, hence

o sech[(2n-1)r/2f]
(22) E(-1)"+1

(2n-- 1) 24

Equation (21) is of interest as it is a special case of a general formula given by Berndt
[2]. This is

(23) (-1),,+, sech[(2n-1)rrf-/2]
(2n-- 1)6u+l

3N
+ E2k+l B6N--2k=-(-1) lq/’6N+l

(-7-])’ (6N-2k)’k=0

where E, and B, are the Euler and Bernoulli numbers respectively. Berndt [2] attributes
this result (in different form) to Cauchy.
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ON QUADRATIC TRANSFORMATIONS OF BASIC SERIES*

W. A. AL-SALAMt AND A. VERMA:

Abstract. We prove the formula

)n
(1- hqJPJ )wJAj

AnBn(-xw (-x)n[hqpn’q]n-

pk(k--l)/2[hqnpn q]kxkBn+k
k=0

and show that it implies not only the Euler transformation formula and its q-analogue, but also Carlitz’
q-analogue of Whipple’s transformation, as well as several other new quadratic transformations of basic (or
Heine) series.

1. Introduction. Euler’s transformation formula,

(1.1) anbnx"- E (--1)x.f((x)Aao,
n>O k=0

where

f(x ) bo+bx+ b2x2 -1-

and

Aa0 E (-1) j ak-i,
j=0

has been known to be useful not only in addressing accelerating convergence questions
but also in finding series identities. For example (1.1) implies Pfaff’s formula

F(a,b;c;z)-(1-z) aF a,c-b;c;
1--z

F. H. Jackson [6] obtained the following q-analogue of (1.1)"

(1.2) ._>o anbnxn-no: [q]k
xk (D;f(x)) (A"qa)’

where [a; q]o- 1, [a; q],-(1 -a)(1 -aq)... (1 -aqn-l) for n- 1,2,3,. ., Dqf(X)-
( f(x) -f(qx))/x, and

Aqao (- 1)j q; q]. qj(j-l)/2an_j.
j:o [q" q]j[q;q]n-j

Thus when q--, this formula reduces to (1.1).

*Received by the editors November 20, 1981, and in revised form September 13, 1982.
Department of Mathematics, University of Alberta, Edmonton, Alberta, Canada T6G 2G1.
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Jackson himself showed that (1.2) implies the transformation formula [6]

a b ]_ (ax;q)
2*, ’c ;q;x

(x;q) 2t2
a,

b ;q;bx
C, ax

as well as a large number of other q-formulas.
More recently Chaundy [4], and in an equivalent form Niblett [8], stated a formula

which is more general than (1.1) and applied it to find series identifies (of hypergeomet-
ric type). In particular, Niblett obtained several quadratic transformations of hypergeo-
metric series, some of which are rather strange. We shall refer to them below.

Later Fields and Ismail obtained a formula [5,(2.3)] which contain both (1.1) and
(1.2). However they did not apply their formula to its full potential and made no
attempt to find quadratic transformations for ordinary or basic hypergeometric func-
tions.

In 2 of this paper we shall first give a formula (see (2.1) below) which is different
from that of Fields and Ismail and which contains both (1.1) and (1.2), as well as the
Chaundy-Niblett formula. We shall then in {}3 apply (2.1) to obtain several q-ana-
logues of Niblett’s results. We show that it can be used also to obtain Carlitz’ q-ana-
logue of Whipples’s transformation.

In {}4 we shall give further results on quadratic transformations of basic (or q-)
series.

In addition to the notation defined above, we shall also use

a; q ]_,, ( 1)" q"("+ 1)/2

[a; q]-- 1-[ (1--aqk).
k=0

n= 1,2,3,..-,

Throughout this paper we shall always assume that Iq]< 1.

2. q-analogue ot an expansion ot Chaundy. We begin this section by proving the
following q-analogue of an expansion of Chaundy [4]:

(2.1)

E A,B,(-xw)"- E (--x)k[hck;q]k-,
n=Oso k=O

.n (1-hq"p’)w"A’ pJ’j-1)/2[hqkpk;q]jxJ
o [P,P]2-f--i-] [P;P]j--0 J

Proof of (2.1). Since thejth q-difference of a polynomial of degree _<j- is equal
to zero, we have

( d) (--1)kp(j-k)(j-k-l)/2 [dp’;q]j_,-j,o"(2.2) - [P;Pl,[P;Plj-kk--O



416 w.A. AL-SALAM AND A. VERMA

Multiplying both sides by B,,+j(-x)J+" and summing from j-0 to , interchanging
the summation and then replacing k by k- n and x by -x, we get

( "-2d)] (-x)k [dP-"+/’;qlj-,,+k-,PJ(J-’)/-xJ(-x)"S.- 1- k=. [P’P]k-. =0 [P’P]J,

Now setting d=hq+"p", multiplying both sides by A,,w" and summing from n=0
to oo and rearranging the series, we get (2.1).

It might be of interest to note that formula (2.1) is equivalent to the fact that the
triangular matrix H (h.j), where

(- 1)n+J hqp"; q] n_l(1--hqJpj)
h,,j- [p;p],,_j[hqp";q]j

is inverse to the triangular matrix G (gj.), where

hp"q"; q j_,,p(J-")(J-"-
gJ"= [p;p]j_.

The expansion (2.1) is a q-analogue of equivalent results in [4], [8] and [12] which
contain a number of known results as special cases and in particular the Euler transfor-
mation (1.1).

In (2.1), setting p 1/q, w q and letting h , we get the q-analogue of Euler’s
transformation (1.2) due to Jackson [6] (see also Bailey [2]).

On the other hand, in (2.1), replacing x and w by -fix and qh/bcfl respectively,
and then assuming that h is of the form q-m (SO that all the series involved are finite
series) and

[h;q].[b;q].[c;q].[fl;q].
p=q, A.=

[q;q]" T ;q T ;q

we get on letting

h b c, xqh
32 qh qh ;q;-b--c [h;ql2k(_X),q-k(,-,)/2 I hq2k

ldpO
k=0 [hq;q]k[q;q],

h, qr- q/- b, c, q-k hq +k

65 ]-_
;q; c

b c

kq;xq

Summing the q0[x] and 6b5 [10,(6.2)], we get Carlitz’ [3] q-analogue ofWhipple’s
transformation

(2.3) 32 qh qh q; hx; q] bc q; q

[x" q] 5t4 q qh, qh-Y c V

where h is of the form q-’. In fact this result was also given earlier by Sears [10, (4.1)].
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3. q-analogues of some quadratic transformations of Niblett. Let us consider (2.1)
and put

[h; q],, [,; q], [8; q],, [e; q],, [0; q],, fl; q],,

e;qn

B,,=[fl;ql_,,, P-q’ w-
h2q2

replacing x by fix, h q-m we get on letting

(3.1)

5q4 qh qh, qh qh ;q; y6eO
"t 6 e 0

_[xh;q] [h;q],q
[x;q] =o[q;q][qh;q]

h,qf-, -q’,’r,8,e,O,q- h2q2+1[ 8t7 q__h qh qh qh hql+,;q; "ySeOq
q f-, ,

.y --- ---- ---[xh; q]k
x

Transforming the inner well-poised 8q’7 by Watson’s q-analogue of Whipple’s
transformation [1,8.5(2)], we get

(3.2)

h,y,i,e,O xq2h2

54 ._Tqh,qh qhe __qh
q; 7i5e0

[xh;q]o [h;q]Ek -;q ,
[x,q] =o [q;q] __2.;q

qk

[xh;q][q/x;q]

-,e,O ;q;q
43 e.O

__
qh qh

Tq

qk[xh’q]oo oo [h. q]2
[x,q]o =0 [q;q]k V ;q

k k
[q[xh; q], x

q
k

k [hq ][e;q]j[O;q]J[q-k;q]J -’ ;q
k-j

[q;qlJ[’-’-’
j j

( -h)
y- qkj-j(j- l)/2 +j.
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Now let eO-hq2 so that [hq/eO; q]k_j--[q-l; q]k_j. Hence, after some calculation, we
get that

(3.3)

h,’r,8,e,O x_54 qh qh qh qh
;q; __[xh;q]oo

[x;h]oo

h

"65 q_..h qh
xh

q D"y’’ ’X’

,qD

where eO- hqz and

h h
1+4 , q t8 (l-D)--1--

;q;q

The special case D- (so that (e+O)/q- 1-h/,8+h/’r+h/8) leads to

(3.4)

h,’,l,,,e,O x_k4 qh qh qh qh ;q;

, , e O

h
xh q ]oo

4 qh qh
xh

q[x; q]oo
3,’ ’ ’X

where e and O are roots of the quadratic equation

h h h)m2--q 1---+-+ m+hq2-O.

Formula (3.4) is a q-analogue of another result of Niblett [8,(22)] which could be
deduced from (3.4) by replacing h,-/, i, e,/9 by q2a, qe-C- 1, qt +2a-e, q +,t, and q +o,
where O and are now the roots of the quadratic equation

2 e--! c( 2a--e+(1--m --[(1 q )+q 1--q )](l--m)
+qC(1--q2a-e+l)(1--ae-c-l)--O,

and letting q- 1.

4. Some further quadratic transformations. Bailey [1, p. 97, ex. 5] pointed out that
there is equivalence between Whipple’s quadratic transformation [1, p. 97, ex. 4(iv)] for
the well-poised 3F2[x] and Whipple’s transformation of a nearly-poised 4F3(1) into a
Saalschiatzian 5 F4(1) 1,4.5( 1)] (i.e one implies the other).
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The q-analogue (2.3) of Whipple’s transformation does not seem to imply a
transformation between q-series, which, in the limiting case, reduce to Whipple’s trans-
formation [1,4.5(1)] of a nearly-poised 4F3(1) into a Saalschiitzian 5 F4(1)- In this section
we shall obtain another q-analogue (different from (3.1)) of Whipple’s quadratic trans-
formation [1, p. 97, ex. 4(iv)] for 3 F2(x) which overcomes this difficulty.

Verma and Jain [13] have obtained the following q-analogue of Whipple’s transfor-
mation 1,4.5( 1)] of a nearly-poised 4 F3(1) into a Saalschiitzian F4( ):

[a2"q2]’[-aq2"q2]’[b2"q2]’[c2"q2]r[-aq;q [d;qlr awq2(4.1) ,
2] [a2q2][a2q2 ]r>--O [q2. q r[--a; q2]

b2’ ;q2
c 9-

q r[W’ q lr --d-;qaq b2cd

[-aq;q]
a

;q ;q -d ;q

[-q; q]oo[w; q]oo --d- q -- q

a2q2 a2q2 d2
b2c2

,a,aq,
W2 q2. q2

"54 a2 a2 q2 aqd adq2

_q2,_ W W

where a or d is of the form q-".
In (4.1), setting d--q-m, multiplying both sides by

[w; q]m[X; q]m (__ aq )m[q; q]m[--aq; q]m XW

and summing from m=0 to oo, interchanging the order of summations on both sides
and summing the resulting inner 2 series by the q-analogue of Gauss’ summation
theorem, we get on assuming that a is of the form q-

(4.2) X [a2;qZ][-aq2;q2]r[b2;q2]r[c2;q2][x;q]rqr(r+l)/2" a2q2

r=[q2"q2]r[--a’q2][a2q2][a2q2,b2
;q2

C2 q2]]raqx,qr b2c2x

q a2q2
[-aq; q]oo q b2c2 ,a,aq,x q2. q

[-q;q]o[-aq ] 4t2 aEq2 a2q2 ’-- ;q
o bE cE

This is another q-analogue of Whipple’s quadratic transformation [1, p. 97, ex. 4(iv)], to
which it reduces on replacing a,b,c, by qa, qb, qC respectively, and then letting q
(with x replaced by (1 x)/(1 + x)).

On the other hand, in (4.1), replacing a by -a and then setting c= -aq, d--q-",
so that the left-hand side reduces to a well-poised 87, which, when transformed by
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Watson’s q-analogue of Whipple’s transformation [1, 8.5(2)], yields (on replacing a by
-a)

W,q_m w q
a,b,- ;q;q [-;q] ; ;q]

(4.3) 43
m

7’--bq-m’w [w;q]m[-- ;q]m
aq a2q2

q-2m- ,a,
wE q2., q2

"43 2q2 --m 2--ma aq aq
b2 w w

(4.3) for b- yields the summation

aZqz
a,aq,

wZ
,q-Zm

43
;q2; q2 [W; q]m[--q; q]m

aZq2 aq-,, aqZ-m [w
w w - ;q [-aq;q]m

m

In (4.3), replacing a,b, w, by qa, qb and qW respectively, and letting q 1, we get
the following special case of Whipple’s transformation [1]:

+a-2b a

a,b, -m; ] (w--a)m 2 ,-, +a--w,--m;

1 4F3
+a-b, +a-m-w),-1(2+a-m-w)

3F2 +a-b,w (W)m ’(1
Furthermore, transforming the left-hand side of (4.3) by the transformation of a

4q’3[ q] Saalschtitzian series [9, (8.3)], we get the following q-analogue of Gauss’ quadratic
transformation for 2 Fl(Z) 1, p. 97, ex. 4(III)]:

a 2 a4q2

2 2 2_ 2, q-2m
w

’q- ;q;q wE’
43 2ql--m 4t3

O2 ql--m O2 qE--motf- ot

w
’--tql/Z tZZq’ "- -- .q2. 2q

This quadratic transformation was first given in a different but equivalent form by
Singh [11]. It was rediscovered later by Askey and Wilson.

Acknowledgment. We are grateful to a referee for pointing out that (3.2) can be
put in the form (3.3). He also remarked that (3.3) may be obtained by a different
method using the fact that a 2-balanced 3q’2 can be written as a sum of two terms.
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CLASSIFICATION AND UNFOLDING
OF SEQUENTIAL BIFURCATIONS*

GERHARD DANGELMAYR AND IAN STE’vVART

Abstract. Golubitsky and Schaeffer have developed an extensive theory of imperfect bifurcation by
adapting the determinacy and unfolding theorems of singularity/catastrophe theory to singularities with a
distinguished parameter 2. In this paper we adapt their methods and results to "sequential bifurcations" of
the form a( u, )=0, b(x, u, )=0. Here is a bifurcation parameter, x represents the final "output" state of
the system, and u is interpreted as a "hidden" variable. Such problems arise when a bifurcating process in
u, 2) is coupled in sequence with a u-dependent bifurcation process in (x, k). Assuming that the first process

is independent of x, it is inappropriate to treat the coupled system as a simple bifurcation of (x, u) with k.
Instead, it is necessary to develop a version of the theory which preserves the special "intermediate" role of u
--much as the Golubitsky-Schaeffer theory preserves the special role of . Such a theory is developed here.
As well as finding determinacy and unfolding criteria, we classify all sequential bifurcation problems of
codimension 4 or less when x and u are one-dimensional. We exhibit the possible bifurcation diagrams for
codimension 2 or less (those of higher codimension are omitted for reasons of space) and give analytic
conditions for the occurrence of a given bifurcation in the classification. We discuss applications of these
ideas to suitable systems of chemical reactions.

The presence of "hidden" or intermediate variables u has a strong effect on the expected bifurcation
phenomenology, and hence on the inferences that may be made from theoretical results: (a) Multiple limit
points can occur in a persistent (structurally stable) fashion. (b) Eliminating a hidden variable can change the
codimension of a bifurcation problem (because some perturbations of the resulting problem, that contribute
to the codimension, may be incompatible with the elimination step). (c) Bifurcation diagrams that are
ordinarily considered inequivalent may become equivalent if a hidden variable is present.

The effect of (a) is to introduce new types of persistent diagram. The likelihood of seeing a given
diagram in a parametrized family of bifurcation problems is affected by (b). And (c) implies that different
ways of eliminating hidden variables from equations may produce apparently different observable conse-
quences.

1. Introduction. In this paper we apply singularity/catastrophe theory to the clas-
sification and unfolding of bifurcation problems of the form

(1) a(u,)-O, b(x,u,)-O
where x, u,?R and ? is a bifurcation parameter. Equations (1) arise in processes of
the type drawn schematically in Fig. 1. For this reason we call (1) a sequential bifurca-
tion. The applications we have in mind are particularly to chemical reactions, but
include also nonlinear electric circuits and mechanical analogues. The common feature
of all physical systems which can be schematized as in Fig. is that process is only
weakly coupled to process 2, for which some irreversible mechanism in the system may
be responsible. The bifurcation equations (1) will then, in general, result from a
Lyapunov-Schmidt reduction of some nonlinear equations governing the steady-state
behaviour of the system.

FIG. 1. Block diagram of a sequential bifurcation with bifurcation parameter , internal variable u, and
output x.

*Received by the editors August 16, 1982, and in revised form January 8, 1983. This research was
supported in part by the A. v. Humboldt Foundation and in part by the Volkswagenwerk Foundation.

Institute for Information Sciences, University of Tiibingen, Tibingen, West Germany.
*Mathematics Institute, University of Warwick, Coventry, England CV4 7AL.
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The crucial feature here is that process is considered to be independent of x. In
consequence, when unfolding (1) to find all small perturbations, we consider only
perturbations of a, that are independent of x. The resulting theory thus differs from
that which would be obtained if (1) were considered to be a bifurcation problem in
(x, u) of the form

(2) a(x,u,,)=O, b(x,u,)=O
where, by chance, a is independent of x. We expand on this point in [}2.

Our approach is closdy analogous to the work of Golubitsky and Schaeffer [6] on
imperfect bifurcation, which itself is a modification of singularity/catastrophe theory
of Thom[ 14], Zeeman 16], Arnold ], [2], Mather [9], 10] and others. In particular, we
discuss the following problems:

(a) Recognition. Under what conditions will (1) be equivalent to a given type of
problem?

(b) Classification. What types can occur (in low codimension)?
(c) Unfolding. What perturbations can occur for a given sequential bifurcation?
In 2 we discuss qualitatively the effect of the first equation of (1) on the bifurca-

tion diagrams in the (x,)-plane, thereby considering u as a "hidden variable". In 3
the basic mathematical machinery is set up for sequential bifurcations. We confine
ourselves to (x, u) ; generalizations to higher dimensions should be straightfor-
ward. The structure of (1) requires a new type of contact equivalence, whose geometri-
cal implications will be discussed in 4. In [}5 we present normal forms of sequential
bifurcation problems up to some reasonable degree of degeneracy. Perturbed bifurca-
tion diagrams associated with several normal forms of 5 are sketched in 6. Finally, in
[}7, we describe a chemical reaction whose steady states are governed by sequential
bifurcations: two stirred tank reactors coupled in series.

2. The hidden variable. To clarify the special role of u, consider the equations

(3) u2-=0,
(4) x-u=O.
Consider this first as a bifurcation problem in (x, u) over X. Then we can solve (4) to
get u=x2 and substitute in (3) to get the quartic fold (Stewart [12]):

(5) x’-X=0.

If we analyse (5) by the methods of Golubitsky and Schaeffer [6], we find it has
codimension two, with universal unfolding

(6) ( X4-- X ) "[- OIX2 +x--O,

giving the structurally stable bifurcation diagrams of Fig. 2. However, as a sequential
bifurcation, (3) and (4) have codimension one and a universal unfolding

(7)
x2-u+a 0

The bifurcation diagrams for x against , are shown in Fig. 3. Note the double limit
points in the second diagram. In the Golubitsky-Schaeffer theory these are a codimen-
sion-1 phenomenon, hence structurally unstable. But in the setting of sequential bifur-
cations they are codimension-0, and structurally stable.
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FIG. 2. Structurally stable bifurcation diagrams in the universal unfolding of (5), considered as an ordinary

bifurcation problem.

FIG. 3. Structurally stable bifurcation diagrams in the universal unfolding of (3), (4), considered as a

sequential bifurcation. Compare with Fig. 2.

To see why this should be so, note that (3) is a codimension-0 bifurcation of u
against , and (4) is codimension-0 considered as a bifurcation of x against u. Hence,
processes and 2 of Fig. are both structurally stable here. However, there is still the
possibility of perturbing the way they are coupled, and an origin shift in u in (4) is
plausibly the only perturbation of relevance.

Specifically, the solutions of (3) and (4) are ruled paraboloids (Fig. 4a). Perturba-
tions of (3), (4) which respect the fact that process is independent of x will move each
of these surfaces independently (but preserve their identity as separate surfaces). If the
vertex of the (x, u)-paraboloid B is at a positive value of u, the intersection will be as in
Fig. 4b, giving Fig. 3a as projection. If negative, then the curve of intersection "wraps
around" the paraboloid A, giving a double limit point (cf. Fig. 3b) along the vertex of A
(--0) as in Fig. 4c. Analytically the appearance of this structurally stable double-limit
point is seen at once, if we replace the unfolding (0,a) in (6) by the equivalent
unfolding (au, 0) (which also just shifts the origin in u), solve the lower equation of (7)
for u and substitute into the upper equation. The result obtained in this way is just (6)
with /3--0. In fact, as we shall see below, the newest phenomenon encountered in
sequential bifurcations is the structurally stable occurrence of double (and hence multiple)
limit points.

FIG. 4. Interpretation of (3), (4) and their perturbations, as the intersection of two ruled paraboloids.

We emphasize here the dependence of x on ,, that is, of the "output" of the
sequence of processes on its "input". This is because we view the variable u as a hidden
or intermediate parameter, which in general may not be accessible to observation (or, at
least, not measured in a given experiment). This means that the three variables x, u,
are on different "levels" and our equivalence relation is chosen to reflect this. Because
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information about u is lost when only (x,)-projection of the bifurcation curve is
drawn, it is necessary to discuss carefully the interpretation of features of bifurcation
diagrams. We explain this further in 4.

3. Mathematical setting. In this section we develop the main ideas involved in the
mathematical treatment. Since this is closely analogous to that of Golubitsky and
Schaeffer [6] and subsequent variations [7], [8], we omit routine details.

A sequential bifurcation problem (SBP) (in one variable) is an equation

(8) g(x, u,X)-
b(x,u,X) 0

where gS=-uX xux, the ’s denoting tings of germs in the usual way (see Golubit-
sky and Schaeffer [6], Gibson [5], etc.). We further assume that

g(o,o,o) =o, au(O,O):bx(O,O,O)--O
where subscripts u, x denote partial derivatives. This is done to avoid trivial cases where
one equation has single-valued solutions and the system reduces to a bifurcation
problem (in the usual sense of Golubitsky and Schaeffer) in one variable. Note that we
do not require bu(O, O, 0)- O.

The particular version of contact equivalence that we use is the following. Two
germs g, h S are (sequentially contact) equivalent if and only if

(9)

where

V(u,X), A(X)),

is invertible at 0 (that is (M M22)10 4=0) and

Xxlo Uulo A 10>0
to preserve orientations. We write gh if g and h are equivalent. A discussion of the
intuitive meaning of this equivalence is deferred until {}4.

If g S then we define the space 7g and the formal tangent space Tg as follows. Set

(lOa) ’lg--ffOxuX a’ b b

Then

(lla)
(llb)

The formal tangent space has the standard interpretation in terms of orbits for the
equivalence relation . We say that g has finite codimension if dimS/’g is finite. If g
has finite codimension in this sense, then the codimension of g is

(12) codg=dimS/Tg.

Ml(U,) ) 0
M(x,u,h)- gl2(X,U,2t ) M2.(x,u,X )
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Note that g has finite codimension if and only if

(13a) dimuX/x ( a, b, b ) < o
and

(13b) dimEux/EuX a,au) < o.

(The pro.of is not entirely obvious, but uses properties of EuX and the generators.) The
use of Tg to define finiteness of the codimension, but Tg to define the codimension
itself, lacks elegance, but is required for a proof of the unfolding theorem below.
Exactly the same problem arises in Golubitsky and Schaeffer [6]. In their case, however,
Damon (then unpublished but mentioned in Golubitsky and Schaeffer [8] and Stewart
[12]) has shown that Tg has finite codimension if and only if 7g has. (We use here their
notation.) Prof. Damon has informed us that his results, to be published in [3], also
show that the same phenomenon occurs for sequential bifurcation problems; that is,
dimS/Tg is finite if and only if dimS/f;g is finite. Essentially this is because the
equivalence relation used for sequential bifurcations corresponds to what Damon [3]
calls a geometric subgroup of the group K of contact equivalences. The action of this
group satisfies certain algebraic properties on tangent spaces given in [3].

In fact, the general unfolding theorem of [3] applies in our present context.
However, none of this affects the main results of this paper and for that reason we shall
not provide further discussion.

In order to classify sequential bifurcations and to give conditions for a particular
type to occur, we need suitable determinacy statements which are achieved as follows.

Define the restricted tangent space RTg to be

0 a a

with the m’s in (14) denoting maximal ideals in the usual way. RTg is the tangent space
of g with respect to an obvious restriction of the class of transformations defining the
equivalence relation -,. Extending the techniques used by Golubitsky and Schaeffer [8]
to include sequential bifurcations, it is easily seen that, for given g,h S, g+ h is
equivalent to g if either

RT(g+th)=RT(g)

o

RT(g+ th)+ mx ( gx+ thx ) =RTg+mx ( gx )
for all Q. We note that in the case of germs f under right equivalence, the restricted
tangent space corresponds to rrt J(f) where J(f) is the Jacobian ideal of f.

Following the lines of Golubitsky and Schaeffer [8], we define the space P(g) as

(15) P(g)- (pSIRT(h+p)-RTh for all h..g).

P(g) contains all monomials which can be ignored in the Taylor expansion of h if one
is determining whether h is equivalent to g. In order to compute the space P(g)
explicitly for a given gS we have to extend the notation of intrinsic ideals due to B.
L. Keyfitz (see [8]) to include sequential bifurcations. Since the techniques involved are
nearly the same as in bifurcations in the Golubitsky-Schaeffer (G-S) sense, we only
state the basic facts. Recall from [8] that an ideal J in uX is called intrinsic if whenever
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a is in J and a’ is contact equivalent to a in the G-S sense, then a’ is in J. Moreover,
any finitely generated intrinsic ideal has the form

nl (ml).ql-...(16) J=mux
where 0_< rn <-- <rns and n +m >. >n + rn (rn 0 if J has finite codimen-
sion). Let now I and J be ideals in xux and ux, respectively, and let V be defined by

(17) V-J\ 0

Extending the concept of intrinsic ideals to sequential bifurcations, we say that a
subspace V of S as given by (17) is intrinsic if any h S which is equivalent to a g V
is in V. It is not hard to see that V is intrinsic and of finite codimension if and only if J
is intrinsic and of finite codimension in ,x, J cI, and I is given by

kl kr+mx,XJ+ +rrtuXJrI- rrt x ux

where each J C SuX has the form of (16) and

0<n,,+m,,l<" <nsr,r’k’msr,r, k>kl+nl,+m,>"" >kr-+-nl,r-k-ml, r.

If a subspace W of S is the sum of an xuX- and an ux-module, then there is a largest
intrinsic space contained in W which will be called the intrinsic part of W and will be
denoted by Itr W. Let now gS have finite codimension. The main statement about
P(g) is that P(g) is an intrinsic space of finite codimension and

where

Itr(mRTg) CP(g) CItr(RTg)

rrtRTg-uX
0 ubu hbu

+(xux(a’b)+rrtxux(bx))
0

The computation of P(g) is facilitated by the following observation which is an
extension of [8, Lemma 1.9]: Let V and V_ be intrinsic subspaces of S with correspond-
ing ideals I, J and 12, J2, respectively, and let V2 ce(g). Assume that J --J2 + uX (P)
and I I+xuX q) and that

(8) RT(g+ t(p,O))=RT(g+z(O,q))=RTg
holds for all t,r. Then V CP(g). In practice, one chooses V2:Itr(mRTg) and
looks for all germs (p, q)S such that V+uX ((P, 0)) +uX ((0, q)) is still intrinsic
and (18) holds to obtain P(g). As an example, consider

U2+g-
x2+u

which has codimension three. Proceeding as explained before it is easily seen that here

P(g)=ltr(mRTg)

with the corresponding ideals ven by
4

In the Appendix we tabulate I and J for each normal form of 5 wch has codimen-
sion less than four.
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Finally we deal with unfoldings. For a ’ let

We.say that G QS is an unfolding of g Q S if Gl=0= g. We write

Suppose that G and Ha are unfoldings of g, with a Q ,/3 Q t. Then
(1) H/factors through G (or G induces Ha) if there is a smooth map : Ri-*R

such that G(/)Ha for all (sufficiently small)/3.
(2) G is a versal unfolding of g if any unfolding of g factors through G.
(3) G is a universal unfolding of g if it is versal and has minimal possible unfolding

dimension k.
Next we state the
UNFOLDING THEOREM. Let G S be a k-parameter unfolding ofg S and let g have

finite codimension. Then G is versa! if and only if

The proof of the unfolding theorem follows traditional lines and we only sketch
the salient points. The crucial step here is an analogue of [6, Lemma 3.3].

LEMMA. Let G S be an unfolding ofg S and assume that g has finite codimension.
Let Hi,"" H be in S and hi--Hi[=O. Then

S-rg/l(hi)(a)

if and only if

(b) S,-xuXa (
Proof. (b) (a) is clear, so assume that (a) holds. Since g has finite codimension, we

can write

Tg= f,g+ u o o
for some m and a finite set of powers t and germs 5 .x. Since (a) holds we can select
a finite set of germs p. .x and q .x generating uX/.x(a,b, b ) and
((a)+muau)) as vector spaces, respectively, such that (0,p,) and (q,0) are con-
tained in {hi, 5g., tgx}" Now apply the Malgrange preparation theorem (see, e.g.
[15]) separately to xuX./xux(A,B, Bx) and .x/.x.((A)+muS(Au)) to obtain
(b).

The proof of the unfolding theorem on the basis of the lemma follows the same
lines as [6, proof of Thm. 2.4]. If {Pl,’’’,Pk} is a basis of a vector subspace of S
complementary to Tg, then

k

G(x,u,X,a)-g(x,u,X)+ E aiPi(X,u,)
i=1

is a universal unfolding of g. We call the p’s unfoldings and the a’s unfolding parame-
ters.
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4. Interpreting the bifurcation diagrams. Our version of contact equivalence has
the following geometrical meaning (we shall ignore for this discussion the matrix M in
(9) since the zeros of g are the same as the zeros of Mg). The space with coordinates
(x, u,) may be deformed by a diffeomo.rphism which leaves invariant the set of planes
--constant, and further on each such plane leaves invariant the set of lines u--constant
(Fig. 5). However, the vertical lines above points (u,) can be deformed differently for
different (u, ).

FIG. 5. Geometric meaning of sequential contact equivalence.

Consider the effect of such deformations on the space curve

a(u,X)=0, b(x,u,,)=O,
as far as its projection on the (x, )-plane is concerned. For simplicity take

a(u,X)=u2-X, b(x,u,,)=x.
Then the bifurcation curve in (x, u,)-space is a parabola (Fig. 6a) whose projection to
the (x, )-plane is degenerate (Fig. 7a). If we consider the equivalent problems

u2-h=O, x+--u=O,
then this parabola becomes tilted and the (x, h )-diagrams are also parabolic; however,
the projections of the two branches of the space curve are arranged differently depend-
ing on the sign; see Figs. 6b and 7b, 6c and 7c. The degeneracy in Fig. 7a is simply an
artifact of the projection.

FIG. 6. Effect of an equivalence for a simple example, drawn in x, u, space.

x

FIG. 7. Projections of Fig. 6 into (x, ,) space. Note that equivalent problems can have different projections.
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In our interpretation of this theory, however, it is assumed that the intermediate
variable u is not directly known. In consequence, certain apparent features of the
bifurcation diagrams, plotted in the (x,k)-plane, are not preserved by equivalence.
(This is not surprising: it expresses the "lost information" when u is neglected.) The
features that are preserved are limit points, including double limit points, and the way
these connect together, but (for example) the curves that connect them can be twisted,
made to cross or uncross, and so on, without changing the equivalence class. For
example, the various diagrams of Fig. 8 are all equivalent.

FIG. 8. Samples of equivalent diagrams in (x,,)-space.

Transverse crossings of different branches (occurring for different u-values) are of
course structurally stable to small deformations (equivalences dose to the identity).
However, not all rearrangements of branches are necessarily permitted. Consider for
example the problem

k2+u2- 1-0, x-u2+2 0,

whose solution is sketched in Fig. 9. Here there are two closed loops in the (x, )-bifur-
cation diagram, but each has a "front branch" (solid lines) and a "back branch"
(dotted). Equivalent diagrams can make back branches intersect front branches at will,
but cannot make two front branches cross, or two back branches. This is because
equivalences preserve the vertical lines (u,)-constant that generate the cylinder
u2+,2_ 1. See Fig. 10.

FIG. 9. "Front" and "back" branches of bifurcation diagrams in x, u, h)-space.
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FIG. 10. Possible and impossible projections into (x,A)-space of diagrams equivalent to Fig. 9.

Similar considerations are necessary in the interpretation of each type of diagram:
in each case reference to the underlying three-dimensional geometry resolves the possi-
bilities. Essentially the branches of the (x,A)-diagram are partitioned into sets corre-
sponding to "sheets" of the (u,A)-surface, and the relative arrangement of branches
within each sheet must be preserved.

5. Classification. In this section we present a classification of sequential bifurca-
tion problems up to some reasonable degree of degeneracy.

In Table we have listed six hierarchies of normal forms of SBP’s, together with
their unfoldings. The normal forms (1)mn through (3)mn are just sequences of standard
one-dimensional bifurcation problems in the sense of Golubitsky and Schaeffer (G-S
sense) [5]. Bifurcation diagrams associated with a universal unfolding of the normal
form (1)22 (which is the only codimension-1 SBP) have been already sketched in 2.
Observe that in the case of normal forms (6)g the linear part u+ e in b factors through
a. This factoring forces the presence of the term e2Auk in order to keep the codimen-
sion finite

(2),n, n--> 3

(3)ran, n>--2

(4)m m--> 3
(5),, k-->3

(6),, k-->2

TABLE
Hierarchies ofsequential bifurcation problems, el,2,3- --- 1.

Ium-- el

um+eluX
U -{- kk

U2

xn+e2u

X, + e UX

X2+e2un
x2+e2u+e3h
x2+e2u+e3,
x2+elU+e2h+e3hk

Unfoldings

(O,x’), O<-i<-n-2
(uJ, O),

(O,x’), O<--i<--n
<_j<_m--2

(O, ui), O<--i<_n

(uJ, O), O<_j<_m

(,J, o), o<--j<--k-1

(1,0), (0, hJ), O<_j<_k-

cod g

m+n-3

m+n-2

m+n-2

m

k

k+l

In Table 2 we have listed further normal forms with codimensions between three
and five. For several of these normal forms we have added an asterisk to the codimen-
sion to denote that g has modality one, that is, one unfolding parameter is associated
with a modal parameter of g. The topological codimension of these normal forms is
cod g-1. (The meaning of "modality", "modal parameters", "topological codimen-
sion", etc., is the same as in imperfect bifurcation theory in the G-S sense, see [5], [6],
[7].) The modal parameter for the normal forms (9b, c), (10c) and (12) is c, but modal
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TABLE 2
Normalforms ofsequential bifurcation problems with topological codimension less than 5. el,2, --+ 1.

b

(7) u:+elh X3+2u2

(8) U nt-l h2 X -Jr-/2 U nt- e3 h

(9a) U3"-l-elUk x2+e2u+e32

(9b) x +u nt- e2k, :://= el e

(9c) X "t- CUX + e2 tl-b e3k

Unfoldings cod g

(uJ, 0),

O<_j<_2

(0, 1), (0, x), (O, ux), (O,u) 4

(0, 1), (1,0), u, 0), (u), O) 4

4

(0, U); (0, U 2)

(lOa) U2"- el h3 X2+e2h

(lOb) X -Jr" e2 U’+- e32

(10c) x + CUX+ e2U+ e3h
(lla) u2+el)k x2+L(u,,)

(0, x); (0, ux)

(O,u)
(V, ),

(0, 1)

(O,x),(O, xu)

(1 lb) X + L(u,,)+xff,(u,,)

(llc) x3+L(u,X)
(lid) x2+uL(u,,)
(12) u2-

(1,0), (0, l)
(O,x)

(0, -, x))
,i (0, x), (0, xL( u, X))

(1,0), (0, 1), (0, u), (0,h); (O, uL(u,,))

5*

5*

5*

3*

4*

x3-t--elU-]-e2X-l--.3,2-kcux, c:7/=0 (1,0), (0, 1), (0, x), (0,,); (O, ux) 5*

boundaries are only present for (9b) and (12). In the normal forms (1 a-d), L is a
nonvanishing linear form in (u,X) which must not factor through u+ el. L can be
normalized to

(19) L(u,X)-ucosck-Xsinq, cos2--el sin2qv O.

The modal parameter is the angle q (angle between the straight line L-0 and the
)t-axis). L(u, ,) is a linear form linearly independent to L which can be chosen to be

(20) L ( u, h) u sin + X cos q.

Now we state the main result of this section:
CLASSIFICATION THEOREM. Any sequential bifurcation problem with topological cod#

mension less than five and modality less than two is equivalent to one of the germs of
Tables and 2.

The proof of the classification theorem is very technical and will be omitted. The
methods are similar to those used by Dangelmayr and Armbruster [4] in classifying
Z2-equivariant bifurcation problems with corank two in the context of imperfect bifur-
cations in the presence of symmetry [7]. The essential idea is to transform an arbitrary
SBP to the form g-(a,b) with auX being a standard normal form of a one-dimen-
sional bifurcation problem in the G-S sense and then looking for the possible b’s
which keep the topological codimension less than five and modality less than two.

Conditions which must be satisfied by an arbitrary SBP for being equivalent to
one of the normal forms of Tables and 2 with topological codimension less than four
are summarized in the Appendix.
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Note that we have classified SBP’s, that is, au(0, 0)= bx(0, 0, 0)= 0. If a u vaO we can
solve a=0 for u and insert into b to obtain a one-dimensional bifurcation problem in
(x,A) in the standard G-S sense. This means that no information is lost due to the
hidden variable u, and double-limit points in the (x, A)-diagram are no longer structur-
ally stable. On the other hand, if bx v O, g is equivalent to (a(u, A), x) and we also end
up essentially with a one-dimensional bifurcation problem, but now in the hidden
variable u. Observing only the (x,,)-diagrams means now that a lot of information is
lost because all essential bifurcation phenomena occur in the (u,A)-plane.

6. The bifurcation diagrams. We now describe the bifurcation diagrams, plotted in
(x,A)-space as explained in 4, for sequential bifurcations of. codimension_< two. The
unfolding parameters are denoted by a and/3 where a corresponds to the unfolding
(0, 1) for types (1)22, (1)23, (3)22, to (U,0) for type (1)32 and to (1,0) for type (1 la)./3 is
associated with (0,x), (0, u), (u2,0), (0, 1) for the types (1)23, (3)22, (1)32, (1 la), respec-
tively.

Figures 12-18 show how the unfolding space is divided up into regions corre-
sponding to structurally stable bifurcation diagrams. This is in exact analogy with
Golubitsky and Schaeffer’s decomposition by means of the bifurcation, hysteresis and
double limit varieties; however, it should be noted that in the case of sequential

FIG. 12. Decomposition of unfolding space for type (1)23

FIG. 13. Decomposition of unfolding space for type (3)22, e2- + 1.

FIG. 14. Decomposition of unfolding space for type (3)22, e2- 1.
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FIG. 15. Decomposition of unfolding space for type (1)32.

FIG. 16. Decomposition of unfolding space for type (1 a), e- + 1.

FIG. 17. Decomposition of unfolding space for type (1 a), 1.

FIG. 18. Structurally stable perturbations of bifurcation diagrams for type (1)2 corresponding to regions
marked in Fig. 11. For the assignment of stabilities, see text.
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bifurcations, double limit points fall into two types. Those occurring due to a fold in
the (u,) bifurcation diagram are of codimension 0; but those involving limit points on
two distinct "sheets" of the (u,,) diagram are of codimension and hence lead to
changes in the topology of the (x, h) bifurcation diagram.

For each of the regions marked in Figs. 12-18, the corresponding bifurcation
diagram is shown in Figs. 19-25. The method used to find these diagrams can be
illustrated on the problem (1)23:

(21) U2--’O,
(22) x3-u+flx+a=O.
(Whenever, as here, sign choices merely affect orientations, we have made them arbi-
trarily.) Note that (22) does not involve ,. (This feature is relatively common in low
dimensions, at least if one makes careful choices of unfoldings, but becomes more
unusual as the codimension increases--for example, it does not happen for type (5)3.
When it is absent, the geometry is a little harder to disentangle.) Equation (21) is a
ruled parabolic surface; (22) is a ruled cubic surface; and their intersection can be

FIG. 19. Diagrams corresponding to regions marked in Fig. 12.

sS

sU

U sS

uS
sS

S

FIG. 20. Diagrams corresponding to regions marked in Fig. 13. Region corresponds to an empty diagram.

L" sS sS

uS

uU uU uS

FIG. 21. Diagrams corresponding to regions marked in Fig. 14.

su su sL’ ss sS

sS JU

u(,’ u uu

FIG. 22. Diagrams corresponding to regions marked in Fig. 15.
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uS mi uS

uS

FIG. 23. Diagrams corresponding to regions marked in Fig. 16. Regions and 6 are empty. Regions 7-10
have diagrams like 2-5, except that the second stability coefficient is changedfrom S to U and vice versa.

sS
sS

sS

uS

FIO. 24. Diagrams corresponding to regions marked in Fig. 17. Regions 6-10 have diagrams like 1-5, but
the second stability coefficient is changedfrom S to U and vice versa.

sS

FIG. 25. How the "coupling" of two bifurcation problems leads to a simple methodforfinding the diagram of
the corresponding sequential bifurcation, by projection, in cases where the x-bifurcation is independent of. The
example here is type 1):3.

visualized as the projection of the curve (22) in the (x,)-plane onto the paraboloid
(Fig. 11). The topology of the result depends only on the position of the vertex of the
paraboloid relative to the curve (2), and on the form of (2) itself. Note that if the vertex
(here the origin) falls midway between two limit points of (2), then the projection has a
double limit point involving two distinct sheets of the (u, ,)-equation. This is a general
feature of the analysis, and means that "Maxwell set" considerations (and others of a
similar nature) arise--see Poston and Stewart [11 ].

We have assigned stabilities to these bifurcation diagrams. Although stabilities are
not invariants of contact equivalence, in general, they are for one-dimensional problems
(up to an arbitrary choice on initial branches). That is, changes of stability happen in
an invariant way. On a structurally stable diagram in one dimension, stability changes
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FIG. 11. Decomposition of unfolding space into regions giving distinct types of structurally stable bifurcation
diagrams, for type 1):2.

at a fold (limit point). Because of the "triangular" form of a sequential bifurcation, we
can assign stability coefficients as follows. First consider only the (u, ?,)-equation:
assign stabilities here. They will change only at folds in the (u,?)-diagram; that is, at
the (structurally) stable double limit points of the (x,)-diagram. The other stability
coefficient, on the other hand, will change only at limit points not coming from the
(u, 2) folds.

In Figs. 19-25 we have assigned stabilities in an arbitrary way to initial branches,
and derived all other assignments by the above rules. We write "s" and "u" in
combination, in upper or lower case, to represent the two stability coefficients" the
second (S and U) refers to the (u,,)-stability; the first (s and u) to that involving x
also. Thus the second coefficient changes at structurally stable double limit points, the
first at all other single limit points. Alternative assignments, corresponding to differen.t
choices of stability on initial branches, are obtained by interchanging s and u throughout,
or S and U, or both.

We turn now to individual cases. In Figs. 12, 19 we show type (1)22, which may be
interpreted as two limit-point bifurcations in series. The result superficially resembles
the quartic limit point xa--t--0 under Z2-symmetry, but note that the stabilities are
different. Thus a sequential bifurcation can give rise to an apparent symmetry, but is
here distinguished from a genuine symmetry by the stability assignments.

Figures 13, 20 refer to type (1)23, limit point followed by hysteresis. Here triple
limit points can stably occur. There are at most two stable solution branches.

Figures 14, 21 are type (3)22 for e2-- + 1, a limit point followed by isola formation.
There is at most one stable branch. Similarly Figs. 15, 22 are (3)2 with e2=-1,
limit-point/bifurcation.

Figures 16, 23 are (1)32, hysteresis/fold. Note the differences from Fig. 9, where
these are coupled in reverse order.

Figures 17, 24 show (1 la) with e 1, and a particular choice of modal parameter,
L(u,h)--/u-?, where we have confined to I1< 1. This problem may be interpreted as
isola formation followed by a limit point. Note that there are now double isolas, but
only one has a stable branch. Figures 18, 25 show the corresponding results when
e 1, bifurcation/limit point. Note particularly that isolas can form in this case for
regions 4, 5, 9, 10.

7. An application to stirred tank reactors. In this section we shall sketch an appli-
cation of sequential bifurcations to a problem involving chemical reactors coupled in
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sequence. In order to avoid undue length, we consider only the simplest model and
omit many details of the calculations. A full account of a more realistic model, giving
similar results, is in preparation.

Consider two stirred tank reactors coupled in sequence, producing a reaction. This system has been studied by Svoronos, Aris and Stephanopoulos [13], but
we shall use a different bifurcation parameter here for simplicity.

A model for the dynamics of such a system is given by (Svoronos et al. [13])

(23)

(24)

(25)

(26)

V -d-dc’ F( c Cl)_ Vlk( Tl )C

V, pCp-d-fT= FpCp( To-- TI)+ V,(-AH)k( T, )cl h,SI(T -Tcl),
dc2_

v _-dT;

V2PCp-d- FpCp(T T2)+ V2( AH)k( T2 ) c2 h 2 S2 ( T2 T2).

Here the variables are as follows:
Tank (= 1,2) has volume V/and surface area S for heat transfer.
Reactant has concentration co and temperature To.
Reactant /product 62 has concentration c and temperature T1.

Product 62 has concentration c2 and temperature T2.
T.; is ambient temperature for tank i.

h is a heat transfer coefficient.
t’ is time (to be scaled later).
F is flow rate.
p is density and Cp specific heat of mixtures.
AH is the heat of reaction, and is negative (for an exothermic reaction).
k(T) is a temperature-dependent reaction rate.

For the Arrhenius case we have

k(T) const, e- eR/7"

where E is activation energy, R the Boltzmann constant.
The first step is to pass to dimensionless variables

0--i T/--T0
Xi-" Yi--Co To

Now <x< 1, <y< o, and the equations become

(27)

(28)

(29)

(30)

dXl_
dt --XI +D’(1--Xl)(’(Y’)’
dYl_
dt -y’ + fl,( l, y, ) + QD,(1- x, )’( y, ),
dx2_

a--d-f Xl--X2+D2(1--x2)’(y2)

a--=y,-Y2+ f12( */2-Y2 ) + QD2(1 x2 )d’( Y2 ).
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Here D Vik(To)/F> 0 is a Damk6hler number, fli h iSi/FpCp > O, Q
(-AH)co/OCpTo>O, a-V2/V, l-(Tc-To)/To and -l<r/<o, and 6’(y)-
k(To +yTo)/k(To). Following Svoronos et al. [13] we set

a- 1, DI-D2=--D, 1--2--"
This corresponds to (essentially) identical tanks.

We seek steady states by putting the time derivatives equal to zero. Using the
xg-equations we have

XI(31) D(’( y, l
Xl

(32) O(’(y2) -x2-xl
-x2

Inserting these into the y;-equations we get

(33) (1 +fl)Yl-fl/l +QXl,
(34) (1 +fl)y2-flri2+flril/(1 +fl)+Q(x2-flXl/(1 +fl)).

Solving (31), (32) for xg and substituting into (33), (34) we obtain a reduction to just
two equations:

Q
=0(35) A(YI,J)-- --Yl( +)--ril -- +J(y,)

aS(y)
(36) B(Yl,Y2,8)- -Y2( +fl)+Yl +fl2+ (1 +(yl))(1 +i(y2))

=0.

Here i= 1/D, (y)= 1/’(y) and in the Arrhenius case ((y)--e-(’y/(I+y)) where
,t---E/RTo>O. Clearly (35), (36) define a sequential bifurcation in (Yl,Y2) with
bifurcation parameter i, for a given choice of the remaining parameters.

In a paper in preparation we shall analyse these equations for a class of functions
A that includes the Arrhenius case. However, this greatly complicates the calculations,
and for the purposes of this illustration we now make an approximation which, though
standard in the literature, must be handled with some delicacy. It is known as the
positive experimental approximation.

Assume Arrhenius kinetics and rescale further by setting

and then let -/ o. The resulting equations may be written in the form

(37)
(38)

where

(39)

--YI( -[-fl)-[-flril +QPl/( +Pl)
--Y2( +fl)+Y +flri2+QP2/( +Pl)( +P2),

Pi e-Yi.

Now the ranges of the variables are o <yg, rig< o, and Q,i,fl>0.
Essentially, the approximation amounts to letting activation energy tend to infin-

ity, so any results derived should be interpreted in this asymptotic sense.
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We now analyse (37) and (38) as sequential bifurcations. The first step is to seek
the codimension-1 "accidents" that delineate transitions between stable codimension-0
diagrams (analogous to the use of hysteresis, bifurcation and double limit varieties by
Golubitsky and Schaeffer [6]). We have

(40) A -B-0, Ay,-By2-O

(subscripts denoting partial derivatives). The second pair of equation yields

+P2+P(41) p= >1,
P

(42) +/3- QP

The other two equations let us express the /i in terms of/3, Q,Pi, and will be used later.
Now we look for phenomena of codimension> 1. Note that Ayly 0 implies P

which contradicts (41). Hence at any sequential bifurcation point the local form of A
must be u2-,, since Ai$<0. Thus any higher-codimension phenomena must be due to
additional degeneracies in B.

The first case is when By_y 0, which gives P2 1, Pl 3 (from (41)) and Byly2y2<O,
leading to type (1)23 sequential bifurcations. These degenerate to (2)23 if in addition we
have By, 0, giving

(1 +pl)2(1 +p2)(43) /3=p2, Q=
P

Using this, we find a unique line of problems of type (2)23, which can be expressed
parametrically in terms of i9:

(44) y-ln6-1.10, yz-ln6, /3-1, Q-Z, r/-21n6-4.86, /2-1n-2.90.
Further, since By,y2<O, the sign e2 in (2)23 is + 1.

In all other cases it follows that the only possible problems with codimension>
and By2y:z =/::0 are types (3)20 where n_> 2.

The degeneracy condition for (3)2_ is again By,=O (corresponding to tangential
contact of the surfaces A =0 and B=0). This degenerates into (3)23 if there is second
order contact (equal curvature in some direction) which is the geometrical meaning of
the degeneracy condition D3, 0. A straightforward computation yields

(45) (p-1)(p2-1) + (p2+ 1)-0

so, from (41),

2 -0.79,

Thus we have a unique (3)23-1ine, expressible as

(46) yl=ln- 1.12, y2=ln+0.24,
2.27 In- 5.56,

p =3.06.

/3=0.79, Q= 2.66,

2 In 8 + 1.54.

A further computation shows that D3,3>0 and By2y<O in (46), so that the (3)2 occurs
with sign e2 1.
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These computations show that the most degenerate types occurring (in the ap-
proximated equations) are (2)23 and (3)23, hence that any other types are organized by
these, according to the subordination diagram

(u,x3.+-xX)\

1) "(u,x2 +---. )

" (u,x_+X3)

(where for simplicity we have ignored sign distinctions). Here an arrow indicates that
the arrowhead occurs in an unfolding of the tail, and the singularities in brackets are
ordinary bifurcations in normal form as in the Golubitsky-Schaeffer theory. The
diagram above is not complete: a few (more singular) ordinary bifurcations also occur.

Since a much more detailed and general analysis is in preparation, we shall not
describe here the geometry of types (2)23 and (3)23, but the calculations above exem-
plify the way that the singularity theory can lead to a fairly detailed understanding of
the possible types of behaviour, and the way that the calculations are organized.

8. Conclusions. The theory of sequential bifurcations

(1) a(u,)) =0, b(x,u,,)=O
modelling two processes coupled in cascade, while analogous to that for ordinary
bifurcation problems, has important differences from it. To preserve the coupled
structure, it is necessary to modify the usual notions of structural stability, equivalence,
codimension and unfoldings. (This is of course not surprising: there are already many
variants of these ideas in the literature, selected to be appropriate to particular kinds of
problems.)

In particular, certain phenomena can occur typically in (1) viewed as a sequential
bifurcation, which do not occur if it is seen as simply a special case (a-equation
independent of x) of a bifurcation in two variables (x,u). For example, double limit
points are now a codimension-0 phenomenon, hence likely to be observed in an
experiment modelled by such equations.

Further, (1) can have lower codimension, as a sequential bifurcation, than as a
two-variable bifurcation.

This implies that the "hidden" parameter u is not just some kind of dummy
behaviour of the "output" variable x. In principle it might be possible to decide
whether an experiment is best described using such a hidden variable, by observing its
bifurcations. To put it very loosely, the presence of hidden variables can be detected via

bifurcations.
This is true only if one accepts the relevance of structural stability and unfolding

theory, of course. However, it illustrates the way that these ideas lead to new predict-
ions.

It also raises an intriguing point. In the analysis of systems of model equations, it
is common practice to take advantage of any "accidental" simplification to (say)
eliminate unwanted variables. If an equation is independent of a certain variable, it
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may be possible to solve it for another one, substitute this into one of the other
equations, and so forth. As our example in 4 shows, while this is unobjectionable as a
way of understanding the given system of equations, it may lead to unwarranted
inferences about the likely perturbations of that system. In this sense, "accidental"
simplifications are misleading and should not be taken advantage of! However, for each
class of problems, there should be some natural structure which reflects the physical
assumptions behind the model, and transformations or simplifications which respect
that structure are of course permissible. There is much more to understanding a system
than just solving "the equations"; in fact the same equations, under two different
interpretations, can have quite distinct implications. This is because, as well as the
equations, there is "hidden" mathematical structure: which transformations of the
equations make sense.

The type of system chosen in this paper--two processes in series--is arguably the
simplest case where such considerations appear. It is obviously the tip of an enormous
iceberg: there are innumerable more or less complex ways to couple systems. Each has
its own version of singularity/catastrophe/bifurcation theory, with its mathematics
tailored to its structure. However, before embarking on extensive analyses of even more
complicated versions of the theory, some additional experience of how these ideas work
out in genuine applications appears advisable.

Appendix. We summarize conditions which must be satisfied by an arbitrary
SBPg for being contact equivalent to one of the normal forms of Tables and 2 with
topological codimension less than four or to a member of the hierarchies (1)mn, (2)mn,
(4)m. The conditions are expressed in terms of the Taylor coefficients

aij--i!j! OuiOkj bijk-i!j!k! OxiOuJOkk

of a and b and are summarized in Table 3. Recall that any SBP satisfies al0-b00-0.
The first and second columns of Table 3 contain expressions which must be zero and
nonzero, respectively (degeneracy and nondegeneracy conditions), if g is equivalent to a
particular normal form. In the third and fourth columns we have summarized expres-
sions whose signs determine e and e2. e is given by

{ sgn(b2ooboo )
e3 sgn(booD6,2 )

for (4)m (5)3
for (6)2

(D6._ is defined in (A3) below). In the last two columns of Table 3 we have tabulated
the ideals I and J which generate the space P(g) (see 3, (17)). Here, m stands for rnux
and mxua in the fifth and sixth column, respectively. The various expressions entering
Table 3 are summarized in (A1)-(A4):

(A1)

(A2)

-bllob200 azoboo/ao,O3,1 b020 12

---bllo,D3,2 b200b020 2

D,- E bijo(-bllo/Zb2oo)i+a2oallbool/al
i+j--3

(boo,a3o + bo, ,a2o- b, ,ob,o,azo/Zb2oo )/ao,
2D5,1 a20a02 al Ds,2 d3a( all, 2a2o),
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TABLE 3
Conditions for the main normalforms in Tables and 2.

(l)mn

(2)m.

(3)22

(3)32

(3)23

(4)m

(5)3

(6)2

(lla)

(lib)

Zero Nonzero el sgn(.)

ajo(j<m) amo, b.oo, aol, bolo amoao
bioo( < n

ajo(j<m) amo, ao, b.oo, bo amoao
bioo( < n ), bo
bolo a20, aol, b200, O3,1 a20aol

a2o, bolo a30, aol, 6200, 93,2 a3oao!

bolo, D3,1 a20, ao, b200, D3.3 a20aol

ajo(j<m), ao amo, ai, b20o, boo, boo amoa
D5, D5,2, a20, b200, boo, boo! D5,2
a01, D6A a20, DsA <O, b200,bom, D6,2 ea20bomb200
aol a20, Ds.I, D6.1 Ds.!
aOl, b200 a2o, D6,, D5,1, b3oo, Dtt 35,

bnooboo

bnoobl lo

b200 D3,1

D3,2
b200 D3.3
b200bolo
b200bolo
b2oobom

mm+l+m() X l, Xtl, tl 2, X)

(xn+ I, X2t/, U 2, ,)

(A3)

(A4)

D6,l-d2a(w,w), e-sgn{2a20bool/bolo-all ),

D6,2- d2b( w, w) 1/4( dbx( w))2- 1/2eIDs,,I- l/2d3a( w, w, w ),
w- ( boo -b010),
D bool b o bl01b010"

In (A2) and (A3), d is the total derivative with respect to (u,,) which has to be
evaluated at (x, u, ) (O, O, O). The angle entering the linear forms L(u,) and
L(u, h) in the normal forms (11 a, b) is given by

tanq- -la2ol ID, I- 1/2 boo
boo
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BOUNDARY CONDITIONS AND MODE JUMPING IN
THE VON KRMAN EQUATIONS*

E. J. HOLDER" AND D. SCHAEFFER*

Abstract. Mode jumping in the postbuckling response of a long rectangular plate is investigated with
bifurcation theory methods near a double eigenvalue. It is found that mode jumping is predicted by the
theory if clamped boundary conditions are imposed on the end faces of the plate, but not if simply supported
boundary conditions are imposed.

Introduction. Consider a long rectangular plate in compression. At high loads such
a plate buckles; the deformed pattern consists of a series of bulges (called buckles)
along the length of the plate which alternate in sign. This pattern persists as the load A
is increased beyond the buckling load A c, up to a point. In certain experiments [10],
when A is increased sufficiently far beyond A the plate jumps "suddenly and vio-
lently" to a new configuration, the number of buckles increasing by one. The phrase
modejumping has been coined to describe this phenomenon.

Several authors [1], [Sa], [9] have suggested that perturbation of a multiple eigen-
value may provide an explanation for mode jumping. This work is based on the
important paper of Bauer, Keller, and Reiss [1]. These authors showed that perturbing
a bifurcation problem with a multiple eigenvalue often causes secondary bifurcation.
The most relevant perturbed diagram which can occur in this way is sketched in Fig.
0.1. In this figure "s" and "u" refer to stable and unstable branches. We claim that
this diagram exhibits mode jumping. To see this, consider gradually increasing the load
A from zero. For A<A, the system will follow the trivial solution (i.e., no deflection),
and for A, <A<An the system will follow the first bifurcating solution branch.
However at An this branch loses stability through a subcritical secondary bifurcation,
and there is no stable solution branch emanating from B for the system to follow when
A>An. Thus, although strictly speaking it is impossible to determine the dynamic
behavior of a system from a bifurcation diagram, presumably the system jumps to a
new equilibrium along the other branch if A is increased beyond A n.

These ideas apply to buckling plates as follows. For certain aspect ratios (i.e., ratio
of length to width) the first bifurcation in the plate problem is from a double eigen-
value. Let l* be such an aspect ratio. The plate problem for values of close to l* is
then a perturbation of a bifurcation problem with a multiple eigenvalue, and the hope
is that the perturbed bifurcation diagram may be that of Fig. 0.1.

However Fig. 0.1 does not invariably result when a double eigenvalue is perturbed.
There are several other possibilities, one of which is shown in Fig. 0.2, and none of
these other diagrams exhibit mode jumping. Exactly what does occur depends on the
numerical values of the ratios of certain coefficients in the governing equations. Thus to
determine whether a given theory predicts mode jumping, it is necessary to do specific
calculations for that theory.

In this paper we study whether or not mode jumping is predicted by the above
mechanism in the von Krmhn equations with various boundary conditions. (The yon
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B

FIG. 0.1

FIG. 0.2

Khrmn equations for the displacement w and the Airy stress function are given in
2.) We consider two sets of boundary conditions for w,

I. simply supported on all four edges,
II. simply supported on (unloaded) sides, clamped on (loaded) ends;

and two sets of boundary conditions for @,
A. Dirichlet (@ A@ 0),
B. Neumann (es (A) 0).

We refer to the four cases here as IA, etc. Our conclusion is that mode jumping is
predicted in cases IIA and IIB, not in IA or IB. The following remarks may.be helpful
for comparison with experiment. Simply supported boundary conditions I on w are a
convenient mathematical abstraction but are notoriously difficult to achieve in experi-
ments. Stein [10] considers II the most accurate description for w in his experiment. It is
shown in [9] that conditions B result if one assumes that the compression of the plate is
uniform along the loaded edges and that no tangential stresses are transmitted. The
physical basis of conditions A is rather problematic, at best.

Case IA has been studied by several authors [4], [7], [8], [Sa] despite its irrelevance
for the experiment. Cases IB and IIB were studied in [9]. Thus case IIA is the only
completely new case here, although in carrying out this research we found disagreement
among the various results in the literature for case IA. This is discussed further in 4.

Our purpose in writing yet another paper on this much studied problem was
two-fold: to fill a gap in the literature by analyzing the missing case IIA mentioned
above and to emphasize the usefulness of singularity theory in applied problems. Let us
elaborate on the second goal. The ultimate goal of the analysis in this and related
problems is to understand how the solution depends on various parameters. The
difficulties of achieving this goal stem from the fact that precisely at a bifurcation point
the solution does not vary smoothly, and at a multiple eigenvalue the possible complica-
tions are legion. We believe that there is a significant conceptual gain, with no loss of
computational power, in dividing this analysis into two distinct steps. We assume the
reader is familiar with the Lyapunov-Schmidt technique to reduce a problem with
bifurcation from an eigenvalue of multiplicity n to a system of n equations in n real
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unknowns. The first step in our proposed division of the analysis is to study how the
coefficients in the reduced equation depend on the various parameters; the second step
is to study how the solutions depend on these coefficients. The point is that all
nonsmooth behavior is isolated in the second step. (Indeed, the mathematical discipline
of singularity theory is concerned exactly with nonsmooth dependence of the solution
of an equation on the coefficients.) The first step must be done separately for each new
specific problem; this step poses no theoretical subtleties, just calculations that may be
difficult. By contrast the theoretical analyses of the second step can often be applied to
many different problems, with considerable savings in effort. Even in cases where the
calculations of step one are too difficult to carry out, the theory in step two may
provide useful information about the form of the solution.

In 1 of this paper we recall from [9] the theoretical framework for this problem
provided by singularity theory. In 2, we give the properties of von Kirmhn equations
relevant for this analysis, referring to [9] for proofs. We present the results of our
calculations in 3, along with a brief discussion of the method of calculation. In 4, we
list several independent checks on our calculations, the most noteworthy being an
asymptotic analysis of a plate with a large aspect ratio.

It is rather unsatisfying that there is only the one reference [10] in this paper to
experiment. However, we are not aware of other published experiments, although we
have looked for them; nor are there any such references in the other analyses of the
problem mentioned above.

1. The theoretical framework. Bauer, Keller and Reiss [1] observed that secondary
bifurcation may occur in perturbing an idealized bifurcation problem with a double
eigenvalue, and this is the idea behind the prediction of mode jumping with bifurcation
theory. In the plate problem for certain aspect ratios the first bifurcation is from a
double eigenvalue; for example this happens with boundary conditions II on w if the
aspect ratio is k(k+ 2), k a positive integer. (See 2.) We consider changes of the
aspect ratio as a perturbation of an idealized problem in which the eigenvalue is
double. Thus for nearby aspect ratios one may expect mode jumping as a result of
secondary bifurcation, provided the parameters which describe the bifurcation lie in the
right ranges. The conditions on these parameters were formulated systematically in [6],
[9], and we now review these conditions.

At a double eigenvalue the Lyapunov-Schmidt reduction of the von K/trmn
equations will lead to a system of equations of the form

(1.1) ax3 + bxy2 -p,x O cx2y + dy3 q,y-O,
where h=A-Ac, the load minus the buckling load, and a,b,c,d,p,q are certain
constants. Here x and y are not spatial coordinates, but unknown coefficients of the
eigenfunctions in the Lyapunov-Schmidt reduction; more specifically in this reduction
one seeks a solution w-xw +yw2 + O(x2 +y2) where w and w2 span the kernel of the
linearized problem at the double eigenvalue. At first glance it appears that (1.1) is only
valid in modulo higher order terms, but it was shown in [6] that apart from the
exceptional cases (on the boundary between two regions) mentioned below the higher
order terms may be transformed away by an appropriate change of coordinates, at least
locally.

With appropriate scaling (1.1) may be reduced to the form

(1.2) x3-lxy2-x-O, vx2y+y3-y-O,
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where

bq cp(1.3) l- -- ’- aq

Specifically scale x and y by the factors (p/a)/ and (q/d)/2, respectively, and
multiply the first and second equations by (alp3)/ and (d/q3)1/2, respectively. The
two parameters/ and , are the only dimensionless parameters that may be associated
to (1.1), and they provide a far more compact description of the problem than the five
parameters used in [8]. Following the usage of singularity theory we shall refer to them
as modalparameters.

Both equations in (1.2) may be factored giving rise to the following four sets of
solutions:

(i) x =y---0, arbitrary,
(ii) x=0, y= +X/2,
(iii) y=0, x +X/z,

(iv) x-+
-1 X y-+- ---i’_l x

1/2

Depending on/ and v, there may or not be a range of X for which the radicals in (iv)
are both real. In Fig. 1.1, we have identified five regions in the/,, plane (and two
mirror images), and in Table 1.1 we have tabulated the properties of solutions (ii), (iii),
and (iv). This tabulation is based on the normalization that the trivial solution (i) is
stable for 7<0, unstable for >0. See [9] for proofs. In our calculations for the plate
problem, the modal parameters always lie in regions or 2.

v:l

FIG. 1.1.



450 E.J. HOLDER AND D. SCHAEFFER

TABLE 1.1

Region Stability Stability Existence Stability
number of (ii) of (iii) of (iv) of (iv)

s s ,>0 u
2 s Never real not applicable
3 s Never real not applicable
4 u u h>0 s
5 u u h<0 u

It was shown in [9] that a change in the aspect ratio away from the value giving a
double eigenvalue modifies (1.2) as follows:

(1.4) X3-’Id,xy2-- kx--O,
(More accurately, (1.4) emerges after an appropriate change of coordinates.) The
parameter o splits the double eigenvalue into two simple bifurcations, at ;k=0 and
)k =-o. In Fig. 1.2 and 1.3, we have drawn the bifurcation diagram of (1.4) (i.e., the
solution set) when #, , belongs to region or 2. We have labeled the solution branches
s,-, u to indicate that the two eigenvalues of the differential of (1.4) are stable-stable,
stable-unstable, or unstable-unstable respectively. All bifurcations in these figures are
symmetric, but we have drawn the bifurcations which occur in the x,? plane slightly
asymmetric in an attempt at perspective. An inspection of these diagrams shows that
mode jumping as a result of secondary bifurcation occurs if/,, lie in region 2 and
o< 0, and not otherwise. Basically the difference between regions and 2 consists in the
fact that in region both the x and y modes are stable for large X, while in region 2
only the y mode is stable for large 2. Now consider region 2 when o<0; the first
bifurcation is into the x mode, which (by exchange of stability) is stable near the
bifurcation point; mode jumping occurs at the point where the x mode loses stability as
required in order to match properly with large X. In contrast, in region the secondary

(o) cr<O

(b) o->0

FIG. 1.2
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\X

(o) o- <0

//

(b) cr>O u

FIG. 1.3

bifurcation merely restabilizes the branch emerging from the second primary bifur-
cation.

Let us anticipate the results of the next section and indicate how these ideas apply
to the plate problem. Here we consider only boundary conditions II on w. If the aspect
ratio satisfies

(1.5) V/(k 1)(k-t- 1)

the first bifurcation is into a mode with k buckles. At the upper limit in (1.5), two
distinct modes with k and with k+ buckles bifurcate simultaneously; (1.2) describes
the bifurcation in this case, with x the amplitude of the mode with k buckles, and y,
k + buckles. We show that for both cases IIA and liB the modal parameters lie in
region 2. When o< 0, which corresponds to a decrease in the aspect ratio from the value
k(k+ 2), the mode with k buckles bifurcates first but loses stability slightly above the
bifurcation point as indicated in Fig. 1.4a, leading to a mode jump. This analysis is
rigorously applicable only locally (i.e., for aspect ratios close to /k(k+ 2)), but it
provides a strong plausibility argument for mode jumping throughout the entire inter-
val (1.5) and indeed for still smaller l, since the secondary solution branches which
cause the mode jumping will tend to persist as is decreased. We recall that Stein [10]
observed repeated mode jumping, in each case the number of buckles increasing by 1.
This fact supports the existence of secondary solution branches far from the region
where rigorous analysis guarantees their existence.

In summary, the modal parameters are decisive as to whether mode jumping will
occur, and we now turn to their calculation in the various cases.

2. Formulas for the modal parameters. Let us normalize the dimensions of the
plate so that when undeformed it occupies the planar region
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The von Khrmhn equations are

(2.1) AEw-- [q,w]--,02w
Oz , 2 w, w ],

where A2 is the biharmonic operator in the plane and

02U 02/9 02U 02/9 02U 02/9
(2.2) [u v]-

OZl2 0z22 2Ozloz20zlOz2+ 0z22 OZl2"

We consider two sets of boundary conditions for w, namely
I. w=Aw=0 on

and
II. w=Aw=0 forO<x<lrr, y=O, rr,
W=WN=O for x=0, lrr, 0<y<rr;

and two sets of boundary conditions for , namely
A. q= AO=0 on 0t2 (Dirichlet),

and
B. (A)u 0 on 0 (Neumann).

The subscript N indicates differentiation in the normal direction.
Equations (2.1) with any choice of boundary conditions admit only the trivial

solution w--C=0 for small ,, but as h is increased nontrivial solutions bifurcate. As
explained in 1, we may extract the information about mode jumping by considering
bifurcation from a double eigenvalue. If boundary conditions I on w are imposed, the
first bifurcation is double if the aspect ratio equals k(k+ 1) for some positive integer
k, in which case the associated eigenfunctions are

(2.3) Wl(Z)- sin sinz2, w2(z) sin (k+l1)zl
sinz2"

If boundary conditions II are imposed, the first bifurcation is double if l-k(k+ 2),
and the eigenfunctions are

(2.4) WI(2)__ { k+2k sinkz sin (k+2)Zll } sinz2’
W2( Z ) COST COS

1
sin z2.

Both these cases are derived in [9, 4 although case I is well known in the literature.
In performing the Lyapunov-Schmidt reduction of (2.1) a variational formulation

of this equation is convenient. It was shown in [9, 3] that solutions of (2.1) may be
characterized as extrema of the functional

+-[IA-l[w’w]l[
2

where I1" II indicates the norm in Z2(f]). The domain of V consists of functions in 2(f)
satisfying

(i) w=0 on Of],
or

(ii) w=0 on sides, w=ws=0 on ends,
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according as boundary conditions I or II are desired. The inverse Laplacian in (2.5) is
computed with Dirichlet or Neumann boundary conditions in cases A and B above,
respectively. Strictly speaking only case B was considered in [9], but the extension to
case A is immediate.

The coefficients a,b,c,d,p,q of the Lyapunov-Schmidt reduction (1.1) are ob-
tained by computing various derivatives of the full equations. As shown in [9, 5], it
suffices to compute derivatives of the functional (2.5). This leads to the following
formulas for the coefficients:

(2.6)

+

Here w and w2 are defined by (2.3) or (2.4) to achieve boundary conditions I or II on
w, respectively, and the inverse Laplacian is computed with Dirichlet or Neumann
boundary conditions to achieve boundary conditions A or B on q, respectively. These
formulas may be substituted into (1.3) to yield formulas for the modal parameters.

3. Method of calculation and results. The computer was required to compute the.
coefficients a,b, c, d in (2.6); the remaining coefficients p, q could be evaluated analyti-
cally. The computation began by expanding [w, w] in terms of the orthonormal eigen-
functions of A---a double sine series or a double cosine series according as boundary
conditions A or B are desired for q, respectively. We then multiplied each coefficient by
the corresponding eigenvalue of A- to obtain the coefficients in the expansion of
A-[w,wj.]. Finally we evaluated the inner products in (2.6) by multiplying Fourier
coefficients and adding.

Actually it is possible to perform these calculations analytically when q satisfies
boundary conditions B--indeed this was done in [9]. However we repeated these
calculations numerically here as a check on our program.

We present our results in Tables 3.1-3.4 below. For each of the four cases IA, IB,
IIA, IIB we have evaluated the modal parameters/ and r for the ten smallest aspect
ratios which lead to bifurcation from a double eigenvalue. (See [}2.) We have also listed
g times as part of the output to assist the reader in identifying the region. As it
happens, the region in which the modal parameters lie ,depends only on the choice of
boundary conditions and not on the aspect ratio.

The calculations were performed on an IBM 5100. Because of the limited storage
space on this machine, we only calculated the modal parameters to four significant
figures. We summed up to 1000 terms of the double series in the worst case, which
corresponds to N--45 in the truncation

:m,n>_O,m+n<_N).
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TABLE 3.1 TABLE 3.2
Case IA Case IB

k v p,v k /x v v
3.084 1.269 3.915 4.802 1.201 5.767

2 2.281 1.562 3.564 2 4.154 1.846 7.670
3 2.132 1.699 3.622 3 3.840 2.160 8.295
4 2.080 1.774 3.689 4 3.659 2.341 8.566
5 2.055 1.820 3.740 5 3.541 2.459 8.707
6 2.041 1.851 3.778 6 3.459 2.541 8.790
7 2.033 1.873 3.808 7 3.398 2.602 8.841
8 2.027 1.890 3.830 8 3.352 2.649 8.876
9 2.023 1.902 3.848 9 3.315 2.685 8.901
10 2.020 1.913 3.863 10 3.285 2.715 8.919

TABLE 3.3 TABLE 3.4
Case IIA Case IIB

k p, v p,v k / v

1.982 .825 1.634 3.378 .663 2.239
2 1.197 .959 1.148 2 1.371 .877 1.202
3 1.106 .979 1.083 3 1.199 .934 1.120
4 1.067 .987 1.053 4 1.125 .958 1.078
5 1.046 .991 1.037 5 1.086 .971 1.055
6 1.034 .993 1.027 6 1.062 .979 1.040
7 1.026 .995 1.021 7 1.048 .984 1.031
8 1.020 .996 1.016 8 1.038 .988 1.025
9 1.016 .997 1.013 9 1.030 .990 1.020
10 1.014 .997 1.011 10 1.025 .992 1.016

4. Independent checks on the program. As stated in the introduction we found
disagreement in the literature concerning case IA. We believe the results in [8] are in
error. Because of this disagreement we checked our program very carefully as follows.

1. Our program was designed to handle four cases, with a minimum of program
changes required for different cases. There are analytical results [9] for two of the four
cases, and our results agree with these.

2. In case IA with k= 1, there are two other calculations published [4], [7], and we
agree with these to within numerical accuracy.

3. Analysis of the von Khrmhn equations in case IA shows that as k the
modal parameters/ and v tend to the value 2. This trend is apparent in the data of
Table 3.1. By contrast, from the data of [8] one would conjecture that for large k, and
v are approximately equal to k/ 1.

The main content of the section is the asymptotic analysis referred to above.
Before starting this analysis, we list formulas to help the reader in comparing our
results with [8]. Specifically the modal parameters are given by

where

(4.2) R,- (/,M+ R2--
(r)’M+

A/(2M A2M+ (/+



BOUNDARY CONDITIONS AND MODE JUMPING 455

In (4.2) we have used the notation of [8]. Their subscript M coincides with our k. The
five parameters in (4.2) are related to properties of the solutions of (1.2), rather than of
the equation, as are the modal parameters. Thus to derive (4.1) one must refer to the
four solution branches (i)-(iv) of (1.2) listed in 1.

We give the asymptotic analysis only for case IA. Thus the appropriate eigenfunc-
tions are given by (2.3), and the inverse Laplacians in (2.6) are to be taken with
Dirichlet boundary conditions.

It is readily calculated in (2.6) that p/q=(k/(k+ 1))2, so these two parameters
make no contribution to (1.3) in the limit k . Our principal task is to compute
a, b, c, d in (2.6). The first step here is to show that

(4.3) [w,,w,l--cos2zz-cos +O(1/k),

z (2k+ 1)z +O(1/k2)w, w2 cos cos 2z2 cos

(2k+Z)Zl[w2,w2l- -cosZz- cos
l +O(1/k),

a calculation left to the reader. The error terms admit the indicated bounds in the sup
norm.

In evaluating an expression A-f in the limit k it is convenient to introduce a
scaled variable --Zl/1 where l-k(k+ 1). Then all boundary problems are for-
mulated on the fixed domain f (0,r) (0, r). We use the inner product

(4.4) (u,v)- - dz dT_,2u(7_,l,7_,2)l)(21,7_,2)

on this domain. Here and below we omit the bar over the scaled z variable. To
evaluate A-ifwe must solve a boundary problem

(4.5) e202u 02/’/
Oz2

+
Oz =f in, u 0 on O,

where e 1/1. We shall use the notation L for the linear operator in (4.5). In one sense
the limit of L as e-0 is a singular one. Indeed, the asymptotic solution of (4.5)
involves boundary layers along the faces of 0 where z =0, r. However, in the Hilbert
space sense L;- remains bounded as e- 0. We claim in fact that

(4.6) IIz:’ll_<l.
This follows from the fact that L;- is a self-adjoint operator with eigenfunctions
sinmz sinnz2, m,n 1,2,. -, and all the eigenvalues are less than 1.

Since has finite measure, the error terms in (4.3) are small in L2(a) as well as in
C(a). Because of (4.6) these error terms will not contribute to formulas (2.6) in the
limit k--, oo.

We want to solve (4.5) asymptotically in the limit e--,0 with fight-hand sides f
given by (4.3). It is conceptually simpler to consider first a slightly more general
problem,

2(4.7) e2 u 02u
2 + Oz =f((e)Zl’Zl’Z2) in,

)z

u=0 on i)f,
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where /(e) 1/e+ O(1) as e - 0 and f is 2 ,r periodic in its first argument. In our choice
off in (4.7) we have anticipated the fact that (4.3) depends on the fast z scale as well as
the slow one. The leading term in the asymptotic solution of (4.7) comes from the
reduced problem for U(,ZI,Z2) namely

(4.8) 02U 02U
O2" -+"

OZ
--’f(’gl’22) in ,

Uis 2 ,r periodic in ,
U(,zI,O)-- U(,ZI,7"g)--O.

No boundary conditions are imposed in (4.8) along the faces of f where z =0, r.
PROPOSITION. Iff C2( X), then the norm in L2() of the difference

is O() as eO.
This proposition is proved in the appendix. We remark that the O() error comes

primarily from neglect of the boundary layers along the faces with z--0, ,r. However
we do not carry the expansion beyond the leading term; we have retained the only term
which will contribute to (2.6) in the limit.

The appropriate data to substitute into (4.8) after scaled variables are introduced
in (4.3) are

(4.9) fl (’gl ’g2 ) --COS 2Z2 --COS 25,

f2(,gl,g2 ) --COSg COS2Z2-- COS2,
A(’ZI ’Z2 ) --COS 2Z2 --COS 2j, r/3(e) =k+ 1.

Our notation here may be confusing;, essentially k, I, and e are all the same parameter,
being related by

(4.10) 1 =l_ik(k+ 1).

We use the asymptotic solution of (4.7) only for the discrete series eg-+0 of values
obtained by taking k an integer in (4.10).

We now solve (4.8) with the inhomogeneities given by (4.9). Define functions
@(Z2) l(Z2) by the two-point boundary problems

q"(z2) -cos2z2,
k"(z2)- 4k(z2) 1,

The solution of (4.8) with fight-hand side f/is

UI(,z ,z2 ) )(z2) "]- COS2k(z2 ),
02(, Zl, Z2)-- COSZI(Z2) -- COS2k(Z2),U3(,ZI,Z2) --*(Z2)-[- COS2q(Zz).

On application of the proposition we obtain the following solutions of (4.7):

(4.11) U ( ZI, Z2 ) (Z2 ) + COs[2kz ]+(z2 ),
U2( Z Z2 ) COS ZI(( Z2 ) "- COS[(2k"-
U3( Z ,Z2 ) +( Z2 ) + cos[(2k+ 2)Zl] q(z2 ).
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Now we see from (2.6) that asymptotically

2 2
(4.12) a- llulll d-- -llull

b-c--l ( 211u211= + ( Ul u3 )}
But it follows from (4.11) that

Ilull=- Ilull=- I111= / - IIqll =,
I111 + I111,

(u,u)-IIll,
where II,hll and I111 are taken in L2(0,r). On substituting these into (4.12) and referring
to (1.3) we see that the modal parameters/ and v assume the asymptotic value 2, as
claimed.

Appendix. Our proof of the proposition of 4 follows well-known principles--see
for example [2]. We will need the following consequence of the maximum principle in
the proof. Let 2 (0, rr) (0, rr), and let w solve the boundary problem

(A.1) 82-02W 02w
Oz2

+
z22

g in2, w g, on

LEMMA. The solution of (A. 1) satisfies the estimate

(A.2) Ilwll I111 + cllgll

in the sup norm, where C is some constant independent of e.
A proof of this lemma is given on p. 153 of [3]. The reader may be concerned that

the ellipticity constant in (A.1) tends to zero, as e0, although we assert that the
constant C does not blow up. An examination of [3] shows that their proof works
provided that the coefficient of one pure second derivative (here O2W/OZ) remains
bounded away from zero. (One takes a comparison function depending only on one
variable.)

In proving the proposition it is helpful to compute the next term in the asymptotic
expansion of the solution of (4.7), namely the boundary layers along the faces z --0, ft.

If U is defined by (4.8), let V(z,z), i-- 1,2, be the bounded harmonic function on the
half strip (0, oo) (0, r) with boundary values as follows:

v,(,,o) v,(,,.) =o,
v,(o,)- u(o,o,:),
v(o,:) u(,(),,:).

i- 1,2,

Since the only boundary values of V are along the edge with zl=0, V will be
exponentially decaying in z as z oo.

Let

(A.3) ’Oe(ZI,Z2)--V(J(,)ZI,Zl,Z2)-- Vl(Zl/,Z2)-- V2((’ff--Zl)/,z2).
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We claim that the solution u of (4.7) satisfies

(A.4) u-v-O(e),
this estimate holding in the sup norm. To prove this we show that u-v satisfies a
boundary problem of the form (A.1) where the inhomogeneity and boundary data
satisfy an O(e) estimate, and then refer to the lemma to derive (A.4). Indeed since
LV(z/e, z2)=O and similarly for V2, we have

However,

L(u-v):f-LU.

0 2

OZl2 OOz 0z2
Since E2’02(e)- + O(e) by hypothesis, we have

02U 02U+

Recalling the definition (4.8) of U, we see that the RHS of (A.5) is O(e) as claimed. On
the edges of with z-0, rr, the boundary data of u-v vanishes identically. Con-
sider the edge with z --0; u vanishes here, U and V are both nonzero but cancel one
another, and V2 is exponentially small in e. Similarly for z rr. Thus the boundary data
of u-v certainly satisfies the required O(e) estimate.

We have therefore verified the sup norm estimate (A.4). Of course the same
estimate holds in the L2 norm. Moreover, the L2 norm of the boundary layer terms V/is
O(g) because of the shrinking length scale. Thus in L(), v= U+O(gg), which
completes the proof of the proposition.
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A STUDY OF ONE-DIMENSIONAL SCHRODINGER EQUATION
WITH NONLOCAL POTENTIAL*

A. H. NASR

Abstract. For a linear bounded operator Q, it is proved that Cauchy problem

Lq,,-- dz+ +(Qq,,)(x)-s2q(x) q(O)-O, k’(O)-
dx

has a unique solution for Isl greater than a fixed value So which is proved to be best possible. When Q has the
form q(x) + V, where V is a general linear operator with sufficiently small norm, it is proved that this Cauchy
problem has a unique solution for all s. In this case, Green’s function for the boundary value problem is
calculated.

Key words. Cauchy problem, perturbation, Green’s function

Introduction. In quantum mechanics, the state of a particle moving in the interval
[a, b] and interacting with a field of a given potential Q is described by a real valued
function q satisfying the Schr0dinger type equation

(1) ddx-----i.+(Q)(x)-s2(x),
subject to the boundary conditions

+(a)=O,
In most of the literature [I], [2], the potential Q is assumed to tak th vry special

form

(O+)(x)=q(x)+(x),
where q(x) is a given real valued function.

In their book [3], De Alfaro and Regge point out that when the potential depends
not only on the local value at x, but also on the values of the potential at all other
points y, then a natural expression for Q is the following:

(2) (Q/ )(x ) q(x)t(x ) +fabv( x,y)(y ) dy,

where v is a given symmetric kernel. De Alfaro and Regge studied (1) when Q has the
form (2).

The aim of this paper is to investigate this problem, when it is assumed only that Q
is an arbitrary linear bounded operator on a suitable functional space.

Under this general hypothesis, we shall study the Cauchy problem and the two-
point boundary value problem for (1), proving the asymptotic behaviour of the eigen-
values and eigenfunctions and the existence of Green’s function, as well as other
results.

In the sequel, the interval [a,b] is replaced by the interval [0, r] for convenience.

*Received by the editors December 23, 1981, and in revised form September 29, 1982.
tDepartment of Mathematics, Faculty of Science, King Abdulaziz University, Geddah, P.O.B. 9028,

Kingdom of Saudi Arabia. On leave from Ain Shams University, University College for Women, Heliopolis,
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1. Cauchy problem for general bounded potential. Assuming that Q is a linear
bounded operator of C[O, r] into itself, we prove that the Cauchy problem associated
with (1) has a unique solution for sufficiently large values of

THEOREM 1. Let

cos ar
co: max

0<a<l a

Then for real s satisfying Isl> collQII, the Cauchy problem

(3) d2 -(Q)(x)-s2(x) k(0)-0, ’(0)-1
dx2

has a unique solution in C[0,rr]. Moreover, the above lower bound of Isl cannot be
improved, in the sense that there exist equations having no solutions when s--collQII.

Proof. Writing (3) in the form

dx
=0, =0,

and using Lagrange’s method of variation of constants [4], problem (3) may be replaced
by the following equivalent integral equation:

(4) (x) -sinsx
s
_+ls foxsins(x- )(Qk )( ) dt"

Consider the operator A: C[0, rr C[0, rr acting by the formula

(Af )(x)_Sinsx +1 sins(x-t)(Qf)(t)dt.
s s

For this operator,

In the integral

[Af-Agl<_" fo sins(x-t)[ [Q(f- g)[ dt

-< [[Ol----[Is[ [If- ll foX[ sins(x- t)ldt.

I(x)- Isins(x-t)ldt- Isinlsl(x-t)[dt

the substitution Isl(x ) =y, -Isl at: dy gives

[lXlsinyl dy.

Consequently,

max I(x) gl,lsiny dy
O--<x--<r ]
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Let Isl-n + a, where n is an integer and 0<a< 1. Then

_1 /l=l sinyl dyIsl "o n + a fon=[siny[ dy +f(;+’)=[sinyl dy]
n siny dy+ siny dy

( cos ar)2n +
n+a

Consider the function

f(n or) -2n+(1-csar)n+a
From the definition of co we have

1-cosavr_<aco ’q’a[0, 1).
Then f(n,a)<_(2n+aco)/(n+a). Since Co>2 (see Fig. 1), the function (2n+otco)/
(n + a) is easily seen to be decreasing. Hence

2n+acomax co.
n

Collecting these results, we conclude that

max I(x ) <_ co
0_<x_<r

Co

/ "... l--cosar
/

o

2

a-1

Therefore,

FIG.

IIAf_Ae,II< .c.0. IIQII IIf- gll
Isl

If collQll/Isl< (i.e., Isl > c011QII), the operator A would be a contraction and accord-
ing to Banach’s theorem of contraction mappings, it has a unique fixed point k which is
the solution of (4) and, consequently, of (3).



462 A.H. NASR

To prove the second part of the theorem, consider the operator

(Qq ) (x ) --o ,( rr ),

where ao is the point at which the maximum of the function (1- cos arr)/a is attained
(it is easy to see that O<ao< 1), i.e.,

(5)
COS aorr

=Co.to

It is quite clear that IIQII ao/Co and hence the critical value of s equals ao. Now
consider the problem

(6) "+aq-o(rr), q(0)-0, ’(0)-1.

Putting ao(r)/co =# and substituting into (4), we have

q(x)
sinao_______x +__o sinao(X_t)dt -sinaox
O0 O0 t0

I- a- (1 cos aoX ).

Applying the operator Q on both sides gives

sin aorr 0+ (1 cos aorr ).
C0 t0C0

Using equality (5) gives

which is a contradiction.
This proves that there does not exist any solution of problem (6).
THEOREM 2. There exists a number M= 1/(collQIl(a- 1)), such that, for all real s in

the region

G- coil Pll - So, > },

Proof. For real s, it follows from (4) that

Isl

or

IIq ll <
I 1- CollQII collQIl( - 1)
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2. Cauchy problem in the case of small nonlocal perturbation. In this section we
show that if Q has the special form

(Qq)(x)-q(x)q+ (vk)(x),

where q is a continuous function and V a linear operator of C[0, r] into itself with a
sufficiently small norm, then the Cauchy problem has a unique solution for all values of
s (this includes the case of a pure local potential when V= 0).

THEOREM 3. For {IV[I< 1/W 2" e r2llqll, the Cauchy problem

(7) d26
dx 2

-q(x)/(x)+(Vq)(x)-s2q(x), k(0)- 0,

has a unique solution in C[0, r for all values of the realparameter s.

Proof. Write the equation in the form

dZq +sZ+(x)-q(x)t(x)+(Vq)(x)
dx 2

Using Lagrange’s method of variation of constants [4], problem (8) is reduced to
the equivalent integral equation

(8) k(x)=
sinsx+fos sins(x-t)s q(t)(t)dt+fo sins(x-t)s (V)(t)dt
sinsx:-+(+)(x) + (+)(x),s

where

(A4,)(x) =fo sins(x-t) q(t)/(t)dt
S

(Bq)(x) =fox sins(x-t)s (V)(t)dt.

(for s-0,put (sins(x-t))/s-(x-t), (sinsx)/s-x).
For all s, the following estimates hold"

(9) sins(x-t)s lsllx-tllsl "
Consequently,

IIll-<f0"
i.e. Ilnll_<r=llVII.

Now it will be proved that

(10)

sins(x--t) at, v311111211 vl IIll,

r-0, 1,2,. .,
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in fact (using (9)) we have

By mathematical induction we prove that

X(11) I(a)(x)l<_rllqllllll.
Let (11) be true for some integer r; then

iA+,qjl__lAArqjl=fo sins(x-t)s q(t)(Ar/)(t)dt

<__foXl sins(x- Iq(t)llArldt

x xr+’llqllrllqllrllll trat--(llqll)/’llll (;-i-)t

Hence (11) is true for all r.
From (11) it follows that

Ilarll<
(r2[Iqll)r

I111r!

from which (10) follows.
Returning to (8) and writing it in the form

sinsx(e-)-+B,
s

we see that it is equivalent to the equation

(12) q,,-(E-A)-’ sinsx-(E-A)-lB+-q)(x)+ , ArB-q)(x)+Lq,’,
S r=O

where

p(x)-(E-A)-’ sinsx
and L- E AB

S r--0

(the series in (12) converges due to the estimate (10)).
Again, writing (12) in the form

(e-L)-r(: ),
and remarking (using (11)) that

IILII IIArll IIBII IIBII ’r=O r=O

(rllqll)
r!



SCHRODINGER EQUATION WITH NONLOCAL POTENTIAL 465

from the conditions of the theorem it follows that IILII < 1. Hence the inverse (E-L)-1

exists and -- (E_L) -l

r:O

3. Spectrum of the boundary value problem. Here we study the spectrum of the
operator L-- -d2/dx2+ Q in the case where Q is a linear bounded self-adjoint opera-
tor in L2(0, rr). The domain of definition consists of all twice differentiable functions
k L2(0, rr) satisfying the boundary conditions k(0)= (r)=0. It is easy to see that L
is a symmetric operator and thus its spectrum consists of real values only.

THEOREM 4. The operator L has no continuous spectrum.
Proof. Let A -d2/dx2 with the same domain of definition as L. The operator A

is positive definite and has an inverse A- acting by the formula

( A f)(x ) :long(x, t)f(t) dt,

where

{x(t-rr),g(x,t)-- t(x--r),

It is clear that A-1 is a complete continuous operator. Hence A-Q is compact, i.e., Q
is relatively compact with respect to A (see [5]). From the generalization of Weyl’s
theorem of relative completely continuous perturbations [5], we see that the continuous
spectrum of L-A + Q coincides with that of A, which is empty.

Now, consider the eigenvalue problem

(13) dg-k
dx

t-Q-s2, (0)-q(r)- 0.

THEOREM 5. The eigenvalues S 2 and the corresponding eigenfunctions (x;s) of
problem (13) have the following asymptotes for real s:

(x s ) sin nx + O -where n is an integer.
Proof. Let (x;s) be the solution of problem (3). From 1, (x; s) satisfies the

integral equation (4) and the first boundary condition of (13). To obtain the eigenvalues
of problem (13), we assume that (x; s) satisfies the second boundary condition in (13),
i.e.

(14) sinsr+ sins(rr-t)(Q/)(t)dt-sinsrr-R(s)-O.

The roots of this equation are the eigenvalues of problem (13). Now, we obtain the
asymptotic behaviour of the roots of (14) as s - . Using Theorem 2, we have

Isl-2collQIl
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Hence,

[R(s)I_< IIQll isins(r_t)ldt< =0
Ixl- 2Coll ll -I l- 2coll ll x

Therefore, for sufficiently large values of Isl, the quantity R(s) can be made enough
small such that the curve y=R(s) intersects the curve y--sinsr at points lying in the
neighbourhood of the roots of the equation sinsrr=0, i.e. in the neighbourhood of the
natural numbers. In fact, let s,--n + i, be a root in the neighbourhood of the natural
number n, then

, + -o -ff i.e., 8,-O

This means that the roots s, of equation (14) have the following asymptotes.

(1)s,- n + O for largen.

Substituting these in (4), we get the asymptotes of the eigenfunctions (up to a multi-
plicative constant);

(x s,, ) sin nx + O -nl ) as sn .
Finally, we explicitly calculate the Green’s function associated with problem (13), when
Q has the special form

(O)(x)=q(x)g,(x) + (V+)(x)

and V is a linear operator of L2(0, ’) into itself with a sufficiently small norm.
THEOREM 6. If zero does not belong to the spectrum of L0=-d/dx+q(x), then

for sufficiently small (in norm) V, the problem

(15) Lo++V4,=f, q,,(0)=0, 4,(r)=0, fL2(0, )

has a unique solution in L2(0 "/r ) which can be expressed in theform /(x) fk(x, t)f(t) dt
( k(x, ) is the Green’s function for the problem ).

Proof. Let g(x,t) be the Green’s function for the operator L0 provided with
boundary conditions q(0)--q(rr)--0 [4] (it exists due to the assumption that zero does
not belong to the spectrum). Consequently, problem (15) is equivalent to the integral
equation

(16) (x)= g(x,t)f(t)dt+ g(x,t)(V/)(t)dt-Gf+(GV)/

where

Gf fo’g( x, )f( ) dt, (GV)4, g(x,t)(V/)(t)dt.

Equation (16) may be written in the form

(17) ,(e-av),=af
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If IIGVII < (this can be satisfied if IIVII < 1/IIGll), then the inverse (E-GV)-1

exists (see [3]) and the solution of equation (17) is given by

(18) -(E-GV)-IGf X (GV)rGf E Irf
r=0 r-----0

where

Rr-(Gv)rG !GV)(GV)... (GV!G.
r-times

Since G and V are symmetric operators, R iS also symmetric, and acts by the
formula

(rf)(x) g(X,Xr)V g(x,xr--)’’" g(x.,Xl)V, g(xl,t)dtdXl’"dxr

(V,.- V acting on the argument x).
From the linearity and continuity of V and using Fubini’s theorem, the last

equality may be written in the form

(Z)(x)= g(x,x)g(x,x_)

r-times

"g(x2,Xl)Vx, g(xl,t)dXl"" dx f(t)dt,

i.e., the function

Ir(X,)- g(x,xr)gxrg(Xr,Xr_l) g(X1,X)gx,g(Xl,l)dXl" dx

is the symmetric kernel of the operator/.
Put

2
r=O

From the condition IIGVII< 1, it follows that the last series converges uniformly. Hence
(18) takes the form

/(x)=fo’K(x,t)f(t)dt.
Consequently, the function K(x, t) is the Green’s function for the operator L.
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A JUSTIFICATION OF THE KdV APPROXIMATION
TO FIRST ORDER IN THE CASE OF

N-SOLITON WATER WAVES IN A CANAL*

ROBERT L. SACHS"
Abstract. We consider the Euler equations for a perfect fluid in a flat-bottomed canal in the time-depen-

dent case. A formal expansion procedure for small amplitude, long waves analogous to that of Friedrichs and
Hyers for solitary waves is developed and leads to the Korteweg-de Vries equation (KdV for short) for the
lowest order term. The higher order terms in the expansion satisfy the inhomogeneous version of the
linearized KdV equation.

Of particular interest to us are those solutions of the KdV equation called N-solitons, which asymptoti-
cally separate into N travelling waves with distinct speeds. Using certain facts about the linearized KdV
equation and some properties of the N-solitons, we prove that the next term in this expansion can be uniquely
specified by certain asymptotic conditions and a symmetry requirement. This solution behaves like an
N-soliton; asymptotically, it separates into N travelling waves with the same speeds and phases as those of
the leading term.

AMS-MOS subject classification (1980). Primary 76B15; 35Q20; 35C05; 35G30

Key words. Euler equations, Korteweg-de Vries equation, N-solitons

1. Introduction. The Korteweg-de Vries equation (KdV for short) was originally
derived in 1895 as an approximation for fluid flow in a flat-bottomed canal [14]. This
nonlinear evolution equation for a function of one space variable has the rather
remarkable property, discovered by Gardner, Greene, Kruskal and Miura [10], that it
may be solved more or less exactly. In fact, a Hamiltonian structure can be introduced
and the KdV equation may be regarded as a completely integrable Hamiltonian system.
One very interesting class of solutions is the set of so-called N-solitons. These solutions
behave, for large positive and negative times, like N exponentially decreasing "bumps"
moving at distinct speeds. A natural question to ask is whether such "N-tuple waves"
exist for the full set of Euler equations governing the fluid flow in a canal.

For N-- 1, such wave solutions, known as solitary waves, do in fact exist [3], [4],
[9]. In [9], Friedrichs and Hyers gave a formal expansion procedure for the Euler
equations in which a time-independent form of the KdV equation arose as the equation
satisfied by the lowest order term. The higher order terms of their expansion satisfied
the inhomogeneous form of the linearization of the nonlinear ordinary differential
equation for the leading term. With a symmetry condition added to the requirement of
exponential decay, this equation could be solved uniquely. After reformulation of the
problem, the convergence of this formal solution was shown by the implicit function
theorem. Later Beale [4] simplified the argument by using a generalized implicit func-
tion theorem due to Zehnder [26]. In both of these approaches, the time-independent
nature of the problem is relied upon from the beginning.

If we attempt to generalize these results to N-solitons for N_>2, the problem
becomes unavoidably time-dependent. An essentially trivial step in both approaches to
the solitary wave problem, namely inverting the linearized KdV operator, now becomes
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tion under grant MCS-77-01986, and in part by an American Mathematical Society Postdoctoral Research
Fellowship.

Mathematics Research Center, University of Wisconsin-Madison, Madison, Wisconsin 53706.
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a serious difficulty. Constructing a formal solution which behaves like an N-soliton
requires solving the inhomogeneous linearized KdV equation with prescribed asymp-
totic behavior. We do this for the first order correction to an N-soliton by using the
explicit form of the inhomogeneous term. For higher order corrections, the existence of
some solution is guaranteed by Duhamel’s principle and the solvability of the Cauchy
problem for the linearized KdV equation [20]. However, in such an approach, initial
values (say at t=0) "parameterize" the set of all solutions, and we cannot as yet single
out those solutions with the desired asymptotic behavior. Indeed, such a procedure
might conceivably be doomed to fail. The nonlinear interaction of the different wave
modes might lead to the annihilation or creation of "soliton modes", so that an
N-soliton solution for large negative times might end up as an N-+N’ soliton for large
positive times, with different soliton speeds and amplitudes, and a dispersive wave train
might be created in the process. The result presented here shows that this possibility
can be made to occur as at best a second order, effect, if at all. Recent numerical studies
by Fenton and Rienecker [7b] and Mirie and Su [17a] seem to indicate that the
interaction of two solitary waves does not generate further solitary waves nor an
exceedingly large oscillatory wave train. They do find a change in the wave speeds,
however. In any case, analysis of the full expansion and a proof of the convergence are
not known to date.

In this paper we present the following results:
(i) The time-dependent analogue of the formal expansion of Friedrichs-Hyers [9]

is developed. For perturbations of a steady horizontal flow with Froude number near
which are of small amplitude, long wavelength and slow time variation, we consider a
formal power series solution of the Euler equations. The small parameter e is related to
the Froude number. As in [9], the leading term satisfies the KdV equation and the
higher order terms satisfy the inhomogeneous linearized KdV equation. However, in
this case, both of these equations are time-dependent.

(ii) Using results on the solvability of the Cauchy problem for the linearized KdV
equation [20] and certain facts about N-solitons, we analyze the first order term
completely. In particular, we show that this term is uniquely determined by the follow-
ing conditions:

(a) (symmetry) u(x, ) u( x, );
(b) (asymptotic decay in moving frames) u(ct+,t)- 0 exponentially fast as t-

+ oo for fixed unless c=cj, j= 1,...,N where (cj) are the N-soliton speeds;
(c) (asymptotic shape) lim/ u(cjt+l,t) is an exponentially decreasing function

of.
This is the sense in which we use the term "justification" in the title of this paper.

The first order correction to the KdV N-soliton, as chosen above, does not alter any of
the essential features of the solution. After a long time, the water wave decomposes into
N travelling waves with distinct speeds, each of which is exponentially decreasing in
space when viewed from the appropriate moving frame of reference. The speeds are
unchanged but the wave shapes are altered slightly.

Our result is most directly analogous to the expansion of Friedrichs and Hyers [9]
for the solitary wave. Subsequent expansions of solitary waves have used the wave
amplitude at the crest as small parameter rather than some measure of the supercritical-
ity of the flow at oo (i.e. the Froude number). These papers, such as [7a] and the
references therein, obtain uniform asymptotic expansions at the expense of expanding
the Froude number in powers of the small parameter. In light of the successful proof of
convergence of the Friedrichs-Hyers expansion [4], [9], the nonuniformity of this
expansion is not as undesirable as it might seem. The reason for this may be seen by
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contrasting "soliton perturbations" with the classical Poincar-Lindstedt perturbation
theory for periodic solutions. Translation of a single soliton leads to a term of the form
sech2 fl tanhfl, which might be termed "secular". But this nomenclature may be

misleading since in such a term the linear growth is overwhelmed by exponential decay,
unlike the classical secular terms cos t of Poincar-Lindstedt type.As mentioned in
4 below, terms resulting from variations in the soliton speeds are linearly growing
modes in a particular moving frame and may be regarded as truly "secular".

The paper is organized as follows. Section 2 contains the time-dependent analogue
of the formal expansion of Friedrichs and Hyers [9]. The basic facts concerning the
Cauchy problem for the linearized KdV equation are presented in 3. Explicit solva-
bility for this problem is rdated to the so-called inverse scattering method for solving
the KdV equation [10], [20]. Using certain facts about N-solitons, which we present in
the Appendix, and the particular terms arising in the expansion of 2, the first order
correction to the N-soliton is analyzed in 4.

2. The Euler equations, the KdV limit and a formal expansion. In dimensionless
variables, the Euler equations for a perfect fluid in a two-dimensional, flat-bottomed
domain/9, with a free boundary y= F(t,x) as upper surface, subject only to gravita-
tional acceleration g are (cf. Stoker [22]):

(2.1) (i) fxx--dyy--O in D=((x,y)’O<y<F(t,x)},
(ii) y-0 alongy- 0,

(iii) /+1/2(x2+y2)+3,y-constant alongy-F(t,x),
(iv) Ft+,x’Fx-%-O alongy-F(t,x)

where --(x,y,t) is the velocity potential and 3’=--gh/U2 where h is the length scaling
and U is the velocity scaling. 3’-1/2 is called the Froude number or reduced depth and
is a parameter of the problem. The linear theory of water waves [22] predicts 3, 1,
while the existence of solitary waves occurs for 3’< but sufficiently cloSe to 1. From
now on, we assume

(2.2) 0< 1-3,<<3,< and in fact, we define a small parameter e by 3’--e-3e.

In this section, we will consider flows which are very nearly the trivial flow of
constant horizontal speed given by the solution --x, F-- 1, 3’-- of (2.1). Introduc-
ing auxiliary variables ’, ,/’ which vary over a fixed horizontal strip 0<r/’< 1, we may
eliminate the unknown free surface at the expense of defining x, y as functions of ’, !’,
t. In steady .flow problems, does not appear and ’+i,/’ is usually the complex
potential function, but for time-dependent problems, we express both the potential
function and the physical coordinates x, y in terms of ’, r/’ and t. Provided the
mapping (’,,l’)(x,y) is invertible for every t, solving the problem in the ’, rf plane
is equivalent to solving the original system in the x, y plane. In the neighborhood of the
trivial horizontal flow, this mapping is roughly the identity map; hence it will be
invertible.

After expressing the problem in these new independent variables, we will introduce
a new dependent complex variable, ’-iO’, defined as the logarithm of the complex
velocity W (W=--x-iy). By differentiating with respect to ’ along r/’= 1, is
eliminated and a new system of equations for x, y, ’, 0’ is obtained. Defining a small
parameter a=--el/2, we rescale the independent variables ’, r/’, and the small depen-
dent variables ?x’, O’, x’---x-’, y’--y- r/’. The system (2.1) in the rescaled variables, ,
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,/, r and , .9, ,, 0 respectively, becomes:

(2.3) (i) (1/2._i.)()__iEI/2)))--(El/20__.+.i. )(__iE1/20)
=0 in0<<l

(scaled Cauchy-emann equation),

(ii) 0-0, i-0 along

+eZeaA,+ e-3*-0 along- (Bernoulli’s law),

(iv) e%os,3/O)-e*(l+,,), sin(/0)
e3/2

+,y,+,(y,-,y)-0 along-

(free boundary streamline condition).
We proceed to derive system (2.3) below and then discuss a formal expansion

procedure using power series in e.

2.1. Refoulation via a confoal mapping. Introduce complex variables into
(2.1) as follows: z=x+iy, F(z,t)=(z,t)+i+(z,t). The complex velocity W(z,t)
Fz(z,t)--iy, so Re W=x, the horizontal velocity, and -Im W=y, the vertical
velocity. Since we are considering flows near the trivial one, for which the free surface
is F(t,x) 1, we assume that there efists a complex variable ’-’+ i’ defined on the
fixed strip ((’, ’)10<’< } and a conformal mapping z- z(’, t) such that the
boundaries of the flow domain, y-0 and y-F(t,x)(where y-Imz), correspond to the
boundaries ’-0, ’- respectively.

Given the existence of such a mapping, we define new dependent variables im-
plicitly"

(2.4) f(’, t) F( z(’, t), t),
w(’,t)-W(z(’,t),t) so that

Thus f’ derivatives of f are expressible in terms of w and . Substitution in (2.1) and
differentiation with respect to ’ along ’-1 yields a system with w, as dependent
variables, namely:

(.5) (i) w(f’,) and(f’,t) are holomohic functions of f’ in0<Imf’<l,
(ii) Imw 0, Im 0 along ’ 0,

(iii) Re(w,-w,)+(Iwl),+Im(,)-O along

(iv) Im(z,/z,)+Im(w/,)-0 along n’- 1.

(This last condition comes from the relations Fx=y,/x, F=y-xy,/x, on- 1.)
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It is convenient to replace w by ’-iO’, defined by the relation

(2.6) w-eh’-iO’.

This substitution was introduced by Levi-Civita [16] in the periodic case of infinite
depth; it has the virtues of simplifying the Iwl differentiation, ensuring wv0 for any
solution and making h’-iO’ =0 the trivial flow. Upon substitution, we obtain

(2.7) (i) z(’,t), (h’-iO’)(’,t) are holomorphic in " forO<Im"<l,
(ii) O’ O, y- 0 along rl’ O,

(iii) Re(eX’-i’[(X’t-iO:)z,-(X --iOi,)zt])+e2". +3,Imz,--0 along

(iv) Im(zt/z,)+Im(eX’-io/,)-O along/’=l.

We note that this is a system of equations for two holomorphic functions on a strip
which are real for " real (the bottom) and satisfy a pair of coupled nonlinear time-de-
pendent boundary conditions along the top of the strip. Kano and Nishida [11] used
essentially the system (2.5), along with some basic facts about harmonically conjugate
functions on a strip, to obtain a nonlinear expression for the t-derivatives of x and
along ’- 1, for which a solution will exist to the Cauchy problem for small times (see
also 19]).

We will now consider a particular limiting case of system (2.7) corresponding to
long wavelength, small amplitude waves of slow time variation and will obtain the
Korteweg-de Vries equation in the limit. We assume that, as I’1 , ,’--iO’0 and
zV-, 1, so the perturbations from the steady flow vanish asymptotically. The limiting
case is given by the following rescaling;

Define new independent variables

(2.8) I- al’, *1- rf "r-- a3t, where az- e,

and new dependent variables g, 9, O, , by

(2.9) aYc(,rt,z,e)-Re(z(’,t))-l’,
a2f(j, r/, -, e) Im(z(", t))

a-h(,n,z,e)-h’(’,t),
a30( l, rl, ’, e) O’(’, ).

Substituting these variables into the system (2.7) gives system (2.3) above, which
we have therefore derived.

2.2. A tormal solution procedure. If we consider the system (2.3) and assume
expansions for , 0, , .9 of the form

(2.10) ,(,/,’,e)= 2 ’(J)(,,z) eJ,
j=O

Z
j=O

2
j=O

E
j=O
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then (2.3)(i) implies the system

(2.11) X’{) + 0(J) 0, (J’) -+ 0J- 1) 0,

In particular, A(,)-0; (n)-0. From the boundary condition (2.3)(ii) on 0,
this implies

,(o)_ ,(o) (,, ), (o)_ (o)(,, ),
(2.12) o()--x()(,)n, ()-I)(,),
SO

:,,(f,,)-,:+ ,,),
.(1)(, ,/, T ) )(, 7)2+ p(l)(, T ),
0(1)(. ,. ) (.,)3_ QI)(. ).
f(l)(, ,,, ) ?, (,,), +vl(,,),.

Proceeding inductively, with Q(0) (o), p(o) .2(o), we have

(.l) X((,n, r) (- 1)n (-(,)
j=o (2j)

=o ()

with similar expressions for 0 (j), .9 (j) involving odd powers of and 0/0.
Thus if h(J), j<k, are known, and similarly for (J), there are two unknown

functions P(*)(, ), Q(*)(,,) which arise in terms of order e* and gher. Substituting
these series (2.13) into the two boundau conditions at = 1, namely

Afe 2*x + e- + e*Acos(e3/20)[cA.+e2(.--) + e3( 0.f- 0ff. )]

+ sin(e/z0)e3/2 [-e0.+*4(X.,-X,.-0.,+ 0,.1] } -0
along

and

.9 cos(e3/20) (1 +e) sin(e3/20) + e
e3/2

-X(efi, + eE(..9 fi ) ) O along/-1,

we obtain, setting e-O,

(2.14)

from each equation.
Terms of order e in the boundary conditions set /= are

(2.15) h( + 2h()h( +))’) 3f)+ h(o) O,

fil)_ 0(1)_ .I0)0(0)

__
f,r(0)- 0,
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which imply

1/2QtO)t + Qt) + 2Q()Qt)--P(t +P)-3P + Q)- 0,

p( +/-p(O) Ot,)+ ? O QtO + o

so that P(+ Qt is known in terms of Q(o), p(o and drops out upon subtracting these
two equations. If we integrate (2.14), we have Q(o + p(o)_ 0 (by boundary conditions
Q(o), p(o) 0 as 11 - o), so that the two boundary conditions for order e imply:

(2.16) 2O?) + 3Q()QI) + 3Q)-1/2QI-O,
which is a form of the KdV equation.

Remark. The formal expansion of Friedrichs and Hyers [9] for the solitary wave
has the time-independent form of (2.16) as the equation for the leading term.

If we pick any Q(O) satisfying (2.16), we obtain p(O) by integration, since p(O)_
Q(O), if we add the normalization P()(0)= 0.
The order e terms in the boundary conditions yield two equations of the form:

(2.17) Xe)+ 2X(o)x-,)+ 2X(k-,)X)+.9) 3-,)+X(-1)_ Rk_2
)3( k)__ [9 k)__ )t0)0(k-1)_ )tk-1)0(0 .__ if, k-1)- Sk_2

where Rt, St (and later/_t, t) depend only on P(J), Q(J) forj_< 1.
Thus pk)+ Qt)_Rk_l and again, by subtraction,

(2.18) 2Og-l)+ 3(O)Ok-l))+ 3ok-1)_ O1)-- k--2
where we used p{k-l)+ O-l)_g_ to elinate 2k-)in (2.18). Inductively, we find
a formal solution using the power series (2.13) by solving (2.18) for Q-) and then
obtaining pk-)by the relation Pk-)+O-l)-g_2.

In particular, the terms of order e in the boundary conditions are, in the notation
of (2.10) above,

(2.19) (i) )+y2)+ 2X(o)x)+ 2h()h(l)_ )y}l)+ ()

(ii)

+yt’) + o.

Upon substituting (2.13) and using the equations derived for the lower order terms,
subtraction and some algebra yield the linearized KdV equation for Q), namely,

(2.20)

2Q’)+- QI) 3Qt)Q(’)- 3Qt) 3Q(O)Qtl)
1___9 Qt) + 5 9 5 )2
180 - Qt)’ - Qt) + Qt)Qt) + - Q()Qt)’+- (Q() QtO).
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The nontrivial step is solving (2.18), the linearized KdV equation with inhomoge-
neous terms. For water wave solutions of the system (2.3) which behave like N-tuple
solitary waves, we would choose for ,0 an N-soliton solution of the KdV equation and
then solve (2.18) with this ,t0, seeking solutions with the appropriate asymptotic
behavior.

For the remainder of this paper, we consider the linearized KdV equation. As we
have seen, it arises in the study of small amplitude, long wavelength, slow time
variations of a steady flow of a perfect fluid over a flat bottom with Froude number
near 1. If we seek solutions describing a "nonlinear superposition" of N solitary waves
of distinct speeds, the first approximant will be an N-soliton solution of the KdV
equation, and the higher order corrections will satisfy the inhomogeneous form of the
linearized KdV equation (linearized about the N-soliton).

We shall consider the Cauchy problem for the linearized KdV equation. By
Duhamel’s principle, this amounts to solving the inhomogeneous equation. By the
change of variables,

(2.21) X-9T=I, -6T=z, q(X,T)=--,(l,r)
we obtain the usual form of the KdV equation:

(2.22) qr+qxxx-6qqx=O.

We note that the r-independent solution of the KdV equation is a function of X-9T;
this gives the one soliton with speed 9, which explicitly is 2(0)_- 3sech2( ), the first
order term in the expansion of Friedrichs and Hyers.

In the remaining sections, we shall use the letters x, y, t, u, v etc. for meanings
other than those of the above section. Since these different meanings occur in separate
places, this should cause no confusion for the reader.

3. Some results on the Cauchy problem for the linearized KdV equation. In this
section, we summarize the results of [20] regarding the Cauchy problem:

(3.1) ut+Uxxx--6(qU)x--O, u(x,O)--dp(x),

where q(x, t) satisfies the KdV equation

(3.2) qt+ qxxx-6qqx=O.

By Duhamel’s principle, the inhomogeneous form of (3.1) is solvable if the Cauchy
problem is.

In [20], an explicit formula for the solution of problem (3.1) is given, using certain
functions arising from the SchriSdinger equation,

(3.3) -f"(x,k,t) + q(x,t)f(x,k,t):k2f(x,k,t),
where the potential q(x,t) satisfies:

(3.4) f (1 /x2)lq(x,t)ldx< for every fixed.

The fundamental discovery of Gardner, Greene, Kruskal and Miura [10], later for-
mulated abstractly by Lax [15], is that if q(x, t) evolves according to the KdV equation
(3.2), the spectrum of the SchrOdinger equation (3.3) is fixed and the associated
scattering data evolves in a simple way. We shall use this information below, but first
introduce some notation and basic facts about the scattering theory for (3.3). This
information (and much more) may be found in [7].



476 ROBERT L. SACHS

Let f_ (x, k, t) denote the Jost solutions of (3.3), i.e.

f+(x,k,t)e

f_(x,k,t)e

ikx+4ik3t

-ikx-4ik3t

as x--, +, fixed,

as x , fixed,

and both satisfy (3.3). We define the transmission coefficient, T(k, t), in terms of the
Wronskian off+, f_ as follows"

(3.5)
T(k,t- 2i [f+ (x,k,t), f_(x,k,t)]

f_ (x,k,t)f_ (x,k,t)-f’__ (x,k,t)f+ (x,k,t)
2ik

(We shall always use the notation: ’=O/Ox, "=O/Ok.) It is not hard to show that
T(k, t) T(k) is independent of and that under the normalization of f+, f_, T(k) is
meromorphic in the upper half-plane Imk>0 with poles at k--ifl2, j= 1,...,N, where
each energy -/is a bound state energy for (3.3). N is finite by a classical estimate
involving f_(1 + [xl)lq(x)[ dx< oo. T(k) is also continuous and nonzero for real k =/= 0.
For notational ease, we introduce forj= 1,...,N the following pair of functions:

(3.6)

where

Fa.( x, ) f 2+ ( x, flj, ), Gj(x,t)-cjf+(x,iflj,t)’gj(x,t)

&(x,t)=-[ f_(x,k,t)- f-(x,ik,t)
f+(x,iflj,t)

f+(x’k’t)

and c. is chosen so that f_ F:(x, 0)G2(x, 0) dx forj 1,.-., N.
The principal result of [20] is the following:
THEOgEM 3.1. Suppose q(x, t) satisfies (3.4). Ifck(x ) is continuous and integrable, the

solution of (3.1) (in the sense of distributions) is given by:

t)f _(y o)(3.7) u(x,t)= m4rrik m

-f(x,k,t)f(y,k, 0)] (y)dy}
N

[,(x, )G,( y, O) Gj(x, )(y, O)] ,( y ) dy.
j=l m

For a proof of this theorem, see [20].
Remark. It is known ([10, Thm. 3.6] or [20]) that the functions )’(x, k, ),

Y(x,t), Gj(x,t) all satisfy the lineafized KdV equation (3.1). The formula for u(x,t)
resembles the Fourier decomposition of (x), where the derivatives of the squared
eigenfunctions replace the usual exponentials and the presence of a nonzero potential
q(x,t) can lead to the discrete terms Y(x,t), Gj(x,t). In fact, when q(x,t)=O, (3.7)
reduces to the usual Fourier transform solution of the Cauchy problem

(3.8) v(x,O)-,(x),
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namely

(3.9) v(x,t)=---ff dk.e 2’gx+8’k3t e-2gYd(y)dy

since for q--0, T(k)----- andf+_(x,k,t)=e +-{ik+4t.
Noting that the solution u(x,t) given by (3.7) consists of two pieces--a discrete

sum and an integral--we analyze them separately. The sum corresponds to variations
in the soliton part of the function q(x,t) and decomposes into travelling waves with
positive velocities as becomes large. For the water wave problem of 2, these terms are
of considerable interest. The k-space integral part of (3.7) forms a dispersive wave train
and will be seen to behave like the solution v(x,t) of the Airy equation (3.8). In
particular, for initial data which is somewhat smoother and more rapidly decaying than
was assumed in Theorem 3.1 above, we show that this part of the solution u(x, t) is
smoother for t>0 but, as x + -oo, it decays less rapidly. We present these results for
linearizations about N-soliton solutions of the KdV equation. Similar analysis applies
for a more general class of Kd solutions satisfying (3.4); we omit such a discussion for
the sake of brevity and restrict our attention to the N-soliton case.

Slower decay as x+-oo for t>0 occurs because of the dispersive nature of the
oscillating solutions (d/dx)(f.2 (x, k, t)) of the linearized KdV equation (see [25] for a
general discussion of dispersive waves). In particular, the asymptotic behavior of
f,2 (x, k, t), as x __+ c respectively, is given by the exponentials e -+ io(x, k, t), where we
define

(3.10) O(x, k, t) 2kx+ 8k t.

Indeed, we write f+(x,k,t)--eikx+aik3tm+(x,k,t), f_(x,k,t)--e-ikx-4ik3tm_(x,k,t)
with limx_. +oom+-limx__oom_-1. These waves propagate with a negative velocity
-4k2 so that waves with large wave numbers contribute to the solution near x--oo
almost instantaneously.

The same exponentials, e-, form the solution of the linearized equation for q-0
(see (3.9) above), namely

vt+Vxxx-O,

as is seen by Fourier transform, and arise in the asymptotics of f2.(x,k, t), which, by
the trace formula of Deift-Trubowitz [7], lead to a solution of the full KdV equation

(3.11) qt+qxxx-6qqx-O.

(In [7], q(x, 0) is written as an integral over the real line in k:

(3.12)
N

q(x,O)=f? 2ikR(k,O)f2+(x,k,O)dk+ , ajfj2(x,iflj,O)
oo71" j--1

An approach to the KdV equation itself using (3.12) will appear in a subsequent paper
by the present author.) The smoothness and decay properties of the solution of the
Cauchy problem for the KdV equation were analyzed by Tanaka [24] and later Cohen
Murray [5] using Faddeev-Marchenko inverse scattering theory rather than the then-
unknown trace formula (3.12); asymptotic analysis of the KdV equation also appeared
in [1 ], [2], where the more delicate regions x/t-O(1) as t-- + oo were also discussed in
the absence of solitons.
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Our analysis for the linearized KdV equation proceeds in direct analogy with (3.8);
the chief difference is the presence of extra factors multiplying the exponentials and
their derivatives, which must be considered in all arguments. The techniques used will
be primarily integration by parts and stationary phase analysis. In the limits we
consider, the stationary phase points may tend to --+ o, which complicates matters
slightly. As in [5], we will work in a shrinking neighborhood of the stationary phase
points, whose size is proportional to a small negative power of Ixl, This variation of the
usual stationary phase argument [8] is used to control the error terms arising at the
stationary phase points. The smoothness argument relies on the observation [5] that for
t>0, we may rewrite the x-derivative of in terms of the k-derivatives of/9 as follows:

(3 13) (Ox)E-4k2-Ok6t 3t

We will use this to re-express Ux as a function which is smoother than Ux might
otherwise appear to be.

Our results are summarized in the following theorem:
THEOUM 3.2. Assume q(x), the initial data for the linearized KdV equation (3.1),

has four continuous derivatives and that, for somefixed l>_ 4,

( d) L(3.14) (l+[xl’) (x) forO<_a<_4.

Then, in the case when q(x,t) is an N-soliton solution of the KdV equation, u(x,t),
defined in (3.7) above, has the followingproperties:

(3.15) (i) u(x,t) isaclassicalsolutionof(3.1)fort>Owithu(x,O)=q(x);
(ii) O;O]u(x, t) is continuous for t> 0 for all nonnegative integers r, s satisfying

3r+s<_21+2;

(iii) limx_.+olu(x,t)-x’[=0, t>Ofixed;

(iv) Ix[9/41u(x,t)l is bounded as a function ofx for t>O fixed (even as

(v) [u(ct+8,t)[t/ is boundedfor c<0 as t +, 8 fixed.

The proof of Theorem 3.2 is given in the three lemmas below, in which the
smoothness and the limiting behavior are discussed separately. Proofs of some of these
facts are deferred to the Appendix. First, we present some facts concerning the Jost
functions f___ (x, k, t) in the N-soliton case, where we choose the phases of the waves so
that q(-x,- t)= q(x, t). (Recalling the scaling done in 2, we see that this normaliza-
tion is reasonable.)

The explicit form of the N-soliton leads to an algebraic expression for the Jost
functions (see also [6]). In the proof of Theorem 3.2, we shall exploit certain properties
of these functions, which we state here and prove in the Appendix. Define, for j-
l,- -,N,

j odd,
(3.16) j=x-4flt, - sinh(fl), j even,
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and consider theNN Wronskian determinant (in x):

(3.17) w(x,t)--det

In the Appendix, we show w(x, t)>0. The N-soliton solution of the KdV equation is
given by

d -(3.18) q(x, ) 2--log w(x, )
dx

while the eigenfunctions f_+ (x, k, t) are given by the ratios

(3.19) f+__(x,k,t)-

where WN/ is the (N+ 1) (N+ 1) Wronskian determinant. Writing f+__ (x, k, t)
m +_ (x, k, t)e +-- iO(x, k, t), we deduce the following properties of the factors m __+ (x, k, t)
from (3.19):

(3.20) (i)

(3.21)

(ii)

(iii)

(iv)

m__+(x, k, t) are rational functions of k. Their denominations and
numerators are polynomials of degree N in k; both denominators are
in fact precisely H_,(k+ ifl) while the numerators are polynomials

N--I
j--I

kin+hi (x,t)k + +4_l(X,t)k+A(x,t) where each coeffi-
cient A(x,t) is a rational function of (e#} which is bounded. The
denominator of each A(x, t) is w(x, t), which we show in the
Appendix is a sum of terms exp(X-i ejfljj) over all possible choices
ej- +- with positive coefficients for each term.
(d/dk)m +_ (x, k, t) is a rational function of k which decays like Ikl- 2 as- m+_(x,k,t)-

ii
so all x-derivatives of m __. decay like Ikl- as Ikl-’ .

k+iflj
We also have" T(k)= II

j= k-iBm"
F:(x, t) and G](x, t) are real analytic in x, and for fixed t, they decay.
exponentially fast as Ixl (see Appendix).

By (3.21), all the smoothness and decay properties of Theorem 3.2 are satisfied by
Ff(x, t) and Gj(x, t). Therefore, we consider the function a(x, t) given by"

(3.22)
ft(x,t) =_f T2(k)4rik -d {f2+(x,k,t)f2_(y,k, O)-f2(x,k, t)f2+(y,k, O)}q(y)dydk.
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Note that the integrand is continuous, even at k- 0 (since f+(x, 0, t), f_ (x, 0, t) are
linearly dependent). Formula (3.22) suggests the following definitions:

(3.23) 6+_(k)=f_of3_( fy,k,O)q(y)dy= m2+_(y,k,O)e+2kyep(y)dy.

We will analyze _+(k) just as in the usual Fourier transform case, using (3.20) to
control the extra terms. Thus we shall see that a(x, t), given by (3.22), and v(x, t), the
solution to the linearized problem for q---0 given by (3.9), behave quite similarly.

The first part of Theorem 3.2 is contained in the following lemma.
LEMMA 3.3. If (1 +lxl)(d/dx)"(x)L for all 0_<a_<4 where 1>_4 is fixed, then

the functions O[bft(x,t), where ft(x,t) is given by (3.17), are continuous for all nonnega-
tive integers r, s satisfying 3r+s<_21+ 2.

Proof. The idea of the proof is as follows: We show that __+(k) decay rapidly
enough as Ikl oo that we can differentiate (4.9) twice with respect to x and still have a
convergent integral. Then, using (3.13) to eliminate the -4k2 factor arising from the
exponentials and the estimate (3.20)(iii) to control derivatives of rn _ (x, k, t), we show
that the integral for ftxx can be differentiated twice. Repeating this argument, we obtain
the desired result. A full proof appears in the Appendix below.

The decay as x--, + c, t>0 fixed and finite, is given by:
LEMMA 3.4. For >0 finite, fixed, lu(x, t)xtl 0 as x - + c.

Proof. Once again, we need only consider ft(x,t) since F}(x,t), Gj(x,t) decay
exponentially. For x>0, t>0 we note that 0k- 2x+ 24k2t>0 and in fact:

(3.24) 01 48kt
< 124kt, _( x )-/2x+24k2t -2.x,/2(12k2t)/2 -i

since 1/(a 2 + b2)_< 1/2ab for a,b>O. Note also 0-48t, which is bounded. Write

by defining

(3.26)

5(x,t)= p(x,k,t)eiOdk

dO(x’k’t)ei-
4rik "x [m2+(x’k’t)eio-(k)]

TE(-k) d+ --[m2_(x -k t)ei+(-k)]4rik dx

We note p(x,k,t) is continuous in k and decays like Ik1-4
(O/Ok)Vp(x,k,t) for 0_<,_<1.

Integrating (3.25) by parts times in k, we have

ff p(x,k,t)eiedk.

as Ikl--’ , as does

Using (3.24) and the obvious bound (I/Ok)<_ 1/2X for x>0 we obtain an estimate, for
t>0 fixed,

(3.28) Ift(x,t)l<_(2x)-tC(t) for x>_M>O

where C(t) is polynomial in 1/2 of degree at most 1- 1.
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Moreover, since the integrand in (3.27) is integrable, by a simple modification of
the usual Riemann-Lebesgue lemma (namely, pick x with f- + fff <e then approxi-
mate by a smooth function and integrate by parts), we can show xt(x,t)O as
x --, + for >0 fixed, which proves Lemma 3.4.

Finally we discuss decay as x--,- for t>0 fixed in the Appendix, where we
prove the following result.

LEMMA 3.5. As x for >0 fixed, f(x, t). Ixl9/4 remains bounded.
To finish the proof of Theorem 3.2, we remark that if x--ct+6, c<0 then the

roots of 0-0 remain bounded as t--, + oo, and the usual method of stationary phase
applies [8]. This gives a decay rate of -/2 and finishes the proof of Theorem 3.2.

4. Global behavior and uniqueness for the first order term in the N-soliton water
wave problem. In 2 above, a formal expansion procedure was given for the Euler
equations for a fluid in a fiat-bottomed canal which was near the constant horizontal
flow of Froude number 1. We now show that the choice of an N-soliton solution of the
KdV equation as leading term in this expansion results in an equation for the first
order term which has a unique "N-tuple wave" solution if we add a symmetry require-
ment. As noted previously, this term satisfies the inhomogeneous form of the linearized
KdV equation:

(4.1) Lu=--ut+Uxxx-6( qU)x=h(x,t)
where q(x,t) is an N-soliton and h(x,t) is a term which depends only on q(x,t). A
simple calculation shows that in fact h(x, t) is a linear combination of the functions:

qx, qqx, qxxx, qZqx, qqxx, qq, qx.

More precisely, in the untransformed coordinates of 2, we have:

1) 3Q(O)otl)_ 3Qtl)(4.2) -2Q$l)+Qt 3Qt)Ql)

19 (0)TQ**,+-}Qt), -]Qt)+-Qt)Qt)+lQ<)Qt),+-(Q))2Qt).
Using the transformation of variables of (2.32) above, namely X-9T=, -6T=r,
q( X, T) -A(, r), we get a similar expression in x, variables.

We remark that h(x,t) contains terms of the form F](x,t), which satisfy the
linearized equation. It is rather surprising that these "secular terms" [13] do not give
rise to resonant solutions. The usual choice for the solution to Lu-F’ would be tFj:,
which grows linearly in in the moving frame in which =-x-4Bt remains constant
as t--, . However, the function Gj(x, t) is a solution of the homogeneous equation of
the form (see the discussion in the Appendix)

(4.3) G(x,t)-cj[(x-12fljZt)Fj’(x,t)+Fj(x,t)+Hj’(x,t)]
where I-Ij(x,t) is a rational function of the exponentials {ea,*,} which decays as Ixl
for >0 fixed. Thus

(4.4)
Gj(x,t) _(x_4fl/t)Ff(x,t)_Fj.(x,t)_Hj(x,t)= -8flftFj:(x,t)c

and since L(Gj) 0, we have:

(4.5) L[(x-4ft)Fj’(x,t)+Fj(x,t)+Hj’(x,t)]-L[8#tF:(x,t)]-8#Fj’(x,,).
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The function (x 4flff. )FaY( x, t) + F(x, t) + I-I’( x, t) has the property that it is bounded
as in any moving flame, even 2 constant, so we have found a "nonresonant"
solution for the "secular" term F’(x, t). For the "secular" forcing terms Gj(x, t), the
growth in the obvious solution is quadratic in as oo with a. fixed and, to the best of
our knowledge, no nonresonant solutions of (4.1) exist. By the absence of these "secu-
lar" terms, the perturbation we consider is rather special. It is however, quite likely that
symmetry considerations will rule out the presence of such terms to any order i,n the
expansion of 2 above.

In order to study (4.1) when h(x, t) is a linear combination of the functions listed
above, we use the following representation of the N-soliton solutions of the KdV
equation (see Gardner, Greene, Kruskal and Miura [10], Tanaka [23], and Deift and
Trubowitz [7]):

N

(4.6) q(x,t)- 2 aFj.(x,t)
j=l

where Fa.(x,t ) is as usual the squared eigenfunction f_(x, iflj, t). Then, using the third
order equation satisfied by the squared eigenfunctions [20], we have"

(4.7)
N N

q’"- aj[4(q(x,t)+ fl/)’+2q’F]-6qq’+ 4aflffF’;
j=l j=l

therefore

N

qq’"-6q2q’+ 2 4ajfl/qFa:,
j=l

N

q 6qq + 18q’q"+ [16 a./fl ( q + fl ) Fj: + 8aj8q Fa.
j--I

Thus our particular forcing term h(x,t) is in the span of the functions:

(4.8) {F’(x,t), q(x,t)Fa:(x,t), q’(x,t)F(x,t), q2q’(x,t), q’q"}, j-1,...,N.

We prove:
LEMMA 4.1. Suppose h(x,t) is a linear combination of the functions in (4.8). Then

there exists a solution to the linearized KdV equation (4.1), Lu= h, which is an N-tuple
solitary wave in the following sense:

(i) u(x, t) -, 0 exponentially fast as Ixl--’ o for fixed;
(ii) u(ct+ 6, t) 0 exponentially fast as + o if c =/= 4fir, j 1,..., N;
(iii) limt+ u(4flt+, t) exists and is an exponentially decreasingfunction of;
(iv) In fact, u(x, t) is a sum of terms which are either

(a) rational functions in the N-exponentials (exp(fl(x-4flt)} } with the same
denominator [w(x,t)] 2 as q(x,t), or

(b) of the form (x 4flt)F’(x, t).
Proof ofLemma 4.1. As above, we write

(4.9) L(u)--ut+Uxxx-6(qU)x.
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From [10, Thm. 3.6], Fj’(x,t) satisfy L(u)=0 and F(x,t) satisfy the adjoint equation

(4.10) v + Vxxx- 6qvx O.

Thus L(fj.)=-6Fj.q’; L(tF’)=Fj:. Also, L((x-12ft)’+F)-6qFj’. From the KdV
equation, L(q2)=6q’q"-6q2q and L(q")-- 12q’q". A basis for the solution is there-
fore given by

(4.11) (Fj, tFj:, (x-12fljZt)Fj:+Fj, q:, q"}.
Using L(Gj)= 0 and (4.2), an equivalent basis is:

(4.12) (Fj., (x-4/3j2t)Fj’,/-/j:, q2, q"}.
The functions Fj., q2, q,, have properties (i)-(iv) of Lemma 4.1 since Fj(x, t) is exponen-
tially decreasing. In the Appendix, we show that (x-4flt)Fj:(x,t) is bounded and
satisfies (i)-(iv), and prove that/-/j(x, t) is a rational function of the exponentials which
has properties (i)-(iv) as well. Assuming these results, the lemma is proved.

Remark (i) Uniqueness. If we choose the phases of the N-solution so that
q( x, t) q(x, t) then the soliton in Lemma 4.1 is unique provided we require:

(a) u(-x,-t)--u(x,t),
(b) u(ct + i, t) is bounded for all c as
(c) u(ct +, t) 0 exponentially fast if c 4: 4fl2.
Proof. From the results of 3, the kernel of L is spanned by F’(x, t), Gj(x, t) and

((f.2),(x, k, t)l- <k< }. The functions F’ violate (a); G](x, t) violates (b) for
c- 4flj.; by stationary phase analysis, (f_+2 )’(x, k, t) violates (c) for c-- 12k 2 (the decay
is algebraic, not exponential since dispersion prevents cancellation). Thus u(x,t) as
given in Lemma 4.1 is unique, since in this case, the functions given in (4.11) satisfy all
these conditions.

Remark (ii). Higher order terms. Even in the time-independent case, explicit ex-
pressions for the higher order terms of the formal expansion involve more complicated,
transcendental functions. For even the second order term, functions like

log(1 tanh

occur. Thus algebraic methods will not readily yield solvability results like Lemma 4.1
for the higher order terms.

Appendix. In this Appendix, we collect certain facts about N-solitons of the KdV
equation and the associated eigenfunctions f+(x, k, t) in this case. These properties are
well known ([6], [10], [13], [21], [23]), so we sketch the proofs for the most part. The
functions G(x, t) do not appear in these papers, so results regarding these eigenfunc-
tions are presented and proved in full.

With the choice of phases so that q(x, t) q(- x, t), the N-soliton q(x, t) with
bound states -flu2<-flu2_ <..-<-fl2<0 where/3>0, it is given explicitly by the
following formulae:

Let =--x- 4fl/t and define

ifj is odd,
(A.1) j(x,t)- sinh(/3jj) ifjis even.
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Let

w(x, ) WN( p, p2, ,pu)-- det

the Wronskian determinant in x of p,---, PN" Then
d 2

q( x, ) 2-xE lOg w( x, )

This definition is sensible because w(x, t)>0, which we show below.
LEMMA A. 1. w(x, t) O. In fact, w(x, t) is a sum of exponentials with positive

coefficients.
Proof.

w(x t)-- s (coshfll1, sinhfl22,. exP ( flNN } +(-- 1)N- lexp(--flN)

By the multilineafity of the deternant, ts is the sum over all possible choices

e- of 2-W(exp(elfll), e2exp(e2fl22), exP(e333) eaexp(eB4)... ) i.e.
we have upon evaluating the Vandermonde deternants,

(A.2) w(x,t)-2- 2 exp 2e,B,e, eae4"’e./l’.
all choices

Since 0<1<2<’’" <N’ the number of negative factors in the product can be
found explicitly. Namely, if e,,--. ,% are the negative indices for a given choice of the
e’s, we obtain (il-1)+ +(ir--1) negative factors in II<(egflk--efl). The extra
factor 12e4- 12[n/2] adds an additional (- 1) factor for each i which is even. For any
choice of r and il,...,ir, this means that there are an even number of (-1) factors;
thus every term in the sum (A.2) has a positive coefficient. We remark that all
exponents Z= eflj occur in w(x, t) and that w(x, t) w(- x, t) since changing
(e} --, {-e} does not alter the coefficients in (A.2). This proves Lemma A. 1.

The eigenfunctionsf+(x, k, t) are given explicitly by:

WN+,(Pl P2,"" ",Pu, exp(ikx+4ik3t})
(A.3) f+(x,k,t)

W(X,t)H=l(ik--,)
The normalization f+ exp{ikx +4ik3t} as x-, + for fixed is satisfied, as is seen
by looking at the leading term, which has exponent Z.Nj=l flj (i.e. pick the term with all
eg’s= + in (A.2) and the corresponding expansion of the numerator). From the fact
([6], [7]) that T(k) YI= l(k+ iflj)/(k- ifl), we obtain a similar expression for
f_(x,k,t) using T(k)f_(x,k,t)=--f+(x,k,t). The proof that f+__(x,k,t) satisfy the
SchriSdinger equation with potential q(x,t) defined as above is given in Deift [6], the
basic idea is to use Jacobi’s identity for the Wronskians and induction on N.

From (A.3) and the expression for f_ (x, k, t), it is easy to see that

f+ (x,iflj,t) + (-- 1)J’+ f_ (x,iflj,t)--0.
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Also, from (A.2) and (A.3), it is clear that f+(x, iflj, t) decays like exp{-fl.la.I} as

I(.1 oo since the exponentials exp{ +-/3(} in the numerator will cancel each other,
while remaining in the denominator w(x, t).

The factor is g(x, t) defined in (3.6) as

(1.4) gj(x t)--1 d (f_(x k t)+(--1)J+lf+(x k t))
k=iflj

Differentiating the exponential exp(ikx +4ik3t} gives a term 2(x-12flft)f+(x, iflj, t),
while differentiating the factors (-+ ik)t- which occur in the (l, N+ 1) entry in the
Wronskian gives terms having the form (cexp((x,t)})/(w(x,t)) where ?(x,t)
+___ jj-ol-’/= elll whose sum we denote by h(x,t). Thus g(x,t) grows like exp(fllj[}
as I1-+o and is of the form 2(x-12fl/t)f+(x, ifl,t)+h(x,t) where h(x,t) is a
rational function of the N exponentials exp{fltz} with denominator w(x,t), growing
like exp(Bll} as I.1-o. Since G(x,t)=gf+(x, ifl,t)g(x,t ), multiplying by
f+ ( x, fl, t) we have

(1.5) Gj(x’t)=2(x-12fl/t)f2+(x,ij,t)+f+(x,iflj,t)hj(x,t)
=2(x-12fl/t)F.(x,t)+I-I(x,t).

Since f+(x,i,t) is rational with denominator w(x,t) and decays like exp{-flll} as

I@.1 oo, H(x, t) is rational with denominator (w(x, t))a and is bounded as Ial -+ oe.
Since all the other exponentials occur in the numerator with growth at most
exp{gt2fl]A} and these terms are balanced by those in the denominator, .(x,t) is
bounded for all x, real. It then follows that I-I’(x, t) is a sum of terms which decrease
exponentially fast as t-+ oo except in the frames x-4flfft-constant, where their limit is
an exponentially decreasing function of the variable ( =x-4flfft. Note, however, that
for t+ oo, I-Ij(x,t) "decouples" into N exponentially decreasing bumps moving at the
speeds 4tiff with the same phases as q(x,t) as t--, oo; unlike F}(x, t), these terms give
rise to contributions in all N moving frames. These are the basic properties used in the
discussion in {}{}3 and 4 above.

Proof of Lemma 3.3. Step 1. We show that (d/dk) +_ (k) exists and is O(Ik1-4) as
k -+ oo for 0_<3,_<1. If we integrate (3.23) by parts, we have:

+-2ikl f2d(A.6) +_(k)- --(m(y,k,O),(y))e+-2iYay.
The integral is absolutely convergent by our assumptions on and the properties of
m (y, k, O) listed above. In fact, we may integrate by parts four times with respect to y,
obtaining

(1.7) _+(k)-(2ik)4 (m2+_(y,k,O)q(y))e+2ikydy,

and the integral is still absolutely convergent. Thus _+ (k) is O(Ik1-4) as Ik]--’ oe.
Since (1 +lxlZ)q(x)L, the k-derivatives of _+(k) of order less than or equal to

all exist. Integrating these expressions by parts four times, we find

(A.8) +_(k)-O(lk1-4) aslkl- for0_<T_<l,

which completes Step 1.
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Step 2 (smoothness for >0). Writing

(A.9)

=_f dk TZ(k ) d ion_ m )e ion+ft(x,t)
-o 4rrik -x [(m2+(x,k,t)e (k))-( (x k,t (k))]

we have a continuous integrand which decays like Ik1-4 as Ikl- . Therefore we may
differentiate twice with respect to x and still have a convergent integral. This yields"

(A.10)

a x(x,t)=f dg

4r k -x (m2+ ( x,k, )ei_ (k ) m2 ( x,k, )e-i+ ( k ) )

Since 0x- 2k and m’+_(x,k,t) decays like Ikl-, the terms on the integrand in which
m’_ (x, k, t) or a higher derivative appears all have decay like Ik1-4 or faster; these terms
can therefore be differentiated twice more with respect to x. The remaining terms, in
which the exponential is differentiated three times, are"

(A.11)

where we integrated by parts in the second term. Each of these terms has continuous
k-integrands which decay like Ikl-" or better; hence they are also twice differentiable
with respect to x. Therefore (x,t) has in fact four continuous x-derivatives for t>0.
Repeating this argument iteratively, we obtain u(x,t) has 21+ 2 continuous x-deriva-
tives (since we can only bound (d/dk)V +__ (k) for 0< 3’ -< 1, we may repeat the argument
times).

To handle t-derivatives, we note that differentiating directly in brings down a
factor 0t- 8k 3, which does not a priori lead to a convergent integral. However, multipli-
cation by 8k may be expressed in the sense of distributions as (O/Ox) plus convergent
integrals. Since (i)/)x)3ft(x,t) is continuous, so is /’t" The equation (3.1) then gives
higher regularity and the desired result. This proves Lemma 3.3.

Proof of Lemma 3.5. Define a=--(-x/12t)l/-. For x<0, t>0, Ok-2x+24kt=O
for k + a. As x o, (for fixed > 0), a - + o. Let k a. Then

(A.12) t(x,t) p(x,k,t)eidk-a O(x,ax,t)eixg
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where A--21x13/2/(12t)/2 and O(r)---r-l-r3/3, so that 6i(r)-0 for r---+ 1. In the
usual stationary phase method, the chief contribution to the integral comes from the
terms

O(x,a,t)f+-eXt-+3/31dx and fl-- l+---eiO ( X, 01., )eixg dr

where the x v.alue is frozen at = --+ in the function p. The extra term f[o(x, ax, t)-
O(x, a, t)]eix dr is of lower order for large A by bounds on the derivative. In the case
considered here, a o so this error term may become large. To counteract this, as in
[5], we consider a very small interval about the stationary phase points x= - 1, of order
Ixl for instance. We estimate as follows:

(A.13) a (x,ar,t)eixg dr

for some ff 1, + e].
The first term is estimated as in the usual method of stationary phase; the second term
leads after an integration by parts to an estimate of the form Ca-2-le since do/dk
decays like Ik1-4. With e-N-, O<v<1/2, this term is of order Ix1-5/2- as Ixl 0. The
first term decays like a- 3. A- /2 0(ixl-9/4) as Ixl o and is the leading term.

Similar estimates hold on the intervals [1 -e, ], [- -e, ], [- 1, + e].
On the interval [1 + e, ), we estimate as follows"

t iA --oleih[-2/3+e2+e3/3]
(A.14) (x,ar,t)e dr-+f O(x,a(l+e),t)

which leads to a bound of the form

iTte(2 + e)

p(x,ar,t) )] lag

--i e dr,

A similar estimate holds on the interval (-o, 1- e].
Finally, on the interval [- + e, -e], we have:

(A.16)
-e eiXga O(x,ar,t) dr-
l+e

a.O(x,a,t)eiXg
x-l-e

ik(r2-1) k=_l+
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Integrating by parts three more times, we obtain:

(A.17)

)a x,ax,t e
i(x2-1) dx i(x2 1)

:=--l+e

dx iA(x2-1)
p(x,ax,t eixg dx.

The boundary terms lead to estimates, for 1--0, 1, 2, 3, of the form-- i0/--31--

-3a-3e-5(1 +ae+a2e2),

-2Ct-3e-3(1 + ae),

-40-3e-7(1 + Cte+ Ct2e2 + a3e3),

respectively.
Since a is O(Ixl/2), is O(Ixl3/2) and e-lxI-L the inequality v<1/2 implies that the

leading term is the first, i.e. h-la-3e-l O([x1-3+v) as Ixl- .
The remaining integral

1)4iA(x2-1)
p(x, ax,t) eixg dx

has a bound of the form

Ch-4( a5e-4 + ot4e-5 + a3e-6 + a2e-7 + ae-8 )
which has leading term

X--405E-4- O[Ix1-7/2+4] as Ixl .
This can be chosen to be of lower order than the contributions from the stationary
phase points, by making

+4v< ], which is true for v<6.
This completes the proof of Lemma 3.5.
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POSITIVE SOLUTIONS FOR
TEMPERATURE-DEPENDENT TWO-GROUP

NEUTRON FLUX EQUATIONS: EQUILIBRIA AND STABILITIES*

ANTHONY W. LEUNG AND GEN-SHUN, CHEN

Abstract. A two-group neutron flux diffusion-reaction system for the nuclear fission reactor is studied.
The reaction rates are essentially assumed to depend on temperature, introducing a third equation. Condi-
tions for existence or nonexistence of positive steady state are found for a system of three elliptic equations
under Dirichlet boundary conditions.

The case of a system of two equations simulating prompt-feedback condition is also studied. Here, a
simple sufficient condition for positive steady state is found. Stability for the trivial solution is also
considered. The method of upper and lower solutions is used in the analysis.

1. Introduction. This article is concerned with the study of the nonlinear two-group
diffusion equation:

(1.1) AU+HI(T)u+H2(T)v-O
Av+ Q,(T)u-Q2(T)v-O
AT-cT+ GI(T )u-+- G2(T)v-O

of the bare, homogeneous nuclear fission reactor, where u and v are respectively the fast
and thermal neutron flux, T is the core temperature above averaging coolant tempera-
ture, and @ is a bounded domain (representing the core) in Rn, n>_2. In (1.1),
A--,in=l)2/)x2i; H2(T), Q(T) and Gi(T), i-1,2 are positive functions of tempera-
ture; c is a positive constant. In more conventional notation of nuclear engineering:

We classify the fast and thermal neutron into groups and 2 respectively. For
i-1,2, the parameter o is the diffusion coefficient of group i; Y,f, is the fission
"macroscopic cross section" in group (i.e. Ef, is the probability per unit path length
traveled that a neutron in energy group will undergo fission); Pi is the average number
of fast neutrons released during fission induced by a neutron in group i. ZR is the
removal "macroscopic cross section" characterizing the probability that a neutron will
be removed from group (i.e. R is the probability per unit length traveled that a
neutron in the fast group will undergo a collision causing its own removal through
absorption or slowing down to the thermal group). Sl2 is the macroscopic group-trans-
fer cross section (probability of collision causing transfer from fast to thermal group);

Ea2 is the absorption macroscopic cross section for the thermal group. Finally, 0g is the
effective energy released in each fission for group i, and c is the cooling constant. The
detail definitions can be found in [3, p. 288].

*Received by the editors July 9, 1982, and in revised form May 3, 1983.
tDepartment of Mathematical Sciences, University of Cincinnati, Cincinnati, Ohio 45221. The research

of this author was partially supported by the National Science Foundation under grant MCS 80-01851.
*Department of Chemical and Nuclear Engineering, University of Cincinnati, Cincinnati, Ohio 45221.
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System (1.1) essentially assumes that the cross sections, fi, R, etc., depend on
temperature, whose changes and effects can briefly be explained as follows. Power
levels of nuclear reactors are adjusted by moving the control rods. This will cause
changes in temperature and neutron flux in the components of the reactor core.
However, the atomic concentrations of materials in the core depend sensitively on
temperature. As temperature changes, they may contract, expand or change phase. This
in turn will cause a change in the macroscopic cross section. Furthermore, temperature
changes may directly affect the microscopic cross section (e.g. via the Doppler effect).
The readers are referred to [6, p. 264], or [3] for further explanations. Such a two group
temperature-dependent model has been studied by e.g. [7], with results not as readily
applicable as those obtained below. For more general multigroup models, see e.g. [3, p.
301].

We now clarify our notation, conventions and assumptions in this article. 0 is a
bounded domain in R’, n_>2, whose boundary/(R) is C2 smooth (i.e. can be locally
represented as_xi-qb(x ) for some i, qb with continuous second derivatives and indepen-
dent of xi); (R) denotes 0 closure. The functions Hi, Qi, Gi, i-1,2 are Lipschitz
continuous for T_>0. Let li--inf(Hi(T),T>_O), i-sup(Hi(T),T>_O), i-1,2; and
similarly define c)i, ci, gi, i to be the corresponding inf and sup for Qi and Gi. We
assume that:

(1.2) -<I<_H(T)<_<, 0</2_<H2(T)_</<
O<(li<_Qi(T)<_i-ti<, O<gi<_Gi(T)<_i< o, 1,2.

Let hl>0 denote the first eigenvalue of the eigenvalue problem: Aw+hw=0 in (R),
w 0 in iS @, where (x) is the corresponding normalized eigenfunction with max((x)l
x (R) } 1. For positive integers__n, C’(@) and C’(@) denote n times continuously
differentiable functions in (R) and (R) respectively.

In {}2, we consider equations (1.1) in (R) with nonnegative or zero Dirichlet boundary
conditions on 6(R). Theorem 2.1 finds conditions when "nontrivial" nonnegative solu-
tions cannot exist (such conditions for the corresponding time-dependent parabolic
problem would imply solutions, with nonnegative initial conditions,"blow up" as
+ oo). Theorem 2.3 finds other conditions when "nontrivial" nonnegative solutions
cannot exist (such conditions for the corresponding time-dependent parabolic problem
would imply solutions tending to zero as + o). Theorem 2.4 gives necessary condi-
tions for a nontrivial nonnegative equilibrium solution to exist.

Due to the difficulty explained at the end of {}2, we consider a simpler model for
two group neutron-flux in {}3, when the temperature feedback is prompt. Theorem 3.1
finds sufficient conditions for the existence of nontrivial nonnegative equilibrium solu-
tion. Theorem 3.2 gives other conditions when the corresponding time-dependent
parabolic problem would have nonnegative solutions tending to zero as + .

2. Temperature dependent equations, conditions for positive equilibrium. We first
find conditions which imply that "nontrivial" nonnegafive solutions cannot be.finite,
and hence cannot exist. We can interpret these as "blow-up" conditions.

THEOREM 2.1. Suppose that

(2.1) lt=inf(Ht(s)ls>O) <ht, and

(2.2) q,/2>(, +/2)(1 -/1).
Then (1.1) with boundary conditions

T(x)=T(x)>_O
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for x6@ (here, u%x),v(x),T(x) are given continuous functions on @) has no
solution ((x), (x ), T(x )) with the properties that:

(i) each component is in C2(@) N cl(@),
(ii) t(x)_>0, t3(x_)_>0, 7(x)_>0 in ,
(iii) t(x)0 in .

(Consequently, iffurther v(x) =0 on (R), then the only solution with properties (i) and (ii)
is (0, O, ’(x)), where A(x)--c(x)--O in o, (x)-- T(x)>_O on i@.)

Proof. Assume that (t(x), t3(x), iF(x)) exist with properties (i), (ii) and (iii). We will
construct a family of lower bounds for the solutjon, parametrized by >0. As i--, ,
the lower bou..nds will tend to oo. First, let h l<h so that (2.2) is still sa..tisfied with h
replaced by h I. For each >0, define un(x)-6co(x), vn(x)-t-(?t-h)oo(x), T(x)
--’1(1 "-C)--I(x) for x(R). For all v(x)>_v(x), T(x)>_T(x), we have

(2.3) mus(x ) -t- nl(-Z(x ))ui(x ) -}- n2(Z(x ))v(x )

_> -X,()+,()+ ’(,-,)()>0
in (R). For all u(x)>_u(x), T(x)>_ T(x), we have

(2.4) Av(x)+Ql(T(x))u(x)-Q2(T(x))v(x )
>__ [ ( t -l ) ( X ) "- O O (X ) 2t]- ( X [l ) (.O ( X )

---(X)[01--fi-l(Xl "q’- 2)( x’ --]l)] >0
in @. (By (2.2) and the choice of/). For all u(x)_> u(x), v(x)_>v(x), we have

(2.5) ATB(x)--CTB(X)--GI(TB(x))u(x)-II-G2(TB(x))v(x )
>_ -,,o(x) +,,o(x) +,v(x).-,v(x) >0

in @.
We now show that properties (i) to (iii) imply that (x)> 0, 3(x)> 0 and (x)>0

for x@. Let C>ll, we have -C=-H()d-(HI()+C)O in @, 0 in. The mamum principle implies that (x)>0 in , otherwise (iii) is violated.
Consideringhe equation for d, we can silarly find that either (x)>0 in @ or
(x)=0 in . However (iii) implies that the trivial function is not a solution for the
second equation in (1.1); hence d(x)>0 in . Silarly we find (x)>0 in .
Moreover, applying the mamum principle at the boundary (see e.g. [11, p. 67]), we
find that outward normal derivatives / of , or T must be negative at those
boundary points where the corresponding function is 0.

From the above paragraphwe see that for >0 sufficiently small, O<u(x)<(x),
0 < v() < (x), 0 < T(x) < T(x) for x . Let g {s > 01(x) > ut(x), (x) >
(x), T(x)> (x) for all OtNs,x}. Suppose g has an upper bound; let its lub be. There must be a point in N where ug= or vg=, or Tg= T. Otherwise, we consider
for C>ll that

(2.6)

(,(f) + c)(a- u- )<o
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in @. (The last inequality is true because (x) >_ Tg(x), t3(x)_>vg(x) and inequality
(2.3) can be applied with 6-i). Together with -ug>_O in (R), this implies that
O/Ol<Oug/Ol at those points at the boundary where -ug. Consequently, for
sufficiently small e>0, ug+(x)<(x) for all x@. Similarly we deduce from inequali-
ties (2.4) and (2.5) that

(2.7) A( e--vg)- Q2(ib )(e-vg) <0,
(2.8)

in (where D_> [maxe t(x)]. K + [maxt3(x)]. K, and K are respectively
Lipschitz constants for Gi(T) for T>_O,i- 1,2). As before, we have vg+(x)<d(x) and
Tg+(x)< (x) for all x (R), if e>0 is small enough. This violates the definition of (--,
and we conclude that there must be a point in where ug= t or vg= t3 or Tg= .

Suppose ug(2)-t(2), 2@. Inequality (2.6) and maximum principle again im-
plies that ug(x)ft(x) in . This implies that O--Aft+H(T)ft+H:(’)--Aug
+H(’)ug+H:(T)>O. The last inequality is true by letting (- and v-t3, T= 7 in
(2.3). Suppose vg(2) t3(2) or Tg(2) T(2),2 @, we use inequalities (2.7) or (2.8) to
conclude vg(x)--(x) or Tg(x)--T(x) in respectively. In the first case, 0--At3+
Q()-Q2(T)d=Avg+Q(T)ft+H.(’)g>O by (2.4); and in the second case, 0--
A’--c+ Gl()t+ G(’)e=ATg-cTg+G(Tg)f+ G(Tg)t3>0. These contradictions
show that the set $ is unbounded. However, as (- + , u(x), vo(x) and T(x) tends
to + . This proves the nonexistence of (t(x), t3(x), 7(x)).

COROLLARY 2.2. Suppose that the assumptions (2.1) and (2.2) are replaced by the
single condition

(2.9) 1, =inf(Hl(S)ls>_O } >l"
Then the boundary value problem, described in Theorem 2.1 has no solution with proper-
ties as described there.

Proof. Choose a positive constant k, 0<k<, so that

Define un(x) and Tn(x) as in the proof of Theorem 21. Redefine

v(x)-,31-l(Xl-k)(x) in .
We have, for all v(x)>v(x), T(x)>_ T(x)

Aua(x + H,( T(x ))u(x ) + H2(T(x ))v(x ) >_ -h,to(x ) + t,6w(x ) + /2v(x ) >0

in @, 6>0 (because/ >h). Inequality (2.4) remains true with everywhere replaced
by k. The rest of the proof will be exactly the same as Theorem 2.1.

We next find conditions which imply that nonnegative solutions have to be
identically zero. We can interpret these as "decay" conditions.

THEOREM 2.3. Suppose that

(2.10) I-sup(HI(S)[s>O} <l, and

(2.11) tl h-2 <(2"1)(1- ]1 )
Then (1.1) with boundary conditions

u(x)-v(x)- T(x)-O, for x8,
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has the solution (0, 0, 0) as the only solution with the properties that each component is in
C2() f) C l((R)) and nonnegative in (R).

Proof. We will consider a parabolic system related to (1.1)"

(2.12) )--fi Aft + H,(7 )fi + H2( )tOt

=A+Q,()fi-Q2() in (0 )

--c+aOt-

(2.13) fi(x,t)-(x,t)- (x,t)-O, (x,t)
Here, fi, 6, 7 are function in[0, o). We will prove that all solutions of (2.12), (2.13)
with components in C2((R)(0, o))fq C((R)[0, )), and initial conditions which are
nonnegative for all x@, t-0, will tend to zero as t +. Consequently, the equi-
librium solution as stated in the theorem can only be the trivial one, (0, 0, 0).

We proceed to utilize some differential inequafities. Hypothesis (2.11) implies that
there is some o, 0<o< c, so that (2+1 O) >(1 hA o)- 1. Let CI, C2 be
positive constants so that (2+h-o)l>ccl>hz(-h-o)-. Let k>0 be a
constant such that kClw(X) a(x, 0) and kC2w(x) 6(x, 0, for each x @. Choose
C3>0 so that C3>max{(glkC +gzkCz)(C-O)-,maxT(x,O)). Finally, defin
2 3 O, 1 kCw(x)e-t, 2 kCz(x)e-t and % C3e-t, for all (x, t) @ X

[0, ). Let

J{(x,t,,6,)l(x,t)X(O, ), (x,t)(x,t),
(,t)(,t), (,t)%(x,t)}.

Clearly, we have

(2.14) A, +nl() +n2()6-(1)-H2()60,
(2.15) A2+Q()fi-Q2()z-(z)-Q()fio,

(w) ,(_ )+(_ )0(2.16) A3 c3 + G (3 ) fi + G2(3 ) 6 wa w

for all (x, t, fi, 6, ) J. On the other hand,

(2.17)

k)e-"t{[-X, +, +o]C, +8C} <0,

(2.18) Aff2 + Ql()fi- Qz()ff2- (2)
k(x)e-’{[-x,-0 +o]c: + ,c,) <0,

(2.19) Aff3-c

xN xN



POSITIVE SOLUTIONS FOR NEUTRON FLUX EQUATIONS 495

for all (x,t, t,6, 7) J, because of the choice of C, C3, C3. Moreover, by assumption
and the choice of k and C3, we have

(.o) w,(, o)_<a(, o)_<,(, o),
w(, o) _< (, o) _<(,o)

for x (R), and

(2.21) w,(, t)-,(, t)- ,(, t),
w(,t)-

w:(,o)_<(, o)_<:(, o),

(2.23) u(x)--v(x)-- T(x)-O for
has a solution (x),d(x), (x))(0,0,0) with each component in C2(6)1"1 cl(--) and
nonnegativ.e in . Then all the following conditions must be satisfied:

(i) hi <21,
(ii) ti]2(X -}" t2)_(X ]l)’
(iii) (AI + 2)(,-h)<_gTlh2 ifh <?l.
In view of the similarity of the two inequalities in (ii) and (iii) above (one simply

interchanges max and min of H, Q and reverses the order relation), it is interesting to
consider the situation when all rates are constants.

COROLLARY 2.5. Suppose that Hi(T ), Qi(T), i- 1,2 are all constant functions, where
Hi(T)hi, Qi(T)-qi, i- 1,2. Then (1.1) with bounda conditions (2.23) has a_solution
(fi, t3, T)i(0,0,0), with each component C2(6)Ncl(@) and nonnegative in if and
only if
(2.24) q,h2-(),+qz)(h,-h,) and h,<),.

(2.22) w,(x,t)<_(x,t)<_,(x,t), w2(x,t)<_O(x,t)<_2(x,t),
ws( x, ) <- ’( x, ) <- s(x, )

for all (x, t) (R) 0, o), by inequalities (2.14) to (2.21). (See e.g. [4, Cor. or 10,
Lemma 2.1] for a variant of the comparison principles used here.)

A solution (t(x), t3(x), i?(x)) of the boundary value problem described in the
statement of the theorem, with properties as stated, will be a solution of (2.12), (2.13)
with the appropriate smoothness and nonnegativity condition at t=0. Let
( fi( x, ), O(x, ), (x,t))-(a(x),e(x), ’(x)), (x,t)(R)[o, oe). Inequalities (2.22) im-
ply that

O<_a(x)<_kCloO(x)e-t, O<_e(x)<_kC2to(x)e-t, O<_’(x)<_C3e-t
for (x,t)[ 0, o). Consequently, (a(x),e(x), x))-= (0, 0, 0).

Remarks. In the proof of Theorem 2.3, we show that a solution of (2.12), (2.13)
with nonnegative initial conditions and appropriate smoothness properties will tend to
zero uniformly as + (under assumptions (2.10), (2.11)). Similarly, adapting this
proof and that of Theorem 2.1, we should be able to show that such a solution of (2.12),
(2.13), (under assumptions (2.1) and (2.2)) will tend to +

Summarizing Theorem 2.1, Corollary 2.2 and Theorem 2.3, and reversing our point
of view, we obtain the following theorem.

THEOREM 2.4. Suppose that (1.1) with boundary conditions

for (x, t) 8 (R) 0, oe). Therefore if such a solution (t(x, t), t(x, t), 7"(x, t)) exists in
(R) [0, o), it will satisfy
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Under this situation, ft(x)=k(+q2)w(x ), d(x)--kqo(x) for any constant k>0.
(Note: Hypotheses (1.2) still apply.)

Proof. Suppose h>; then (i) in Theorem 2.4 implies that no such solution
(,3, 7) exists. If h<, and qlhz=/=(,l+qz)(,l-h), then (ii) and (iii) in Theorem
2.4 also imply that such a solution does not exist. Consequently condition (2.24) is
necessary. Conversely, supposing (2.24) is satisfied, one easily sees that fi(x)=
k(? + q2)c0(x), (x)=kqo(x) are solutions of the first two equations of (1.1). For the
third equation, we have

AT-cT+G,(T)k(,,+q2)o(x)+G2(T)kq,o(x)-O in @,

T=0 on , (k>0). From the properties of G, i-- 1,2, one sees that a large constant
function is an upper solution, and 0 is a lower solution. Hence there exists a solution
T-- ]?(x) _> 0, for the corresponding k.

Remarks. In view of the remarks following Theorem 2.3, and Theorem 2.4 it
becomes apparent that nontrivial nonnegative solutions of (1.1) under homogeneous
Dirichlet conditions are not likely to exist, unless H(T)<2 for large values of T and
H(T)>2 for small values of T. One might also postulate that the other rates, e.g.
Q2(T), vary significantly with T. However, sufficient conditions which prevent blow-up
(like Theorem 2.1) and decay (like Theorem 2.2) are found to be very difficult to be
simultaneously satisfied, so that nontrivial nonnegative equilibrium might exist. In the
next section, a simpler set of equations is studied. The rate H will be influenced
directly by u without first changing T. This is known as "prompt" feedback. In fact,
the third equation for temperature change will be eliminated, and reaction rates are
assumed to be promptly affected by u and v. Under this situation, conditions for
nontrivial nonnegative equilibrium are more readily found. The results in the next
section should be helpful for suggesting simple further assumptions on (1.1) to produce
desired results.

3. Prompt-feedback equations, equilibrium and stability. In this section, we consider
a simpler model where the reaction rates (i.e. cross sections) are functions of u, v. In
other words, the feedback is prompt, and does not have to be regulated through change
in temperature indirectly. More precisely, we have

Au+ I-I,( u, v)u+ I-I ( u, v)v--O,
Av+ Q,(u,v)u-Q2(u,v)v-O,

(3.2) u(x)-v(x)-O,

in @,

The functions UHl(U,V ), vH2(u,v ), UQl(U,V), vQ:(u,v) are assumed to belong to the
class C in the first closed quadrant, i.e. the_ are locally H61der continuous in (u, v)
with HOlder exponent a, 0<a< 1. Let C2+((R)) denote the Banach space of real-valued
functions continuous in @, with first and second derivatives also continuous in (R), with
finite value for the usual norm lulTM. We assume the boundary/(R) belongs to class
C+. (See e.g. [5] for details of these symbols.) The following three conditions will be
selectively assumed in the following theorems.

(3.3) There are positive constants, h, h’, q, q’, q and q’, such that for all (u, v) in
the first closed quadrant"

0< ’< v)<O<h’2<H2(u,v)<h’, O<q[<-Q(u,v)<-ql, q2-Q2( u, -q2.
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(3.4) Hi(0 0) >k; in the first closed quadrant Hi(u, v) is continuously differentiable
with respect to v, and IO/OV[Hl(U,v)]l<K for all such (u,v), where K is some
positive constant.

(3.5) There exist positive constants p and U* such that H(u,v)<_-p for all u>_ U*,
v>0.

THEOREM 3.1. Assume (3.3), (3.4), and let there exist positive numbers U* and p as
described in (3.5) with p further satisfying:

(3.6) q’l’h’2’ <q p.

Then theboundary value problem (3.1), (3.2) has a solution ((x),t3(x)) with components
in C2+(6) and (x)>0, 3(x)>0 in 6.

Proof. We will construct upper and lower solutions for (3.1), (3.2) and apply a
theorem in [13] to conclude the existence of solution. By (3.4), there is a small constant
k>0 so that H(u,0)>, for 0<u<k. Choose O<e<min(k,K-h 2} and 0<6<
eq[? + q_,]-1. Define lower solutions as

(3.7) Ul(X)=eo(x ), Vl(X)=io(x ),
for x @. Define upper solutions as

(3.8) u2(x)- U*, v2(x)=pU*/(h’)

for x @. We now check the appropriate inequalities for u, v, i- 1,2.

(3.9) mu q-nl(Ul,V)U -[-n2(ul,/))19 [--kl +H(eo(x),v)]eo(x)+h’2v

for v_>0, x@. However, [--1 +H(eo(x),O)]eo(x)>O in @ and the expression on
the right side of inequality (3.9) is an increasing function of v, for v_>0, each x (R) (by
the choice of e). Consequently, we have

(3.10)

for all v(x ) >_ v (x )> 0, x (R). For v 1(X ), we have the inequality

(3.11) Av(x)+O(u(x),Vl(X))u(x)-O2(u(x),v(x))Vl(X
->[-- q’] 80 (x) + qu(x) >0

in @, for all u(x)>u(x)-eo(x) (by the choice of 6). For u(x), ve(x), we have

(3.12) Au2(x)+n,(uz(x),v(x))uz(x)+Hz(uz(x),v(x))v(x )
<--pU*+hT[pU*/hT]-O

in @, for all Vl(X)<_v(x)<_vz(x); and

(3.13) At2(x) A- Ql(U(X), 02(x))u(x) Q2(u(x), v2(x))1)2(x)
<ql U -q2[PU*/h2] U*[q -(q2p)/hT] <0

in , for all Ul(X)U(X)U2(.X ) (by hypothesis (3.6)). By [13], (3.10) to (3.13) imply
that there is a solution (fi(x),3(x)) as described in the statement of the theorem;

h’’ in(R).moreover eo(x)<_ft(x)<_ U* 6o(x)<_(x)<_pU*/( 2J,
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Remarks. If we consider the initial boundary value problem:

(3.14)
Ou
0--- AU -’" Hi( u, I) ) u --- n2( u,

0v
0---}- Av + O,(u, v)u- 02(u, v)v,

in (R) (0, c).

u(x,t)--v(x,t)--O, (x,t)  8@X [0,

Then inequalities (3.10) to (3.1_3) imply that any solution (u(x,t),v(x,t)) with compo-
nents in C2((R) (0, )) cl((R)[0, oe)) and

(3.17) UI(X)Uo(X)U2(X, ), I)I(X)I)0(X)V2(X ), XO-

must satisfy

UI(X)<--U(X,t)<--U2(X ),

for all (x,t)(R)X[0, ). (See e.g. [4, Cor. 11).
In case hypothesis (3.4) is violated, a theorem analogous to Theorem 2.3 can be

readily proved, as follows.
TI-IEOIM 3.2. Assume (3.3), and there exists a constant h’( such that H(u,v)<_h’(

for all u >_ O, v >_ O, with h’( satisfying:

(3.19) h’ <kl, and

(3.20) q’h’ < (q+X )( 2t h’( )

Then all solutions of the initial boundary value problem (3.14) to__(3.16), with components
in C2(@(0, o))fl cl(@ [0, oe)), and Uo(X)>_O, Vo(X)>_O in @, must satisfy"

(3.21) (u(x,t),v(x,t))(O,O) as t+
uniformly for x e

Proof. Let o>0 be sufficiently small so that X h’l’ o> 0, q+ X O>0 and
q;’(q;. +X o)- <(X h’l’ o)/(h’2’). Let Cl, C be positive constants, so that q{’(q
+Xl-o)-l<c2c-(l<(Xl-h’l’--o)/(h’2’). Finally, let k>0 be large enough so that
kCito(x)>uo(x) and kC2to(x)>vo(X) for all x(R). Define u(x,t)=v(x,t)=O and
(x,t)-kCto(x)e-t, g(x,t)-kC2to(x)e-t for (x,t)@[0, ). One readily veri-
fies that

0AU+ Hl(U I) (x)) U+ H2(u t)(x))v(x)-’-(u)

for x, all v(x)<v(x)<_g(x); and

Aft(x) + H,(if(x), v(x))ff(x)+ H2(if(x), v(x))v(x)--(ff )

_< kto(x)e-t[( X -3
I- htlt -Jr- o )C -- h’2’C2] <0

for x(R), all v(x)<_v(x)<_g(x).
Analogous inequalities are satisfied by v and g, and the remainder of the proof is

similar to that of Theorem 2.3. Details are omitted.
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Remarks. Under additional assumptions, it can be proved that the positive equi-
librium found in Theorem 3.1 is stable, as a solution of (3.14) to (3.16). However, these
assumptions are quite inelegant, and more natural conditions can probably be obtained
through investigating the temperature feedback equations in 2.
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INTERACTIONS OF FAST AND SLOW WAVES
IN PROBLEMS WITH TWO TIME SCALES*

JOHN W. BARKERt

Abstract. We consider certain symmetric hyperbolic systems of nonlinear partial differential equations
whose solutions vary on two time scales, a slow scale and a fast scale tie. We show that if the initial data are
not prepared correctly for the suppression of the fast scale motion, but contain errors of amplitude O(e), so
that only/ time derivatives of the solution are bounded at t--O, then fast waves of amplitude O(e") will be
present in the solution, but the error introduced in the slow scale motion by nonlinear interactions of these
waves will be of amplitude only O(e-)+ O(e’+ ). This holds for any/x>0, and therefore extends the earlier
results of Kreiss. In consequence, the effects of the fast waves can be controlled more easily than was
previously thought, and their neglect in some physical situations is partially justified.

1. Introduction. This paper is concerned with symmetric hyperbolic systems of
partial differential equations which have solutions varying on two distinct time scales, a
"slow" scale t, and a "fast" scale t/e, where e is some small parameter. Such systems
arise in the description of several physical situations.

For example, the shallow water equations with Coriolis force, used in meteorology
as a simple model for describing the large scale motion of the atmosphere in midlati-
tudes, are, in dimensionless form:

(1.1) Ut+ UUx-Jf-VUy-JI Ro- ’( x--fv ) --O,

Vt "-- Ul)x -’" l)Dy + Ro- (y+fu ) 0,

Ro
t -- (U)x -Jl- ( l)f )y --’--" ( Ux "- l)y

where (u, v) is the velocity field, q the geopotential height, f the (nondimensionalized)
Coriolis parameter, Ro the Rossby number, and e the ratio of a typical fluid speed to
(gho)/, h o being the mean fluid depth.

This is a hyperbolic system, and can easily be put in symmetric form. Under the
assumption that both Ro and e are small, and that e--Ro3/2, the linearized system has
normal modes which fall into two classes, Rossby modes, which vary on the "slow"
time scale of a day or so, and inertia-gravity modes, which oscillate on the "fast" scale
of a few hours, t/e. For a more detailed discussion of this system, the reader is referred
to [41.

Other, better models for atmospheric motions in common use, such as the full
equations for a compressible, isentropic fluid with Coriolis force, and the primitive
equations, also describe motions on two time scales when the Rossby number is small.
However, it should be noted that the primitive equations are not hyperbolic and
therefore will not be covered by the results of this paper.

Now, it is widely believed that the inertia-gravity modes are of little importance in
determining the weather, at least on time scales of a couple of days. They are certainly
present in the atmosphere, but their amplitude is smaller than that of the Rossby modes
by a factor of e or e2. Thus, in numerical models of the system, it is considered
sufficient to compute accurately only the Rossby motion.

*Received by the editors March 15, 1982, and in revised form March 9, 1983. This research was
supported by the Office of Naval Research under contract N00014-80-C-0076.

Department of Applied Mathematics, California Institute of Technology, Pasadena, California 91125.
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Unfortunately, it has been observed that unless care is taken in choice of the initial
data for the numerical model, large amplitude fast scale motion is excited early in the
calculation, obscuring and possibly destroying the underlying slow scale motion. In
particular, data obtained from measurement or observation of a real physical system
will excite fast waves not present physically, because of inevitable errors in the collec-
tion process.

Various "initialization schemes" for eliminating these spurious fast scale waves
have been proposed by meteorologists. These include the early schemes of Charney [6]
and Phillips [17], based on quasi-geostrophic theory, the normal mode initialization
scheme [7], [19] and its later nonlinear improvements based on the "two-timing"
method 1], [2], 14], and the dynamic initialization scheme 15], 16]. A discussion of
these schemes and some of their merits may be found in [4]. We shall be most
concerned here with another scheme, proposed by Kreiss [4], [5], [12], [13] and based on
his "bounded derivative principle". Most of the above-mentioned schemes can be
regarded as special cases of this scheme, which is applicable in a wider range of
problems than any other, including limited area forecasting with open boundaries, is
based on rigorous mathematical theory, and is relatively simple to apply.

In brief, the bounded derivative method is based on the observation that time
derivatives of the slow scale motion are O(1), whereas those of the fast scale motion

E--1. Thus, solutions in which the fast scale motion is of amplitude O(ep) must have p
time derivatives bounded independently of e at all times, in particular at t-0. Kreiss
has shown, using fairly standard energy estimates, that if the initial data are adjusted to
ensure that the solution and a number p of its time derivatives are O(1) at t-0, then
they will remain so on some finite time interval [0, T], where T is independent of e, i.e.
the fast scale motion present in the solution will have amplitude O(eP) on [0, T]. This
result holds for any symmetric hyperbolic system under appropriate assumptions con-
cerning the smoothness of the coefficients and the definition of the two time scales,
which enable the equations to be written in a "normal form" whose structure is used in
the proof. The reader is referred to [13] for details.

In nonlinear problems, the need to estimate a certain number of time derivatives of
the solution simultaneously, in order to obtain a closed system, requires that P>-Pc-
[n/2] + 2, where n is the number of space dimensions and [r] is the largest integer less
than or equal to r. In one space dimension then, Pc- 2, in two or three, Pc- 3. However,
numerical experiments in a two-dimensional nonlinear case have found taking p-2 to
be sufficient to control the fast scale motion [4].

Thus, the first object of this paper to see whether less restrictive conditions for
controlling the fast scale motion can be deduced.

A second related question that we shall consider concerns the amplitude of the
interactions between the fast and slow scale motions. The importance of this can be
seen, for example, in the meteorological problem referred to above. Even if the weather
at a particular time were determined solely by the Rossby wave field at that time, the
developement of that field could be influenced by interactions with any inertia-gravity
waves present. Again, numerical experiments with the shallow water equations [7] have
indicated that such interactions may be small.

The third question that we shall be able to investigate concerns the behavior of the
solution in the limit e-0, in particular the conditions on the initial data which will
ensure that solutions of the symmetric hyperbolic system will converge to solutions of
the limiting (e-0) system, which is usually not hyperbolic. This is of interest in a wide
variety of physical and mathematical contexts, several of which were described in [11].
One example is the incompressible limit of a compressible fluid, where the small
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parameter is the Mach number, the fast scale motion is composed of acoustic waves,
and the slow scale motion is essentially incompressible flow. Another is the limit of
small Alfven number in magnetohydrodynamics, where the fast motion consists of
Alfven waves. In both these cases, the governing equations form a symmetric hyper-
bolic system.

A particularly simple example of the magnetohydrodynamic case is discussed by
Gustafsson [9]. This concerns a plasma, surrounded by vacuum and confined between
two infinitely long cylindrical walls. The problem is assumed to be longitudinally
uniform and radially symmetric, so reduces to a one-dimensional problem with govern-
ing equations

a 2 B
l) -JfT Px dt-1)l)x - 4rtxo Bx O

Bt+Bvx+vBx=O,

where p is the density, v the velocity, B the magnetic induction, a the sound speed,/ the
permeability, and p the pressure, a given function of p. These equations are hyperbolic,
and can easily be symmetrized. When the Alfven number (vo/Bo)(4rlpo)/2 is small,
the system contains two time scales but, as in the meteorological case, only motion on
the slow scale is of interest.

In the next section, we state our result. In 3, some lemmas necessary for its proof
are stated and proved. The result itself is proved under some extra assumptions in 4,
and without these in 5.

2. Statement ot present result. For our study, we consider the following system:

(2.1a) Wt-7 0 W+Pl W,x,t,e, +F(x,t,e),

W(x, 0) (x, 0) + ef(x),
W(x+ 2ej, ) W(x, ), l j n

where x=(x,.--,x), e is the unit vector in thejth direction, and

(2.1b) Po
j=l +C,

j=l

We make the following assumptions:
(A1) A=A and =%, ljn; tins ensures the system is symmetric and

hyperbolic.
(A2) C -C*, and F and each , 0NjNn, is C in all its arguments, 2-periodic

in x, and, together with its x and derivatives, is bounded independently of e and
uniformly in (at least in some neighbourhood of the solution); this ensures the
solution does not grow on a time scNe

(A3) W(x,t) is a solution of the first and tNrd equations all of whose tim
derivatives are bounded independently of e, >0, and f(x)and all its derivatives are
2-pefiodic in x and bounded independently of e; this ensures exactly time deriva-
tives of the sNution are bounded at t= 0.
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Here the large part of the spatial operator, P0, consisting of all terms inversely
proportional to e, has been written separately from the rest, P1, which is thus bounded
independently of e. We require one more, important, assumption:

(A4) each eigenvalue x of the symbol Po(ito) is either zero for all o or satisfies:

(2.1c)

for some positive constant X, independent of e, for all , except possibly at a finite
number of values where some of these eigenvalues may also pass through zero.

Some limitations of the system (2.1) should perhaps be noted here. Firstly, no
coefficient of the time derivative of W in (2.1a) has been allowed, even though in many
physical examples, including all those mentioned above except (1.2), a nonlinear coeffi-
cient arises because of the symmetry requirement. We shall discuss systems with such a
"symmetrizer" in a later paper, and show that a similar, though slightly weaker, result
holds. Secondly, P0 has been assumed to have constant coefficients. Our results can
probably be extended to the case where its coefficients depend on x and without any
severe difficulty (the normal forms developed by Kreiss [13] and Tadmor [18] would be
needed), but this has not been attempted here. Thirdly, periodic boundary conditions
have been assumed.

We can now state our main result.
THEOREM 1. There exist constants eo, Ko, KI, and T, each independent of e and

strictly positive, such that, under the assumptions (A1)-(A4), the solution of (2.1) satisfies:

(2.2) II(w- w)(., t) I1go,

for all [0, T] and all e< eo, where

ft+,(w- w)(x,t) .,,- (w- )(x,)d

and I1"11 is the usual L2-norm.
If we now note that a function that "varies only on the slow time scale" is one

whose time derivatives are all bounded independently of e, whereas a function that
"oscillates on the fast time scale" can be characterized by the existence of some
constant , independent of e but with e << << 1, such that for any (x, t):

ft+(2.3) t) at- t)),

then we may restate the theorem, perhaps more illuminatingly, by saying that the
solution of (2.1) has the form

(2.4) W(x. t) W (x. t) + t) + +
where k is O(1) and oscillates on the fast time scale.

Finally, the theorem may be expressed in words as follows: if the initial data for
(2.1) are not chosen correctly for the suppression of the fast scale motion, but contain
errors of amplitude O(e’) (so that only/ time derivatives are bounded initially), for
any/>0, then fast scale motion of amplitude O(e’) will be present in the solution, but
the resulting change in the slow scale motion will be of amplitude only O(e2) + O(e’+ ),
on some O(1) time interval [0, T].
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This result is not trivial since the system (2.1) is nonlinear, and it might be thought
that "nonlinear resonance" could occur, which would lead to an O(e) change in the
slow scale motion. For example, in the O.D.E. system

the solution has

(2.6)

1//2Ut=--U I)t----IXV Wt--(UV )

u(0)= Uo, w(0)=0

1/2l’t (A+O,)’r/2ew(t)--e(uv) Joe dr,

which is O(e2), unless )+ IX =0, when resonance occurs and w both is O(e) and varies
on the slow time scale. Our result is that for the system (2.1) this does not happen.

In regard to the three questions discussed in the introduction, the consequences of
our result are thus:

(i) The slow scale motion can be computed with error only O(e2t)-k- O(et+l) by
choosing initial data so that only/ time derivatives are bounded at t--0, for any/>0.
This would require carrying the fast scale motion along in the computation of course,
and filtering it out at the end, so this may not be useful.

(ii) If fast scale motions of amplitude O(#) are in fact present in the physical
system being modelled, they can be omitted from the computed solution without
introducing an error greater than O(E2/)"+ O(e/+ 1) in the slow scale motion.

(iii) If the initial data are within O(#) of some values that completely suppress the
fast motion, then, as e 0, the solution of the hyperbolic system will converge to a
solution of the limiting (e--0) equations with the limiting initial data, and at any e, the
difference between the solution and the limiting solution will be O(e").

The proof of Theorem 1, given in the following sections, is really quite simple,
relying only on a straightforward asymptotic expansion of the solution and standard
energy estimates.

3. Some required lemmas. The first and most important lemma we need states
that the x-derivatives of the solution are bounded independently of e, even if the
t-derivatives are not.

LEMMA 3.1. Suppose W(x,t) satisfies the symmetric hyperbolic system (2.1) under
assumptions (A1)-(A3), except that Ix--0 is also allowed. Then there exist constants T, eo
and Krs independent of e, such that

-Ox--n at (" ,t) <E-Sgrs

for all t[0, T], all e_<e0, and all nonnegative rl,. .,rn, r,s,r + +rn=r.
Proof. This is a standard result, and can be proved using simple energy estimates

[1.
LFMMA 3.2. Suppose w(x, t) satisfies

(3.2) wt--A + t)w] 
w(x,O)=f(x), w(x+2r,t)=--w(x,t)
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where A is a constant, symmetric, nonsingular matrix, B is symmetric, both B and f are
2 r-periodic in x and C in their arguments, fsatisifes

fo(x)dx-O,
and there exist constants P, R, and e, independent ore, suck that

axrt, (. ,t) <-Pr,,

for all nonnegative r,s and all
Then there exist constants Kl, eo and 8, independent of e, such that

(3.3) II(’,t)llg

for all e <_ eo, where

ft+,(x )=,_ wx,)d.

That is, w is oscillates on the fast time scale.
Proof. By the previous lemma and Sobolev’s inequality, Iwl is o(1), Let

eoW=_w+[(x,t)W]x.

Now, Po-1 exists and is bounded independently of e on the space Sp of 2rr-periodic,
once-differentiable functions with zero mean value over x. Since (3.2) has conservation
form, and f has zero mean value, w belongs to this space for all t. Also, since A is
constant, P0-1 commutes with O/Ot at leading order. Thus

eoww eP-wt-; wt-t’(’w+O(w).
Thus, for any i with e<<i <<

t+

whence the result follows.
LNa 3.3. Suppose w(x, t) satisfies

(.4 ,-+[(x,l] +e(x,,
(x,Ol=o, (x+,(x,,

where A and B are as in Lemma 3.2, F is C in x and and 2r-periodic in x with

(3.5a) foZF(x, ) dx-O,

and there exist constants Qs0, independent of e, such that

Ox--7(’, t) <-Qo, s=O,
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for all t. Then"
(i) If F varies only on the slow time scale at leading order, i.e. if there exist constants

Qsl, independent of e, such that

Ox’Ot (" ,t) <-Qsl, s--O,

for all t, then for any fixed T, independent of e, there exist constants K and e0, independent
of e, such that

(3.6)

for all [0, T] and all e<e0.

(ii) If F oscillates on the fast time scale at leading order, i.e./f IIF(’, t)ll<-eQ for some
constant Q, all t, then for any fixed T, independent of e, there exist constants Ko, K and
eo, independent of e, such that

(3.7) ]lw(’,t)llgo, Ilw(.,t)llegt

for all G[0, T] and all e<e0. Thus, w also oscillates on the fast time scale at leading
order.

Proof. (i) Since A is constant and symmetric, B is symmetric, its derivatives, are
bounded, and the boundary conditions are periodic:

d /[IFi12,Ilwll
2 (w, (nw)x) / (w F) <const ( Ilwl[

2

2 dt

d
2 at Ilwtll=-(wt’(nwt)x)+(wt’(Btw)x)+(w’F*)

const{ IIw/l{= + Ilwll= + IIFtll2 }.
Since IIFII, IIFtll, w(x, 0) and wt(x, 0) are bounded independently of e, it follows that IIwll
is also so bounded on any O(1) time interval [0, T]. Since IIFxll is bounded indepen-
dently of e, it can be shown in similar manner that IlWxt(.,t)l is also O(1) on [0, T].
Thus with P0 as in the previous proof:

wt=-Pow+F = w-- eP- l( wt-- F)

Iwlooeconst.(lwlo + IF[o)
<e const. (llw/ll+ Ilwxtll+ IIFII+ IlFxll) o()

using Sobolev’s inequality. The result follows.
(ii) Here

w- eef (wt- F)
t+8=,,_ W(X ’r)d’i’--[Eed-lw] t+8t_8qt-O(E2W)

If’+ T)N +O(eF)PY
t-

F(x, "r

I111- o(llwll) + o(11 II) + O(IIFII) o()

as required.
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LEMMA 3.4. Suppose w(x, t) satisfies
(3.8) wt- [B(x,t)W]x+ [B(x,t).Ft(x,t)]x,

w(x,0) =0, w(x+2rt,t)=--w(x,t),
where B and F are as in the previous lemma (either case), except that (3.7b) must holdfor
s-0, 1,2,3, i.e. F has three O(1) space derivatives, and B is Coo in x and t, 2r-periodic
in x, and, together with all its derivatives, is bounded independently of e. Then there exist
constants M, T and eo, independent ore, such that for e<e0 and t [0, T]

(3.9) Iw(.,t)loo<_M.
Note this is true whatever the magnitude of the time derivatives of F, which may be
O(e-).

Proof. Let w) satisfy

wt()- [B(x,t).Ft(x,t)] x,

w(’)( x, O) O, w(’)(x+ 2r, t) =-- w(’)( x, )

Then

w(l)(x,t)-{fotBl(X,t)Ft(x,t)dt}x
--[B,(x,t)F(x,t)]o- Blt(X,t)F(x,t)dt

X

Thus, IIw()ll can be bounded in terms of IIFII and IIFxll (and norms of B and its
derivatives of course). Differentiating with respect to x, it follows that IIw(>ll can be
bounded in terms of IIFII, IIFll and IIFxll, while IIw()ll can be bounded in terms of these
and IIFxxll. By assumption, all these norms are O(1), so IIw(-)ll certainly satisfies a
bound of the form (3.9).

Let w() w- w):

wt(2) [B(x,t )w(2)] x + [B(x,t )w(’)] ,
w(2)(x, 0) 0, w(2)(x + 2r,t)=w(2)(x,t).

By Duhamel’s principle, and the bounds on B and its derivatives,

and"

IIw( -)(.,t)ll <const sup {[Iw<’)( .,)11+
O_<r_<t

IIw?(.,t)ll-<const sup
0_<-_<t

on any O(1) time interval [0, T]. The result follows.

4. Proot ot restricted torm ot Theorem 1. In this section, we prove Theorem
under the additional assumptions that:

(A5) F=0, i.e. the system is unforced for t>0.
(A6) C=0 and 0--0, so no undifferentiated terms appear and the system has

conservation form.
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(A7) fSp, the space of 2rr-periodic functions with zero mean value over x;
coupled with (A6), this means that the mean value of the perturbation will be zero for
all time.

(A8) It is possible to write W--(U, V)r, where U consists of the fast scale variables
and V of the slow scale variables.

(A9) The problem is restricted to one space dimension.
In consequence of these assumptions, (2.1) may be written as

(4.1a)
U(x+2"n’,t)=U(x,t),

v=[,(v,V,x,t)]
V(x+2r,t)=--V(x,t)

where (A1) and (A4) now allow us to assume A is nonsingular, as well as real
symmetric, and imply that the matrix

1A’+u v)I,v ,I,v

is real symmetric, while (A2) implies that and ,t, are C functions of all their
arguments, 2rr-periodic in x, and, together with their x and derivatives, are bounded
independently of e and uniformly in (U, V), at least in a neighborhood of the solution.

The requirement that p time derivatives of the solution of (4.1a) are bounded at
t=0 places no restriction on V(x, 0), but determines U(x, 0) to within O(e). In fact,
U(x,t)= O(e) in any solution with one or more bounded time derivatives. Thus, we
assume W (eUs, V,)r. Also, there is nothing to be gained from considering a perturba-
tion in the smooth solution, so we take initial conditions:

(4.1b) U(x,O)=eUs(x,O)+#f(x), V(x,O)=vs(x,O)
wheref satisfies (A3) and in view of (A7):

(4.1c) fo2rf(x)dx-O.
Theorem now states that there exist constants e0, K0, K, 6 and T, each

independent of e and strictly positive, such that the solution of (4.1) satisfies

(4.2) u(-,t)- u(., t) I1eKo

v( ) eu,( )ll+ v( )

for all t [0, T] and all e<e0, or alternatively that the solution of (4.1) has the form

(4.3) V(x,t)-- Vs(x,t ) 2f-,lffl(X,t)- 0(2/x) 1_ O(E/+
V(X,t) V(X,t)+O(")+O(+’)

on some O(1) time interval, where ti is O(1) and oscillates on the fast time scale.
We shall now prove this. Let u, v be the perturbation in the solution:

(4.4) u(x,t)= V(x,t)-W,(x,t), v(x,)=(x,)-s(X,t).
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The equations satisfied by u and v are

(4.5)

where (Bu+B2v) is the linear part and the quadratic and higher part of

tb( eUs + U, Vs + V,X, ) -d( eUs, Vs,X, )]
and (B21uq-B22v ) is the linear part and k the quadratic and higher part of

[x( eus + u, vsv,x,t ) qr( eus, Vs,X, )]
Each of B;y, i,j= 1,2, is C in x and t, 2rr-periodic in x, and, together with all its x and
derivatives, bounded independently of e, for all sufficiently small e. The same may be

assumed of and k, with bounds uniform in u and v, since such bounds are needed
only in a neighborhood of the solution, and and k may be altered elsewhere without
affecting the solution.

In the system (4.5), we are hoping to show that v is an order in e smaller than u.
Therefore, as a first approximation we neglect v. Neglecting also nonlinear terms, since
u is expected to be O(e"), let u0 satisfy

(4.6)

By Lemma 3.2,

Uot--4UOx-]- BI I( X’ )Uo] x’

Uo(X,O)--ef(x), Uo(X+2r,t)-Uo(X,t).

(4.7) Uo(X, t)=et/0(x, t)

where t/0 oscillates on the fast time scale, but, together with all its x-derivatives, is O(1).
Also, (4.6) may be written as

,Uo Pouo
where Po-AO/Ox+ O(e) is nonsingular on Sp, to which u0 belongs. Therefore

(4.8) Uo-Ep luot- ,- (p luo ) ---,e2Potuo-E- ( e- luo ) --- O( E2Uo ),

since P0-l= O(1) and Pot--,[BlltO/Ox q-Bllxt]---O(E). Essentially, we have used the fact
that Po-1 and O/Ot commute at leading order.

Next let a first approximation to v be v, satisfying

(4.9) Vlt-- [B22(x,t)Vl] x-Jr [B21(x,t)Uo] x-I- [’l(Uo, O,x,/)] .x,

v,(,0)=0, v,(+2,t)=_v,(,).

Using (4.8), it can be seen that the linear forcing term in this equation is

(4.10) [B=,(,,)Uo]- ,[,(,’)" ( eo-’ uo ),] + O(=Uo ).
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Thus, if we note that P0--1 is bounded, and from Lemma 3.1 that the x-derivative does
not alter the order in e, Lemma 3.4 implies that this term makes a contribution to v of
amplitude O(euo) O(e"+ 1). Also, the nonlinear forcing term q(u0, 0, x, t)] is of am-
plitude O(u)-O(e"); by Duhamel’s principle, it makes a contribution to v of
amplitude O(e2"). Thus:

(4.11)
where v]) and v]2) are both bounded independently of e, but may vary on both the fast
and slow time scales at leading order.

Now return to the u equation, and let u satisfy

(4.12) Ult:71Aux+ [B(x,t)u] x + [Blz(X,t)vl] x + [(u0 ,0,x, t)]
u(x,0)=0, u,(x+2r,t)=--u,(x,t).

By Lemma 3.1, the forcing terms are of the same order in e as if they were not
differentiated by x, and therefore they have amplitude O(e+)+ O(eZ). They may
vary on both fast and slow time scales at these orders in e, but, by Lemma 3.3, terms
that vary only on the slow time scale make a contribution to the solution that is smaller
by a factor of e than the terms themselves. Thus it is sufficient to solve

(4.13) Ult-@AUlx+[Bll(X,t)Ul]x+(I-S)[Bl2(X,t)Vl +P(uo,O,x,t)]x,
Ul(X,0)--0, Ul(X+2"n’,t)=Ul(X,t)

where S is the time-averaging operator, given by

Sw( ) )

for some 6 with e<< 6 << 1. This has a solution

(4.14) Ul(X,t)--e+l)(x,t)+e2ft?)(x,t)+lower order terms,

where both l) and fi2) are O(1) and oscillate on the fast time scale.
Also from (4.13), arguing as from (4.6):

(4.15) eut:Pou +eG (say)

u eP- Ul eP- tG 0

Here, G is O(e2) + O(e"+ ). Thus, the next approximation to the v equation,

(4.16) v2t--[B22(x,t)V2]x+[B2(x,t)U]x+[b(Uo+U,Vl,X,t)-(uo,O,x,t)]x,
v2(x,0) =0, v2(x+2r,t)=--v2(x,t),

has a solution which, using Lemmas 3.1 and 3.4, and Duhamel’s principle, is of the
form:

(4.17) D2(x,t)--O(EUl)qtO(lG)-+-O(uo(Ul--- DI ))
=o(e



FAST AND SLOW WAVES FOR TWO TIME SCALES 511

This iteration between the two equations can be continued to obtain an asymptotic
expansion of the solution to (4.5) to any desired order. All remaining terms will be of
the same order in e as v2 or smaller. This is so, because the remainder terms (U-Uo-U)
and (v-v-v_) satisfy a symmetric system, which is well-posed with a growth con-
stant independent of e. Thus, by Duhamel’s principle, this system will have a solution
of the same order in e as the forcing terms, and, using Lemma 3.1, these are no larger
than v.

All terms of amplitude e", e" or e"+ in the solution of (4.5) are thus given by the
linear systems (4.6), (4.9) and (4.12).

5. Completion of proot of Theorem 1. The proof given in the previous section
relied essentially only on the bounds on the x-derivatives of the solution of (4.1) given
by Lemma 3.1, which ensured that the forcing terms at successive stages in the iteration
did indeed become smaller, and on the nonsingularity of the large part of the spatial
operator, P0, on Sp, which enabled the time derivative of the fast part of the solution to
be expressed in terms of the fast part itself. Lemma 3.1 covers the system (2.1) as well.
Thus, in relaxing the assumptions (A5)-(A9), we need only be concerned with writing
the large part of the spatial operator in an appropriate, nonsingular form.

(a) Undifferentiated terms. Suppose assumption (A6) is relaxed, and we consider a
system of the form

(5.1) V,x t)] +r(v, V,x t)

zt [,I,(V, V,x,t)]x+e(v, V,x,t),
U(x+2rr,t)=U(x,t), V(x+2rr,t)=V(x,t),

where F and f are CO functions of all their arguments, 2rr-periodic in x, bounded,
together with their derivatives, independently of e, and all other symbols are as before.

Subtracting out a smooth solution, we obtain, analogously to (4.5),

(5.2) ut--aux+[BllU+Bl2VWq)(u,v)] +CllUnt-C12v-t-y(u,v)
E x

vt- [n22v---n21u---(u,V)]x--- C22vAf C21u-- oJ(u,v)

say, with initial and boundary conditions as for (4.5). The spatial operator is, to leading
order, unchanged, but the mean value of u,

foZ,u(x,t)dx
is no longer zero for all time, so there is apparently no unique inverse. This problem
arises because the mean value of u is really a slow scale variable, i.e. it has at least one
time derivative bounded independently of e, so it should really be grouped with v rather
than with the rest of u.

A separate equation can be formed for u) by integrating the first equation of
(5.2). Using the periodic boundary conditions, one obtains

(5.3) ( U ) t-- ( Cl lU ) "[-" (C!219) -[-

=(C,, )(u)+F(u, (u),v, {v)),
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say. Subtracting this from the unaveraged equation, and writing u’ for u- { u), gives

(5.4)

’-lAux+[BllU +BI2V’k-(U"V xut E

(u),v)+C.. (u)

{(C,,u’)+ (cl v)+ + (c,,)(u)}.

This replaces the first equation in (5.2), while the second equation in (5.2) is augmented
by (5.3).

Now the mean value of u’ is zero for all time, and the proof can proceed as before.
The first approximation to u’, u, is, as before, O(#), oscillates on the fast time scale,
and satisfies (4.6) with slightly modified P0. (4.8) can now be used in the second
equation of (5.2) as before, and also in (5.3), to show that both v and (u) are at leading
order O(E2/) --O(8/+ 1). The rest of the iteration proceeds as before.

(b) Large undifferentiated terms. Suppose an undifferentiated term is added to the
large part of the spatial operator in (4.1):

Ut-I (AUx+CU)+[cb(U, V,x,t)] x,

where C is constant and antisymmetric to ensure that the x-derivatives remain bounded.
The large part of the spatial operator, AO/Ox+ C, may have eigenfunctions with zero
eigenvalue, corresponding to the constant function in case (a). Separate equations for
those parts of u parallel to such eigenfunctions must be formed, just as a separate
equation for the mean value of u was in (a). The spatial operator will then be
nonsingular if restricted to the remainder of Sp.

This allows (A6) and (A7) to be completely relaxed.
(c) More space dimensions and nonseparation of scales. There is no difficulty in

relaxing (A9) and going to more space dimensions, except that it may no longer be
possible to separate equations for the fast and slow variables as was assumed in (4.1).
However, such a separation can be carried out in Fourier space by means of a
projection. Exactly how this is done is described by Kreiss [5]; the projection is defined
by the construction of unitary transformations at each point in Fourier space; the
assumption (A4) is required for this to be possible. The large part of the spatial
operator is then nonsingular on the range of the projection, which is also the space
spanned by the fast scale variables, and so our proof goes through as before.

This takes care of assumption (A8) also.
(d) Forcing terms. Finally, note that use of Duhamel’s principle allows estimates to

be obtained for forced systems, provided the forcing is on the slow time scale, in
accordance with (A2). This allows the last extra assumption of 4, (A5), to be relaxed.

Thus, the proof of 4 can indeed be extended to prove Theorem in full general-
ity.

Acknowledgement. The author is deeply indebted to Prof. H.-O. Kreiss for his
suggestion of, and help and encouragement with, this work.
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INVARIANT MANIFOLDS AND THE ONSET OF
REVERSAL IN THE RIKITAKE TWO-DISK DYNAMO*

MARCY BARGEt

Abstract. In this paper we prove a stable manifold theorem for noncompact solution curves of an
ordinary differential equation and apply the theorem to establish the existence of two-dimensional stable and
unstable manifolds for a particular solution curve of the Rikitake equations. Some information on the
configuration of these surfaces in phase space is obtained yielding a rough description of the oscillatory
nature of typical solutions.

Introduction. The nondimensional Rikitake equations

(0.1) Yc--Ix+yz, p--Iy+(z-A)x, 2-1-xy,

model the currents (x and y) and angular velocities (z and z-A) in a pair of identical
homoplanar coupled disk dynamos driven by constant torque [3], [6]. This system was
conceived by Rikitake as a model of the Earth’s magnetohydrodynamic dynamo.

An interesting facet of the model is that, for some values of the parameters/ and
A and most initial conditions, numerical solutions to (0.1) have been observed by a
number of people to exhibit a complicated pattern of changes in sign in the x and y
components that seems to persist for all time. This empirical data together with the
constant negative divergence (for/>0) of the vector field defined by (0.1), so that
Lebesgue volume is compressed exponentially along solutions, has led to the question
of the possible existence of a strange attractor--a nontrivial invariant set that attracts
nearby solutions--in the phase space of (0.1).

This paper is the first in a series devoted to the study of solutions to (0.1). Here we
will establish the existence of two invariant surfaces in the phase space of (0.1). One
surface is composed of solutions that, eventually, have the z coordinate increasing
monotonically without bound and x and y coordinates decaying exponentially to zero.
The other surface consists of solutions that in reversed time have, eventually, the z
coordinate decreasing monotonically without bound and x and y coordinates decaying
exponentially to zero. These surfaces can be thought of as stable and unstable mani-
folds of the z-axis or as stable and unstable manifolds of points at infinity on the z-axis.
The latter point of view, entailing a compactification of phase space, will be adopted in
order to gain information about the configuration of these surfaces in space. We will
describe the development of the complicated dynamics of (0.1), in particular the onset
of reversal behavior, in terms of a change in configuration of the above surfaces as A is
increased from 0.

In 1 a qualitative description of the relatively simple dynamics of (0.1) when
A 0 will be given. In this case the 2-dimensional stable manifold of the z-axis and the
2-dimensional unstable manifold of the z-axis coincide, preventing dynamo reversal
(switch in the signs of both x and y).

In 2 it is proven that these stable and unstable manifolds persist for all A >0 but
no longer coincide. The proof is based on Theorem 2.1, a stable manifold theorem for
the noncompact case. Specifically, the theorem provides a means of establishing ex-
istence and uniqueness of stable and unstable manifolds for an unbounded solution
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curve. As the proof of Theorem 2.1 is highly technical, we postpone it until 3. Roughly
speaking, uniformity assumptions are used in lieu of compactness.

Section 2 concludes with a brief description of a typical solution to (0.1) with A > 0
in terms of the configuration of the various invariant surfaces.

The existence of these invariant surfaces rules out the bounded limit surface for
(0.1) proposed by Cook and Roberts [3]. The second paper in this series [2] will provide
more detailed information on these invariant surfaces and use this knowledge to
describe the topology of a strange unbounded attractor for the Rikitake equations.

1. The dynamics at A -0. We consider (0.1) with A -0,/z>0:

(1.1) --Ix+yz, p--ly+xz, .-1-xy.

Clearly, the planes y-x and y--x are invariant. On y--x (the Bullard antidy-
namo) integral curves are given by

(1.2) y--x, X2 + Z 2 -- 2z+ lnx2- c

or by x=y=0.
The curves (1.2) are doubly asymptotic to the z-axis. Solutions on the plane y =-x

approach the z-axis asymptotically, in the Euclidean metric, as __+ .
On the plane y x (the Bullard dynamo) integral curves are given by

(1.3) y-x, x2+z2--21z--lnx2--c, c >- _2
or by x=y=0.

The curves (1.3) include two equilibria (1, 1,/) and (- 1, 1,/), at c -/, and
are periodic solutions for c> 1-/2.

To determine the behavior of solutions near the above periodic solutions, suppose
x0(0,1,-1 }, let (Xo,Xo,t) be initial conditions on y-x, and let qt(Xo,Xo,l)=
(x(t),y(t), z(t)) be the solution to (1.1) with these initial conditions. The variational
equation along this solution is

(1.4) -A(t)w,
-. z(t) x(t)

A(t)- z(t) -i x(t)
-x(t) -x(t) 0

A solution to (1.4) is

(1)w(t)-- -1 exp(-fot(t+z(t))dt).
0

Equations (1.1) have the following symmetry ony- x"

( Y( a, a, l+ b ),,( a, a, l+ b )) (-Yc( a, a, l- b ),,( a, a, l- b )).

From this symmetry we can conclude that

foT( l + Z( )) dt- 21z

where z(x0 ) is the period of the periodic solution q,(x0 x0 ,/ ).
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Thus, integration of (1.4) with initial conditions

w0- -1
0

over a period gives

w() w0 exp(-2/" )
It follows that for each (x,y,z) on the stable manifold of the periodic solution through
(Xo,Xo,t) there are a phase O and constants k, ct>0 such that

It(x,y,z)- t+O(’Xo Xo I ) <-ke-’’"

Furthermore, these 2-dimensional local stable manifolds foliate a neighborhood of
((x,y,z)lx=y,xO, 1,-1 }. See [1].

To complete the description of solutions near the plane y x, we obsee that the
eigenvalues of the linear part of the vector field (1.1) at the equilibria are -2 and 2i.
Thus, for >0 each equilibrium has a 1-dimensional stable manifold. It follows that
there is a neighborhood of ((x,y,z)lx=y,xO} such that every solution entering this
neighborhood approaches a periodic solution on y=x with exponential rate and
asymptotic phase, or approaches an equilibrium with exponential rate.

To obtain global information, consider

U=X2--y 2.

The total derivative of u along solution cues of (1.1) is

du=2x-2yp- -2u.

Thus, for eve solution (x( ),y( ),z( )) of (1.1) we have

(x(t))2- (y(t))2- e-2t((x(O))2- (y(0))2),
and each solution approaches the union of the y=x and y=-x planes asymptotically
(in the Euclidean metric) as .

The result of the above is that as solutions to (1.1) are either unbounded or
approach a periodic solution or equilibrium with exponential rate. The only solutions
bounded as - are the periodic solutions and equilibria on the plane y x.

The solutions to the take equations of most interest are those that display
change in x and y from both positive to both negative or vice versa. Such solutions
correspond to reversal in the polarity of the magnetic field of the coupled dynamos. At
A 0 the invariance of the plane y =-x prevents the existence of such solutions, but for
A >0 such orbits are observed numerically. In order to see how such solutions arise for
A >0 we will view the planes y=x and y=-x (at A =0) as center manifolds of new
equilibria in an extension of the take equations for wch phase space is compact.

In cylindrical coordinates

x=rcosO, y=rsinO, z=z

(0.1) becomes

(1.5)

i=[-+(2z-A)cosOsinO]r, O=(z-A)cos20-zsin20, = 1-r2cosOsinO.
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Divide the right-hand side of (1.5) by

O(z)-l+z and /(r):(l+r2)

to get

(1.6)_
[-t+(2z-A)cosOsinO]r

_
(z-A)cosO-zsin20 1-r2cosOsinO

p(z)r/(r) p(z)r/(r)
2--

p(z),/(r)

Oriented solution curves of (1.6) are the same as those of (1.5), and (1.6) can be
continuously extended to the solid cylinder {(r, O,z)llrl <_ ,lzl_< o) by setting

(1.7) i"=[2rcosOsinO]/l(r),
[-- [COS20 sin20 ]/(r), at z- ,

= [-2r cos 0 sin 0 ]/(r),
0-[sinO-cos20]/(r), at z--,
2-0,

-0, at r-.
2 [-cos 0 sin 0 ]/O(z),

Equations (1.6) and (1.7) are continuous on the solid cylinder (with the obvious
topology) and everhere tangent to the bounda. Furthermore, the flow on the
boundary of the cylinder is independent of the parameters and A.

It is seen that the point (0,0, ) is a hyperbolic equilibrium of (1.7) with stable
manifold ((r,-/4, )lrl<} and unstable manifold ((r, +/4, )llrl< }. Simi-
larly, (0,0,-) is a hyperbolic equilibrium of (1.7) with stable manifold ((r, /4,-)1
Irl<} and unstable manifold {(r,-/4, )llrl< }.

At A =0 the planes y=x and y=-x have the following characterization in this
system. The half-plane {(r,/4,z)lO<r< ,lzl<) is the unique center manifold of
the equilibrium (,/4, ), the half-plane ((r, /4,z)I- <r<0, Iz]< } is the unique
center manifold of the equilibrium (-,/4,), and the closed plane ((r,-/4,z)l
lrl ,lzl } is the closure of both the unique center stable manifold of (0, 0, ) and
of the unique center unstable manifold of (0, 0,-).

The coincidence of the 2-dimensional center stable manifold of (0, 0, ) and the
2-dimensional center unstable manifold of (0, 0,-) and the neutral stability of the
center manifolds of (,/4,) is ly unusual. This situation is forced by the
symmetries in (1.6) at A 0. Some of the symmetry is lost for A > 0, and we will see in
the next section that, although the various center manifolds persist, the center stable
manifold of (0, 0, ) and the center unstable manifold of (0, 0,-) split apart and the
finite equilibria become unstable.

2. Stable and unstable manifolds for A >0. In this section the persistence of the
various center manifolds observed above at A 0 will be established for all A >0, and
information on their configuration in phase space, allowing for the existence of mag-
netic field reversals in the coupled dynamo system, will be obtained. A subsequent
paper will give more complete information on the configuration of these manifolds in
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phase space and will use this geometry to investigate a noncompact strange attractor
containing both periodic and nonperiodic reversal behavior.

The eigenvalues of (0.1) linearized at the equilibria (+-K, +-1/K,IK2) are -2/
and +-(K2+ 1/K2)l/2i (recall that A=l(kZ-1/K2)). Thus, for />0, each equi-
librium has a 1-dimensional stable manifold and a 2-dimensional center manifold. In
[3] Cook and Roberts showed that the 2-dimensional center manifolds are center
unstable for/>0 and A >0.

The following terminology will be used in Theorem 2.1. We will say that

has an exponential dichotomy of type (n, ,k,a) on + if there exist positive constants
a,K,M and projection P of rank k such that, for fundamental matrix X(t) and all
V’,

and

IX(t)PI<-K(exp(-a(t-s)))lX(s)PI for t>_s>_O,

IX(t)(I-P)l>-K(exp(a(t-s)))lX(s)(I-P)I for t>__s>_O

Ilx(t)ex-l(t)ll<_M for t_>O,

where I. is the Euclidean norm and II the induced matrix norm.
In Theorem 2.1 we consider

(2.1) =f(z,t), zRn.
Let qt(z,s) denote a solution to (2.1) with q(z,s)=z.

THEOREM 2.1. Assume that
i) f(O,t)=Ofor t>_0;
ii) f(z, ) C l(R +, R,), and there exist constants c> O, e> 0 such that f(., t)

C2(n,n) for t>_O, [zl<_e and

<_c for Izl<_e, t>_O, and all i,j,k {1,... ,n);

and
iii) 2=A(t)x,A(t)=Dzf(O,t), has an exponential dichotomy of type (n,k,a) on

+ and IIA(t)]l is boundedfor >_ O.
Then there is a continuous 1-parameterfamily of k-dimensional continuous manifolds

WsC_", s+, OW
such that

fs+t(Ws,s)CWs+t fort>_O, lim qt(z,s)=O forzeW

and, if lim t---, ft(Z’ S ) O, then qt(z, s) W for large enough t.
The proof of Theorem 2.1 is given in {}3. The theorem and its proof are along the

lines of Fenichel [5], but with compactness replaced by the uniformity assumptions in
ii) and iii).

We define sets S and S’ and their saturations and 2;’ below. Theorem 2.1 and
Proposition 2.2 will be used in Proposition 2.3 to determine that and ’ are the
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unique stable and unstable manifolds of the z-axis. Proposition 2.4 begins a description
of the configuration of these sets in phase space.

Let qt(xo,Yo,Zo)=(x(t),y(t),z(t)) denote the solution to (0.1) with initial value
ko(Xo,Yo, Zo ) ( xo,Yo, Zo ). Define

S- ((xo,Yo,Zo)lA <-Zo,X(t)y(t)<-O for all t_>0},
S’= ((xo,Yo,Zo)lzo<O,x(t)y(t)<O for all t_<0),
Y,- .J q,t(s) and Z’- (.J kt(s’).

tER t@R

PROPOSITION 2.2. For I>0 andA >_ 0 we have
i) limt_.o[(x(t))2+(y(t))2]--O if and only if (xo,Yo,Zo)Z,

and
ii) limt__[(x(t))2 +(y(t))-]--0 if and only if (xo,Yo,Zo)Z’.

Proof. i) Suppose (xo,Yo,Zo),. Then, for some TR we have

kt(xo,Yo,Zo)-(x(t),y(t),z(t))S for all t>_T.

Moreover, for (x(t),y(t), z(t)) S we have

d-[(x(t))2+(y(t))z]--21[(x(t))2+(y(t))2] +2[2(z(t))-A]x(t)y(t)
_< -2/[(x(t))2 + (y(t))],

so that limt_[(x(t))-+(y(t))2]=O.
Conversely, suppose limt_.[(x(t))- + (y(t))2]-O. Then there exists T such that

(x(t))2+(y(t))2<_l for all t_> T.
Then

(x(t))(y(t))<_1/2 for all t_>T,

so that

(t)= 1-x(t)y(t)>_1/2 for all t>_T.

Thus, there is a T2_> T so that

and z(t) increases monotonically for t_> T2. Now for >_ T2 we have

d-- [x( )y( ) z( )(y( ))2- 21x( )y( ) + ( z( -A)(x(t))2_>0.

That is, x(t)y(t) is nondecreasing for t_> T2.
Suppose now that (xo,Yo,Zo)qZ. Then there are arbitrarily large values of for

which x( t)y( )> 0. Let T _> T2 be such that

x( )y( ) >o.

Then for t>_ T

x( )y( ) >_x(T )y(T3 ) >0,
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and for t_> T we have

d

>---21[(x(t)12+(y(t))2] +2,(k+ 1/k)x(T3)Y(T3t
But, by assumption, limt[(x(t))2+(y(t))]=O, so for all sufficiently large, the
above inequality implies that

d [(x(t))+ (y(t))2] >0,
a contradiction. Therefore (xo,Yo,Zo).

The proof of ii) is silar.
PROPOSITION 2.3. For >0 and AO, and E’ are continuous 2-dimensional

manifolds.
Proof. It suffices to prove that S and S’ are continuous 2-dimensional manifolds.
Let t(xo,Yo,Zo)=(x(t),y(t),z(t)) denote a solution to (0.1). We will establish the

existence of a 2-manifold M3 {(0, 0, z)lz > +A} that has the following properties: If
(xo,Yo,Zo)M, then (x(t))2+(y(t))2O as t and if (x(t))2+(y(t))2O, then
t(xo,Yo,Zo)M for all sufficiently large t. By Proposition 2.2 the existence of such an
M implies that S is itself a continuous 2-manifold.

By rescaling (0.1) near the z-as and elinating z, we will obtain a 2-dimensional
system of nonautonomous equations. Theorem 2.1 will be applied to these equations to
find a unique faly of stable manifolds. M will then be constructed from ts faly.

On the set {(x,y,z)lx2+y2l,O<z) the oriented solution curves of (0.1) are the
same as those for

-x+yz -y+ ( z A)x(2.2) 2-(1-xy)z’ p-
(1-xy)z =7"

Fix z0>+A. The solution to (2.2)with initial conditions (xo,Yo,Zo) has the form

To investigate these solutions, consider

-#x+y(2t+z)) ’/2

(2.3) 2- =fZ(x,y,t),
(1-xy)(Zt+z))/2

-Y+((2t+z)’/2-A)x 2(9- --f xyt)
(1-xy)(2t+z) ’/2

Then f(x,y,t)-(fl(x,y,t),f2(x,y,t)) satisfies the conditions of Theorem 3.1. Indeed,
properties i) and ii) are obvious. To verify property iii) make the change of coordinates

Then (2.3) becomes

-( U)_g(u,v,t )
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with

]1-
(2t+z)
-A

2(2t+z) 1/2

A

2(2t+z)) ’/2

-1- /+ (A/2)
(2t+z) 1/2

--(aij).

We have

t,+(a/2)lalll-
(2t + zg) 1/9-

>- 1--
/,+ (A/2)
(/,+A)

+8

2(2t+z)) 1/2

and

la/2lla,2l+

for 6>0 small and all t_>0. Thus, according to Coppel [4, Prop. 6.3], D(u,v)g(O,O,t ) has
an exponential dichotomy of type (2, 1,a) for some a>0. Since D(,y)f(O, O,t) is similar
to D(u,v)g(O,O,t ), f also satisfies property iii). Thus, we have verified the conditions of
Theorem 2.1 for (2.3).

Now let W, be the collection of stable manifolds for (2.3) at (0, 0) and define

2 ’z>--z>l+A

M is a continuous 2-manifold with the desired properties. This completes the proof of
Proposition 2.3.

Embed S and S’ in the solid cylinder viewed as the phase space of (1.6) and (1.7).
The following proposition describes the configuration of S and S’.

Let cl(S) denote the closure of S in the solid cylinder.
PROPOSITION 2.4.

i) S separates ((r,O,z)lO<r< ,A <-z< oo,--.rr/4-<O-<O} into two connected
components.

ii) S separates ((r,O,z)lO<r< m,A <_z< oo,3rr/4_<O_<rr} into two connected
components.

iii) {(+-m,-r/4,z)lA<_z<_m} tO {(r,-rr/4, )l-_<r_<} C_cl(S).
iv) S’ separates {(r, O, z)l -rr/2 _< 0_< -rr/4, 0< r< m, m <z -< 0} into two con-

nected components.
v) S’ separates {(r,O,z)lrr/2<_O<_3rr/4,0<r<m,-m<z<_O} into two con-

nected components.
vi) {(+--m,-r/4,z)l-m <_z<_O} tO {(r,-rr/4,-m)l-m <_r<_m} C_cl(S’).

Proof. i)Let W={(r,O,z)lO<r<m,A<_z<m,-rr/4<-O<_O}, let U={(r,O,z)l
(r, 0, z) W and there exists a T_> 0 with 0(T) -rr/4, and -rr/4_< 0(t) -< 0 for 0 _< t_<

T}, and let U2 {(r, 0, z) I(r, 0, z) W and there exists a T_> 0 with 0(T) 0, and
-rr/4_< 0(T) _< 0 for 0 _< t_< T}. Then Ul and U2 are each connected and relatively open
in W. Furthermore, S f W= W-(U tO U2).
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Part ii) follows from i) and symmetry.
We prove part iii). For z<0 or z_>A in (1.6) we have

Let

/-0 if and only if tanO---+ 1-

IYV: f(r,O,z)[(r,O,z)E Wand -l <-tanO<--- (1- A ) ) l/2}z

Then the flow of (1.6) is out of 1 along tan0--1 and along tanO--(1-(A/z))/2.
Thus S tq WC_ I. Part i) implies that for each r satisfying 0<r< oo there is a 0 in the
interval -rr/4_< 0_< 0 such that (r, 0, oo) cl(S). Since S fq Wc_ l, it follows that 0
-rr/4. Thus ((r,-rr/4, o)[0_<r_< oo } C_ cl(S). By symmetry, ((r,-cr/4, o)l-oo _<r_<0)
_c(S).

We also know from i) that for each in the interval A<< there is a 0 in the
interval -r/4<0_<0 such that (, 0,) cl(S). Since S WC_ 1 we conclude that
-1 _< tan0< -(1-(A/z))/2.

Now (1.7) and continuity of the flow kt(r,O,z) in (r,O,z) imply that (,O,z)E
cl(S) f) 1 for all z in the interval A <z<. But since limz_-(1-(A/z))/2--1 we
must have 0--rr/4.

Parts iv), v) and vi) are proved similarly.
From Proposition 2.4 we see that ZU {(r,--cr/4, )llrl<) is the unique global

center stable manifold of (0,0, ) and that Z’LJ{(r,-r/4,-)llrl< } is the unique
global center unstable manifold of (0, 0,-).

In order to give a rough description of a typical solution to the Rikitake equations,
we will define four disjoint regions of the z-/xK 2 plane through which solutions may
pass.

Let c and c’ denote the curves of first intersection of Z and Z’ With the disk
z-/K2 (see Fig. 1). Then we have

c- (qt(r,O,z)l(r,O,z)S,z(t)--lK 2, and z(z)>#K 2 for t>-}
and

c’- (qt(r,O,z)l(r,O,z)GS’,z(t)-lK 2, and z(,)</K 2 for ,<t}.

As a consequence of Proposition 2.4 and continuity in initial conditions, we see that for
small A>0, cl(c)t_Jcl(c’) separates the disk ((r,O,K2)llrl<) into four connected
components. Label these E_ for the connected component containing the equilibrium
e+_-(+--(K+l/K2)l/,tan-(1/K2),tK2 ) and W__+ for the connected component
containing

{ ( r, -r/4,1K2 )lO<lr] <, --+ r>0}

Note that for A =0, c and c’ coincide so that W+ and W_ are empty. As a
consequence, when A 0, a solution starting in E+ (E_) can never intersect E_ (E+).
However, for A >0, c and c’ have split apart, creating the windows W+ and W_
through which solutions may make the transition from oscillation about one equi-
librium to oscillation about the other.
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FIG. 1. c and c’ are the first intersections of , and Z’ with the disk z=p,K

A crude description of a typical solution to (0.1) with />0 and small A >0,
displaying dynamo reversal, is as follows. A solution with initial conditions near the
equilibrium e+ is attracted towards the 2-dimensional center unstable manifold of e+
and oscillates about e+ with increasing amplitude until it enters the window W+. The
solution is then attracted towards the center unstable manifold of e_ (reversal has
taken place); it oscillates about e_ with increasing amplitude until it enters the window
W_ the solution is then attracted towards the center unstable manifold of e+ (another
reversal); and so on.

A much more detailed description of solutions to the Rikitake equations in terms
of sequences of intersections with the components E_+ and W_+ will be the subject of a
forthcoming paper [2].

3. Proof of Theorem 2.1.
LEMMA (Coppel). Assume iii), of Theorem 2.1. Then there are S( ), B(t)

C(R+,R n2) with IIS(t)ll, IIS-(t)ll, IIS’(t)ll bounded and B(t)-S-(t)A(t)S(t)
S-(t)S’(t) such that B(t) commutes with Pfor all t>_O, andp--B(t)y has an exponential
dichotomy of type ( n, k, a) on +.

This is [4, Lemma 5.3]. IIS’(t)ll is bounded since S’(t)--A(t)S(t)-S(t)B(t).
By a linear (constant) change of coordinates in N we may assume the projection

e is (k). Now change coordinates in n+ by (z,t)-(S(t),t). Then 2=f(z,t) is
transformed into

-S-’(t)[f(S(t)l,t) + S’(t)j] -g(, t)
where

Dg(O, t) S-’( )Df(O, )S( ) + S-’( )S’( ) B( ).

Since B(t) commutes with P,

B(t)_(Bl(t) 0 )o

where B(t) is kk. Also, g(,t) satisfies property ii) of the theorem since IIS(t)ll,
IlS-(t)ll and IIS’(t)ll are bounded for t_>0.
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Thus, without loss of generality, we may assume in property iii) that

Dzf(O t)_ ( Al(t) 0 )0 A_(t)

where A(t) is k k and that

[v,( )l<Ke-"(’-)lv,( s )l,
Iv( )l>Ke’<t-)[v2( s )l

t>_s>_O,

t>_s>_O,

v(t) being any solution to (i=Ai(t)vi, i= 1,2.
LEMM 2. Given T>0 there are a K =KI(T)< o and an el =e(T)>0 such that

and azjaz(z,s)
for Izle, It-sl T, t,s>_O, and i,j,k (1,. .,n}.

Proof. Let e>0 be as in assumption ii) of Theorem 2.1. Since IlOzf(O,t)ll and
[(02fi/OzjOzk)(z,t)l are bounded for Izl<e, t_>0, so is [[Df(z,t)[[. This implies that
[f(z,t)l<_Mllz for Izl<e, t>_O and some M <o. From this it follows that Ilq,t(z,s)l<e
for Izl<_e-e/e M’r, [t-sl<T and t,s>_O. Now let K be the finite supremum over
Izl<_e, It-sl<_T, t,s>_O, of the norms of the solutions

and

V-Dzt(z,s ) to

v(s)--I

u-(aq’t(z,s)/azaz)= to

f-(Vzfl(,,(z,,),t))u/ "’’ZmOZl(tt(Z,S), ) --zj (Z, S ) -zk (Z, S )
i--1

Note that, for 0< T_< T’< o, we may take K(T’)>_KI(T) and e( T’) <_ e(T ). In particu-
lar, SUPo<_r<_r,K(T)< o and info<_r<_r,e(T)>O.

Now let F(z)-Ff(z)-qs+r(z,s), and for z-(z,y)gg- write F-(z)
(gr(x,y),h(x,y)).

T 0LEMMh 3. Dygs ( O) O, Dxh(0, O) O, andfor any rt > there is a T-- T(I) so that
IlOxgr(O,O)llnn>-rt> and IlOyhr(O,O)ll <- 1/<1 for all s>_O.

Proof. Dzqt(O,s ) is a fundamental matrix for

f:Dzf(O,t ), v(s)=I.
Since

Dzf(O t)_ ( A(t) 0 )o

the first two inequalities in the lemma are obvious. Now write
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) ( Dz4, 0

Then

IOxq, (O,s )v.,[ ge-(’-)lv,I

[Dyqt (O,s )v=[ Ke(t-)lv_

for t>_s>_O,

for t>_s>_O.

Since Dxgr(O,O)-(DxOr+(O,s))-’ and Dhr(O,O)=(DyO+(O,s))-’, we have
r/K -’/K. Now let T be large enough.]lDxg(O, 0)llmin>e and IlDyhs(O, 0)ll_< e

Let and e be positive and define S--(u:RkR+-Rn-k u is continuous and
u u(., s) is Lipschitz with constant _<7 for all s_> 0). If we let

a(u,u’)= s_>0sup { lus(x)-u’(x)[}lxl
0<lxl-<e

S, becomes a complete metric space. The stable manifolds will be obtained as the
graphs of a fixed point of a graph transform on S, for sufficiently small e.

From now on let rl > be fixed, let T be large enough so that the conclusions of
Lemma 3 hold, and let gs- gsr, hs- hr

Let e-- e(T) be as in Lemma 2.
LEMMA 4. There exist c =Cl(T)< and c2-- c2(T)< such that

Ig (x2,Y2)-g (x,,y,)l   lx2-xll-c,(  )[lY2-Y,I + Ix2- x,[],
Ihs( x2,Y2 ) hs( x,,Y, )[ <- - lYz-Y,I + c2(I )[lY2-Y,I + Ix2- x,I]

for any ?l <---el providedl(xi,Yi)[<- for i-- 1,2.
Proof. Let ks(x,y) gs(x,Y) D gs(0, 0)x. Then

Dk(x,y ) Dg(x,y ) Dg(O, O)
kn

where zz is the lth component of z=(x,y) and Ijllzl. Then, for I(x,y)le(T) as in
Lemma 2, we have IlDk(x,y)ll<Cl(x,y)l for all s_>0. Here C depends directly on the
K(T) of Lemma 2. We now have Ik(x2,Y2)-k(x,y)l<-C(g)[[v2-Yl+lx2-xl]
provided I(x,y)l-< _<e, and so

For the inequality involving hs, let ks(x,y)-hs(x,y)-Dyh,(O,O)y. The proof is
similar.

Let uS and define l,(x)-- gs(X, Us+T(X)).
LEMMA 5 For e2 e2(T,,) small enough is one-to-one and 1( k )D2 2"
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Proof.

provided I(xi,Us+T(Xi))lEle, i= 1,2. Now choose 1>0 small enough so that
Cl(l)(1 +))> and let e2=l/(1 +A2)1/2. Then, if Ixil<_e2, we have II(x2)-ls(Xl)l >_

Ix2-Xll, so that l is one-to-one. Also, for Ixl_<e2, II(x)l>lxl. This, together with the
continuity of and the fact that/s(0) 0, implies that l( :)_D .

Let uS2, 0<e3<e2, and define (Fu)s(x)=hs(ll(x),us+7.(ll(x))) for Ixl_<e3.
LEMMA 6. For e >0 sufficiently small, F" S3S3.

Proof. We must show that Lip((Fu),)<A for all s_>0. So let Ixl<e3, i-- 1,2. Then
by Lemma 5 there exist x with Ixffl<e3 such that ls(X)--Xi, i-- 1,2. Then

lx Xil-- C ( E )(1 + )k2 )’/2(lUs+T(X ) Us+ T(X’)[ + IX X’I )
h/l+c.(e3)(1 +X2)’/2(1 +h)
n-Cl(e)(1 +X)/(1

Now let e3>0 be small enough so that /l+C2(e3)(l+,2)l/2(l+k) and
Cl(e3)(1 + 9-)1/2(1 +)k)_> 1.

LEMMA 7. For e4> 0 sufficiently small F" S,4S is a contraction.

Proof. Let u,u’ S’ and let gs(x’,us+T(x’))--xR4. Let e4_<e3/(1 +2t). Then

by Lemma 4.
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Now let E4 be small enough so that [(1/*1 + C2(E4)(1 @ k)) "- XCI(E4(1 + X))]
1. From Lemma 5 Ixl_>lx’l, so that

d(ru,ru’)- sup
I(ru),(x)-(ru’),(x)l

s_0 Ixl
0<lxl-<e4

sup
s_>0

O<[x’l<_e4

lu,+,(x’)- Us+T(Xt)l
Ix’l

sup
s>_0

0<lx’l-<e4

lu=(x’)-u;(x’)l }-d(u,u’).Ix’l

Fix X>0 and let T be large enough so that the conclusions of Lemma 3 hold. We
will use the notation" e(T)>0 is small enough so that Fr: S,(r - S,(r is a contraction
with unique fixed point Ur. The manifolds W will be constructed from the graph of
u 2r, the fixed point of F2r.

First note that for (x, ur(x)) graph(u,r), we have

,,/s( ( X, u,(x l) s ) ,,/,( ( g( x,, u,/ ,( x’) h,( x’, u,,/ (x’))),,))
--(x’,u,+r(x’)) (Egraph(us+rr).

Now let T’>_ T so that e(T’)<_e(T) (see the note following Lemma 3). Then FT: S(T’)

S(r’) is a contraction with unique fixed point u]a,a+.
Suppose MT’ NT for some positive integers Mand N. Then F-

because (F,u),(x)=y if and only if there is an x’ N(r such that ,+r((x,y),x)-
(x’,u,+tr,(x’)). Thus, in this case, urla(r,)xa/=ur so that ks+r,((x, ur(x)),s)
graph(ur+ T’ a (r, ) provided Ixl_< e(T’).

2r graph(u+rFor T’ [T,2T] rationally related to T we have +r,(graphu ,s) r’).
Since and graph(u-r) are continuous, we must have s+r,(graph(ur,,s) c_
graph( r T’us+ r’) for all [T,

If T’>2T, say T’=NT+ T" with T<_T" <2T, then

,/ ,,((x, u,-,(x )),, ) ,,/ ,,,,/,(,+ ,,, ((x Us,(X ) ) s) ,+

--q)(s+ r,,)+Nr ((x’, us+r,,(x,)12r s+ T") (5 graph(us+r, ).2r

Now define

graph(ur),
W- s(graph(@r)),

s_> T,
O<_s<T.

Then s+r(W,s) C_ IV,+ r for all t_>0 and if (x,y) , limt_ s+,((x,y),s)-O since
II(x)l>_tlxl>lxl (see the proof of Lemma 5).

The uniqueness of the family W follows from the next two lemmas. Let t+(z,s)
fl 2 k n-kC])t+s( Z--(t+s(Z,S), S))(.I XI

2LEMMA 8. If limt t+(Z S) 0 and +s( Z S )I/Iq’I+(Z s)l is boundedfor >_ T’ >__ 0
then rkt+(z s) W+ for all larger than some T" <
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2 ZProof. Say Iq+s( s)l< < for t_> T’.s)l/lq,’t+s(z, o Let Tbe as in the definition of
the W and let T">T’ be large enough so that t+(z,s)l<e(2T) for t>_T". Define
u S(2r) by

q,t/(z,s)

( ) lxl,

t> T"

t< T".

Then uS(2r) and lim,,_oFru-u2r, the fixed point of F2T. But (Fnu)t+s(dt+s(2,S))
2T/’1 /" 2q,2t+(z, s ) for all _> T". Thus u +,, vt+,, z, s)) q,+s(z, s) so qt+s(z, s ) W+s for all

t__> T".
LEMMA 9. Let ?,0<),<*/--1, be given. Then there is an e-e(y)>O so that if

Ixl<,lYl and I(x,y)l<e we have Iq,+((x,y),s)l< 2-’rlq,r+((x,y),s)l and Iq,+((x,y),s)l >-
[(x,y)[ for all s >_ O. T is as in the definition of W.

Proof.

l+,((x,y),s )[- Dlr+ ((0, O),s )x + q2(x,y )l

2(11 )-<-Ixl/ gl(x,y)[ < / gl(1 + )21y[ lyl

and

for all s_>0 and e sufficiently small (Lemmas 2 and 3). Now let e>0 be small enough so
that

)2qr+((x,y) s)[ < (//*/+(1/2)K(1 + [yl)[y[
qr+((x,y),s)[ (*/-(1/2)Kl(1 +3’ [Y[)IY[

and small enough so that

Iq,.+((x,y),)l>-l,+((x,y),)l>-(,-kg,(1 /’t)Zlyl)lyl>-(1 /’)[y[>_l(x,y)[.

Now suppose q,t+(z,s) Wt+ for any t_>0 and that limt_o q,t+.(z,s)-O. Then
,(z s)l"<+ 3’lq+(t,s)l for arbitrarily large and fixed 3’, 0<7<,/-1, by Lemma 8.

Now let T be large enough so that Iq,t/(z,s)l <_ 1/2e() for all t_> T and let t _> T be
such that Iqt, +( z, s )1 < vl4’t, +( z, s )1. Then either

leanT+t, +s( Z,S )l--InT+(t, +s)( t, +s( Z,S )), (/1 -[-S )l]t, +s( Z,S )1

for all integers n_>0, in which case limt_oq,t+(z,s)vaO; or there exists a positive
integer N such that Iq,ur+t,+(z,s)l>_e(’), a contradiction to the choice of t. Thus, if
qt+s(Z,S) Wt+ for any t_>0, we have limtoqt+s(z,s)vaO.
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COMPETITIVE AND COOPERATIVE TRIDIAGONAL SYSTEMS
OF DIFFERENTIAL EQUATIONS*

JOHN SMILLIE"
Abstract. A vector field in R" determines a competitive (or cooperative) system of differential equations

provided all the off-diagonal terms of the Jacobian matrix are nonpositive (or nonnegative). We show that
when in addition OF,./O Xj. is zero for Ii-jl> 1, all solutions must converge to equilibria or diverge in a strong
sense.

A solution of a general system of ordinary differential equations can display quite
chaotic behavior. It is therefore useful to know easily verifiable conditions on the
equations which guarantee that the qualitative behavior of the solutions is simple. We
will describe a family of differential equations for which the qualitative behavior of the
solutions is as simple as possible.

Let C R n be an open set. A system of equations =F(X) defined for X in is
said to be competitive if 0F/OXj.<0 for i=/=j. It is said to be cooperative if 0F/OX_>0
for i=/=j. Borrowing terminology from [3], we say that the system is tridiagonal if
OF/OXj.-- 0 for Ii-jl> 1. We say that a competitive (or cooperative) system is strongly
competitive (or strongly cooperative) if the terms OF//OX for Ii-jl are nowhere
zero.

Cooperative tridiagonal systems arise in the construction of approximations to
certain nonlinear parabolic equations defined on the interval when one makes the space
variable discrete (compare [3]). Competitive tridiagonal systems arise in the study of
competing species when one assumes a one-dimensional niche space and further as-
sumes that each species competes only with its nearest neighbors in this space.

In [5] Smale shows that general competitive systems can contain quite chaotic
attractors. General cooperative systems can contain chaotic invariant sets, but accord-
ing to Hirsch (see [2]) these cannot be attractors. The following theorem Shows that the
situation for tridiagonal systems is much more restrictive.

THEOREM. Let F be a strongly competitive or strongly cooperative tridiagonal system
of ordinary differential equations defined on c n. Assume that the component functions
F are n- times differentiable. Let q be a solution of -F(q>) defined on a maximal
interval of the form [0,a) for 0<a_<z. Then either limt_aq(t ) exists and is an equi-
librium point or as a q>( ) eventually leaves any compact set.

The assumption that F be strongly competitive (or cooperative) is equivalent in the
tridiagonal case to the assumption that F be competitive (or cooperative) and as in [2]
that the matrix of first derivatives of F be indecomposable. The hypothesis on the
differentiability of F can be weakened somewhat. In particular if n is 3, 4 or 5, it is
sufficient that the F be once differentiable. Unlike [1] and [2] we make no convexity
assumptions on .

In the case n--2 this theorem has been proved many times. See [2] for references.
A continuous analogue of this theorem for semilinear parabolic equations is proved in
[4]. The proof of our theorem follows the statement and proof of a proposition. A
corollary to the proposition may have some independent interest. (Compare [2, Thm.
2.71.)

*Received by the editors November 2, 1982, and in revised form May 18, 1983. This work was supported
by a National Science Foundation Postdoctoral Fellowship.

tGraduate School of the City University of New York, New York, New York 10036
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Remarks. In a tridiagonal system a change of variables Y=(-1)iX converts a
competitive system to a cooperative system and vice versa. In fact any tridiagonal
system for which OF/OX_I.OF/OX+>_O for all is equivalent to a cooperative
system by a change of variables of the form Y =--+ X. Changing F to -F changes
cooperative systems to competitive systems and reverses the direction of orbits; thus
our results can be stated for "negative semi-orbits" defined on intervals (-a, 0 ]. In
what follows we consider only cooperative systems.

Let v be a vector in R", all of whose coordinates v, i= 1,...,n are nonzero.
Define o(v) to be the number of indices i {1,.-.,n- 1) for which vi and v;+ have
opposite signs. The function o has an extension to a continuous function defined on a
slightly larger set. Let A CR n be the set of vectors v such that v v0, vn4=0 and if v.-- 0
for (2,... ,n- }, then v_ and v+ are nonzero and have opposite signs. Let 6 be
the unique continuous function defined on A that agrees with o where both are defined.

Let q(t) be a nonconstant solution defined for t_>0. We write 6(t) for 6(+(t)). The
main technical result of the paper is the following.

PROPOSITION. The set of t>_O for which 6( ) is not defined is discrete. Around values
of for which 6(t) is defined, is constant. At values where 6 is not defined, jumps to a
strictly smaller value.

COROLLARY. Sl(t ) and.q,( ) are eventually monotone.

Proof of Corollary. 6(q(t)) is a decreasing, nonnegative and integer valued func-
tion; thus it is eventually constant. According to the proposition, eventually +(t)
remains in A, the domain of 6. 5(t)A implies that 5(t) and +,(t) are nonzero. Thus
eventually 1 and 5, maintain constant sign and and q, are monotone.

Proof of Proposition. The fact that 6 is constant where it is defined follows from the
fact that 6 is continuous and integer valued in its domain of definition. Let o be a
positive real number at which 6 is not defined. We must show that is defined in a
neighborhood of o and that 6 decreases at 0.

For the remainder of the proof we write and +(J) for +(t0) and +()(t0).
DEFINITION. For G (1,.-. ,n}, set k(i)=0 if q)4:0. For j<n, set k(i)=j if

q?)=q2)=... =q?)=0 and q?+’):/:0. Set k(i)=n if q)=q2)=... =q")=0. If k(i)
<n, define sgn(i) to be +1 if q,k(0+l) is positive and -1 if it is negative, k(i) is
essentially the order of the zero of q’i(t) at t= o.

Since F,. is n-1 times differentiable, q, is n-times differentiable. Thus the deriva-
tives in the above definition are defined.

DEFINITION. Let S C (2,-.., n } consist of indices for which k(i 1) k(i + 1)
<n and sgn(i- 1)= sgn(i + 1).

The following lemma shows that for indices not in S we have some control over
k(i) and sgn(i).

LEMMA 1. Ifi ( 1, ,n} and k(i)>_ 1, then k(i)>_min(k(i 1), k(i/ 1), n- } / 1.
If k(i) >_ and q S, then k(i) min(k(i 1), k(i + 1), n } / and sgn(i), if defined,
is given by

sgn(i-1) ifk(i-1)_<k(i+l),sgn(i)-
sgn(i+l) ifk(i+l)_<k(i-1).

Proof of Lemma. Let m--min{k(i-1), k(i+ 1), n-l). We will prove the for-
mulas:

(a) 1)_@?)_ t,b(,m + l) 0

(b) dl(.m +2)!m+ l)0F/ (re+l)/i+1 OX/+



532 JOHN SMILLIE

First we observe .that (a) and (b) imply the lemma. (a) implies that k(i)>_m+ 1. If
qm+l) is not zero or if m-n- then k(i)-m+ Assume e,(m+2) is zero and m<n-ri

Since 0F//0X_ and 0F/0X+ are positive, and at least one of ml)_ and v+m+l)l is
nonzero, the only way that the right-hand side of (b) could be zero would be for both
{1) and l)to be nonzero and to have opposite signs. In this case iS. The
assertion about sgn(i) is easily verified.

We prove (a) and (b) by induction. Our inductive hypothesis is that the following
equations A(j) and B(j) are valid.

(A(j)) +1)_+i_ =+j+ 1)_0,

(a(j)) j+2)_ 1)0 +j+l)0 l)
i+1 0Xi+0L_I

We begin our induction at j=0. The assertion A(0) is 1-0. This is equivalent to
the hypothesis k(i) of the lemma. Since is a solution of -F(), we have
i-(_,,i+ ). Differentiating tNs equation gives B(0).

Now we show that forj<m,A(j) and B(j) imply A(j+ 1) and B(j+ 1). To prove
A(j+ 1) we need to show that+ is zero. + is the left-hand side of B(j). We
claim that the ’s on the rit-hand side of B(j) vanish, z(+ and (+ vanishi- i+
because k<m. A(j) asserts that+ vanishes. Since the ’s vanish,+ is zero. To
prove B(j+ 1) we differentiate B(j) and use the fact that the ’s that occur in B(j)
vanish at o.

Induction establishes A(m) and B(m). Note that A(m) implies that the middle
term on the right-hand side of B(m) vanishes. Discarding this term gives (b).
LN 2. For S, k(i)<n.
Pro@ Define a new function k on { 1,---, n } as follows. If S, set k(i) k(i). If

S, set k(i ) k( + ). We claim:

If iS then k(i)-k(i+ 1)- k(i+ 1). If i+ S then k(i+ 1)-k(i+ 2)-k(i). In either
case Ik(i)-k(i+ 1)1-0. Assume that neither nor i+ are in S. According to Lemma
1, k(i)-min{k(i- 1), k(i+ 1), n- 1} + so k(i)Nk(i+ 1)+ 1. Similarly k(i+ l)k(i)
+ 1. Thus (,) holds.

If (to) were 0, then by uniqueness of solutions would be an equilibrium
solution._ Thus for somej, (t0)0. Equivalently k(j)-O. Since k(j)-O,j is not in S
so k(j)-O. Let m be the index for which k acNeves its maximal value. By repeated use
of (,) we see that k(m)Nlj-mlNn- 1. Thus k(i)<n for all and k(i)<n for all iS.

Let -(,,. .,v) N". Let 0Ni<jn be given. Let v’ be the vector

(e,v+,.--,e). Say that we are given 0-i0<i... <i-n; then, if ("’*) is
defined for each l, () is defined and (v)-2=0(v"’+,). We adopt the notation

o.() for (’).
We will partition { 1,...,n} into subinteals {i,..., j} so that on each subinter-

val there is some e such that ,((t)) is defined for It-tol<e and tto, and such that
o, does not increase. TNs will establish the discreteness of the set of points at which
is not defined.

Take for the indices 0-i0<i. <i-n the collection of all indices not in S. We
distinguish three types of inteals {i, i+ }.

An interval {i,j} has type if there is some index l, i<l<j with lS. An interval
has type 2 if it is of the form {i, i+ } with k(i)-k(i+ 1). An interval has type 3 if it is
of the form {i,i+ 1} with k(i)k(i+ 1).

We analyze each type of inteal separately.
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Type 1. If S contains 2 successive indices and i+ 1, then by definition iS
implies k(i+ 1) < n and + S implies k(i)< n. Applying Lemma twice gives k(i) >
k(i + 1) and k(i+ 1)> k(i). This contradiction implies elements of S are "isolated" and
that an interval of type has the form (i- 1, + .} with S. Taylor’s theorem implies
that for It-t01 small, and k(j)<n, the sign of (t) is the same as that of sgn(j)-
(t 0)gj). Since k(i 1) k(i + 1)< n and sgn(i 1) sgn(i + 1) for It t01 small and
tVto, i__(t) and i+(t) have opposite sign. Thus 6i_l,+(t) is defined and equal to 1.
Note that if k(i- 1)-k(i+ 1)-0, then 6;_ l,.+ l(t) is also defined for t-to.

Type 2. For It-t01 small the signs of l(t) and +l(t) are the same as those of
sgn(i)(t-to)i) and sgn(i+ 1)(t-to)k. Thus #,i+(t) has the same value for t<to
and t>to. Note that if k(i)-k(i+ 1)-0, #,+ l(t) is actually defined at t-to.

Type 3. The argument in Lemma 2 shows that if k(i) : k(i+ 1), then Ik(i)-
k(i+ 1)1- 1. Without loss of generality we may assume that k(i+ 1)-k(i)+ 1. Accord-
ing to Lemma 2, k(i+ 1)<n; so by Lemma k(i+ 1)-min(k(i),k(i+2)}+ 1. This
implies that k(i)-min{k(i),k(i+2)} so k(i)<_k.(i+2). It follows from Lemma that
sgn(i+ 1)- sgn(i). For It-t01 small the signs of (t) and +(t) are the same as those
of sgn(i).(t-to) and sgn(i).(t-to)k+ respectively. For t<to these signs are
opposite and for t> o they are the same. Thus ,i+ 1(t) decreases at 0.

We have shown that is not increasing on any of the intervals in the partition. We
conclude the proof of the proposition by showing that # is actually decreasing on some
interval in the partition. Assume not. Then all intervals are of type and type 2. The
function k of Lemma 2 is constant on intervals of type and type 2. So k is constant on
{ 1,-.. ,n}. As in Lemma 2, k(i)-O for some i, hence k(i)-O for all i. If (i,j) is an
interval of type or 2 and k(i)-k(i) is zero, then ,j(t) is defined at t-to. Since

o-/,(t0) is defined for all intervals {i,j} in the partition, then (t0) is defined. But this is
contrary to our assumption that #(t0) was not defined. This completes the proof of the
proposition.

Proof of theorem. Let (t) be a nonconstant solution of -F() defined on a
maximal interval [0,a) for 0<a<o. Let L consist of points p which are limits of
points (ti) for some sequence t--,a. If L is empty, then (t) eventually leaves all
compact sets. Suppose that does not leave some compact set C; that is, (t)C for
some sequence i a. Then for some subsequence (t) converges to a p C and p is in
L,. To prove the theorem we must show that if Lo is nonempty, it contains a unique
point.

Any two points p and q in L, have the same first coordinate. We have sequences s
and t converging to a such that limi_.(si)=p and lim_(t)-q. Therefore
limi_ (si)=p and limi_. l(ti)--ql. Since l is eventually monotone, l converges
top and q; thus P ql.

All points in L are equilibrium points. Given p in L, there is a solution r defined
on ( e, e) with r(o) -p. The points z(t) for ( e, e) lie in L. Since rl(t) is constant,
(t) is zero and #(,(t)) is not defined on (-e, e). According to the proposition this can
only occur if r is a constant solution. Thus p is an equilibrium point.

An elementary argument shows that L,o is connected. If we can show that it is
discrete, it will follow that it contains at most one point. This follows from our last
assertion.

The set of equilibrium points with first coordinate c is discrete. Let p be an equi-
librium point with first coordinate c. Let B be a convex neighborhood of p contained in
f. We will show that B can contain no second equilibrium point with first coordinate c.
Assume that qB is a second such point. For some i_> we have Pl--ql, P2--q2"’’Pi
=q, P+l veq+ If p and q are both equilibrium points, then F.(p)-Fi(q)-O. We will
show however that F/(p) F/(q).
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Let X(t) be the linear path with X(0)=p and X(1)- q.

fo’ d
-gi ( x( t)) at-fo’

OFifo - (q,-p, ) d,.

By assumption qj-pj-O for j_< i. Since the system F is tridiagonal, the only nonzero
term 0F,./OXj. withj>i is OF//0X/+ v Thus

Because F is competitive, the integrand is positive. By assumption, qi+l--Pi+l is
nonzero; thus F(q)-F(p) is nonzero. This completes the proof of the theorem.
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THE ASYMPTOTIC POINCARE LEMMA
AND ITS APPLICATIONS*

RICHARD W. ZIOLKOWSKI" AND GEORGES A. DESCHAMPS

Abstract. An asymptotic version of Poincar/fs lemma is defined and solutions are obtained with the
calculus of exterior differential forms. They are used to construct the asymptotic approximations of multidi-
mensional oscillatory integrals whose forms are commonly encountered, for example, in electromagnetic
problems. In particular, the boundary and stationary point evaluations of these integrals are considered. The
former is applied to the Kirchhoff representation of a scalar field diffracted through an aperture and simply
recovers the Maggi-Rubinowicz-Miyamoto-Wolf results. Asymptotic approximations in the presence of
other (standard) critical points are also discussed. Techniques developed for the asymptotic Poincar lemma
are used to generate a general representation of the Leray form. All of the (differential form) expressions
presented are generalizations of known (vector calculus) results.

1. Introduction. Multidimensional integrals are encountered in many areas of
physics and engineering. A combination of Poincar’s lemma and Stokes’ theorem
provides a means of reducing a multidimensional integral to a lower dimensional form,
hence, constitutes an appealing approach to its evaluation. However, the expressions
that represent solutions of Poincar’s lemma are cumbersome and often difficult to
evaluate explicitly. Furthermore, in many practical problems (for instance, in electro-
magnetics at high frequencies) a large parameter is present and an asymptotic ap-
proximation of these integrals is quite adequate. An asymptotic version of Poincar’s
lemma whose solutions are readily computed would render the Poincar-Stokes ap-
proach very tractable in these cases.

In 2 the asymptotic Poincar lemma (APL) is formulated, and its solutions are
derived with the calculus of exterior differential forms [1]-[3]. (All differential form
notation concurs with that defined in [1].) These results are utilized in 3, 4 to
construct, respectively, the boundary and stationary point approximations of a multidi-
mensional oscillatory integral. The resultant differential form representations encom-
pass the standard vector expressions given, for instance, in [4] and [5]. The boundary
point technique is applied in 3 to the Kirchhoff representationof the diffraction of a
scalar field by an aperture in a perfectly conducting screen. The Maggi-Rubinowicz-
Miyamoto-Wolf expressions [6]-[8] and their properties are recovered. Several other
critical point contributions are also considered in 4. The Leray form [9] is constructed
in an appendix with the APL method of solution. This form is utilized in the asymp-
totic approach given in [10]. The results of this paper are summarized in 5.

2. Asymptotic Poincar6 lemma. Consider on the domain X, a set diffeomorphic to
some open set in e, ap-form of the type

(2.1) erfl,
where over X the phase function F is smooth and real-valued and the amplitude p-form
/3 is smooth and complex-valued. The constant , equals ik, where k is a large real
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parameter. For electromagnetic (quantum mechanical) problems k is 2 rr divided by the
wavelength A: k= 2r/A (k--2r/h, where h is Planck’s constant). A (p- 1)-form, e"ra,
of the same type as (2.1) is desired such that

(2.2) d( era) erB.
From Poincar6’s lemma [1]-[3] it is known that a solution, e"ra, of (2.2) can exist only
if the p-form e"r/ is closed, i.e., only if

(2.3) d(e"r/3) er(v+d )/3-0,
where

(2.4)  =ar.
(Obviously,

(2.5) dx=0,

hence,.x is closed.) Condition (2.3) is satisfied if

(2.6) (x+D)/3=0,
where

(2.7) D=,-’d.

On the other hand, because

(2.8) D(era)=e"r(x+D
(2.2) is equivalently represented as

(2.9)

An asymptotic solution, a, of (2.9), when condition (2.6) is satisfied asymptotically, is
constructed as follows. The result will be an asymptotic solution of PoincarO’s lemma.

Consider a differential p-form of the type (2.1) when/3 has an asymptotic expan-
sion

(2.10) er/--er(/o+ t,-/ + ,-22+.-. ),
where the/3j, are p-forms. It is asymptotically closed to range m if the expression

(2.11) (g + D)/3-(+ D)(/30+ ,-’/3 + u-2/32 +.-. )
has its first (m+ 1) terms (ordered in decreasing powers of ,) equal to zero; i.e., if the
(rn + 1) equations

(2.12) x/30=0
xB +dBo=0,

Im--}- dBm_ =0

are satisfied. When these conditions hold, it is possible to find a (p- 1)-form with an
asymptotic expansion of a similar type

(2.13) e"ra-,-’e"r(ao+ ,-’c, + u-242 +.-. ),
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such that the first (m+ 1) terms of d(era) reproduce the first (m + 1) terms of erfl.
This means an a can be found so that

(2.14) a0-/o,
a +dao- fl,

a+da_ m.

The resulting (p- 1)-form
m

(2.15) 0--/-1 X I-Joj,
j=0

is an m-th range asymptotic solution of Poincar’s lemma.
The relations (2.12) and (2.14), which specify an mth range asymptotic solution of

Poincar6’s lemma, are represented by the flow diagram given in Fig. 1. Each location is
the sum of the contributions indicated by the arrows leading to it. The operator
represents the exterior product by from the left"

(2.16)
The fact that the equations at the (p+ 1)-form level are satisfied results from the
identity

(2.17) do+od=0,

a consequence of x being closed and the Leibnitz derivative rule [1, (H. 16)].

(p-1)-form

P-form

(p+l)-form

FIG. 1. Relations that specify an asymptotic solution of Poincarb’s lemma.

Note that the expression (2.11) is automatically zero to any range if/3 is an n-form.
Also, if the expression (2.10) consists of only the first term e"r/30; i.e., if/3=/30 and all

other/3- 0, from (2.12) the terms of the expansion (2.13) of a are defined by the set of
equations

(2.18) xa0-/3 Rj----diXj_l, for l<j<m.

A solution of the system (2.14) when the conditions (2.12) are satisfied is based on
the solution of an equation of the type

(2.19) xa-/3,
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where the one-form and the p-form fl are given and the (p- 1)-form ct is to be found.
Its solution may be considered as a division of fl by r. Here a represents a0, Ctl,. -,ctm
and correspondingly, fl represents flo, fll-dao,’",flm-dam-1 Multiplying (2.19)
from the left by , one sees that a necessary condition for a solution to exist is that

(2.20) fl=0.

Note that (2.19) and (2.20) are, respectively, the asymptotic (k large) approximations of
(2.9) and (2.6). If x 4: 0, let the one-form K be

(2.21) K_ (1,1)- -1

The definitions of the star operator and the scalar product operation are taken to
be those given, respectively, in [1, Appendices E, F]. With (2.16) the operator "exterior
product from the left by K" is simply

(2.22a)

It is an operator of degree + 1. Its adjoint, K*, is the operator of degree that equals

(2.22b) K*- _,-i/, (_ 1)p- (to. t)-l[_, -, , (_ 1)p]

when acting on a p-form. Applied to fl it gives the (p- 1)-form

(2.23) K*- (1 K)- 11*--,
which is a solution of (2.19).

Proof. The operator g* satisfies the derivative property:

(2.24) *(fl) (*g)fl- (*fl),
hence, the equivalent relation"

(2.25) K*o + R K*-id,

where id represents the identity operator. Consequently, (2.20) and (2.24) yield

(2.26)
hence,

(2.27)

The operator K* is a (right) inverse of , the operator product by x; the solution
is an element of the kernel of x*: x*=0; i.e., x*x* 0. An interesting application of
this inversion algorithm, the construction of the Leray form [9, 3.1], is given in
Appendix A. The condition x ve0 is satisfied except at those points in X at which the
phase function F is stationary. Note, however, that this is only a sufficient condition.
The p-form fl may approach zero in regions where the operator K* is singular (i.e.,
where dF--x--0) in such a manner that given by (2.23) remains finite. This behavior
is encountered in the stationary phase evaluation of an integral and will be discussed
further in 4.



THE ASYMPTOTIC POINCARI LEMMA 539

Consequently, solutions of (2.14) are

(2.28) a0=K*fl0
O ---K*(fl -dao)

Olm-- K*(&-dolm_ ).

These relations are expressed more compactly as

J
(2.28’) Olj-- 2 {-K*d}J-P(K*p)

p=0

To justify that a,...,am are solutions, one must verify that conditions such as (2.20)
apply to each of their equations; i.e., for aj, that (flj-daj_ ) is null.

Proof. From (2.17) and (2.12) one has, respectively, icdoj_l---d(ldj_l) and
j- dfla_ . Thus, with (2.14)

(2.29) (flj-daj_l)-d(gaj_-flj_l)- -d(daj_2)--O.
When =0 (all flj.=0 for j>0) and =0, the solutions (2.28) and (2.28’) reduce to
the expressions:

(2.30) a0=K*fl,
aj -K*daj_ for <_j<_m,

and

(2.30’) aj- {-K*d}J(K*fl) for O<_j<_m.

These results can be summarized with a statement of the
ASYMPTOTIC POINCARI LEMMA (APE): If a given p-form er is asymptotically

closed to range rn over a domain X, a set diffeomorphic to some open set in ; where
dF=/=0, it is asymptotically exact to range rn over that domain; i.e., there exists a
(p- 1)-form era defined over Xsuch that d(era)=er+ O(v-(m+ )).

The first (m + 1) terms of a are readily constructed from those of/3 with (2.28’).
The construction is not valid in general at points where dF =0. This restriction may be
lifted for some particular fl at some points where d, 0 as shown in {}4.

The solution (2.23) of (2.19) is not unique. The general solution of (2.19) is actually

(2.31)

where , is an arbitrary (p- 2)-form, since _=0. The expression (2.31) represents a
gauge transformation of the solution (2.23). The freedom to include a gauge term, x,,
in that solution occurs because (2.19) determines only the components of a "transverse"
to x. In particular, the operator o K* is a projection operator that selects from the
form /3 its component, x(K*fl), along x; i.e., its "longitudinal" component. Hence,
because the identity (2.25) means

(2.32) ( K*fl ) + K*( fl ) fl,

the projection operator {1- K*) selects components transverse to . Therefore,
from (2.19) one immediately obtains

(2.33) K*fl= {1- K*}a=;
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i.e., the (p- 1)-form is the component of a transverse to r. This is also reflected in the
fact that is an element of the kernel of K*. Similarly, the solution, era, of (2.2) is also
not unique. If one replaces a by a’:

(2.34)
where is any (p- 2)-form, the equation

D(era)=er(x+D)a

(2.35) (+D) (-+-D)- (+D):--0.
The one-term asymptotic result (2.31) is clearly recovered in the limit --, oo. The
transformation a -+ a’ of the general rn th range APL solution given by

(2.36) a0

for l<_j<_m

may be considered as an asymptotic gauge transformation of that solution.
Proof. The equations the gauge transformed solutions satisfy:

(2.37)

reduce to (2.14) through the following sequence of relations:

KOlj .qt_ Kd’j_ 1-- j-- dolj_ l- d( i’j_ ),
KOlj jj aolj_ [--]

The gauge transformation (2.36) can be obtained from (2.34) with the (p- 2)-form
m

(2.38)
j=0

and with a truncation of the resultant expression for a’ to degree (m + 1) in v-. Thus,
the asymptotic gauge transformation (2.36) is exact if 3’m is closed (dtm =0).

Now consider the case where the p-form (2.1) is given exactly by the (rn + 1)-term
expression:

(2.39) + +"" + )"
It is of interest to determine when the APL solution is actually an exact solution. Recall
that an exact solution can exist only if the p-form (2.39) is closed. The equivalent
condition (2.6) is satisfied if, in addition to fl being asymptotically closed, tim is closed:

(2.40) dZm-O.
Thus, if (2.12) and (2.40) are satisfied, there exists (locally) a (p-1)-form whose
differential is erfl. This form is not necessarily given by the APL algorithm which
searches for a particular expression era, a given by (2.15) and (2.28’). However, if it is,
the relation (2.9) requires

d m=0

is still satisfied since
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in addition to the satisfaction of (2.14). Since the differential of the relation/3,, a +
dam-l gives

(2.42) dm= -dam,

(2.40) is satisfied if (2.41) is. Conversely, (2.40) and (2.42) only imply that

(2.43) dotm=O.
Hence, the fact that (2.39) is exactly closed does not imply that the APL solution is
exact. With (2.28’) the condition (2.41) can also be represented as

(2.44) dam-d (-K*d)m-t’(K*l, - (-1)m-’(doK*)m-P+,Sp-O.
p=0 p=0

Let the operator

(2.45) /’=-do K*.

Therefore, if
m

(2.46) X fm-p+ flp-O
p=O

the APL solution is exact.
The conditions for exactness when rn =0, will be employed in the next section.

From (2.46) they are, respectively,

(2.47) [/30-0,
(2.48) i(i0 -’"1 ) 0.

The m- condition (2.48) is satisfied if/3- -[/30- dao. In fact, since

m

(2.49) im-p+ [p- [( [3m- dam_ )
p=O

the condition for exactness (2.46) is satisfied in the general case if tim dam-l" In the
m =0 case (2.12) and (2.40) are satisfied if the p-form/--/0 is longitudinal and closed:

(2.50) &=0, dfl0=0,

conditions which are automatically satisfied if/30 is an n-form. Subsequently, if V is the
vector-field associated to the one-form K[1, App. E], (2.47) can also be written as

(2.51)
where the Lie derivative [1, App. L]

(2.52) e v d K* +K* o d.

Thus, if/3o is invariant along the flow defined by V[1, App. L] in the m =0 case, the
APL algorithm is exact.

Figure 2 summarizes (2.12), (2.14) and (2.36), i.e., the expressions defining the
general APL solution. It extends Fig. by including the terms that can be added to the
a’s as expressed by (2.36). Parallel arrows designate the same operation/ or d; each
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PARALLEL ARROWS
ALL MEAN THE
SAME OPERATION

or

\o
FIG. 2. General relations characterizing an asymptotic solution of Poincarb’s lemma.

GAUGE
TERM

K* -d K’ -d

FIG. 3. The general asymptotic solution of Poincarb’s lemma.

diamond pattern represents the identity (2.17). The dotted arrows on the. right express
the asymptotic satisfaction of those relations. Since they represent the expression
dYm=O and (2.41) and (2.40), they also are the conditions which describe when the
APL algorithm is exact. Similarly, the diagram given in Fig. 3 summarizes (2.12), (2.28)
and (2.36), i.e., the general APL solution. The fines ending in solid dots represent the
gauge terms of (2.36). Half-moon elements are added before the operator leading from
the circle surrounding them is applied. When fl= fl0, this diagram simplifies to the one
shown in Fig. 4 which summarizes (2.30) and (2.36) and the condition xfl--0. Note that
with the representation of the operator -K*o d by the dotted lines, the diagram
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FIG. 4. The asymptotic solution of Poincarb’s lemma when --o.

suggests a geometrical progression. In particular, when m c, the (p- 1)-form a can
be written as

(2.53) ol-p-l X p-J(-K*od)Joo-p-l[1-]-lolo,
j=O

where the operator

(2.54) g-v-(-K*od)-----K* oD.

3. Boundary point evaluation of an integral.
3A. General formalism. The contributions to the (asymptotic) evaluation of the

integral

(3.1) foe"r8
also denoted (see [1, p. 677])

(3.1’) erfl163,
from the points on the boundary, Z, of 63 are desired. The domain 63 is an oriented
p-domain of finite extent in X; its boundary X=0@. If (2.2) holds in @, (3.1) can be
evaluated immediately with Stokes’ formula [1, App. J] so that

(3.2) e’r/31(R) a(era)163- e’ral0@ eralx.
The desired asymptotic results follow in a similar fashion from the APL.

It is assumed that F has no stationary points in (R); i.e., that x:/:0 in (R) so that K,
hence, a is not singular. The given p-form e"r/3 can be replaced with an exact differen-
tial of a (p- 1)-form era that is a range m APL solution plus a remainder:

(3.3) er/3-d v-’ er 2 v-Ja v-(m+’)e"r(dtm)"
j:0
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Consequently, with Stokes’ formula the integral relation corresponding to (3.3) is
m

(3.4) erfll(R)- V- E v-J( evFtjl v-(m+ l)(eVFdoml@ ).
j=0

The original integral (3.1) over (R) has been replaced by an (m+ 1)-term asymptotic
series defined over the boundary, X, of (R) and a remainder term defined over (R) that is
of degree (rn + 1) in v-. Because this latter term is the same type as the original, it can
be evaluated in a similar manner. Hence, it is asymptotically small compared to every
other term. in the sum. The desired (asymptotic) boundary point evaluation of the
integral (3.1) is, therefore,

m

(3.5) e’rfl[@’ 1’--1 X lt-J( e’raj[) e’ra[.
j=0

If rn--0, this reduces to

(3.6) erfll@v-l(e’rao[X).
Equation (3.5) is a generalization of the expressions given in [4., Chap. 8]. It is

applicable to the vector as well as the scalar case. Furthermore, if the domain @ is one-
dimensional, (3.5) reduces to the standard endpoint evaluation of an integral given, for
example, in [1 1] or [12]. The following examples demonstrate the utility of the APL-
boundary point analysis.

3B. Kirchhoff approximation. Let the space qL be divided into two regions V and
V2 separated by an oriented surface M=0V1, whose normal points toward . The
surface M is composed of a screen S and of an aperture @ (whose edge is X 0@) such
that M 0 U S and is assumed to lie on side V_ of the screen [1, Fig. 2]. Consider in the
absence of the screen two scalar field solutions uj (j= 1,2) of the Helmholtz equation
whose sources pj are in V
(3.7) {A+ x2}u-- pj.

As discussed in [1, IV], if Ul is the field due to P in the presence of the screen and if

P2 is a point source at s2, the field Ul at s2 can be represented in terms of the cross-flux
of U and u2 through M as

(3.8) U (s2 ) ( U * du2 U2 * aU )IM.

The Kirchhoff approximation assumes that the field U1 and its derivative along the
normal of M (represented by the term *dUl) are zero over S and are equal, respectively,
to u and its normal derivative over 63. The resultant representation of the field (3.8) is

(3.9) UI(S2) -/12l@(u * du2-u2 dUl)l@.

The boundary point analysis will be applied to the integral ill21(R) in several cases. The
results represent a reduction of the Kirchhoff approximation of the field (3.9) to a line
integral over the edge of the aperture.

1. Plane wave-plane wave case. Consider the plane waves uj(r)--exp[v(xa.lr)], where
(xAr) is the duality product (see [1, App. D]) of xj, a constant unit propagation
one-form (i.e., dlcj-- 0 and a.. x--= x[r--- 1), and the position vector r. In Carte-
sian coordinates, for example, --dx+dy+dz and r=XOx+YOy+Zi) so that
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xj.Ir x + y+ ’z. Since

(3.0) au-u,
the cross-flux two-form

(3.11) flz-VU,U, (2- ,) ,(e"r/),
where

(3.12) r-(, +)1
and

(3.3) -,(-,).
One verifies that gB=0 since g-dF- + 2. The APL solution is

*12(3.4) o-*- (1 +,.)

all other %-0 (j- 1,2,-.. ) because ao is a constant. Thus, if

,12(3.15) ,-e"%--u,. g-:
the cross-flux integral

(3.16)

545

(3 17) G(r)- exp(,r)
4rrr

where r Irl. If r; -Ir- s il and -dri, the cross-flux two-form

(3.18) 12--UlU2 *

where the phase

(3.19)
so that

(3.20)
and the two-forms

(3.21)

r r

F-r +r2,

-dF-g+g2

8o--glg2 * (2--l)

Moreover, dB-0 (B is a constant); therefore, from the preceding section one realizes
that (3.16) represents an exact result (hence, the equal sign). Note that (3.16) must be
modified when -0; i.e., when g--, hence, when F,xx2 and (1 +Xl.X2) are all
zero.

2. Spherical wave-spherical wave case. Consider the two fields u(r)-G(r-s.)
(i-1,2) due to point sources at s and s2. These fields represent spherical waves
originating at those points. The Green’s function
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and

( 2 ’ )(3.22) -gg2 * r2 r
so that/-/o + v-/3. The functions

(3.23) g,(r)-
4rrr;

The corresponding APL solution a ,- (a0 + ,- a ) is obtained from the system

(3.24a) Xao-8o,

(3.24b) a -8 dao.

Since /30- 0, (3.24a) is satisfied by

(3.25) a0=2(1 q__lCl.lC2)----g, g2 1+,.2

However, as shown in Appendix B, this means

(3.26) dao- 8
Therefore, (3.24b) together with the condition x*a -0 yields

(3.27) a, =0.

Furthermore, (3.26) is the condition required for the exactness of the APL solution.
Consequently, where x va 0, the differential of the one-form

(3.28) a2-e"ra- --UlU2

is identical to the cross-flux two-form (3.18)

(3.29) da2-82.
The one-form a0 is a singular where --2, hence, where + ’2-0. This occurs
along the line segment ss2 connecting s and s2. Thus, if the line ss2 does not intersect
(R), the field at s2 is

(3.30)
On the other hand, if it does intersect @ and because OS- -, the field at s 2 is

(3.31 ) 1216" --/8,aIM-- 1121S U ($2)

where the first term follows from Green’s theorem. Hence, the field at s 2 is now
composed of the geometrical optics field (the first term) in addition to the diffracted
field (the second term). The expression of the latter shows that it may be considered as
originating on the edge Z of the aperture, an interpretation that agrees with the
viewpoint of the geometrical theory of diffraction (GTD). Furthermore, notice that the
phase function F is stationary (i.e,g-0) along the line ss2, where --x2. In fact,
with the results of the following section it can be shown that the geometrical optics
term is recovered with the stationary phase approach. Finally, it must be re-emphasized
that (3.30) and (3.31) are exact representations of the Kirchhoff approximation of the
field resulting from the scattering of a spherical wave through an aperture.
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3. Plane wave-spherical wave case. Consider the plane wave ul(r)-exp[v(xllr)]
and the spherical wave u2(r)-G(r-s2). The results for this case follow immediately
from the preceding cases. If x14: -2, the one-form

,XlX_2 )(3.32) a2-era- -u’u2 1+ i 2

where

(3.33) F- (,lr) +r2
and

(3.34) a0- -g2

is an exact solution of the equation

(3.35)
where the cross-flux two-form

I+KI’K2

121@ Otl2lX

(3.36) 12-- UlU2 * 11( K 2 K )
r2

When x -2, the geometrical optics field u(s2) must be added to the diffracted field
in (3.35). The case dealing with a general incident field ul(r) can be handled (exactly)
with these results by representing Ul as a superposition of plane waves.

4. Asymptotic field-spherical wave case. Consider the field ul(r)-exp[v(r)]A(r)
which asymptotically satisfies the Helmholtz equation and the spherical wave u2(r)-
G(r-s2). The cross-flux two-form truncated to an asymptotic order corresponding to
that of the incident field u is

(3.37) ]12,’l)UlU2 (K2--KI).
The subsequent asymptotic expression

(3.38)
where

m

(3.39) Ctl2 -Jaj
j=O

follows immediately from the APL-boundary point formalism. In particular, the phase
function

(3.40) F-+r2,

and if de-/i; =)/: K2,

(3.41)

so that

,K1/2 )a-K*fl- -Ag2 +Xl-X2

(3.42) aj- (-K*d}Jao (1 <_j<_m).
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The stationary point situation (where dI’--Cl+t2--0) is handled as shown in the
following section.

The preceding results recover those given in [6]-[8]. However, the discussion has
been appreciably simplified using differential forms. Moreover, it refutes the statement
in [8, p. 210] that it is impossible to derive in a simple way the representation and the
properties of the vector potential which corresponds to the one-form e"Vo. In fact, in all
of the above cases if = such that r-rj., the one-form solutions

( *11K2 )(3.43) e"rct- -UlU2 +l-r2
are simply related to the vector potentials W of [8]

(3.44) W-er -uu2 + l 2
Furthermore, these results are readily extended to vector-field problems. A discussion
of those problems is in preparation.

4. Stmiona int conibutions. The asymptotic evaluation of the integrM

(4.1) erlx= eV(x)A ( x ) dxNlX
where x=(xl,x2,...,x,) is a point in X and the volume n-form dxN=dx dx2... dx",
is desired when a nondegenerate stationary point, x0, is the only critical point of F in X
and the function A is smooth over X, is zero at infinity and is integrable. A point x0 is a

stationa point of F if

(4.2) dF(x0)=0;
it is nondegenerate if, in addition,

where 0x F means OF/Oxj. Note that only the case for which fl is an n-form is
considered explicitly. The general case in which fl is a p-form integrated over a
p-domain is handled in a similar manner; the generalizations of the following results to
that case will be apparent. Also, if there is more than one stationary point of F in X
and if they are not near to one another, each stationary point can be localized with
neutralizers as shown, for instance, in [4] and treated like the present case. Problems
involving the coalescing of stationary points, branch points, poles, and so on will not be
discussed. The situation where the domain is an n-domain @ rather than the whole
space X will be discussed at the end of this section.

In the vicinity of xo the Morse lemma [13] realizes a change of variables which
reduces the phase to a quadratic form with coefficients (--+ 1). Denote the new variables
by u=(u,...,u,,). They are functions of x in the vicinity of Xo; hence, they may be
expressed as u(x, xo). Furthermore, they satisfy the relation

n

u(4.4) X
j=l

where /j= --+ 1. For each xo there is an associated map

(4.5) /xo" UX: ux-#xou" 0 Xo,
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which expresses x in terms of the new variable u. It will be called the Morse map. The
desired quadratic form:

(4.6) Q(u)-
j--I

is defined as

*o[r()-r(xo)]-O(u),
where/*x0 is the pullback through the Morse map,/x0. To complete the integral (4.1),
the change of variables or pullback/*xo must be applied to the amplitude n-form,/3.
This yields

where

.*o .*o[A(x ) ax a( u, Xo ) u,
(4.9) G(u,xo) Id,Xo[Z(x)( duN )

-1]* -(xoU)J(u Xo)
dxN

and the Jacobian of the transformation from the u to the x-lxou coordinates"

(4.105 J(u,xo)-{*xo[detllOxu(x,xo)l}]J-l-detlJo.(x-txoU)[I.
Finally, with this change of variables the integral (4.1) becomes

(4.11) er[31X= er(xo)[eOt)G( u, xo ) duNIU =-- l( v, Xo ).
This expression can be rewritten immediately as

(4.12) I(v,xo)-e"r(xo)G(O,xo)[e"Q(")duNIU
+er(xo){e"(U)[G(u,xo)-G(O,xo)] duNIU).

The first integral in (4.12) is simply [4], [14]

(4.13) e"9"(U)duVlU=cnc-l(k)-"/2-exp [(r)i sgn

where

(4.14)

and

Cn-2-"/exp[i( )indl]

(4.15) c-
k n/2

and where if n+ and n_ are, respectively, the number of positive and negative rtj.
(j- 1,2,. ., n), then the signature sgn 1 n / n_ and the index Ind n_. The re-
suits of the lemmas proved in Appendix C allow one to manipulate the second integral
into a form suitable for an asymptotic evaluation. In particular, let the one-form

n

(4.16) O
i--I
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As shown in Appendix C, the amplitude n-form G(u, x0)duN can be expressed in terms
of its value at the stationary point u--0 of Q(u) and a term linear in p

(4.17) G( u,xo ) duN-- G(O,xo ) duN+ pHo( u,xo ).

A suitable choice for the (n-1)-form H0 is generated with the inversion algorithm
introduced in 2

(4.18) /-/o- (o o)- ’o* du ).
Comments on the nonuniqueness of this choice also follow from those given in 2. With
(4.13) and (4.17) the expression (4.12) becomes

(4.19) I( ,,xo ) ( CnC- )e’r(xo)G(O,xo ) + e’r(xo)[ e’O-(U)pHo( u,xo )[U].
The integral in (4.19) can be evaluated using the APL algorithm. Since

(4.20) /3o=OHo
is an n-form and since

(4.21) =duQ= O,

the condition

(4.22) /o= 0

is trivially satisfied. Although the (sufficient) condition x :/= 0 was needed in the preced-
ing section, we can still give meaning to the expression a0-- K*flo. Because fl0, as well
as , is zero at the stationary point u--0, the combination K*flo has a finite limit there.
Therefore, the (n- 1)-form a0 is well defined over U. Furthermore, since p*H0- 0,

(4.23)
With the relation

(4.24)

K%- (o-o)- o* U,Xo ).

Du[ e"9-(’)ao( u )] e"O-(U)o( u ) + e"2(U)Duao,
one immediately obtains

(4.25)
where

eO(u)/3olU -,[e(?(U)HolOU] + p-l[eQ(u)G 1( U’Xo ) duNlg]

(4.26) Gl(U,Xo)duN-- -duO0

Because the boundary, 0U, of U is at infinity and the amplitude function A is zero
there, the boundary integral in (4.25) is zero. The other integral has the same form as
the original integral in (4.19); hence, this process can be repeated. After (m + 1) steps
(4.12) becomes

m

(4.27) I(u,Xo)-er(xo)(c,c-’) u-Gj.(0,Xo)
j=0

+ p--(m+ ,)e r(x0)[ e,,O_(U)Gm + 1( U,Xo ) duNIU],
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where G0- G,

(4.28) (O<_j<_m)

(4.35)
j

each term in the braces being treated as operators and applied in order from right to
left. The advantages are that the leading term of the series is independent of k and that
the contributions to the expansion from the phase and the amplitude are apparent. The
operators Tr depend on derivatives of the phase evaluated at the stationary point at
most to the order 2(j+ 1) and contain derivatives which are applied to the amplitude
and evaluated at the stationary point at most to the order 2 j. For instance, when n 1,
if I" O/xoF, then

(4.36)
and

(4.37) F2Ox/xo + 12F220/xo]24F2/2 [(5F2- 3F4F2 )0/xo 12F3 2

where

and

(4.29) Gi(u,xo)duN- -duHi_ (1 <_i<_m+ 1).
Truncating the remainder term in (4.27) which is of degree (m + 1) in u-, the (rn + 1)-
term stationary phase approximation of the integral (4.1) is

m

(4.30) I(v,Xo)’eVI’(x)(Cnc-l) X v-JGj(O,xo)
j=0

Furthermore, as shown in Appendix D,

(4.31) G(O,xo)- -- ff. ’Ju/o G(u,xo),

where the (modified) Laplacian operator

n

(4.32) = X jO2uj--’O2u
j=l

and

(4.33) u/of(u)-uf( u)l,=0
The standard stationary phase expressions are readily obtained from (4.30) and

(4.31) [14]. Furthermore, the preceding derivation is a generalization of the ones given
in [4] and [5] which employed vector identities (divergence theorem) and, hence, were
restricted to Euclidean spaces. In contrast with [4] and [5], for example, the results of
this section remain valid in cases where X is a manifold.

One can rewrite the expression (4.31) in a more manifest form [14]
m

(4.34) cI(v, xo),-, e"rx0) v-Tj.rA(x0),
j-0
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Applications and ramifications of these results are given in [14] in connection with the
asymptotic evaluation of the Fourier transform.

Now consider the integral cerl, where (R) is an n-domain in X. Let F have an
isolated, nondege__nerate stationary point, x0, in the interior of @; in particular, dF v0
on Y- 6. Let (R) be the complement of (R) in X whose boundary is oriented such that
06- . Thus,

(4.38) cerfll(R) ce rfllX- cerfll
The asymptotic evaluation of the first integral clearly yields the stationary phase
contribution, cI(v, xo) F(v, xo). Since (R) is devoid of any stationary points, the second
integral can be handled with the boundary point formalism. Thus, with the APL
solution

m

(4.39) O--P--I ’ --Jolj--l--ll,
j=0

it gives

(4.40) cerl-- ceralY. --(-lC)[erSlN v-1/2[ gercly] -1/2E(/y, ),

where

(4.41)

Therefore,

(4.42)

k (n-- 1)/2 q./.

O-- i(2r)-’/2 { ( -- exp[--i()(n-- 1)] }
ce"rfl](R) F(, xo) + u- /2E ( u, X )

the total asymptotic expansion of the integral is defined in terms of the stationary and
the boundary point contributions. This result assumes those contributions are indepen-
dent. Modifications of (4.42) would be necessary if this condition was not satisfied.

Notice that the boundary integral can be reparameterized in terms of local coordi-
nates on . The resulting integral can then be evaluated asymptotically. If the resultant
phase function is stationary at some point (a critical point of the second kind; the
stationary point x0 in the interior of (R) being a critical point of the first kind), the
stationary phase formalism can be applied directly to that integral. In electromagnetics
these terms account for the diffracted ray contributions to the total field--those rays
generated from boundaries such as edges. The stationary points of the first kind, on the
other hand, produce the geometrical optics terms. The characteristic k-/ difference
between these contributions is apparent in (4.42). However, in some instances every
point on the boundary is a stationary point, and it becomes necessary to keep the
nonlocal integral representation of the boundary point contributions. Similarly, if the
boundary E has critical points such as discontinuities in its tangents (critical points of
the third kind) or in its curvature (critical points of the fourth kind), the boundary Y

can be subdivided into regions over which the derivatives are continuous to a certain
order and whose boundaries coincide with the points of discontinuity. The integrals
over these subregions can now be treated with the boundary point formalism. Standard
results given in [4] or [5] are readily recovered. Note, however, that the differential form
expressions are especially suited to calculations of these types.
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Finally, consider the case where x0 is a nondegenerate stationary point of F and
lies on the boundary X. Near x0 a local coordinate system u-(u’,Un) (where u’--
(Ul,"" ",U-l) defines a point on X and un is defined along the unit normal to X at x0)

*Fcan be constructed such that the transformed phase function, /0 is stationary at
2 where / +1 (-1) ifu (u’,u)-O and takes the form (/*oF)(u) F’(u’,xo)+lUn,

un is positive (negative) for a point in the interior of . Consequently, one has

(4.43) er/l= e"’""g(u,,,Xo; v)a(lu,,),

where

(4.44) g(u,,,Xo; v)--e"r’(u")G(u’,u,,,xo)du’l

and where is a real positive constant. Note that with k large, the constant can be
replaced with c, [4]. The asymptotic approximation of the original integral is obtained
by applying the stationary phase approach first to the (n- 1)-dimensional integral over
X treating the u-variable as a parameter and then to the one-dimensional integral over

uo. The final result differs from (4.34) because of the form of the latter integration.
Because that integration is only over the nonnegative reals, odd orders of derivatives
and (referring to (4.13)) the coefficient 1/2, characteristic of this case, appear. The
expressions given in [4] and [5] are readily reproduced.

5. Conclusions. Exterior differential calculus techniques were used to formulate
and to obtain asymptotic solutions of Poincar’s lemma. In particular, a new method of
solution of a general type of differential form equation was developed. Several applica-
tions of these asymptotic Poincar lemma results were presented. The boundary and
stationary point contributions to the asymptotic approximation of a multidimensional
integral were derived. Other critical point contributions and asymptotic techniques
were also discussed. The boundary point approach was applied to the Kirchhoff
representation of the diffraction of a scalar field through an aperture. A representation
of the Leray form was synthesized that did not require the introduction of any local
coordinate system. In all of these applications the resultant differential form expres-
sions encompass, as special cases, standard vector calculus representations. Further-
more, in contrast with their vector counterparts the differential form expressions are
easier to obtain and their properties are more transparent. The asymptotic Poincar
lemma and the associated techniques constitute a versatile approach to a large class of
problems encountered in physics and engineering.

Appendix A: The Leray form. Consider an (n- 1)-dimensional hypersurface S in
X. A neighborhood V of a point on S can be defined by the equation e(xl,’",Xn)--O
where P is an infinitely differentiable function such that dP 4:0 on V (i.e., there are no
singular points on V). A form 0, which satisfies

(A.1) dxu dPo

is readily obtained with the inversion algorithm introduced in 2. In particular, since
dPdxU=-O (the volume form dxv is an n-form), a solution of (A.1) is

dP* dxN ,NP
(A.2) o- dp,---d-ff (- 1) dP
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where s is the index of the metric associated with the space X. This (n-1)-form is
called the Lerayform [9, Chap. III, {}1 ]. Note that we have taken

(A.3) , dxN--1
and

(A.4) ,-,- (_ 1) , w(n +1),

where w is the operator which applied to a p-form/3 gives wfl=(-1)P/3. Clearly, the
Leray form depends only on the function P by which V is represented. If P(x)
represents (up to higher order terms) the distance from x to V, the (n-1)-form w
reduces to the Euclidean element of area on S. Statements concerning uniqueness
follow directly from those discussed in the APL. In particular, the form o+(dP),
where 3’ is any (n- 2)-form, is also a solution of (A. 1). Notice that if one assumes on V
some ,;P4 0 such that dP (O,,jP) dx/, (A.2) reduces to

(A.5) 0--(-- 1)j-1 dx dxJ- dxJ+ dx

 x,e
Similar arguments can be applied to an (n-j)-dimensional manifold defined

locally by the equations" P(x) 0, P2(x) 0,-.., Pa.(x) 0. The (n -j)-form

(A.6) 0
(de,... d6 )*( de, d6

( -1)S , ( dP, dPg. )

satisfies the relation

If , is any (n-2j)-form, the form oa+(dP.., dPa.)7 is also a solution of (A.7).
Furthermore, with the expression

(A.8)

where the Jacobian

(A.9) J(P,,’-. ,Pj; x,,..- ,xj) detll O;Pll<i,= 1,’’’, j)’

and with the adjoint operator identity (aa2)*-a’a*2, the Leray form (A.6) becomes

dx/+ dx(A.10) -J(Pl,...,Pj.;Xl,.. ",Xj)
The preceding results coincide with those given in [9]. Note, however, that the

present approach differs from the standard construct employed in [9]. For instance,
(A.5) can be derived by introducing the local coordinates (u,...,u,)=u such that
Ui--X for i=/=j and u/-P, hence, J(x; u)-(OxjP)- and

(A.11) dxN=j(x;u)du’...du/-ldPdu/+’...du

Equation (A.3) is recovered immediately from (A. 1) and (A.11). On the other hand, the
Leray form expressions (A.2) and (A.6) are globally valid and avoid the interjection of
the local coordinate system.
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Appendix B: The APL solution to the Kirchhoff diffraction of two spherical waves is
exact. It will be shown that the l-term APL solution to the Kirchhoff diffraction of
two spherical waves is exact; i.e., that dao-flt. Let 0j-gj. The one-form (3.25) can
then be rewritten as

(B.1) ao- -gig2

Let

(B.2)
and

Since

(B.4)
one has

so that

(B.6)

and

rlr2 + Pl P2

A r r:z ( r r2 -+- O 02 )

B-- 2rlr2 + ol O2.

d(01"02)-01-+-02,

dA (r, r2 )- [( B+ r? )r22p + ( B +r )r?p2]

2A-(dA*p2)--(rlr2) ’r22[B(Pl.P2)+(rlr2)2] (r’r2+Pl’P2

rl) )2(B.7) 2A-(dA*ol)-- (rlr2+01"02

Consequently, with the identity

(B.8) d*( h3/ ) hd*3/- ( dh )*v,
where h is a scalar function, is any q-form and the codifferential operator [1, F. 9]

(B.9) d* ,- d , (-1) q,
when it is applied to a q-form, and with the relation

(B. 10) d*( P,P2 )= 2( p,- 02 ),
one obtains

(B.II)-(4r)2dao-,[d*(A-’p -2 [2A(p,_p2 )+dA*(,

=(r,r2)-l, ( p-p)r} r}
so that

(B.12) g2 /1 )dao- g g2 * --ill"r. r
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Appendix C: Linear representation of a p-form about a point. The inversion algo-
rithm will be used in this appendix to generalize the following lemma to p-forms.

LEMMA C.1. Let f be a C function in a convex neighborhood M of the point
Xo-(O,...,O, Xp+l,. ..,x) in X. Then

P

(C.1) f(x)-f(xo)- X xjhj(x)
j--I

for some suitable C functions hj defined in M, with (Ox/f)(xo) hj(xo ).
Proof.

f(x) -f(xO) =fo df- ( tXl," ,tXp,Xp+ l," ,xn) dt

j= xj ( tX txp xp+ Xn )Xj dt

Therefore, set h(x)- f(Of/Ox) (tXl,. .,txf,Xp+l,. .,xn)dt. [--1

Note that Lemma C.1 is a simple extension of [13, Lemma 2.1]. Now consider the
following lemma.

LEMMA C.2. In X let the p-form

(C.2) 8(x ) a,(x ) dx’,

where J is the multi-index of length p: J=j J2" "Jp, so that

dx-dx,dx,. dx,.

With the subset = {j,j2,. ",Jp } of the set { 1, 2,..., n }, let the one-form
(c.3) o- X f ax ,

where fj is a scalar function. Then, if not all of the fj are zero, the p-form (C.2) has the
linear representation

(C.4) (x)-Oa(x),
where is some suitable (p- 1)-form.

Proof. The relation (C.4) follows immediately from the inversion algorithm dis-
cussed in {}2. In particular, the necessary condition

(C.5) O(x)-O
is trivially satisfied. Thus, since at least one fj. 4 0, hence, 0 4 0, set

(C.6) OI(X)--(O*O)--I[o*[(X)]. -]

COROLLARY. Let the one-form
(C.7) O- , cjxdxj,

je$

where c. is a constant, and let Xo-(Xlo,...,x,o ) be the point whose components Xo-O
forj },. Then about xo one has the linear representation

(c.8) x ) Xo ) Ott( x ).

for some suitable (p- 1)-form H.
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The corollary is clearly a special case of Lemma C.2; a suitable H is

(C.9)
Equation (C.8) is the desired generalization of (C.1).

Appendix D: A representation of the stationary phase amplitudes. The (modified)
Laplacian

applied to a p-form

where J is a multi-index of length p, acts only on its coefficients:

Lua ( L,a ) dus.
J

If the q-form

Hj-E hjiduI,
i

where I is a multi-index of length q and the one-form

P-- 2 rliUi dui
i=1

then
n

(D.1) Lu( pnj ) 2 E iLu( uihj, ) duidu I

i:1 I

n n n

E 2[’rliui(tuhjl)] duiduI-’[-2 2 E 2(’rlirllOutUiuthjI) duiduI
i=1 I i=1 1=1 I

n

=oL,/-/.+2 2 2 ( Ou,hjl ) dui dul- pLuHj+ 2duHj
i=1

With the identity

d,, Lu- L,, d,,,

repeated applications of (D. 1) give

e;.(og) e;.-l(o.g+ 2d.<.) m-,-[Oe2g+ 2d.(eH,.) + 2Cu( dul+,.)]
L:-2[pLtl.+ 4L,,( d,/-/j. )] pL’Hj.+ 2mL’-’( dulla. ).

Thus,

(D.2) Au/o(pnj ) ~m-,-2mAu/o(dutl)
Now consider the p-form fl(u, xo) and the ( p 1)-form/-//(u, xo) which satisfy the
system
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flj(U,Xo)-flj(O,xo)+pHj(u,xo) (O<-j<-m),

flj(U,Xo)- -duHi_ (1 <_i<_m+ 1).

Equation (D.2) then gives

7/oflj( u xo) 2m "m-

Therefore,

~j--I ~j--2Ju/oBo(U,Xo)-- --2j’Au/oB,(U,Xo)--(-2)2j(j 1)Au/oB2(U,Xo)
(- 2)Jj !flj.(O, Xo),

hence

(D.3) (O,xo)- - . /o flo(U,Xo).

Consequently, with the n-form

U, Xo ) U, Xo ) aU

(D.3) yields

(D.4) jw.  /o 6o(U,Zo).
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INTEGRAL REPRESENTATIONS FOR PRODUCTS OF
LAMI FUNCTIONS BY USE OF FUNDAMENTAL SOLUTIONS*

HANS VOLKMER?

Abstract. In this paper we present integral representations for products of Lame functions based on the
theory of fundamental solutions. The kernels of these representations involve Legendre functions of the
second kind. In particular, we generalize and improve integral representations for external ellipsoidal
harmonics mentioned by Erdelyi, Magnus, Oberhettinger and Tricomi [Higher Transcendental Functions III,
McGraw Hill, New York, 1955] and for Lame functions of the second kind in terms of Lame polynomials
studied by Shail [SIAM J. Math. Anal., 11 (1980), pp. 702-723].

Introduction. Consider the partial differential equation

(0.1) O2w o2w - v(v+ 1)k2(sn2y-sn2x)w-O,
OX 2 Oy 2

where x,y are complex variables, v is a complex number and k is the modulus of the
Jacobian elliptic functions sn, cn, dn. Separating (0.1) we obtain, for each variable x,y,
Lame’s equation

(0.2)
d2U+(,-v(v+ 1)k2sn2z)U=O.
dz 2

Now we proved in [5] that the Riemann function of (0.1) is given by

P,,(b(x,y,xo,Yo)),
where P is Legendre’s function of degree v and the function b is defined by

k
(0.3) b(x,y,xo,Yo)-ksnxsnxosnysnyo--cnxcnxocnycnyo

+ dnx dn x0 dny dny0,

where k’ is the complementary modulus. Starting from this observation and using
Riemann’s method for integrating partial differential equations we obtained in [5], [6]
an integral formula for products of Lam6 functions which contains practically all
known linear integral relations for Lam6 functions whose kernels involve Legendre’s
function P,. In this paper we shall show that a similar theory is also possible for the
class of integral relations for Lam6 functions whose kernels involve Legendre’s function
Q.

As starting-point of our theory we show in the first section that

Q(b(x,y,xoYo))
is a fundamental solution of (0.1).

In the second section we use the well-known representation of solutions of elliptic
partial differential equations by means of fundamental solutions to obtain the desired
integral representation for products of Lame functions; this representation is analogous

Received by the editors May 17, 1982.
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to Cauchy’s formula for analytic functions of a complex variable. In the second section
we also show that many important special cases are contained in the general formula;
in particular, we improve the results of Erd61yi, Magnus, Oberhettinger, Tricomi [2] and
Shail [4]. These authors consider only the case when v is a nonnegative integer, i.e., the
situation where Lam’s equation (0.2) admits Lam polynomials as solutions, whereas
we allow v to be arbitrary complex. Moreover, it is a problem in the literature to
determine some multipliers in the representation formulae, but this problem does not
arise if we base our results on the theory of fundamental solutions.

In 3 we shall demonstrate the value of our method by calculating some multi-
pliers in Shail’s formulae; the expressions for the multipliers which we get are consider-
ably simpler than those-given by Shail.

Let us specify some notation. We denote by 7/, R, C respectively the set of integers,
real numbers, complex numbers. Throughout this paper sn, cn, dn are the Jacobian
elliptic functions with a fixed modulus k which belongs to the interval ]0, 1[. The
complementary modulus k’ and the complete elliptic integrals K and K’ are defined as
usual (see [7]).

1. Fundamental solutions for equation (0.1). Consider the elliptic partial differen-
tial equation

(1.1) -O2u O2u
as 2 --+v(v+ 1)k2(sn2it-sn2s)u O,

which is obtained from (0.1) by setting

x=s, y=it, w(x,y)-u(s,t),
where s, are real variables. The number v is complex and it is sufficient to take the real
part of v greater than or equal to -1/2. We shall discuss equation (1.1) on the strip

S’-((s,t)R2"-K’<t<K’).
The coefficient sn2it sn2s which appears in (1.1) is (reaP)analytic on this strip.

Now we assert that for each (So, 0) S the function

(1.2) v(s,t)’- Q(b(s,it,so,ito))
is a solution of (1.1) which has logarithmic singularities at several points in S which will
be specified later. Here Q is the Legendre function of degree of the second kind and
b is the function defined in (0.3). To simplify the notation we do not indicate the
dependence of v upon (s0, 0). This is allowable since we shall assume that

(so, o) is a point in S fixed throughout this section.
We shall now verify the assertion above, first proving the following lemma regard-

ing the range of the function b.
LEMMA 1.3. (i) If we denote by L(so,to) the set of all (s,t)S which satisfy

b(s, it, So, ito ) then

L(so,to)- {(So+4mK, to)’m7/} U {(-So+4mK -t0)’m7/}.
(ii) For all (s, ) S, b(s, it, so, ito ) belongs to the interval[l,
Proof. The function b, considered as a meromorphic function of four complex

variables, can be expressed by

(1.4) b(x,y,xo,Yo)- +2 (f(x+Y)-f(x+Y))(f(x-Y)-f(x-Y))
(f(x--y) +f(x +y ))(f(x0--yo ) +f(xo +Yo ))’
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where f(z)-kcnz +dnz is an even elliptic function of order 2 with periods 4K and
4iK’ (see [6, (1.3)]). From this representation it follows that for (s, t)S

If(s + it) -f(so + ito )12b( s, it,so, ito ) +- R-(_-)i:ef(S0)
This proves (ii) since IIm zl<K’ implies Ref(z)> 0. Moreover, we see that for (s, t) S
the equation b(s, it, so, ito)=l is equivalent to f(s+it)-f(so+ito). Now f(s+it)--
f(so + ito) holds if and only if there exist integers m,n such that s+ it-- so + ito + 4mK+
4niK’ or s+ it-- -so-ito+4mK+4niK’. This yields (i).

Lemma 1.3 shows that the function v defined in (1.2) is analytic on S\L(so, to)
since (the principal value of) the Legendre function Q is analytic on the interval ]1, o[.
The function v is a solution of the partial differential equation (1.1) on S\L(so, to).
This follows from the fact that every function of the form K(b(., .,Xo,Yo)), where K
denotes any Legendre function of degree u, satisfies the equation (0.1). This can be
shown by direct calculation or, more satisfactorily, by use of suitable coordinate
transformations of the three-dimensional wave equation (see [5]).

Now we examine the behavior of the function v at the points of L(so, to). It
suffices to consider (s0, to) L(so, 0) since for all integers rn we have

b(s, it,so, ito) b(s + 4mK, it,so, ito) b(-s+ 4mK, -it,so, ito).

The representation (1.4) of b shows that b(x,y, xo,Yo) if (X-xo)Z--(y-yo)2. From
this observation and from some direct calculations we see that for all xo,yo which are
different from 2mK+(2n + 1)iK’(m,n _) the function b(., ,xo,Yo) near x= x0, y ---Y0
can be written in the form

(1.5)

b(x,y,xo,Yo) l+((X-Xo -(y-yo)2)( (sn2xo-sn2yo)+b(x,y,xo,Yo)),
where b l(-, .,Xo,Yo) is an analytic function of two complex variables defined in a
neighborhood of (xo,Yo) with the property that b(xo,Yo,Xo,Yo)=O. Now from (1.5) we
obtain

(1.6) b(s,it,so,ito)- + r2(1/2k2(sn2so-sn2ito) + bl(S,it,so,ito)),

where s, are real, (s, t) is close to (s0, 0) and

)2 1/2
r --((s--so +(t--t0)2)

denotes the distance between (s, t) and (so, to). First we suppose that for all integers m,
(So, to) is different from (2mK, 0), since then 1/2k2(sn2so-sn2ito) is positive.

Now it is well known that the behavior of the Legendre function Q, near can be
expressed by the equation

(1.7) 1P,(z)log(z-1) +H(z)Q,(z)- -where z C\]-o, 1]. Here P is the Legendre function of degree , of the first kind
which is analytic on C\]-,- 1], H is a function which is analytic on the same
domain and log denotes the principal value of the logarithm.
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Now from (1.2), (1.6), (1.7) and P,(1)= it follows that v can be written in the
form

(1.8) v(s,tl-v,(s,tllog-/ +v2(s,t), Vl(So,to)-- l,

where (s,t)S is close to (So,to) but is different from (So, to) and v and v2 are
functions which are analytic in a neighborhood of (So,to). The representation (1.8)
shows that v is a fundamental solution of the partial differential equation (1.1) in a
neighborhood of (So, to) (see [3, 5.1]).

In the exceptional case that (So,to)-(2mK, O) (m 7/) it can be shown by a similar
analysis that

(1.9) v(s,t)-Vl(S,t)log- +v2(s,t ), v,(2mK, O)-2,

with the same precise meaning as (1.8).
We summarize the results just obtained in the following
LEMMA 1.10. The function v is a solution of (1.1) which is analytic on S\ L(so, to)

where L(so, to) is specified in Lemma 1.3(i) and which has logarithmic singularities at
every point of L(so, to) in the sense of (1.8) if (so, to)=/=(2mK, O) (m Tl) or in the sense of
(1.9) if (so, to)=(2mK, O) (m.).

Now it is well known that the properties of v described in Lemma 1.10 lead to an
integral representation for arbitrary solutions of (1.1) which is analogous to the Cauchy
formula for analytic functions of a complex variable.

THEOREM 1.11. Let u be any complex-valued solution of (1.1) which is analytic on S.
Let C be a closedpath in S\ L(so,to) with winding numbers ,p with respect to the points p
ofL(so, o ). Then we have

f(uO21)-1)O2u)ds2f-(1)OlU-UOllg)dt-o 2,r. {p. u(p),
"C p@L(so,to)

where

if (so o) =/:(2mK, O) ( rn 7/),
o-

2 if (so,to)-(2mK, O) (m7I).

By and 2 we denote the partial derivatives with respect to s and t, respectively.
For the benefit of readers not familiar with the notion of fundamental solutions we

shall give a short sketch of the proof of Theorem 1.11. Since u and v are solutions of
(1.1) we have 02(UO21)--I)O2U)--OI(1)OIU--UOlI)) on S\ L(so,to). This implies (the proof
is similar to that of the residue theorem) that

fC( U02/)-/)02U ) ds .qt_ ( 190 lU_ u0119 ) dt

pL(so,to) Pl(s,t)-pl--ep( UO21) l)O2 u ) ds qt- (19O U UO l? ) dt’

where the ep are sufficiently small positive numbers. The value of

(1.12) (uO v-vO _u)a +(vO, -uO,v)at,
s,t)-pl=e



INTEGRAL REPRESENTATIONS FOR PRODUCTS OF LAM] FUNCTIONS 563

which is independent of e for sufficiently small positive values of e, can easily be
determined by setting (s,t)=p+e(cosq),sinqg) (qg[0,2r]), using (1.8), (1.9) and tak-
ing the limit e0 (see [3, 5.1]). One gets, for the value of (1.12), 2rou(p) which
establishes the theorem.

For later use we have to study the behavior of v for K’>t-K’. From the
definition of b and Lemma 1.3 we see easily that we can write

t) ((s t) s)(1.13) b(s’it’s’it)- K’-t

where/: R K’, 3K’[ ]0, [ is an analytic function with the property that/(s, t)
(s,2K’-t) ((s,t)R]-K’,3K’[). To simplify the notation we do not indicate the
dependence of/ upon (s0, 0).

The behavior of the Legendre function Q at infinity can be expressed by the
equation

(1.14) Q(z)-z--q - (Izl> 1),

where q is an analytic function on the unit disk of the complex plane. Now choose e >0
so that the two sets X]K’-e,K’[ and L(so, to) have no points in common. Then,
using Lemma 1.3 and (1.13), we have

for all (s,t)R ]K’-,K’+e[. Hence from (1.2), (1.13), (1.14) it follows that

v(s,t)-Q K’-tl (s,t))_(K,_t),+l(s,t)--i ( K’-t
for all (s,t) ]K’-e,K’[.

Thus we have shown the following
LEMMA 1.15. Let e>0 be such that the two sets X]K’-e,K’[ and L(so, to) have no

points in common. Then there exists an analytic function on the strip X K’ e, K’ + e[
such that for all (s t) K e, K’[ we have

v(s,t)-(K’-t)+’6(s,t).
2. Integral representations for products of Lam+ functions. Let U and U2 be

solutions of Lam6’s equation,

(2.1) d2U-+-(-(+ 1)kZsn2z)U-O
dz 2

corresponding to the same pair of complex parameters h, ,, where U is defined on the
real axis and U on the interval ]-iK’, iK’[. As in 1 we assume that the real part of r is
greater than or equal to 1/2.

Now the function u defined by

(2.2) u(s,t):= U(s)U2(it ) ((s,t)S= X]-K’,K’[)
satisfies the partial differential equation (1.1). To this function we apply Theorem 1.11,
choosing for the path of integration C the rectangle C=C1 + C2 + C3 + C4 shown in
Fig. 1.
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It2 C3

c4 (Solto)
0

tl

C

K’

FIG.

We assume that

-to<t <to<t2<K’ and So-4K<s <so<s2<so+4K;

hence the winding number of C with respect to (so, o) is and with respect to the other
points of L(so, o) is O. Thus Theorem 1.11 implies that

(2.3) 2rrU(so)U2(ito)- fc(uO2v-vO2u)ds+(vO,u-u3,v)dt,
where v corresponds to the point (s0, to) as specified in (1.2). The line integral above
can be decomposed in a sum of four integrals; C-- C + C2 + C3 + C4. Each of these four
line integrals reduces to an ordinary integral since in the line integrals along C and C
the term (v3u-uOv)dt can be omitted and in the line integrals along C2 and Ca the
term (u32v-vO2u)ds can be omitted. Moreover, we could insert into (2.3) the defini-
tions of v (see (1.2)) and u (see (2.2)). However, this would yield a somewhat lengthy
formula.

For Lam6 functions of special types the representation formula (2.3) can be
simplified. First we consider (nontrivial) Lam6 functions of period 4K. It is well known
that there are four classes of such Lam6 functions U, namely,

Class I: U is even and of period 2K,
Class II: U is odd and of period 2K,
Class III: U is even and of half-period 2K, i.e. U(z + 2K)--- U(z),
Class IV: U is odd and of half-period 2K.
Of course such Lam6 functions exist only for certain characteristic values of the

parameters , u. We shall denote a Lam6 function of period 4K which is defined on the
real axis (or on the strip Ilmzl<K’) by E (of class...). We do not use the usual
notation of periodic Lam6 functions (see [2, 15.5]) which depends on the Sturm-Liou-
ville theory since this notation covers only real values of ? and ,(,+ 1) whereas we
want to allow complex values of ? and u.

We remark
LEMMA 2.4. If U =E is ofperiod 4K and s2 --s q-4K then we have

fc2 (vOu-uOv)dt-O.
+Ca
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Proof. For all ]- K’, K’[ the functions u(., t)-- U,(. )U2(it) and v(-, t) are of
period 4K; consequently

( I)OIU-- UOlt) )( sI ) ( I)OIU-- UOll) )( s2, )
We next consider Lam6 functions characterized by their simple behavior at the

point iK’. Lam6’s equation (2.1) has a regular singularity at z--iK’ with exponents -v
and v + 1. Since we assume that Re >_-1/2 we have Re(-)_< Re(v + 1). Hence Lam6’s
equation possesses a uniquely determined solution (up to a constant factor) of the form

(2.5) F( z ( z- iK’)V+ lg( 7. ), g( iK’) =/=O,

where g is an analytic function defined in a neighborhood of z iK’. It should be noted
that, in contrast to the periodic solutions E, such solutions F exist for all complex
values of , v (Re v_>- 1/2). In the following F plays the role of the Lam6 function U2.
Hence we have to consider F. as a function defined on the interval ]-iK’,iK’[. At this
stage it is not necessary to normalize the functions E and F and hence the branch of
(z iK’)v/ used in (2.5) since both sides of (2.3) are bilinear in Ul, U2.

We remark
LEMMA 2.6. If U2-- F is of the form (2.5) then we have

fc3( UO2V DO2u ) ds "- O as K’> 2 - K’.

Proof. From Lemma 1.15 and (2.5) it follows that for sufficiently small e>0 we
can write

v(s,t)-(K’-t)+’(s,t)
u(s,t)-(K’-t)+’ ft(s,t)

((s, t)
t)

where and a are analytic functions on R X ]K’-e,K’ +e[; therefore

uOv vO,_ u ( I’- )+’-(0 ,_ ).
Since Rev_>-1/2 we have Re(2v+2)_>l, hence (uO2v-vO2u)(s, t2) converges to 0 as
K’> 2

--, K’ uniformly with respect to s [s,,s2]. This proves Lemma 2.6.
If we set s =-2K, s2-- 2K, 2-+ K’ we obtain from (2.3) using Lemmas 2.4 and

2.6
THEOREM 2.7. Let E and F be solutions ofLam’s equation (2.1) corresponding to the

same pair ofparameters A,v where E is ofperiod 4K and F is of the form (2.5). Then we
have, for all so o ]0, K’[ and t, o, o [,

,r2K
2riE(so )F( ito )-iF( it, )J_ 2K-I Or( b(s, il ,So, ito ))E(s ds

+F’(it, lf2: O(b(s,it,,so,ito))E(slds
2K

(where b is defined in (0.3)).
First Theorem 2.7 is valid only for -2K<so<2K, but then obviously also for all

real so. In the case when t, =0 the above formula can be simplified since O2v(s, 0) is an
odd function with respect to s and v(s, 0) is an even function with respect to s. Hence,
if E is even, i.e., of class I or III, the first integral on the right-hand side of the equation
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vanishes and, if E is odd, i.e., of class II or IV, the other integral vanishes. From
Theorem 2.7 we get the following corollary which generalizes and improves an integral
representation for external ellipsoidal harmonics mentioned in Erd61yi [2, p. 83].

COROLLARY 2.8. Under the assumptions of Theorem 2.7 we have

2riE(so)f(ito)E(it)-[E,f f: Q(b(s,itl,so,ito))E(s)ds,
2K

where E, F] E(z )F’( z ) E’( z )F(z ) denotes the Wronskian ofE and F.
Proof. Multiply the equation in Theorem 2.7 by E(it) and note that

(2.9) f2[E(s)E(it)O2v(s,t,)-iE(s)E’(it)v(s, ds

is independent of t for t ]-t0,t0[. This follows from Theorem 1.11, where u(s,t)=
E(s)E(it) and C is a rectangle with corners at (-2K,0), (2K,0), (2K, t), (--2K, tl).
Now the integral (2.9) vanishes for t=0, hence vanishes for all t ]-t0,t0[. This
proves Corollary 2.8.

The above result is given in [2, p. 83] only in the case when v is a nonnegative
integer and E is a Lam6 polynomial; the multiplier [E,F] is not determined. Also we
should be careful over the assumptions of Theorem 2.7 and Corollary 2.8. For example,
if t belongs to the interval ]t0,K’ the formulae are false.

Theorem 2.7 and Corolla 2.8 (wNch are essentially equivalent) contain many
important special cases. For instance, if we fix 0 and t we obtain integral equations for
E. We consider only one example, namely 0 K’/2, t =0 and E of class I or III.

COROLLARY 2.10. Let E be of class I or III. Then we have for aO real x

2ie(x)F i -F’(O)
k’

(-k/cnscnx+dnsdnx) e(s)ds.

If we fix s0 and t in Theorem 2.7 or Corolla 2.8 we obtain representations for the
Lam function F in terms of the periodic Lam function E; these representations
generalize the results of Shail [4] who treated the case when is a nonnegative integer
and E is a Lam polynoal (see 3 of our paper). In the case when E is of class I or IV
we set, in (2.7), so=K, t =0. In the case when E is of class II or III we first
differentiate the equation in Theorem 2.7 (with t =0) with respect to s0 and then we set
s0 K. In tNs way we get

COROLLARY 2.11. If E is of class I, II, III, IV, respectively, then we have for
y]O, iK’[

(I) 2iE(K)F(y)-F’(O)
2
Q dnsdny E(s)ds,

2K

k 4

f2: (1(II) 2=iE’(K)F(y)-- F(O)cnysny nssnsQ’: dnsdny E(s)ds,

(IIIt 2uiE’(KlF(Y)-gF’(O)cny nsQ; dnsdny E(s)ds,

(iv) n Q; e(s)es.

Of course, the factors E(K) or E’(K) which appear on the left-hand side of the
equations do not vanish. In all cases the integrands are even functions of period 2K
with respect to s. Hence we can replace the integral f{ by 2f or by 4
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Evidently, the range of validity of the representations in Corollary 2.11 can be
enlarged by analytic continuation with respect to y. If y ]0, iK’[ and s is real we know
that 1/k’dnsdny belongs to the interval ]1, [. Now one can ask, how far can we
continue the equations in Corollary 2.11 if we want to use only the principal value of
Q which is defined on C\]-o, 1]? We can immediately answer this question since the
value of 1/k’ dnsdny does not belong to the interval ]-o, 1] if s is real and y lies in
the set

G’- (yC" IReyl <K, O<Imy<2K’)\[iK’,2iK’[

(see [1, p. 61]), where the boundary of G corresponds to the cut ]-, 1] above. In this
sense the equations in Corollary 2.11 remain valid for all y G.

It is useful to consider, besides Lam6 functions of period 4K, also Lam6 functions
of periods 4iK’ and 4(K+ iK’). For such Lam6 functions there are similar formulae to
those presented in this section for Lam6 functions of period 4K. The formulae corre-
sponding to the other periods can be obtained in a way analogous to that which leads
to the results of this section. For example, if we wish to treat Lam6 functions of period
4iK’ we set in (0.1) x K+ is, y + iK’ (s real, ]0, 2K [) and proceed as before. It is
also possible to derive those formulae directly from the results of this section by use of
suitable transformations of Lamr’s equation involving a transformation of the modulus
k. To treat Lam6 functions of period 4iK’ we use the transformation k--, k’ which is
associated with Jacobi’s imaginary transformation of sn, cn, dn (in [2, 15.5.2] this
technique is applied). To treat Lam6 functions of period 4(K+ iK’) we use the transfor-
mation k 1/k which is associated with Jacobi’s real transformation (see [1, p. 69]).
However, since 1/k does not belong to the interval ]0, 1[ this does not work directly.
First we have to extend our results to arbitrary complex values of k. We shall not work
out these ideas in detail, but state only the results which correspond to Corollary 2.8.

THEOREM 2.12. Let E and F be solutions of Lamb’s equation (2.1) corresponding to

the same pair ofparameters X, v where E is ofperiod 4iK’ and F is of the form (2.5).
Then we have, for all xo with Rex0--K and y,yo]iK’,2K+iK’[ with Rey0<Rey

<2K- Rey0

f+2m’Q,,( b( x,y,xo,yo ))E( x) dx.2riE(xo)F(yo)E(y) E, F _
2,.c

THEOREM 2.13. Let E and F be solutions of LamO’s equation (2.1) corresponding to

the same pair ofparameters , where E is ofperiod 4(K+ iK’) and F is of the form (2.5).
Then we have, for all xo which belong to the line (K+ iK’). R andy,yo ]-iK’,iK’[

with Imy0< Imy<Imy0,

Q(b(x,y,xo,Yo))E(x)dx.2rriE(xo )F(Yo)E(Y)- E, F

Now we can start with Tlaeorems 2.12 and 2.13 and, working on the same-lines as
before, obtain results which correspond to Corollaries 2.10 and 2.11. This can be left to the
reader.

3. Integral representations in case of Lam6 polynomials. In this section we assume
that is a nonnegative integer. Then it is well known that there exist 2+ characteris-
tic values of such that Lam’s equation (2.1) has a Lam6 polynomial as a solution. We
adopt the notation and normalization of Lam polynomials and of the corresponding
second solutions F explained in Shail’s paper [4, 2]. We note explicitly that the
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normalization implies the following Wronskian relation

(3.1) Ey(z)Fum’(Z)--Ey’(z)Fum(z)--( 1)+(2u+ 1)k2+

(see [4, (7)]).
Each of the eight types of Lam6 polynomials belongs to one of the classes of 2,

specifically uE and dE to class I, scE and scdE to class II, cE and cdE to class II and sE
and sdE to class IV. Hence in each case Corollary 2.11 yields an integral representation
for the second solution F in terms of a Lam6 polynomial. Using the results which
correspond to Corollary 2.11 for the other periods 4iK’ and 4(K+ iK’) (see the remarks
at the end of section 2) we obtain altogether 8 3- 24 such representations. This set of
24 representations was given by Shail [4, p. 709]. Shail derived these formulae from
another method which requires two steps. In a first step the representations are
determined up to characteristic values in the form F(z)=/. f.--. Then these char-
acteristic values are calculated in a second step.

Now we shall demonstrate that the expressions for the characteristic values which
we get from Corollary 2.11 are considerably simpler than those given by Shail. For
instance, we look at the integral representation for uF in terms of the Lam6 poly-
nomial uE obtained from Corollary 2.11. This representation is

(3.2) (12riuEn(K)uF(y)-4uF’(O) ICQ2,, Tdnsdny

where m,n are nonnegative integers with m<_n. The variable y lies in the interval
]0, iK’[ or in some larger domain but this is not of interest if we are concerned with the
calculation of the characteristic value. Now we have from (3.1)

uF2.f(0) (4n + 1)k
UE n(0)

We insert this value of uFiO) in (3.2) to arrive at

K
uF2( Y ) It Q2,, 7dns dny uE(s) ds,

where

(3.3) /=
2(4n + 1)k

riuE(O)uE(K )

The value of/z given by Shail [4, (43)] is

(3.4) (4n+ 1)kP2,(0 foKdnsuE((V4 s )

It is clear that the characteristic value/ is easier to determine by (3.3) than by (3.4)
because by (3.3) it is not necessary to calculate the integral fCdnsuE’,(s)ds. We have
just to calculate uE(O) and uE(K) which is very simple if we know uE.

We close this paper with a list of the characteristic values for the eight integral
representations which are obtained from Corollary 2.11. The designations of the for-
mulae refer to Shail’s list [4, p. 709].
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formulae characteristic value

I(iii)

II(iii)

III(iii)

IV(i)

V(iii)

VI(ii)

VII(ii)

VIII(iii)

tsdE+2(O)sdE+2( K

2(4n+5)k 4

de,,+ (o) d:7,;+( K
2(4n+7) k5

rscdE2.+ 3(O)scdE+3(K)
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OSCILLATION PROPERTIES
OF NONLINEAR HYPERBOLIC EQUATIONS*

KURT KREITH’, TAKAI KUSANO AND NORIO YOSHIDA

Abstract. A variety of oscillation properties are established for solutions of characteristic initial value
problems for the nonlinear telegraph equation with a forcin term. Some analogous questions are considered
for initial boundary value problems for the forced nonlinear wave equation. The principal tool is an averain
technique which enables one to establish such oscillation properties in terms of related ordinary differential
inequalities.

Key words, characteristic initial value problems, convex function, nodal domain, initial boundary value
problem, Jensen’s inequality, timelike boundary

1. Introduction. This paper deals with several techniques for establishing oscilla-
tion properties associated with second order hyperbolic equations. In connection with
characteristic initial value problems of the form

(1.1) Uy+C(x,y,u)-O, x,y>O,

u( x, O) qg( x ), u(O,y ) (y ),

Yoshida [4] has used the function

U( fotu( y,y dy

to establish oscillation criteria. These considerations are extended in 2 of the present
paper to the more general equation (2.1).

Initial boundary value problems are considered in 3 and 4. First-the averaging
technique of [4] is adapted to equations of the form

(1.2) Utt--AU@C(t,X,u):f(l,X)

in cylindrical domains where Ou/O, is assigned on the lateral boundary. Then the same
equation is studied in more general domains under the simpler boundary condition
u 0 on the timelike part of the boundary.

2. Nonlinear characteristic initial value problem. In this section, we consider the
nonlinear hyperbolic equation

(2.1) Uxy+C(x,y,u)=f(x,y ), (x,y)Qp,
where

Qp- ((x,y)R2" 0<x,y< o, p<x+y<}
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Assuming throughout that f(x,y) is continuous in Q0 and the following conditions:

(A-I) c(x,y, u) is real-valued and continuous in Qp RI;
(A-II) c(x,y,)>_p(x+y)q() for all (x,y,)Op(O, oo),

where p is continuous and positive in (0, oo) and
is continuous, positive and convex in (0, oo);

(A-Ill) c(x,y,-)=-c(x,y,) for all (x,y,)Qo(O, oo),

we investigate the oscillatory behavior of solutions of the characteristic initial value
problem

(2.2) Uxy+C(x,y,u)--f(x,y ), (x,y)Q,
Ux(,o)-g(),
uy(O,y)-h(y), y(p, oo),

where g(t) and h(t) are continuous functions in (p, oo).
Associated with every function uD(Q)-C2(Q)f3 Cl(-), we define the func-

tion z[u](t) by

lfot(2.3) z[u](t)--f u(t-,)d, t>p.

LEMMA 2.1. Assume that (A-I) and (A-II) hoM. If u D(Q) is a positive solution of
the problem (2.2) in Qt (tl >-o), then z[u](t) given by (2.3) satisfies the ordinary differen-
tial inequality

(2.4) (tz[u](t))"+tp(t)q(z[ul(t))<-g(t)+h(t)+fotf(t-li,li)dli, t>tl.

Proof. From a result of Yoshida [4, Lemma 1] it follows that

(2.5) (tz[u](t))"--Ux(t,O)+uy(O,t)+ Uxy(t-,)d

--g(t)+h(t)+ Uxy(t-,)d.
By assumption (A-II) we get

(2.6) fo t-t,)d- -So -l,, u Soti’c(t (t ,))d+ (t ,)d

--p(t )ftcD(U( t--, ))d-r-ftf(t-,)d,
"o "o

while from Jensen’s inequality we have

(2.7) f0t( u( t-, )) d>_t(z[ u (t)).

Combining (2.5)-(2.7) yields

(tz[u](t))" <_g(t)+ h(t)-tp(t)q(z[u](t))+fotf(t-,)d,
which is the desired inequality (2.4).
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THEOREM 2.2. Assume that (A-I) through (A-Ill) hold. Every solution u D(Qo) of
the characteristic initial value problem (2.2) is oscillatory in Q if the ordinary differential
inequalities

(2.8)

(2.9) ( tz)" + tp( )q( z ) <_ -g( t) h( t) fotf( t-, ) dl

are oscillatory at t= o, in the sense that neither (2.8) nor (2.9) has a solution which is
positive on o, o) for any t0>0.

Proof. Suppose to the contrary that there exists a solution u of the problem (2.2)
which has no zero in Qt, for some t >o. If u>0 in Qt,, we see from Lemma 2.1 that
z[u](t) is a positive solution of (2.8) in (t, ). If u<0 in Qt,, U=-u is a positive
solution which satisfies the problem

Uxy+C(x,y,U)--f(x,y),

Uy(O,y)- -h(y),

(x,y)Qt,,

y(tl, ).

Hence, z[U](t) is a positive solution of (2.9) in (tl, x). This contradicts the hypothesis
and completes the proof. U]

Using a result of Kusano and Naito [2, Thms. 2 and 3], we obtain the following
results.

THEOREM 2.3. Assume that (A-I) through (A-III) hold. Every solution u D(Qo) of
the characteristic initial value problem (2.2) is oscillatory in Qo if

liminf 1-7 g(s)+h(s)+ f(s-,)d ds--,

s.( ’)( s;, )limsup 1-7 g(s)+h(s)+ (s-(,)d ds-
t--,

for all large T.
THEOREM 2.4. Assume that. (A-I) through (A-III) hoM. Every solution u D(Qo) of

the characteristic initial value problem (2.2) is oscillatory in Q if the ordinary differential
inequality (tz)" + tp(t)q)(z)<O has no eventually positive solution and if there exists a C2

function O: (p, ) R with the followingproperties:
(i) O( ) takes both positive and negative values for arbitrarily large t;
(ii) (tO(t))"=g(t)+h(t)+ ff(t-,)d, t>O;
(iii) limt_o tO(t)=O.
Example 1. Consider the problem

(2.10) Uxy+U- -(x+y)-’Zex+y+log(x+y)sin(x+y), (x,y)Qo,
Ux(X,O)=e, x(o,),
Uy(O,Y) -ey, Y(O,),

where O is some positive number. Since
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we obtain

1-7) eS+eS+ 2-eS+lgssinSs d ds

1-- slogssinsds--logtsint+O(1)

liminf 1-- + + --e+logssins d ds--,

ff(S)(e f0( 2e )d,)dslim sup }- + e + - + logs sin s

Hence, every solution u of the problem (2.10) is oscillatory in Q0" However, we note
that the solution u of the problem

Uxy+u-O, (x,y)Qo,

u( x, O) ex, x (O, oe ),
u(O,y)--ey, y@(O,)

satisfies u_> (see Pagan [3]).
Example 2. Consider the problem

(2.11) Uxy .ql_ 2u- 2e-x-y sin(x +y),
Ux(X,O)-e-Xsinx,
uy(O,y)--e-Ysiny,

Since

(x,y)Qo,

y(o, c).

7 sin s + sin s + ( 2e sin s) d ds

1--Tfr(s)(2e-’sins-2se-Ssins)ds< (tc)

Theorem 2.3 does not apply to the problem (2.11), but Theorem 2.4 does. Since the
ordinary differential inequality (tz)"+ 2tz <_0 has no eventually positive solution, and
O( t-- le-t sin t- e-t cos satisfies the following:

(i) O(t) satisfies condition (i) of Theorem 2.4;
(ii) (tO(t))"-2e-tsint-2te-tsint;
(iii) lim/_o tO(t)-O,

Theorem 2.4 implies that every solution of the problem (2.11) is oscillatory in Qo" In
fact, the problem (2.11) has an oscillatory solution

u---2-/2e-X-Ysin x+y+
3. Initial boundary value problems in cylinders. We now investigate the oscillatory

properties of certain solutions of the hyperbolic equation

(3.1) utt--Au+c(t,x,u)=f(t,x).
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Let G be a bounded domain with smooth boundary 0G, v be the exterior normal vector
to 0G, and f-= (0, o) G.

Associated with every function uD(f)=--C2(f)fqC(), we define the function
z[u](t) by

z[ul(t) u(t,x)ax, re(o,

where [G] denotes the volume of G, i.e. [G[ f; dx.
We shall assume the following conditions:

(B-I) c(t, x, u) is real-valued and continuous in Rl;
(B-II) c(t,x,)>p(t)cp() for all (t,x,l)f(O, o), wherep is

continuous and positive in (0, o) and p is continuous,
positive and convex in (0, o);

(B-Ill) c(t,x,-)=-c(t,x,) for all (t,x,j)f (0, o).
We consider the problem

(3.2) utt--Au+c(t,x,u)=f(t,x), (t,x) a,
0u
0-;=(t,x), (t,x)(o, )x0.

LEMMA 3.1. Assume that (B-I) and (B-II) hoM. Let u D( ) be a positive solution of
the problem (3.2) in ft, where ft,=--(t,o)G. Then, z[u](t) satisfies the ordinary
differential inequality

<1 fo lff(3.3) (z[ul(t))"+p(t)q(z[u](t))_- g(t,x)do+ IG-- (t,x)ax, t>t1.

Proof. It is easy to see that

(.4 ([.1(" .,,ex [.-(,x,.l+(,x]ex.

From Green’s theorem we have

-g-;do.
Using condition (B-II) and Jensen’s inequality, we obtain

(3.6)
Ial

Combining (3.4)-(3.6) yields

< fa 0u lff(z[ul(t))"_- a-udo-p(t)p(z[u](t))+- (t,x)dx

f0g( lff-IG--- t,x)do-p(t)q)(z[ul(t))+- (t,x)dx,

which is the desired inequality (3.3).



NONLINEAR HYPERBOLIC EQUATIONS 575

THEOREM 3.2. Assume that (B-I) through (B-III) hold. Every solution u D(f) of
the problem (3.2) is oscillatory in f if the ordinary differential inequalities

(3.7)
(3.8)

z" +p( )p( z) <_ G( ) + F( ),
z" +p(t)p(z)<_ -G(t)-F(t),

are oscillatory at t= oo, where G(t)=--(1/lGI)fa6g(t,x)do and F(t)=--(1/IGI)ff(t,x)dx.
THEOgM 3.3. Assume that (B-I) through (B-Ill) hold. Every solution u D(f) of

the problem (3.2) is oscillatory in f if

liminf 1-7 (G(s)+F(s))ds--oo,
t--, oo

limsup 1-7 (G(s)+F(s))ds- ,

for all large T.
THEOREM 3.4. Assume that (B-I) through (B-III) hoM. Every solution u D(2) of

the problem (3.2) is oscillatory in f if the ordinary differential inequality z" +p( )p(z ) < O
has no eventually positive solution and if there exists a C2 function O: (0, oo)R with the
following properties:

(i) O( ) takes both positive and negative values for arbitrarily large t;
(ii) O"(t)=G(t)+F(t), t>0;
(iii) limt oo 0(t) 0.

Example 1. Consider the problem

(3.9) utt-Uxx+2U--2e-tcostcosx+3e-tsintcosx in (0, oo) 0,

ux t,- -e sint, t ),

-Ux(t,o):o, oo).

We easily see that

G(t) 2 --te sin t, F( ) 2 (_ 2e-t cos + 3e-t sin t).

It is readily seen that z"+2z<0 has no eventually positive solution. Let 0(t)=
(2/r)e-t(cost+ sin t). Since

O(t) 2 -/21/2 (e sin +

O"(t) 4
e-t(sin cos ) G ( ) + F( )

lim O( ) O,
to

0(t) satisfies conditions (i)-(iii) of Theorem 3.4. Hence, every solution u of the problem
(3.9) is oscillatory in (0, oo)(0,rr/2). In fact, the problem (3.9) has an oscillatory
solution u e- sin cos x.
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(3.10)

Example 2. Consider the problem

2 Vte4X ( 21/2 ) -’/2te-2Xutt--Uxx-+--e- U- --4sint+ cost--sin3t e

(t,x) (0, ) (0, 1),

Ux(t 1)-- --2e2-’/2t(sint)e-2, t(O, ),

Ux(t, 0) 2e 2- I/2t sin t, (0, o).
It is easy to see that

G( ) 2(e-2- 1)e 2-’/2t sin t,

F( ) ( e-:-- 1)e 2-’/:t --2-’/2cost+--sin3t).

By the multivariate form of Leibniz’s rule and (4.2),

(Y[Ul(t))"=f6,utt(t’x)dx+fo6,ut(t’x)tano(t’x)d’
where O is the complement of the angle between the inward unit normal to F and the
positive t-axis. Denoting this (n+ 1)-dimensional unit normal by -(,... ,Vn+l), we
have

y[u](t)=f,u(t,x)dx.

A computation gives

2-1/2t( __121/2 sin(3t+a’))+B(t,T)-(e-2- 1)e 3 sin(t + et)--i-
where ct and ct’ are constants and B(t, T) is bounded as t--, . Hence, we conclude that
the conditions of Theorem 3.3 are satisfied. In fact, the problem (3.10) has an oscilla-
tory solution u- e2-’/=t(sint)e-2x.

4. Noncylindrical domains. We continue to study the equation

(4.1) utt--Au+c(t,x,u)=f(t,x),
but now generalize our considerations to a domain c_ (0, o) where G ((t, x)
lt- r) is a smooth nonempty domain in " for all z> 0. Letting F denote ((t, x)
> 0}, we consider (4.1) subject to the boundary condition

(4.2) u-0 on F.

If F is timelike in the sense of [1], then (4.1) and (4.2) are compatible, and a well-posed
problem follows from the imposition of Cauchy data on Go- {(t,x) 8fair- 0 }.

Proceeding as in 3, we associate with every uDo()- {uD()lu-O on F} the
function



NONLINEAR HYPERBOLIC EQUATIONS 577

so that

tanO- tan sin- Pn+
Pn+l

Using Green’s theorem to write

where

-I
/l-- (PI’’’" ’Pn)’

we get

(4.3) (y[u](t)),,__fa (VU,Ut)’(--Pl,--P2 Pn’ Pn+ 1)do"
{"=, +

f6 [c(t,x,y(t))-f(t,x)] dx.

This formula leads to the proof of the following result.
THEOREM 4.1. Suppose conditions (B-I) through (B-Ill) are satisfied in f and that

is timelike. If neither

nor

(4.5)
[G,[
y"+p( t)q)( y) <_F( t)

has a solution which remains positive for large t, then for every T>0 every solution of
(4.1), (4.2) has a zero in {(x,t)2lt> T}.

Proof. Suppose to the contrary that u(t,x) is positive in fr--{(t,x)flt>_T}.
Since u 0 on F, we have for (t, x) F

(Vu,ut)-g(t,x)v where g(t,x)-

Thus we have

(VU’Ut)’(--PI’’’" ’--Pn’Pn+l)--g(t’x) pn2+l 2 p

i--I

and the assumption that F is timelike assures (see [1]) that the first integral in (4.3) is
nonpositive. It therefore follows as in 3 that (4.4) is satisfied for t> T. If u(t,x) is
negative in fr, then we similarly obtain that U(t,x) is a positive solution of Utt--AU+
c(t,x, U)- -fit, x) and that y[U](t) satisfies (4.5). Thus if neither (4.4) nor (4.5) can
have a solution which is positive for T<t< oo, then every solution of (4.1), (4.2) must
have a zero in 2r.
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Specific oscillation criteria now follow by applying the previously cited criteria of
Kusano and Naito [2]. In particular, Theorem 4.1 establishes the somewhat surprising
fact that as long as F remains timelike and u--0 on F, the passage to noncylindrical
domains tends to induce oscillation of solutions of (4.1) and (4.2) regardless of whether
G is growing or shrinking.
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UNIFORM L BEHAVIOR IN CLASSES OF
INTEGRODIFFERENTIAL EQUATIONS WITH
COMPLETELY MONOTONIC KERNELS*

KENNETH B. HANNSGEN" AND ROBERT L. WHEELERt:l:

Abstract. We find conditions on a family of completely monotone, locally integrable, nonconstant
functions a which enable us.to write the solution u(t; a) of u’(t)+f3a(t-s)u(s)ds=O, u(O)= 1, as u(t;
a)=-f_etdl(o; a)+u(t; a), where /(-; a) is a finite nonnegative measure on [-e,O] and lut(t;
a)l_< Qe with Q, e positive constants independent of a. This formula is then utilized to give conditions
on the collection which ensure that #( t)supalu( t; a)l-O(to) and f’p(t)SUPaelu(t; a)ldt<o,
where t is a given weight function. These results can be combined with a resolvent formula to investigate the
asymptotic behavior as o of solutions of certain integrodifferential equations in Hilbert space.

1. Introduction. We consider the solution u(t)= u(t; a) of the problem

(1.1) u’(t)+fota(t-s)u(s)ds-O, u(O)-1,

where a(t) is completely monotonic on (0, ), and

(1.2) fola(t)dt< and 0_<a()<a(0+)-<.

In [7] we showed that for each such kernel a(t) there exist finite numbers Q and e and a
finite nonnegative measure/ on [-e, 0] such that

u(t) fo etdl(o)+u(t) (t>_O),

where

[Ul(t)l<_Oe-et (t>_O).

Here we show that Q and e can be made uniform over certain classes of kernels. As a
consequence, we obtain estimates of the form

(1.3)

and

p(t) sup lu(t; a)l0 (t
a

(1.4) p(t) sup lu(t; a)l dr<

where is a suitable family of kernels and is a weight function.
When = {a0(t):0<’0<<o}, (1.3) and (1.4) with O(t)--1 are true whenever

a-ao satisfies (1.2), ao(t ) is nonnegative, nonincreasing and convex, and -a’o(t) is
convex. These results and similar ones were proved in [1], [2], [5], [6], where the
technique of proof depends crucially on a deep theorem of D. F. Shea and S. Wainger
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[12] which implies that u(t; ao) belongs to L(0, o) for each such function ao. This
method of proof does not appear to be applicable to the more general families d
considered in this paper.

The estimates (1.3) and (1.4) (O- 1) were used in [1], [5], [6] to estimate the
resolvent kernel

of the problem

U(t) u(t; ?a0) dEx

(1.5) y’(t)- -fotao(t-s)Ly(s)ds+I(t), y(0) y0

in a Hilbert space %. Here L is a densely defined positive selfadjoint linear operator on
with spectral decomposition L-fxdEx, and Y0 and f(t) are prescribed elements of

%. Since IIU(t)ll<sUPxo<_X<olu(t; ,a0) (t_>0), the estimates (1.3) and (1.4) with t
imply, respectively,

(1.6) IIu(t)ll- 0

so that the resolvent formula

(1.7) y(t) U(t)yo +f0tU(t- s )f(s ) ds

for (1.5) yields information about the asymptotic behavior of y(t) as - .In the same way, the results (1.3) and (1.4) for more general classes = (a(t;
2) :h } provide estimates for the resolvent

(1.8) U(t)= u(t;a(.;,))dEx

for the problem

(1.9) y’(t)- -tL(t-s)y(s)ds+f(t), y(0)- y0

with

(1.10) L(t)= a(t; ?) dEx,

where {Ex} is now some fixed resolution of the identity in %. As in the earlier results,
(1.3) and (1.4) (p= 1) yield (1.6), which can be used with (1.7). (The proof of (1.7) for
(1.9) with suitable Y0 and t follows the same lines as that for (1.5) [1] and will not be
given here.)

Our results for (1.9) include some operator kernels of the form

N

(1.11) L(t): ag(t)L.
k=0

(See Corollaries 2.2 and 2.3.) The requirement that the Lk have spectral decompositions
with respect to a common resolution of the identity {Ex} greatly restricts the applica-
bility of the result, but we can obtain new results on the asymptotic behavior of
solutions of some integrodifferential equations of interest. For example, we can take
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Lk L+ , k=O, 1,.--,N, where Lo is a selfadjoint operator on %. The equation

wt(x,t)=fot[ao(t--S)Wxx(X,s)--al(t--S)Wxxxx(X,S)] ds+f(x,t)
with selfadjoint boundary conditions has this form.

For another example, consider the problem

(1.12) wt(x,y,t)--fot[ao(t-S)Wxx(X,y,s)+bo(t-S)Wy.,,(x,y,s)] ds+f(x,y,t),

w(x,y,O)=wo(x,y ), a<x<fl, "t<y<, t>0,

with boundary conditions

(1.13) w( a,y, )-w( fl,y, ) -w( x, , ) w( x, , ) --O.
This problem arises in a linear model for heat flow in a rectangular, orthotropic

material with memory [3], [11] in which the axes of orthotropy are parallel to the edges
of the rectangle. The corresponding problem in one space dimension is discussed in [5].
(See [6] for related problems with applications to viscoelasticity.)

Let

(fl__ 2 (__]/ 2L0 2 x2 y2

Then L0 with boundary conditions (1.13) can be viewed as a densely defined selfadjoint
operator on L2([, X y, 3 ]) with orthonormal eigenfunctions

x-a y-y
sin nem,(X,y) c sinm_
_

corresponding to the eigenvalues X(m, n) m +n, m, n 1,2, 3,. ., and spectral
family dExg={g,%(x,,(x)%(x,(x. (Our choice of L0 ensures that m=m(X) and
n n(X) are uniquely determined by X.) Now set

This puts (1.12) in the form (1.9), (1.10), and again Corollaries 2.2 and 2.3 can be used
to study the asymptotic behavior of solutions of (1.12).

We emphasize that the restricted form and rectangular geometry of (1.12) were
necessary for the application of our results regarding (1.9). The precise results available
through (1.6) and (1.7) can perhaps serve to test other methods which apply to wider
classes of problems.. Stateeaisess t resets. A completely monotonic function on (0, )
can be represented in [13] as the Stieltjes integral

where (0) 0, is nondecreasing, and (x) (x-) for 0 <x<. The conditions in
(1.2) are equivalent, respectively, to

l_e-X

X
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(2.3) a(o) >a(0+).

For each such function a(t), we define

(,)=
(+o +
,()-(o,),

(o)- lim q(o,)
t-.O+

O(O, q’)
(X+O" +’i.2

(o+ir(-- o,0]),

o(,)-o(o,) (o<,< ),

(wherever the limit exists on (- o, 0)).

(We remark that [7, Lemma 2.1] ensures that (o) is defined almost everywhere for
o <0.) Note that

f0 d() (o+(-o 0])(o,)-O(o,)= x+o+

e-’(+i’)a(t)dt (o>0).

THEOREM 2.1. Suppose (2.1), (2.2) and (2.3) hoM and that there exist a positive
number xo and a nonnegativefunction fl such that

a’(x)>_(x) a.e. on (O,xo)(2.4)
and

dx
(2.5) ,8(xj< oo.

Also, assume that there is a positive function B on (0, ) such that

(2.6) (r)O(r) _<B(i)< o ifO<i<r and

Then there exist Q, e>0 (e<-Xo), depending only on Xo and the functions and B, such
that the solution u( t; a) of (1.1) satisfies

(2.7) ]u(t; a)+f et
a’(-o)do <_Qe-*t (t>_O).

[0+(o)]’-+ [,(-o)]2

For every fixed completely monotonic kernel a satisfying (1.2), (2.6) holds [1, Thm.
2.2 and Cor. 2.1]. An example below shows that the uniform condition (2.6) is needed
for uniform bounds on Q and e.

Next we consider a family of kernels d= {aj. :j J},

a(t)=foe-tda(x) (t>0, jJ),

where J is an arbitrary index set. If, for each j in J, aj. satisfies the hypotheses of
Theorem 2.1, with xo,/3 and B independent ofj, then (2.7) together with the elementary
inequality

(2.8)
a(-o) <_

[0" -+- j(O )]2 +[ ,j,/.. (--0’)]2--g/.2.(- O ) ,?/. 2j(- 0 )
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(j J, a.e. o (-e, 0)) shows that (1.3) holds, provided we make the additional assump-
tions p(t)=o(et) (t- ) and

(2.9) O( ) e-xt
dx

In particular, the dominated convergence theorem and (2.5) show that (2.9) always
holds when p(t)---- 1, so we have (1.3) with p(t)---- 1. On the other hand, to deduce (1.4),
even with p(t) 1, for general families of kernels , we need to strengthen condition
(2.5). (See the example provided by the family 6 following the next corollary.)

COROLLARY 2.2. For eachj in J, assume that (2.1)-(2.3) hold with a =aj and that the
corresponding functions o, Oj, and j satisfy (2.4), (2.5) and (2.6) with xo, fl, and B
independent ofj. In addition, let #( ) be a nonnegative locally boundedfunction on [0, c)
such that p(t):o(ent) (t- ) for each />0 and such that b(x)=-f e-tp(t)dt (x>0)
satisfies
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COROLLARY 2.3. Let = (?=ljkak(l) kjk 1, j J, <_k<_N} and assume that
each of the correspondingfunctions ak in (2.1) satisfies (2.2), (2.3) and

(2.11) ctk(O+) >0, l<_k<_N.

In addition, assume that there exists x0>0 so that

(2.12) dak(x)=a’k(X)dx 0<x<x0, <_k<_N,

and so that (2.5) holds with a’- fl for at least one k, <_ k <_ N. Finally, suppose that there
exist positive constants K and such that for each t (0, xo),

(2 13) a’(l+iS)-a’(t-)< Kiv., for a.e. (0,Xo-) <_k<_U

Then both (1.3) and (1.4) hold with p( )= + t.
We remark that (2.11) is equivalent to ak(t)-oak()>O (t) for l<_k<_N. It

was established in [9] that the solution u of (1.1) satisfies (1 + t)u(t)L(O, o) whenever
a is a nonnegative, nonincreasing and convex function on (0, o) such that (1.2) holds
and a(o)>0. (Certain piecewise linear kernels are excepted.) Also, observe that condi-
tion (2.13) is satisfied whenever the functions a,(x), _< k_<N, are nonincreasing on
(0,Xo), so that Corollary 2.3 can be applied to a fairly broad class of kernels ak(t ).

We conclude this section with an example that shows the necessity of hypothesis
(2.6) in Theorem 2.1. Let a(t) c+ ao(t), where ao(t) f e-tda(x) satisfies (2.2),
(2.3) and ao(t)O (to), and l<c<. Set (2=(ac l_<c<}. Then (2.6) for a
becomes

Oo(z)/c/z
_<B(15) if0<8_<rand0o(Z)+z2_,,0()

where #0 and o correspond to a0. Clearly there is no function B for which this
inequality holds for <c< o. Assume, in addition, that (2.10) holds with p(t)-- and
fl a’ (so (2.5) holds, too). It follows that if the conclusion (2.7) of Theorem 2.1 is valid
for a in with Q, e independent of c, then (1.4) holds with (t)= 1. (See the proof of
Corollary 2.2 in 4.) However, if we take Fourier transforms in (1.1), we see that the
Fourier transform u*(r; ac) satisfies

u*( r; a)
it+ c/ir+ a’( r)

r>0,

where a(r)-f(ir+x)-da(x) (r>0). By the dominated convergence theorem
a(r)--,O (r--, o), so lu*(C-b-; ac)l-la(C-d)l---, o (c--, ). But then the elementary
estimate

lu*(; ac)l<- lu(t; ac)ldt, >0, l_<c<,

shows that (1.4) (p= 1) must fail, so (2.7) cannot be true for a in 2 with Q and e

independent of c.

3. Proof of Theorem 2.1. Throughout this section K will denote a positive con-
stant which depends only on x0,/3 and B; the value of K may change from line to fine.
We introduce the notation

R(o,z)-o+q,(o,z), I(o,)-[1-0(o,)],
D-R+iI (o+ i’r (- o,0]).
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An integration by parts in (2.2) shows that

(x)_,O (x- 1, (x) dx<
X2

Also, using the definition of O, we see that

o d(x)(3.1) O’(r) <0 (r>0), = =O(O+)>O(r)$O
X2

(The first equality uses (3.5) below.)
We recall from [1, Lemmas 4.1 and 5.2] (see also [2]) that if (2.1), (2.2), and (2.3)

hold, then there exist specific positive constants K0, K (independent of a) so that

fo fo’/ta( ) dt (r>0),/ta(t)dt<_O(r)<_K(3.2) K0

(3.3) fl/rID(O,’r)l-
l’r/o ta(t)dt

--2)’
-<-2

Here 0 is the unique positive solution of 0(to)= 1, and 8 8(fl)>0 will be specified in
Lemma 3.1 below. (We remark that here 8 plays the role Of O in [1 ]. The estimates in [1]
are derived for a(t)+d with a(oo)=0 and appear to depend on d/a(6/O). The proofs
can easily be modified to show that (3.2) and (3.3) are valid.)

We now state and prove three lemmas needed for the proof of Theorem 2.1.
LEMMA 3.1. Let (2.1) through (2.5) be satisfied. Then there exist positive constants rl

and i, depending only on fl, such that

(3.4) I(o,r)_<_ (-r/_<o_<0, 0<r_<).
T

Proof. The proof of Lemma 3.1 is essentially contained in [7, proof of Lemma 2.2].
Namely, by the Schwarz inequality

so (2.5) implies

fox (X) ax >
x (x) x

(o I(x ) dx(3.5) J0 X2

Choose rl>0 so that fo(fl(x)/x2)dx>_4; then choose 6>0 so that

Xo fl(x) dx>_2
X2_. 8 2

Now for -_<o_<0, O<r_<6,

 oXO  x> Xo(x+o)2+r2 x2+2
dx>-2"
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Inequality (3.4) follows from this inequality since, by (2.4), we also have

(3.7)
where

fo d.(x)(’)=1-
)"r (x+o +’r

LEMMA 3.2. Let (2.1), (2.2) and (2.3) hoM. Then

(3.6) Jo xd(x)+ j >0 (->,0)-2r2 - x

g() <e(r)<g() (>o)

r2 x2 --dx
Proof. The inequality (3.6) is easily obtained from the definition of q using

elementary estimates. Similarly, the inequalities in (3.7) are consequences of the defini-
tions of and g and easy estimates. The second equality in the definition of g is
obtained by an integration by parts using a(0)= 0 and

The next lemma gives estimates for q(o, r) and 0(, r) in a strip to the left of the
imaginary axis in terms of q(r) and 0(r), respectively.

LEPTA 3.3. Assume that (2.1) through (2.3) hold and let > O. Then

(3.8) IO(o ’r)-O(’r)l<:
24e0("r----)

Assume, in addition, that (2.6) is satisfied. Then

(3.9) q(o,r)> q(r)2 (8_<r_< m, O< -o_<e)

provided that O( r ) > 1/4 and e satisfies
4

Proof. To deduce (3.8), note that

2X0-+-02
dot(x).o{o,)-o{).-- [(x+. +,q(x2 2 2

Thus, when 3< < oo, 0< o<e<3/2, easy estimates, an integration by parts and
(3.7) yield

f= (x) f (x)_<24e dx<24- dx<
x4 "1" x

24eO(r)

and (3.8) is proved.
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To establish (3.9), we use the definitions of (o,r) and q,(r) and elementary
algebra to write

o:-xo(x+o)
2 2 2

Then for i_<r< o, 0<-o_<e, with 0()_>1/4 and e restricted by (3.10), the last expres-
sion, elementary estimates, (3.7), (3.6) and (2.6) can be employed to yield

foO a(x),(o,,)-,(,)_> ’ [(x+o)+](x+) [(x+o +,](x+’)

>_---- da(x) -4er2
o da(x)

,1-2 x 4 22
xda(x)

f a(x)> -2eO(r)-4- x

( 8 )_>-e,(r) 2B(8)+ -->-2
and the proof of (3.9) is complete. U]

We are now in a position to set up the integral expression for u(t; a) which is used
to deduce (2.7). Let the hypotheses of Theorem 2.1 hold and let i be as in Lemma 3.1.
Fix e>0 so that

(3.11) /3o(e) lim
"r aofX /3()x) dx>O,

r0+ /" (Xm +,r 2

and so that the inequalities (3.16) and (3.20) below hold. This can be done since the
expression on the left side of (3.11) is the Poisson integral of X/3 (X--=characteristic
function of [0,x0]) and/3(x)>0 almost everywhere on [0,x0].

Let T be the unique positive number such that O(T)-1/4. (The existence of T is
ensured by (3.1).) Note that T>. Using (3.8) we see that

(3.12) 1-0(o,r)_> T<_r< o, O<_ -o<_e<-
The number T depends on the function a(t), but by (2.6) we obtain

(3.13) (r)>4B(8 ) (8<_r<_T).

Thus, (3.9) implies

>1(3 14) R(o r)_q(r)> 16B(J) (8<r<_T, O<_-o<_e)

if (3.10) holds and e< 1/16B(). Then (3.4), (3.12) and (3.14) show that

(3.15) D(o,r)4:O (0<r<, 0_<-o_<e)
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provided e satisfies

{ 1}(3.16) 0<e<min r/, 4--’ 16B(8)

(We remark that (3.16) implies (3.10).)
Now if e is fixed and satisfies (3.11) and (3.16), then (3.15) and an examination of

the proof of [7, Thm. 1] (see especially [7, (2.17) with replaced by 8, and (3.2)]) yields
the formula

’(-) do(3.17) u(t; a)---- feet[o+(o)]z+[ra,(_o)] 2

e-el Re d’r
r [ao+ D( e, r )

+ IRe + dr
D(-e,8) /D2(-e,)

(t>0).

(Here the first integral within the brackets exists as an improper Riemann integral at
r=O.)

In order to estimate the first integral within the brackets in (3.17), choose 81 (0,)
so that < rrfl0(e)/4 and

xo (x) dx>
(x_)+ o() (o<_<,).

Since

foXO t(x),o(-e,,)_>,
(x-e)2+2

II(-e,)l- 4/3o(e)
and, combining this with (3.4), we get

eRe
O(-e, r)

We also have, by (3.4), that ID( e, )l -> 6. Thus since lu(t; a)l-<l (0_<t< o) [10],
[4], we can complete the proof of Theorem 2.1 by showing that

(3.18) f D2(-e,,r)
dr<_K.

We now state and prove two more lemmas needed to deduce (3.18).
LEMMa 3.4. Suppose that (2.1) through (2.3) hold and that >0. Then

(3.19) ( ’)8_<r<m, O<e_<gg
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Proof. By differentiating the expression for D(-e, r) with respect to r, we get

D(-e,r)-i--ifo (x-e)2-r2-2ir(x-e) d(x)

so easy estimates yield

e, r) i[<_fm da(x )
(X--e)2+q"2 foO 

Then, by the definition of 0, more elementary estimates (recall e <_ 3/48 <_ r/48), an
integration by parts, (3.7) and (3.8), we obtain

LEMMA 3.5. Let (2.1) through (2.6) hoM and let , be the constants given by Lemma
3.1. Assume that e satisfies (3.16) as well as

3 3K 3K }(3.20) 8e<min 1’ 24 12Ko

where Ko andK are the constants that occur in (3.2), (3.3), respectively. Then

(3.21)

tO(r) 8<r_
2

1-o,I max 8, <_r<_T, [r-o

Proof. The third and fourth estimates in (3.21) are easy consequences of (3.14) and
(3.12), respectively.

To prove the first estimate in (3.21), note that if r [3, w/2] and

_.Kr foz(O(r)-1).--- /*ta(t)dt,
then (3.14), (3.3) and (3.2) give

8
/*ta(t)dt>_--K,rO(r)

8Ko
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On the other hand, for other values of z in [, o/2], we use (3.2), (3.8) and (3.20) to see
that

Ki,r fol /rta( ) dt> K, "rO( "r ),r(O(,r) 1) > --- -o
K"> 1O(-e,,)- 0(,)l>_2,10(-e, r)- 0(,)1-48eK0

and it follows that for these values of

"r[0(’r)--1] K,’rO(’r)-I(-e,’r)-’r{[O(’r)-l]+[O(-e )-0(’r)] } > >
2 4Ko

This completes the proof of the first inequality in (3.21).
Finally, the second inequality in (3.21) follows by (3.14) for those values of for

which (r)-->1/2Kll*--0[. For other values of in this range, (3.3) gives

(3.22) 2

and the proof of the second estimate in (3.21) for such " now splits into two cases.
Case 1. If /2<-<-, then we use (3.8), (3.22) and (3.20) to get

0(-e,,)_> (1-24___e. )0(’)
_>1+

Thus, for such r we have

(3.23) ID(-e r)l> K, 1-4
Case 2. If+T, then by (3.22)

K

so by (3.8) and (3.20) we get

0(-e,r)(l+ 24 )0(z)
<1-

2

NI_K(r-)

12eK Kl(--,r )
.2

(o-’)_> +
4

12eK

Thus, (3.23) also holds for these values of z, and the proof of the second inequality in
(3.21 is complete. V1

We can now prove inequality (3.18). Partition [, ) into five subsets depending
on the function a:



EQUATIONS WITH COMPLETELY MONOTONIC KERNELS 591

)o,

(Of course some of these sets may be empty for particular functions a.)
Using (3.19), the first estimate in (3.21), and 0(r)> on E, we obtain

(3.24)
D2(-e,) f.: f, dr K

dr<_K +O(r) d,r<_K 7 =-.
On E2, we use (3.19), the second part of (3.21), (3.1), (3.2), and a change of

variables to get

fo-l+O(r) fo2/ta(tdr<_K dr<K 1+ )dt dy

/2 (o)--r)2

Now by the monotonicity of a, (3.2) and the definition of 0, we obtain

fo2/ta(t)dt<-fol/ta(t)dtq-a(1)fll7
<4fol/’ta( ) dt <4Ko0(0)- 4Ko,

and combining this with the previous inequality, we find that

D2(-e,r)

For E3, we use (3.19), the third part of (3.21) and (2.6) (recall that O(r)>_ on E3)
to obtain

(3.26) rE3 D2(-e,,r)
dr<_KfE +O(r) dr<_KfF +B(8)O(r)

dr

<-Kfe3( 16 + 4)B:( ) dr<_K(B2( ).

Next, on E4, use (3.19), (3.1) and the second inequality in (3.21) to see that

(3.27) dr<K( 2

Se4
dy K

dr<_2K
y2_ 6

Finally, by using (3.19), (3.1) and the fourth inequality in (3.21), we get

(3.28)
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Now, by combining (3.24)-(3.28) we obtain (3.18), and, as stated before inequality
(3.18), the proof of Theorem 2.1 is complete. [3

4. Proofs of Corollaries 2.2 and 2.3. Proof of Corollary 2.2. We use Theorem 2.1
to find fixed positive constants Q and e (e<Xo) so that the estimate (2.7) holds for each
a , and then we combine (2.7) and (2.8) to write_. fO et

sup lu(t; a)l_< do+Oe-t (t>0).
a -e fl(--O )

Now we multiply this inequality by O(t), integrate, interchange the order of integration,
and use (2.8) to obtain

fo < fo (-O) do+Qb(e)p(t)suplu(t;, a)ldt-- - (-a)
foXO b(x)<---- dx+Q(e)<..’- ()

This completes the proof of Corollary 2.2. []

Our proof of Corollary 2.3 requires the following estimate for the functions j.(o).
LEMM 4.1. Let a(t) satisfy (2.1) through (2.3), and assume that (2.11), (2.12) and

(2.13) hold with %,-a. Then there exists e >0 so that the function satisfies

(4.1)
t(o)<a’0+, fora.e, oG(-e,O)20"

Proof. Since

(+) fo (+)(o.)- + ),_ ,o +r ,)(x+o +r
d,() (,>0).

it suffices to find e>0 so that

(o)-=limsup f (x2)r-,O+ o) (x + 0" +r2
d(x)

satisfies

(4.2) (o+),(o)< for
20"

To deduce (4.2), let 0" (-1/2,0) satisfy - 20" <xo and write

(4.3)
,o) (x+o +r2

+ f,v+ )’ (x+o +-20 (X+O +’r Xo

+12+13+14.
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To estimate I(o,r) for such o, we use a change of variables and (2.13) with
-o, = -o-x, to obtain

 o-O(4.4) I(o,z)-
(x+o

--o (x+o +idx

-0 )-l(-x-o)-’dx (-o (>0).

We use elementa inequafities and the fact that a’ Ll(0,x0) to estimate I2 and
respectively, by

(4.5) _oi2(o,r)<_fg--g (x q-))
2

:o (x+o +:’()

(4.6)

<_ f -:’(x)d-o()
2o

-oI(o,)<_-of ’()
d

J/-- x + o

(o-0.--),

O foXO<_ ’(x)dx-O(-g) (oo-).
-2o +o"

Finally, I4 is estimated by

(4.7) I4(o,r)<_ (x+o) x (r>O).

Thus, by (4.3)-(4.7) we see that (4.2) holds whenever e>0 is chosen sufficiently
small, and the proof of Lemma 4.1 is complete. V]

Proof of Corollary 2.3. By Theorem 2.1 and Lemma 4.1, we can find fixed positi.ve
constants Q and e (e<_Xo) so that (2.7) holds whenever ad and so that each q’k
corresponding to a, satisfies (4.1) (1 <_k<_N). Since j.,_> whenever jJ, <_k<_N,
elementary estimates and (4.1) yield

E jk(-- 0") { [0-[- Ekjkk(O)]24r-[qTEkjkOltk(--O)]2}--’

a,( o)
_

-< E (o) .(0+)
(--e<o<0, jJ).

Here and below the sums are taken from k to k N. Thus, by (2.7), we obtain

a’k(x)
Qe-t O)(4.8) -SUPa lu(t; a)l--<4 e-Xtx2, -(-) dx+ (t>_
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To prove (1.3) with p(t)-- + t, integrate by parts and use the monotonicity of
to get the estimate

e-Xtx2ot(x ) dx- e2Otk( e)e-etq x(xt-- 2)e-XtOtk(X ) dx

--< e20:k(e) e-etq- k(e)t 2e-Xt/ff ax

;?- O g
wNch, together with (4.8), yields (1.3) (0(t) + t).

Finally, to establish (1.4) with 0(t) + t, note that for this O, (x) (1 + x)/x
(x >0), so we can multiply (4.8) by (1 + t), integrate and interchange order of integra-
tions to get

a(x)
dx + p (1 + t)e tdt<(1 +t)suplu(t;ag a)ldt4 (1 +x)

since a L(O, xo) for kN. This completes the proof of Corollary 2.3.
We remark that the proof of Corollaw 2.3 shows that we can obtain ts result for

general wrights p(t) provided we assume, in addition to the hypotheses of Corollary
2.3, that

O( ) e-X’xZ(x ) dx- o(1) ( ,
and

foX x ) ax<

hold.
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SERIES EXPANSIONS FOR RESOLVENTS OF VOLTERRA
INTEGRODIFFERENTIAL EQUATIONS IN BANACH SPACE*

R. C. GRIMMERf AND F. KAPPEL:

Abstract. This paper is concerned with the existence and properties of resolvent operators for linear
Volterra integrodifferential equations in Banach space. Regularity of weak solutions given by the variation of
parameters formula is also examined.

1. Introduction. In this paper, we consider the linear integrodifferential equation

(1.1) x’(t)-Ax(t)+fotB(t-s)x(s)ds+f(t), t>--O,

x(O)-xo,

in a Banach space X with norm I[’l[. It is assumed throughout this paper that A
generates an analytic semigroup T(t) on X, that B(t)x is Bochner integrable for each x
in the domain of A and thatf is continuous on 0, o) into X.

Our concern here is to obtain a resolvent operator for (1.1) as defined in [6] and
[8], which will then be used in a variation of parameters formula for (1.1). We shall then
consider the problem of determining which x0 and f in fact yield a solution of (1.1). We
obtain the resolvent as an integral over an appropriate contour, and in this our work
resembles earlier work by Da Prato and Iannelli [3], Friedman and Shinbrot [5] and
Grimmer and Pritchard [8]. Our technique involves writing a series for what should be
the Laplace transform of the resolvent operator. This allows us to consider equations
not considered before and seems to yield additional flexibility in dealing with the
problem studied in [8].

Other papers considering (1.1) include Grimmer [7], Grimmer and Schappacher
[9], and Miller [11], while Carr and Hannsgen [1], [2], Sinestrari [12] and Webb [14]
consider other equations in which the generator of an analytic semigroup plays a
central role. Also see [7] for further references.

2. Preliminaries. Throughout this paper, it shall be assumed that A generates an
analytic semigroup on X. Thus, the domain of A, D(A), together with the graph norm is
a Banach space which we shall denote Y. Further, for each 8>0, the operator (-A) is
defined and D((-A)) together with its graph norm yields a Banach space Y. The
norm on the space Y we denote by I1"11. The space of bounded linear operators from a
Banach space V to another Banach space W is denoted by (V, W) and the norm of
(Y, Ya) is given as I1"11,. Note that Y=--X and yl-y. As a convention, we will
denote I1"110,0 by I1"11 and (V, V) as (V). (For material concerning semigroups and
fractional powers, the reader is referred to Friedman [4], Hille and Phillips [10], and
Tanabe [13].) We shall be using Laplace transforms frequently and the Laplace trans-
form of a function h(t) will be denoted h(h).
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We can now state our basic hypotheses which will hold throughout this paper.
(HI). A generates an analytic semigroup and satisfies the estimate [[(hI-A)-[[_<

M/IXl, Re)> 0, M>_ 1.
(H2). II B( )ll , o -< b( ) for some b L[oc(0, o) and B( )x is strongly measurable for

each x Y.
(H3). For X with ReX>0,/}(X) exists as an element of @(Y,X) and [[/(X)[[,0_<

NAXl for some fl>0 and N_> 1.
The following lemma contains a number of estimates which shall be useful in the

remainder of the paper.
LF,MM 2.1. Assume (H1)-(H3) are valid. Then

(a) II(x/-A)-’l[0,, _<2M+ 1, ReX> 1.

(b) [I(X/--A)-’/(X)Ill,,--<(NM+ 1)N/IXl ReX>

(c) II:(x)(XI-A)-lllo,o<-(NM+ 1)N/IXla ReX>

(d) IlEi% [(XI-A)-(X)] j (XI--A)-lllk,k 2MN(2M+ l)/IXl I+B if Re)t>_

[2N(2M+ 1)] ’/t, k-0, 1.

where C( ) is a constant depending on

Proof. (a) Let x X. Then we see

II( I-A) ’xll, II (NI-A)-I --I/[l/ll(x/-A) xll
--II(X(XI--A)-I--I)xII+ (kI_A)-lx[[
_<(M+ 1)l[/[l+ MIIxII/IXl
_<(2M+ 1)llxll (REX_> 1).

(b) and (c) now follow from (a) and (H3). For (d), let k-0 and (ReX)t_>2(2M+ 1)N.
Then

E ((XI-A)-IJ(X))J(xI--A) -1

j=l

--< ]](X/-A)-’/(X)[I,,0
j=0

-<ll(XI-A)-lllll/(x)[I,,0 X [(2M+ 1)N/IXIB]J(2M+ 1)
j=O

<_2MN(2M+ 1)/IN[ l+t.
If k- 1, the argument is similar. For (e) the reader is referred to Tanabe [13, p. 39].

The concept of a solution of (1.1) seems to vary somewhat in the literature. Our
definition of solution is patterned after the concept of solution in semigroup theory.
(For work unifying many concepts, see [9].)

DEFINITION 2.2. A solution of (1.1) is a function xC([0, c), Y)CI CI([0, oo),X)
with x(O)-xo which satisfies (1.1) for t_>0.
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Later, we shall wish to relax this condition a bit at t=0. This will be the case in
particular if x0 Y, 0<i< 1. However, this concept of solution leads us to the
definition of a resolvent operator for (1.1).

DEFINITION 2.3. R(t) is said to be a resolvent operator for (1.1) if R(t)(X),
0_< < o and if it satisfies:

(a) R(t) is strongly continuous for t_>0 with R(0)=I and IIR(t)ll<_Met for some
constants fl and M_> 1.

(b) R(t)ffb(Y) and R(t) is strongly continuous, t_>0, on Y.
(c) For eachx Y, R(t)x is continuously differentiable, t_>0, with

and
R’(t)x=AR(t)x-t-fotn(t- u)R(u)x du
R’( t)x- R( )Ax +tR(t-u)B( u)x du.

3. Main theorems. We are now prepared for the main results which concern the
existence of a resolvent operator for (1.1) and the existence of solutions of (1.1) for
various initial conditions x0 and functions f(t).

THEOREM 3.1. Assume (HI) through (H3) are valid. Then (1.1) has a resolvent
operator.

Proof. Define R(0)=I and for t>0 define R(t) by

R(t)x- T(t)x+(2ri)-’fv+’ex’ ((XI-A)-l;(2t))J(2tI-A)-lxd2t
y--ioo j=l

=T(t)X+Rl(t)x,
where T(t) is the semigroup generated by A, ,a>2(2M+ 1)N. First note that it follows
from Lemma 2.1(d) that

y+ io At --1 --1

_im
e Y ((hi-a) (h));(XI-A) xd2t

j=l

converges in X for xX and in Y for x Y. Thus R(t)@(X)Cq@(Y) for t_>0. Also,
from Lemma 2. l(d) we see that

X ((XI-A)-I()k))J()kI-A)-1 HI(c,@(X))f)Hl(a,@(Y)),
j=l

where a=2N(2M+ 1) so that the definition is independent of 3,>a, (cf. Hille-Phillips
[10, p. 230].) Further, R(t) is continuous in (X)@(Y) on (0, ). This, of course,
implies the strong continuity of R(t)x on (0, m) in X if x X and in Y if x Y. To
show strong continuity at t=0+ we need only show Rl(t)x--, 0 as t--, 0 + in _X if x X
and in Y if x G Y. However, it follows from Lemma 2.1(d) that the integrand defining
Rl(t)x is bounded by (2r)-2MN(2M+ 1)[[xl[/[[l+, k=0, 1. It follows now from
standard arguments that [[Rl(t)x[I0 as t0+, k=0, 1, so that R(t) is strongly
continuous at t- 0+.

Now, for x G Y, it follows from Lemma 2. l(d) that

7+i At
o

--1 --1R’(t)x--T’(t)x+(2ri) if. Xe , [()tI-A) J(,)]J(2tI-A) xdX.
)’--too j=l

Also, for x Y,
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X [(’I--A)-lJ(A)]J(’I--A) -’x
j=l

X [(hI-A)-lJ(h)l/[I+(XI-A)-’A] x
j=!

2 [(2tI-A)-’(2t)]J(2tI-A)-’(h)x
j=0

+ X [(XI-A)-’(x)]J(xI-A) -’Ax"
j=l

Applying Lemma 2.1(d) this implies

R’(t)x- R(t)Ax+ (2,ri)-’fv+iextl(,)(Tt)x d2t

as (2t)-Y7=o[(AI-A)-(A)](AI-A)-l, [10, p. 230]. In a similar manner, it is seen
that

-lff+,R’(t)x-AR(t)x+(2rri)
-v-i

e

Now R(t) is strongly continuous for t_>0, so

R(t-s)B(s)xds and B(t-s)R(s)xds

both exist as continuous functions in X. Arguing as in [8] using Hille-Phillips [10, p.
219] yields

so that

Similarly,

fotR( t-s )B(s )x ds- (2rri) fv+;ex’k ( X )N( X )x dX,

R’(t)x- R(t)Ax +fotR(t-s )B(s )x ds,

R’(t)x=AR(t)x+gB(t- s )R(s )x ds,

t>0.

t>0.

To determine the fight derivative of R(t)x at t-0, write

R’(t)x-R(t)Ax+(2qri)-l f’+ieXt [(hI-A)-l()]J(tI-A)-l(X)xdt.
--/--i j=0

Letting F,- {," h-’/+ i, -n<_8<_n} and C,,- {X" X-V+ ne, -,r/2_<0<_rr/2}, one
estimates on

[(’I-A)-’()t)]J()tI-A)-’()t)xd)t
0 o

f , II(XI-A)-liio,oliN(X)(XI-A)-ll(o,oliN(X)XllodX
C.j=0

_<f 2MN/IXI ’+adxllxll,
c,,
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using Lemma 2. l(c) and (H3). Letting n--, , we see that this last integral tends to zero
and it follows from Cauchy’s theorem that limt_o+R’(t)x=R(O)Ax=Ax so that the
right derivative of R(t)x at t--0 is Ax. It is now clear that R(t) is the desired resolvent
operator.

Although the resolvent operator obtained in Theorem 3.1 is not an analytic
resolvent operator as defined in [8], it has some of the properties of an analytic
resolvent operator. In particular, we wish to examine if R(t):X Y or R(t): Y Y for
t>0 and if R(t)x satisfies (1, 1) for t>0 in case f----0.

THEOREM 3.2. Let 0_<<1. If fl+8> 1, then R(t): Ys Y, t>0, and R(t)x is

differentiable for >0 if x yd. If, in addition, b(t) is bounded on intervals of the form
0< T <_ <_ T2< t? and >O, then

(3.1) R’(t)x-AR(t)X+fotB(t-s)R(s)xds, t>0, forx Y.

Proof. As R(t)-T(t)+Rl(t ) and T(t)"X Y for t>0, we consider the behavior
of R(t). If x Y,

2 A(XI-A)-(X)[(XI-A)-(x)]J(xI A)-X
j---O

2 I[(XI-A)-’ (X)Iil,II[(XI-A)-’II ,IlIxlI 
j=0

_<2(M+ 1)NC( )MIIxII /IXl
Thus, Rl(t)x Y for t>0. Also, IIR(t)xll Kllxlln, 0<t_<T<, for any T>0 where
K=K(T) and Rl(t ) is uniformly continuous in (Y, Y) for t_>0. As in the proof of
the previous theorem, for x Y,_

X[(,I--A)-lJ(,)]J(xI A) -1
x

j=l

2 A(’I-A)-I[J(2t)(XI-A)-’]J-’J(X)(XI-A)-’x
j=l

"}- 2 [J(’)(I-A)-I]J(x)(XI--A)-Ix.
j=0

Estimating the norm of this sum in X using Lemma 2.1, one sees that it is bounded
above by a constant times 1/11+. Hence, for t>0 and x Y,

R’(t)x-T’(x)+(2ri)-fv+ieXtA Y [()tl-A)-l(,)]J(,I-h)-lxd,
--i j=l

+ (2i)-f’+im x@( xdX.
--ira

e X) 2 [(XI-A) lJ(k)]J(kI--h)-I
j=0

That is,

(3.2) R’(t)x-AR(t)x+(2ri)- fv+i-.-ioz extJ(X)t(X)xdX
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Our only remaining problem is to determine that the last term in (3.2) is in fact
fdB(t-s)R(s)xds. As Rl(S)X is bounded and continuous in Y for x Y,
fB( s)R(s)x ds is continuous for _> 0 in X and

fotB(t_s)R,(s)xds-(2ri)-’ fvr+i x
-,

e

as (H3) and Lemma 2.1 yield

j=l

for some constant K. Thus, forxY and t>0, as/(h)- i?() +/l(?),

R’(t)x-AR(t)X+fotB(t-s)R,(s)xds+(2"tri)-l fv’+i-ioe
e

Now, if x Y, >0, then IIT(t)xll<Lt-lllxll, L constant, so if b(t) is bounded on
intervals of the form 0< T <t<T2, then fB(t-s)T(s)xds exists and is continuous for
t>0. Arguing as in [8] this yields, for t>0,

(3.3)

and we have

as desired.

f0tB( t- s ) T(s )x ds- (2ri )- v+_imiOeeX@( )( )X

R’( )x-AR( )x+B(t- s )R( s )x ds, t>0

COROLLARY 3.3. ff fl> 1, then R(t) X Yfor t>0 and R(t)x is differentiable for
t>0.

COROLLARX 3.4. If B> and B(t): Y-X,/< 1, with IlB(t)ll,o <b(t), where b,(t)
is locally integrable and bounded on intervals of the form 0< T <_ <_ T2< o, then, for
xX, R(t)x Y, t>0, and

fotB( s sR’(t)x=AR(t)x+ )R( )xds.

Proof. The only part of the proof of Theorem 3.2 that required 6>0 was (3.3).
However, (3.3) will be valid in this case.

Once a resolvent operator is known to exist then the solution of (1.1), if it exists, is
given by

fotR(t s(3.4) x(t) R(t)Xo+ )f(s)ds

[6]. As in semigroup theory, the problem is to determine when (3.4) actually yields a
solution of (1.1).

THEOREM 3.5. Suppose >0 and fl+> 1. If xo Y and fC([0, 0), Y), then
x(t), given by (3.4),satisfies (1.1)for t>0 with x C([0, ),X)Cq C((O, ), Y).

Proof. It follows from Theorem 3.2 that we need only consider f)R(t-s)f(s)ds.
Now, R(t)=T(t)+Rl(t ) and it is known that fdT(t-s)f(s)dsC([O, oe),X)
C((0, oz), Y) and, for t>0, u(t)=fdT(t-s)f(s)ds satisfies u’(t)=Au(t)+f(t). Also,
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for xG Y, IlRl(t)xll is bounded on intervals of the form O<_t<_T< so that w(t)-
fdRi(t-s)f(s)ds is in C([ 0, z), X)f)C((0, ), Y). Now for t>0,

d t(2ri) X(t--s) J(X) (I--A)w’(t) - --io
e , [(XI-A) ]J f(s)dXds

j=l

=fot(2ri)-’fv+iXex’t-) 2 [(XI-A)-(X)](XI-A)-f(s) dXds
--im j=

+(2ri)-’fv+’. 2 [(XI--A)-’(X)]J(XI--A)-lf(t) dX.
3’--tin j=

However, it can be shown that the last integral is zero as. in the proof of Theorem 3.1.
Hence,

w’(t)--Sot(2"lri)-’S’[+ieh(t-s,tt 2 [("-A)-iI(X)]J(X’-A)-if(s) d.dS
--ioe j=l

+Sot(2ri)-l[v+i-
v-ioo eX"-’)/(X)j=OZ [(XI-A)-lJ(x)]J(xI-A)-if(s) dxds

=,,lw(,) +’(2,,i)-’ S,_, eX(t-s)J(X)l(X)f(s) dxds

--Aw(t)+[t[t-SB"

fo fouR )f(s)dsdu.=Aw(t)+ tB(t-u) (u-s

Hence, for t>0, if v(t)-fR(t-s)f(s)ds-u(t)+w(t),

l)’(t) --av(t) --I- fotn(t- s )v(s ) ds +f(t).

We now wish to consider the initial value problem (1.1) when f is HOlder continu-
ous, IIf(t)-f(s)ll<Iqt-slL 0<a< 1.

THEOREM 3.6. Suppose f is HOlder continuous and> 1. Then f)R(t-s)f(s)ds is a
solution of (1.1).

Proof. From the proof of Theorem 3.2 we see that IIRl(t)ll0, is bounded on
bounded intervals (0, T). Thus, fdB(t-s)Ri(s)xds exists as a continuous function,
t_>0, in X and fdB(t-S)Rl(s)xds is given by

(2 ,n’i )-i f’+_iooiOOeatj( X )/1( " )x d)k

for each x X. Consider now

SotR ( s )f s ) ds fotT s )f( s ) ds 2t-SotR ( s )f s ) ds
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From Theorem 3.2, it follows that w(t) Y for t_>0 and is continuous in Y, t_>0. Now,

u’(t)+w’(t)

-y--i j=l

q- fot(2rri)-l f+ieh(t-s’J() 2 [("--A)-lJ()]J(’I--A)-lf(s) d’dS
--i j=O

=Au(t) +f(t)+Aw(t)+ fot(2ri) --im
eX(t-s)J(a)(a)f(s)aads

As we are only concerned with existence on [0, T], T arbitrary, we may assume that f is
bounded for t_>0 so that II](X)II is bounded for ReX_>y. Letting ft be the function
defined by ft(s ) =f( + s ), we see that

The second integral is easily shown to be zero so,

fotn( t-- S )[ a ,f ](s ) as.

Thus, if v(t) u(t) + w(t),

v’(t) =Av(t) +fiB(t- s )v(s) ds +f(t).
.’o

Frequently,/}(X) will have an analytic extension to a sector of the form A- (h C:
larg?q<r/2+} where 8>0. This type of assumption was made in Grimmer and
Pritchard [8] and leads to an analytic resolvent operator. In this case, it is reasonable to
replace (HI) and (H3) by

(H1)’ A generates an analytic semigroup, ]](,I-A)-III<_M/Ihl, X CA, M>_ 1.
(H3)’ ]]B(X)II,o<_N/]), A, N_>I for some/3>0.

An examination of the proof of Lemma 2.1 shows that all of the inequalities are valid
for XA, ]X]t>2(2M+ 1)N.

It is clear that (HI)’ and (H3)’ imply (HI) and (H3) respectively, so that if (HI)’,
(H2), and (H3)’ are valid, Theorem 3.1 implies the existence of a resolvent operator for
(1.1). We wish now to take advantage of the ability to define R(t) with an integral over
a contour extending into the left half plane as in [8]. In particular, choose F to be a
contour in A with F F tO F2 U F3, where
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where R0>2(2M+ 1)N. It is easy to see that

(3.5) xt - -dR(t)- T(t)+(2ri) lfre [(3I-A) /()]J(XI-A) _.k.
F j=l

THEOREM 3.7. Assume that (HI)’, (H2) and (H3)’ are valid and that b(t) is bounded
on intervals oftheform 0< T <_ <_ T2<. Iffis H61der continuous, then fdR(t s )f(s ds
is a solution of (1.1).

Proof. First, note that R(t)-(2rri)-freXtl()d,. Now, let xX and consider
AR(t)x, t>0. As in the proof of Theorem 3.2, one estimates to obtain IIA/(X)xII_<
2N(M+ 1)(2M+ 1)llxll/l,. Now, let t=3,, d=t-d and use Cauchy’s theorem to
get

ARl(t)x- (2ri )-IfrevA/, (),t-’)t-’x d7.
This leads to the estimate IlAR(t)xIlgtt- for some constant K which is independent
of t. This implies R(t)x is continuous in Y, t>0, and that w(t)=fdR(t-s)f(s)ds
exists and is continuous in Y, t_>0. Hence, fdB(t-s)w(s)ds exists and is continuous.
Also,

dXfotB(t-s)R’(s)xds-(2ri) -v-io
e x

so that the proof may be completed in the same manner as the proof of the previous
theorem.

4. Remarks. As an example of an equation which satisfies (H1) through (H3) but
not (H3)’, we need only consider

Au+fota(t-- s )Au(s ) ds+f(t),Ut

u(0)-Uo,

where A is the Laplacian on a smooth body f with Dirichlet boundary conditions. Then
A generates an analytic semigroup on L2(). Now let a(t) be a periodic function with
period T defined by a(t)-t, O<_t<_T. Then d()- T/(1-e-rX) so that/(,)- d(,)A
cannot be extended to a sector. Taking a-a. a, one obtains a function with fl= 2.

We give one further example to indicate how more complicated equations may be
handled. If A has a bounded inverse, A-, and A is any dosed operator with domain
containing the domain of A, an application of the closed graph theorem yields that

AA- is a bounded operator on X. Thus, for the equation

a (t) +f0’ (t- s s )

we see that on Y, a(t)A=a(t)AA-A and we may choose b(t)--la(t)lllala-lll in
(H2) while II(,)all,0_<l(,)lll4A-11 in (H3).

Further applications, where B(t) is the sum of terms ai(t)Ai, are handled in much
the same way.

Also, we note that if II/(X)ll,o_<N/llmXIa in (H3), the main results are also valid
because we are integrating on a vertical line.
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HILBERT AND FOURIER TRANSFORMS ON A SPHERE*

MICHAEL B. SAXE" AND THOMAS O. SHERMAN:

Abstract. If is a complex-valued eigenfunction of the Laplace-Beltrami operator A on a compact
Riemannian symmetric space S, and if every positive integer power of j is also an eigenfunction, we
investigate the extent to which the negative integer powers of , properly regularized, fail to define eigendistri-
butions of A. We give a simple formula for this failure in the general case and a deeper contrasting formula
when S is a sphere. The source of the contrast lies in the theory of a Hilbert-like transform on the sphere.

Introduction. In the theory of harmonic analysis on a Riemannian symmetric
space S, a key role is played by certain functions

j: S--’C,

all of whose positive integer powers are eigenfunctions of the Laplace-Beltrami opera-
tor A. Helgason ([4], [5], [6]) has a true Fourier theory on symmetric spaces of noncom-
pact type which is based on the use of such functions in the transform kernel. An
analogue of Helgason’s theory has been proposed ([8], [9]) for symmetric spaces of
compact type. In this analogue one must also be concerned with negative integer
powers of . Since takes the value 0 in this case, the important integral

(0.1) fst-"f (fC(S))

is singular and must be specially defined or "regularized." We use a particular regulari-
zation described in Lemma 1.12. On the open set where :/: 0, - is an eigenfunction of
A:

(0.2) (A-- ;k_,,) j-" 0.

For the Helgason-Fourier theory on compact S, it is important to know the extent to
which (0.1) defines an eigendistribution of A. Thus we consider the deficit

(0.3) fs-"(A X_,,)f.

This defines a distribution on S which is supported on the set where 0. In we
give a simple formula for (0.3). The argument requires only that S be a compact
Riemannian manifold and that the function : S-oC satisfy certain conditions with
respect to A (especially that and are eigenfunctions of A). However, these seemingly
simple hypotheses already impose considerable structure on S, and it may be that if a
compact S supports a separating family of such functions, then it must be a homoge-
neous space of a compact lie group.

The idea behind the simple formula for (0.1) is to project the problem, via , to the
set (S), which turns out to be a disk around 0 in C. Then (0.3) corresponds to a
distribution supported at 0 in C, and thus is of the form

Received by the editors January 8, 1982, and in revised form August 26, 1982.
Missile Systems Division, Raytheon Company, Bedford, Massachusetts 01730.
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for some differential operator (R). We give an explicit expression for @ in Theorem 1.1.
This depends, of course, on the regularization of (0.1) which is given in Lemma 1.15.

In 2 and 3 we are concerned with the special case of the unit sphere S in
Euclidean space. Section 2 discusses some Hilbert-like transforms on S. In 3 we apply
the results of 2 to establish for (0.3) a second formula (Theorem 3.3) which is quite
different from that of 1. In particular, its statement and proof depend strongly on the
rich structure of the sphere.

As we show in 4, Theorem 3.3 is of considerable importance for the theory of the
spherical Fourier transform in [8] and may be regarded as the main result of this paper.
It was worked out in the first author’s thesis without benefit of the material in 1 or 2,
which came later. Indeed the results of 2 were formed by working backward from
Theorem 3.3 toward Theorem 1.1, in an attempt to understand the difference between
the two very different formulae for (0.3). We have confined the difference to a result
(Theorem 2.1) on the Hilbert-like transform.

Notation. We will write A:--- B to mean that A is assigned the value B or that A is
defined to be B.

If f: M N, we denote byf# the set-theoretic inverse set function: if N’ CN then

f#(N’): (mlf(m)N’}.
The usual notation f-i will be retained to mean 1/f.

1. Generalities. Throughout this section, S is a compact, connected, C Rieman-
nian manifold with Laplace-Beltrami operator A and metric-induced measure o. As-
sume o(S)-- 1. Suppose that on S we have a fixed nonconstant function : SC such
that both and 2 are eigenfunctions of A.

LEMMA 1.1. There are real numbers a and fl such that for all integers n,

(1.1) An- ll( ol ---n)on all of S if n>-O, and on the set where vO if n<O. For convenience we write nfor the
eigenvalue n(a + fin).

Proof. Let V denote the gradient on S so that for any C: function f and any
integer n,

Afn=nf"-lAf+n(n-1)f"-Zvf. vf
whereverf is defined. Apply this with n 2 to to get

Apply it again to get

(1.2) A":n(, + (n- 1)/)"
so that we may take a := -/3:21-2/2.

LEMMA 1.2. For n O, 1,... the eigenvalues X n are strictly decreasing.
Proof. n<0 for n >0 because S is compact. Therefore/3_< 0. The assertion follows

from (1.2):

Now r :--o defines a probability Borel measure on C whose support is
precisely (S).
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LEMMA 1.3. The measure is rotation invariant on C.
Proof. For any nonnegative integers rn 4: n,

(1.3) fczm,nd-=fsmndo-O,
since " and " correspond to distinct eigenvalues of A.

Now suppose 0 is a rotation of C such that o 0:. Then for some polynomial p
in z and z,

(1.4) fcP OdzvfcP dr,
and (1.4) must hold for some monomial p--zmn, necessarily with m 4: n. But by (1.3),
both sides of (1.4) must be 0, a contradiction proving the nonexistence of such a 0.

COROLLARY. j(S) is either a disk, circle or annulus, and is centered at O.
Proof. (S) is compact, connected and rotation invariant since it is the support

of z.
LEMMA 1.4. Let a, fl be as in Lemma 1.1. Let ( be open in C and h a harmonic

function on (. Then on the preimage #( ) of in S, we hae

A(h )-((aR+ flR2)h) o ,
where R :- tO/Or and r is the radial coordinate on C.

Proof. The result is local on C and by (1.1) is obvious for h:-- z n or n. Then it is
true for holomorphic and antiholomorphic h, hence for harmonic h.

LEMMA 1.5. If(S) does not contain O, then it is a circle, and a--O.
Proof. In Lemma 1.4 let h(z) :- lnlz[. Then Alnll- a. On a compact space, A takes

only constants to constants, so ln[[ is constant, and a 0.
COROLLARY. (S) cannot be an annulus.
For the remainder of this paper, we restrict our attention to the case in which (S)

is a disk and assume, without loss of generality, that it is in fact the unit disk D.
Our method is to project problems on S down to D using and the related map of

functions E. We also need similar machinery when is replaced by its real part, so we
summarize the essential facts stated in mild generality. This sort of thing is well
understood. For proof of Lemmas 1.6 and 1.7 specific to spheres, see [8, pp. 13-18],
and for a more general formulation see [3, pp. 301-304].

Suppose V is a finite dimensional vector space and :S V a C map. Let
%’- q# be the measure on V carried over from o by q. (If q- then %- .)

LEMMA 1.6. There is a unique bounded linear map

E’Ll(g)-..)Ll(V, odp)
such that forfin L(S) and g in L(V,%), we have

fsfd-fvE( f ) do,

Eq,(( g q)f ) gEq,( f ).

We use the notation E, because this operator is essentially a conditional expectation.
Let S denote the regular points of q in S and V the regular values of in V.

These are open sets in S and V respectively. If q is not constant, then, because it is
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analytic, q,#(Vr) is open and dense in S. By this and Sard’s theorem,

o(s--sr)--O--oq(v-- vr).

% is smooth on V in that it is given by a C function times Lebesgue measure.
Moreover, we have

LEMMA 1.7. Iff is in C’(S), then E,(f)[V is in C’(V’).
LEMMA 1.8. With q: S V a nonconstant, C map, suppose that for every polynomial

p of degree <_ 2 on V, there is a function p on q,(V) such that

Then there is a unique second order differential operator A on q,(S) such that for all g in

(1.:5) a(g ,/,)= (Ag)oq,.
Moreover, A is C on V and is symmetric with respect to the measure %. For g in C2(S),
(1.6) E(Af )-AE,(f ) on Vr.

Proof. The map p- is linear and so may be expressed as -Ap for a unique
second order differential operator A on q(S). (1.5) is verified by showing that both
sides vanish at a point s such that g vanishes to the second order at qffs). The
smoothness of A on V and symmetry with respect to % are routine, with the latter
using (1.5) and the symmetry of A. To show (1.6), take g in C(Vr) and show that

fq,(s)gAE( f ) dq=fq,(s)gE( af ) d%,

by using symmetry to move A over to g, then Lemma 1.6 and (1.5) to get

(s)E,((Ag o q,)f ) d%=fsa( g q)fdo,

and finally using symmetry of A and Lemma 1.6 again.
We now specialize to the case q’- and recall that -% is rotation invariant and

qffS)- D, the unit disk in C. We also wish to add the following hypotheses on
(H1) 0 is a regular value for .
(H2) There is a functionq on [0, 1] such that
Since 1,f,,f and 2 are all eigenfunctions of A, (H2) is all that is needed to

fulfull the hypothesis of Lemma 1.8. We then have the operator A on D satisfying (1.5)
and (1.6). If A denotes the Laplacian on C, i.e.,

then we find

(1.7)

0 2 0 2 0 0 (R2 0 2 )-4 +Ac -x2if- i)y2- 0z } r 2 -A-aR+R2+,(r)A,
where R’- r3/ir, and ,(r)’- (/(r)-(2a+4fl)r2)/4, and a, fl are as in Lemmas 1.1
and 1.4.

Let 0 denote the Radon-Nikod,m derivative of with respect to Lebesgue
measure: dr-odxdy. Then 0 is a radial function which is C on the set Dr of regular
values in D.
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LEMMA 1.9. f ao0( )t dt= (x)oo(x ) at x in [0,1 fq r. Here

Proof. Let f, g be radial C2 functions on . Using the symmetry of A from Lemma
1.8, we get

0- (fAg-gAf)rdrdO= (h(r)+(r)h’(r))(r)rdr,

where h(r):= r(f(r)Og/Or-g(r)Of/Or). The result now follows by letting h ap-
proximate the Heaviside function:

hx(r)._ (0 ifrx,
if r>x.

COROLLARY. gw is continuous and monotone on [0, 1] and vanishes at x= 1. On
[0, 1] r it is C and satisfies

COROLLARY. On D r,

1RcoxR+y

LEMMA 1.10. For a C function f on define the 1-form

f’- (Rf)dO-.-dlnr o

Then for C functions f, g on il ,
( g-g I I o( r) ereo- e( ).

Proof. By the last corollary,

( fAg-gAf )o(r)rdrdO
0 (o(r)x(r)(fRg-gRf))+ (/(r)o:(r)/r) f--g- drdO

=d(fg-gf).

The second expression for 6f is computed from the first by routine use of

R x -x +y Oy O y -x + x -y rdr- x dx +y dy

r 2 dO- -y dx+ x dy, x(r ) fir + y(r).
LEMMA 1.11. Let (9 be an open subset of bounded by a piecewise smooth curve C

lying in ). Let f, g be C in a neighborhood of the closure of (9. Then

(1.8) [(fAg-gAf ) d=f(fg-g6f ).
"C
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Proof. Split f into the sum of functions fl, f2, such that fl has support inside D and
f2 has support in the interior of (9. Then (1.8) holds with f replaced by fl by Lemma
1.10; and (1.8) holds withf replaced by f2, because both sides are 0.

The following well-known fact (see, e.g., [2, p. 60]) will prove useful in several
places:

LEMMA 1.12. Iff: [0, a] [-- b, b] C is continuous and of class C near (0, 0), then

lim fbf(x,y)(x + iy)-dy
xO+ d--b

exists, depends on f(O,y) only and is denoted as

b
0f_/( ,Y)(iy+o)-ndy

Moreover,

-n)dy 2rr (-/0)
n-I: f (n--1)’.(1.9) f(O,y)[y=O.

Finally we are in a position to define and analyse the integral

(1.10) fJ-"do.
For t>0 let D := {x + iy llxl> t} and

St:--#(Dt).
LEMMA 1.13. Forfin C"(S) the following limit exists:

lim fsf do.
t-.O+

This will be the meaning assigned to (1.10).
Proof. By Lemma 1.6,

fs:-?Ido--ftE’( f )z-tldr--f]x12>1 fl<x’(X’l-]Y)--rlg(x’y)dydx’
where x"-(l-x2)1/2 and g’-E,(f)o. The inner integral defines a continuous
function of x on [-1, 1] (except for a possible simple discontinuity at x=0) by the
corollary to Lemma 1.13.

When it is necessary to have a term for the definition of (1.10)just given, we refer
to it as the slit regularization of (1.10) to distinguish it from, for example, the Gelfand-
Shilov "canonical regularization" [2, p. 61 ].

THEOREM 1.1. Letfbe in C"(S) and let f:- E(f ). Then

(1.11) fs((A--X_.)f )-"do

-(n- 1)’----. -i -y -x-
(Recall that ( A X_ )-’ 0 on the set li: 0.)

i--fy (o(y)(y)f(x,y))
(x,y)=(o,o)
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and

Proof. For t, u> 0 let

D,,,’- (x+iyDl(Ixl>t) or ([el>u))

Dt, u D IDt, u.
The left side of (1.11) equals

(1.12) lim fr(A-_ )fz-"dr= lim fa (A-?)fz-"d
t-)O+ n t-*O+

t,u

--n

for any fixed u>0. Choose t u>0 small enough so that D’ C D, the set of regulartl,U
values. Fix u. For t<t f is C" in a neiborhood of D’ Lemma 11 implies the
right side of (1.12) equals

where C is the boundary of D,,. Neglecting the "short" ends of the rectangle C (on
iu) and using the second form of 6 in Lemma 1.10, we get two integrals (one from

iu + to iu + and one from iu to iu + t) of the one-form

+

where r=(x +y)/ and x=t or -t, depending on wNch integral we are concerned
with. Lemma 1.12 shows that these integrals remain bounded as t0+ and the terms
containing the factor of x go to 0. The net result is (in the notation of Lemma 1.12)

f2w(r)’(Y)
u

which, by Lemma 1.12, equals the fight side of (1.11).

Z Hflbe-Ie asfrs. Throughout this section, S is the unit sphere in a real
inner-product space V of finite dimension d+ 1. The inner product in V is denoted by a
dot. For any s in S, we have the projection : S [- 1, ], by

and the corresponding

E E,," L(S)L([-1,1],e(x)dx),
by Lemma 1.6, where e(x): (1-xa)(e-a//B(d/2, 1/2). Here B is the Eulerian
beta function.

LNNa 2.1. For an integer m>0 andfin C(S), the following limit exists:

(2.1) lim f(s’)( + is. s’)-ds’"
tO+ S
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it will be denoted H+m ( f )(s ). If instead we take limt0-, we get H( f )(s) and

nn ( f )(s)-- (- 1)mn+m f )(-s ).

Proof. By Lemma 1.12, (2.1) exists and may be written

fEs( f )(y)(iy + o)-md(y) dy,

H( f )(s)-t-o fJ(s’)(-t-}-is.s’)-mds’-(-1)mn+m (f )(-s ).

LEMMA 2.2. Forfin cm(s),

2qr (_i d )m-1H"+( )( ) ( )( )""--f--s--H-f--s--m-1)! -x (d(X)Es(f)(X))x=O.

Proof. This is immediate from Lemma 1.12 and the formula for H+m(f) in the
proof of Lemma 2.1.

We will now approach Hm+ from an alternate direction. Hm+ commutes with the
action of the rotation group on cm(s). Let Wj. denote the space of homogeneous,
harmonic polynomials of degreej on S.

LEMMA 2.3. Hm+IW Cm,jI where

2m--I

(m-- 1)!F d-m+j+

Proof. H+,,IW is a scalar multiple of the identity by an adaptation of Schur’s
lemma. To compute the value of Cm,j, we fix so in S and define

where

where

f(s)-6(S.So),

pj.(x)
Qj(x)
Qj(1)

QJ(X)’- (1-x2)-( d ) (1--x2)J+ (J’-
The point is that f is in Wj. and f(s0) so that

Cm,2_H+m ( f )(so)_S
Integration by parts reduces this to a constant K times

(1 x 2 )J+ (ix -}-o)-m-Jdx ’71"
r(j+(+ 1)

F( m+J+2 F( j-m+32
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where K is given by

K=
(i)J(m+j-1)!

(m-1)!Qj(1)B -, - (m+j- 1)!
d

The lemma follows after using the duplication theorem for F and cancelling some
factors. Recall that i (d- 2)/2.

We now introduce the notation

x(t)

t+lF x+
2

The heuristic is that X (t) is in many ways like X t. Specifically:

Moreover,

and therefore,

x(>-l, x (> x, x(-t)-(x(t)) -1 (t)’xtx as x--, c.

x(l/2)--(xnt-O( X

1/2

x(--l/2)-- ( X----O -1/2

as x-, .
LEMMA 2.4. x(2k+t)--X t) Ilnk= I(X2-- ((/- 1)/2 + n)2) for any integer k>0,

Proof. By induction on k using the case k- which is just,

X(2+t)--X (t) x2-- ( t+ )22
LEMMA 2.5. Let be the number in ( -1/2, O, 1/2, } and k the integer such that

d+l)m-
2

-2k+t.

Then assuming k>0 (i.e. ((d+ 1)/2)> 1), we get

m+j

F(d+J+21-m) --( 2j+d-1)
k

2-2k II (X2n_ --Xj)
n=l

m

where X,’- n(n + d- 1)).
Proof. The left side equals ((2 j+ d- 1)/4) 2k-t- t), SO the result follows from Lemma

2.4 and the observation that

2j+d-1
4

2 ( t-1 )212
+k+n-1 ----(k2n_m--Xj).
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The summary of our results so far is

CEn,j Kd,m(--i)J( 2j+d-14 =1
()k2n-m-)kj)’

where Kd,m F((d+ 1)/2)2t+a-l)/2/(m- 1)! and k,t are as in Lemma 2.5.
We now introduce the operator f, defined first on the sum of the spaces Wj by

1Wj.:=j/. f extends by continuity to C(S).An alternative definition is: for f on S,
extendf to a harmonic function in the ball bounded by S. Then

(2f )(s)--f(ts) t--I

provided the derivative exists, f is related to A by

or equivalently,

d-l) 2

+ 2

If p is some function on {0, 1,... }, then P(f)I Wj.-p(j)I by definition.
THEOREM 2.1. On C(S), if m>_d/2, then

H+m -Kd,m(-i)( 2+d-1)(t)n-I4 --1
(2n-rn --a),

where Kd,m is as above and k and are as in Lemma 2.5:

m
2

+2k+t,

k is an integer, and ,,- -n(n +d- 1). If k-0, the product II k isn--!

Proof. Both sides are Cm, on W, are linear and are continuous on C(S).
COROggARY 2.1. Suppose d is odd; let m:= (d+ 1)/2. Then

( i) n 2l-En +HEn

COROLLARY 2.2. Suppose d is even; let m:- (d+ 2)/2. Then

COROLLARY 2.3. Suppose d is odd and m=(d- 1)/2. Iff is in C(S) andf(-s)--
(-1)mf(s),then

d((-i)uf )(s)-(-i)En/(d-2)(d-4) 5.3.1 -x
((1 x z ),d- 2,/2 Es f )(x)) x=o"
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Proof. Combine Corollary 2.1 with Lemma 2.2.
COROLLARY 2.4. Suppose d is even and m-d/2. If f is in C(S) and f(-s)-

(- 1)mr(s), then

(_i)u( 2+d-1) ’/2) )4 f (s)

=(rl/Z(-i)m/(d-2)(d-4)"" 4" 2) d m

((1 x 2 )d-2)/2 Es( f )(x )) X__--0

Proof. Combine Corollary 2.2 with Lemma 2.2.
Remark. If p is a harmonic polynomial restricted to S, then (-i)ep(s)=p( is).

If, in addition, S is the unit sphere in (td+)/2 and p is holomorphic along some
complex coordinates in (td+ l)/ and antiholomorphic along the remaining ones, then
(-i)u effects a quarter rotation of p. Our heuristic regarding (-i)u then is that it is a
quarter rotation of the functions on S which is isotropic in that it commutes with all
true rotations of S. There is, of course, no geometric rotation of S giving (-i) by
composition. Nevertheless, (-i) behaves in some ways as if there were. Corollary 2.3
is an instance of this. Let

par,( f )(s)’- 1/2( f(s)+ (- 1)"f(-s))

so that par,(f) has the parity (odd or even) of n. Then Corollary 2.3 says that if
d- 2m+ 1, then

f-o( )parm( f )( s )

is supported on s- in S, just as it would be if (- i)s came from a quarter rotation in S.
We find it interesting that (-i)e has three such differing representations, as in

Corollaries 2.1 and 2.3.

3. The sphere. In this section we apply the results of 1 and 2 to the Helgason-
Fourier transform on a sphere S. We begin by briefly describing this transform and its
theory.

Let S be the unit sphere in an inner-product space V of dimension d/ 2 so that
dim S-d+ 1. Fix a point so in S and let S"- s- in S. (If so is the north pole then S’ is
the equator.)

Let E denote the set of real-linear maps of V into C such that

(3.1) (s0)--
(3.2) (S)=a.

Then each in 7. satisfies all the hypotheses on of 1, viz., the first paragraph
and H1, H2 of 1 and (3.1), (3.2).

We note that , is parametrized by S’"

j where,(s) S.so+is.s
Note also that all in . have the same real part. Let 7: S-o (-1,0, } be defined

as the sign of this real part:

/(s)’- sgn(s -s0).
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The transform dual space is the set F. N where N’= (0, 1,2,..- ). The transform
Tf off in C(S) is defined as

(3.3) Tf( ,rn)" f/ld-’-ddo,

where the integral is defined using the slit regularization of Lemma 1.13. Although the
discontinuous function / appears at first to complicate matters (at least if d is odd),
examination of the argument in Lemma 1.13 shows that it does not interfere with
convergence of the integral, so Tf is well defined.

The inverse transform formula is

(3.4) f(s)- E dim(W,n)f.Tf(,m)m(s)d,
m--O

where W is the space of homogeneous, harmonic polynomials of degree n on S, the
measure on is the rotation invariant probability measure on S’, and the series
converges in C(S). For details see [8].

In the transform (3.3) the task of the integral is to pick out the Wm component fm
of f. In this connection note that mew and that

fm-- dim(Wm )L_Tf(, rn)md.

Moreover, on the set S-S’, the function rla-m-a is an eigenfunction of A with the
same eigenvalue

hm -m(m+d)

as m. Unfortunately, (3.3) does not define an eigendistribution of A. A principal goal
of this paper has been to measure that failure by computing (3.3) with f replaced by

(A-hm)f

THEOREM 3.1. If S is a sphere of odd dimension, then forfin C(S),

T((A--,m)f )(t,m ) -(d(m+d-1)!) --i--fy x--i-f
((1-y)(a-)/2E(f)(x,y))

(x,y)=(0,0)

Proof. In Theorem 1.1 take n:= m+d, 3,: 1, and to(z)--(1--z,)(d-2)/2/(27rd).
Then the present result follows immediately from Theorem 1.1.

Remark. The functional on f in Theorem 3.1 is clearly a distribution supported at
--0. Unfortunately the same is not true for spheres of even dimension, due to the
discontinuity in /d. Thus we cannot expect a strict analogue of Theorem 3.1 for such
spheres. However, we have:

THEOREM 3.2. For any sphere S let so and S’ be as above. Parametrize S by
cylindrical coordinates:

(-1,1)S’S-(so,-So}

( x, s’) s xs0-+- (1 x2)’/2s’.
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-aYf( ,S’)Ix=0Write xf(S’) for x Then for f in C(S) and corresponding to s and with
Hn defined relative to S’, we have

T((A-;m)f )(t,m)- -(B( d+l -1

t)-(-1) Hm+u(Oxflm,)(s)

+(re+d)( H+ dHre+d+ (fis’)(S) (--l) +d+ (fis’)(S))}
Proof. The left side equals the limit, as + 0+, of

( A-- Xm)f’ld-m-ddo-fost(-m-d vf--fV-m-d )ld" do t,

where do’ is the boundary measure on OS times u, the unit normal vector to OSt. This
follows from (A-Am)--a=0 on St. Note that the boundary measure is

2 ’- ds’

when t=0; here ds’ denotes the normalized measure on S’: fs,1 ds’= 1. On OS

--t+i(1--t2)il2s vuli( S

(l--t2) 1/2 "S.

If we make these substitutions above, factor out (l-t2)-(m+d)/2 and observe that
t/(1- t2)--+ 0 as t-+0, we find that we obtain the right side of (3.5).

Remark. There is a close parallel between this proof and the proof of Theorem 1.1,
in that both involve Green’s theorem applied in related contexts. Indeed, with some
reworking, we could get along with a single proof. However, there are some important
economies possible with the sphere (regarding the set Re()=0) that are not available
in 1, most notably the theory of Hm+

Recall that par, is the projection of a function on S’ to its odd or even part,
depending on the parity (odd or even) of n.

COROLLARY 3.1. In the notation of Theorem 3.2,

T((A--Xm)f)(,m)--
B( d+12 ’2-1)

{H+ (parm (Oxf ))(s)+(m+d)::m-+a++ i(parmfls’)(sti))’m+d S’

We wish to restate this by making use of Theorem 2.1. An objective of this
restatement is to bring to the surface the derivatives lurking on the right side in
Corollary 3.1, thereby making the right side more computable.

Let i:= (d- 1)/2.
THEOREM 3.3. Given the integer rn >_0, we write uniquely

m+8-2=t2+2k2, m+8- l=tl+2kl,



618 MICHAEL B. SAXE AND THOMAS O. SHERMAN

where k2, k are integers and t2, t are in (-1/2,0,1/2, 1). Then for any f in C(S) (and
with the notation Ox f used above), we have

(3.6)

2+,r,(, + 3/2)(-i) e’

T(( A--,m)f )(t,m)-- (m+a- ).r()

2t2
2 (h_,_2-A’) parm_,(0f ) (s)

+ 2t’
2 .= (X’-z2-A’) parm(fls,)

(Here h’, A’, 2’ are all defined with respect to S’.)
Proof. This is an immediate consequence of Theorem 2.1 applied to Corollary 3.1,

bearing in mind that d is the dimension of the S’ of this section and the sphere S of 2,
so that the results of [}2 may be applied directly to S’. In particular the ?’, A’, ’ used in
this theorem are the ?, A, of 2. The m of Theorem 2.1 must be replaced by m + d or
m + d+ 1. We must also use

2j-m-a+l-- m--2j"

Remark. There is some inevitability about part of the products involving (h’n- A’)
on the left in (3.6): according to [8, p. 26, (5)] the left side of (3.6) must vanish on
polynomials f of degree <m, but then so must the right side. This is accomplished by
the factors (’n A’) (with 0< n _< m) together with the screen for parity.

We would like, but do not have, a similarly simple explanation for the remaining
factors (’n-A’) (with n<0) as well as ((f’+i)/2) <t), etc. in (3.6). The explanation
must take a different tack from the one just given since ((’ -+- J )/2) (t) (with in
{-1/2,0,1/2, 1}) and (’n- A’) (with -d+ <n<0) have bounded inverses on L2(S’).

4. Applications to the transform T. We consider briefly three types of application
of the results of this paper to computations and estimates involving T(f).

The first is the most obvious: if p is a polynomial on R, m is an integer _>0 and q
is the polynomial such that

p(x)= (x-,.)q(x) +p(.),

then

T(p(A)f )(,m)=P(m)T(f)(,m)+ T((-m)g)(,m),

where g’- q(A)f. Now the term in g may be evaluated by Theorem 1.1 or 3.3.. In this
same spirit we find

2T(Vj vf)(,m)-(,m-,m_)T(f)(l,m- 1)
+ T((A-,m)(f))(,m)+ T((A-3m_)f)(,m- 1),

where, again, we may evaluate the A--? terms by our results.
A second type of application is the explicit computation of T(f)(, m) in special

cases. The simplest example of this arises when f is an eigenfunction of A. If Af= ?, f
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we may distinguish three cases: n<m, n-m, n>m. The first two are treated com-
pletely in [8, p. 26, (5)]. The third falls to our results by

T(f )(,m)-(,n-2tm)-’T((A-2tm)f )(f,m).
We wish to elaborate slightly. If we use the cylindrical coordinates (x,s’) of Theorem
3.2, then an arbitrary eigenfunctionfmay be written as a sum of functions

f( x, s’) ( x 2 )j/2p(x )g( s’),

where the polynomial p is en-j,d+l+2j, and P,,d is the polynomial Pn of Lemma 2.3.
Moreover, g is an eigenfunction of A’ with eigenvalue ,. and ’g=jg. From Corollary
3.1 and Lemma 2.3 we have

T( f )( li, m ) cg(s ),

where the constant c is 0 if m and n have different parity; otherwise we get two
different formulae for c, depending on whether or not the common parity of m and n
equals that ofj. The computation requires the values

p(O)

p’(O)

r(n--j ) ) Fcos
2

n+j d+

2 sin
r( n -J ) ) F ( j d+ )F(n-j+2)22

+

from [1, p. 174-5] but is otherwise routine. The conclusion is- r J+ 2c--(X-X ) ’.
(-i)J2"+’F

n m (m+d- 1)!r

0 if m-n is odd or if m_>j,

(--1)("-J-’)/2F m+j+d)F(2 n-j+22
F( n+d+j ) (j-m+l)2

F
2

(_ 1)(,,-)/:F( m+j+d+2 )F( -j)n2+

if n-j and m-j are odd,

if n-j and m-j are even.

This result together with that of [8, p. 26, (5)] gives the complete matrix of the
transform T in terms of the classical expansion of a function in terms of spherical
harmonics.

A third type of application is to the estimation of the norm of

fr(f)(. ,m)
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as bounded operator between appropriate Banach spaces of differentiable functions on
S and S’. Without going into detail on this, we remark that the impression conveyed by
Theorem 3.1 is that roughly fGCm+a(S) is needed for T(f)(. ,m) to be in C(S’); this
is improved considerably by estimates based on Theorem 3.3 which suggest that rn + d
can be replaced by something more like m+ d/2. Our best estimate of this kind is
between Sobolev spaces L2’r(s) and L2(S’), with r- rn + (d- 2)/2. Here

fL2’r(s) if (I+)rfL2(S).
Details of the second and third of these application types were worked out in [7].

Acknowledgment. We wish to thank Professors Richard Rasala and Woody Lich-
tenstein for asking us the right questions at a formative stage of this work.
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ORTHOGONAL FUNCTION SERIES EXPANSIONS
AND THE NULL SPACE OF THE RADON TRANSFORM*

ALFRED K. LOUIS"
Abstract. The range of the Radon transform for compactly supported functions is spanned by products

of Gegenbauer polynomials and spherical harmonics. The inverse transform of those basis functions is given
for arbitrary dimensions and arbitrary Gegenbauer polynomials. The resulting inversion formula is applied to
study the "ghosts", i.e. the functions in the null space of the transform for finitely many projections. They are
characterized by their series expansions and results concerning the optimal choice of directions for the data
acquisition are deduced. The application to nuclear magnetic resonance zeugmatography is discussed.

1. Introduction. The Radon transform of a real-valued function in RN is defined
as its integrals over all (N- 1)-dimensional hyperplanes. The problem of retrieval of a
function from those integrals was first solved by Radon [24] and has been studied for
example by Helgason [8], Ludwig [18]. In recent years it has found a spectacular
application in medical imaging, in two dimensions with transaxial x-ray tomography,
and in three dimensions with nuclear magnetic resonance (NMR) zeugmatography; for
overviews see Herman [9], Marr [20], Shepp-Kruskal [27], and for theoretical studies
motivated by these applications see Natterer [22], Smith-Solmon-Wagner [28].

Besides the direct implementation of the inversion formula, methods which project
the searched for function on a certain subspace play an important role. Finite element
spaces lead to huge systems of linear equations which have to be solved iteratively
because of the lack of any structure of the few nonzero elements. For these methods see
Herman [9, Chaps. 11, 12] and the vast literature cited there. The expansion of the
Radon transform in terms of orthogonal functions avoids the solution of systems of
equations but necessitates the knowledge of the inverse of those basis functions. This
problem has been solved in two dimensions for Chebyshev polynomials of the second
kind, see Cormack [2], Marr [19]. These formulas have led to better understanding of
theoretical but practically motivated questions as for consistency of projection data and
nonuniqueness of the reconstruction; see Lewitt-Bates 13], Louis 17].

The purpose of this paper is to provide further results for arbitrary dimensions and
the general class of Gegenbauer polynomials, which include the results of Cormack and
Marr as a special case. Besides their direct application as inversion formula the results
can be used as a basis for an extrapolation algorithm for the limited angle problem,
where the data are known only in directions in a restricted range. See, for example,
Louis [15], [16] for the two-dimensional case. Furthermore the expansion in terms of
orthogonal functions allows one to consider the transform under different aspects than
by Radon’s original inversion formula, see [24]. The main application that we have in
mind is the study of the null space of the transform. For a function to be uniquely
determined, its projections have to be known for infinitely many directions. This
implies that the transform has a nontrivial kernel for finitely many projections, which is
the case in all practical applications. The consequence of this has been extensively
studied in two dimensions. See for example Katz [11], Logan [14], Louis [17], Natterer

*Received by the editors September 1, 1981, and in revised form April 1, 1983. This research was
supported by the National Institutes of Health under grant HL18968 while the author was with the Medical
Image Processing Group, Department of Computer Science, State University of New York at Buffalo,
Amherst, New York, 14226.

tFachbereich Mathematik, Universitit Kaiserslautern, D-6750 Kaiserslautern, West Germany.
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[22]. The results of Leahy-Smith-Solmon [12] and Smith-Solmon-Wagner [28] are
valid for arbitrary dimensions, but the functions in the null space are characterized as
solutions of partial differential equations, which allows no conclusions besides their
existence and smoothness. Here we characterize these ghosts by their expansion in
terms of orthogonal functions and deduce results concerning the optimal choice of
directions in actual measurements and concerning the resolution of the reconstructed
image. The most important application in more than two dimensions is nuclear mag-
netic resonance (NMR) zeugmatography, a new medical technology; for technical
details see for example Marr-Chen-Lauterbur [21]. Using time-dependent magnetic
fields leads to an example in four dimensions. The nonuniqueness results are discussed
for the three-dimensional case.

After a short introduction in 2 of the transforms used later on, the inverses of the
general class of basis functions are given in 3. Consequential results are the inversion
formula of 4 and the construction in 5 of the null space of the Radon transform for
finitely many projections. Finally the conclusions for NMR are studied in 6.

2. Preliminaries on the Radon transform and on special functions. Let f be a
real-valued function in Rs, N_>2, with compact support. Without loss of generality we
assume that the support is lying in the unit ball f. We use Ss-1 to denote 0f, the
N-dimensional unit sphere, and elements toSs-I are called directions. Let to+/- be the
hyperplane perpendicular to to and containing 0. The function

f:Z--->R, Z=RSN-,
is defined as

(2.1) f(s, ,<, )-S<.f( s<.<, + o) do=ff(x )<(-.,<, ),
and is called the Radon transform of f. Further let

f(f)-(2r)-u/=ff(x)e-ix’dx
be the Fourier transform of f. The fundamental relationship between the Radon and
Fourier transforms is the so-called projection theorem, see Ludwig [18, formula (1.3)],

(2.3) f( o.to )- (2r)-(U-1)/2(f)^( O, to )
where oR and (f) denotes the one-dimensional Fourier transform of @f with
respect to the first argument.

Let G CR". Then we denote by H(G) the Sobolev space ’(G) of Triebel [30,
Chap. 4.3.2], equipped with the norm

2, 2)a 12Ilfll,,,=f( +11 I1(:) dj.

On the manifold Z we use the Sobolev space//(Z) with the norm

I111 - f-o(= I1(" ,<<,)11,o(,a’<<,.
N--I

Then the following result is a consequence of the projection theorem, see Smith-
Solmon-Wagner [28].
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LEMMA 2.1. The Radon transform is a bounded operator from H() into
H,+(N- )/2(Z) for real a.

The problem of inversion of the Radon transform over L2 is ill-posed and the
transform has a small range which is characterized by the consistency conditions of
Helgason [8] and Ludwig [18], see Smith-Solmon-Wagner [28, Thm. 13.4]. We restate
the consistency conditions.

LEMMA 2.2. Let a>_(1-N)/2, gH"+(u-)/-(Z) is the Radon transform of fG
H(2) if and only if

i) g(s, co 0 for hyperplanes missing
ii) g is even on Z,
iii) for all nonnegative integers m

(2.4) fsmg( s, co ) ds

is a homogeneous polynomial in co of degree <_ m.
Analogously to Ludwig [18] we use spherical harmonics to study the polynomials

defined in (2.4). Spherical harmonics are the restriction to SN-1 of homogeneous
harmonic polynomials on RN, see Erd61yi et al. [5], Seeley [25]. Let Yt be a spherical
harmonic of degree l; then

(2.5) fsu_,Yt(co)Yk(co)dco-O for lvak.

We can represent Y as Y/(co)-c/N/2-1(co.), SN-I, where C{ is the Gegenbauer
polynomial of degree and index v. These polynomials are orthogonal over [- 1, 1] with
respect to the weight function

(2.6) w(s)- (1-s2)-’/2.

Finally we denote with Yk,/_>0, k= 1,-..,M(N,I) with

M(N,I)- (2l+N-2)(N+l-3)! =O(lU_2)/!(N-2)!

an orthonormal basis for the spherical harmonics of degree l, see Seeley [25].
To simplify the notation we introduce weighted L2 spaces. Let GCRm, m_> 1, and

let w be a weight on G. We define

(2.8) (f g ) w--fGw(x)f(x)g(x) dx
to be the scalar product on L2(G, w). On the manifold Z we use weights which are
dependent only on s and are extended to all of Z by w(s, o)= w(s), for all 0 .SN- 1.

Now we are able to give series expansions of the Radon transform with respect to
products of Gegenbauer polynomials and spherical harmonics; for two-dimensional
examples see Cormack [2], Louis 16], 17], Marr 19], [20].

LEMMA 2.3. Let f Lz(Z, w- 1) and dmU wCYu," Then

o m M( N,I)

(2.9) f= 2 2 2
m=0 /=0 k=l

m+ even

h ( f, dmt ) w;’ mlk,
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or equivalently

(2.10)

with

where

f(s,)-%(s) E Cfn(S)qm()
m:0

m M(N,I)

qm(O) dmlkYlk(60),
/--0 k-1

m+ even

and

mr)
N-i

f( s o )C(s ) ds do

hm,--fl__ IW,(s)[Cfn(S)]2ds.
Proof. The set of functions mg, m_>0,/_>0, k= 1,-..,M(NI) form a complete

set of orthogonal functions on L2(Z, %-) and therefore the series on the right side of
(2.9) converges in the weighted L2 norm to f. The expansion coefficients with respect
to the C,

qm(O)-hLf’-1 C,( s )6f( s o ) ds

are polynomials of degree less or equal to rn according to the consistency condition
(2.4). The evenness (oddness) of the Gegenbauer polynomials for rn even (odd) and the
evenness of the Radon transform result in dmlk--O for m+ odd. (2.10) is then a
consequence of the orthonormality of the Ytk.

3. Inverse Radon transform of the basis functions. According to Lemma 2.3 the
range of the Radon transform is spanned by %CYt, m>_O, O<_l<_m, m+ even. An
expansion of the searched for density can then be given with the inverse Radon
transform of those basis functions.

THEOREM 3.1. Let ,>N/2-1 and m>_O, O<_l<_m, m+l even and (s,w)=
%(s)C,(s)Yt(o ). Then V=- is given by

(3.1)
with

(3.2)

and

(3.3)

I,NV( s. ) c( N, m, ,,1)(1-- s2 )-N/2Qm’,, ( s ) Y(o )

N tPO’--N/2’l+N/2--1)(2S2-- 1)Q-m’,(s) s "m-/

c( N,m, l,, ) 21-2qrl-u/2 F( rn + 2,) F(( rn + 2)/2)
I’(m+ 1)F(u)F((m-I+2+2u-N)/2)

where P(,/) is the Jacobi polynomial of degree n and indices a, ft.
Proof. The proof of this result is based on the projection theorem (2.3) and it is

different from the techniques Cormack [2] and Marr [17] have used for the proof of the
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special case N 2, , 1. The Fourier transform of the function V is (see (2.3))

(3.4) l( o" o ) (2r )’-N)/Z(6V)^ ( o, o )

(2rr),-u)/2( w,C, )^(o ) Yt( o )

(2)-u/2( 1)cl(m,u)o-"Jm+,(o)(w )

with

(3.5) c,(m,u)=/2"F(u+ 1/2)Q(1),

and J, is the Bessel function of the first kind; see Gradshteyn-Ryzhik [6, formula
7.321, p. 830]. The inverse Fourier transform in polar coordinates is

V(S.W)--(Z)-N/Zf f(o.O)eioN-’ dodO
dgN-I ao

(2)-N( 1)m C (m,,) oN-l -"J+"()fsN-, (O)ei’dOd

after a change of the order of integration. For the evaluation of the inner integral we
use the Funk-Hecke theorem (see Erd61yi et al. [5] and Seeley [25])

s(u-’r(’O )(O ) dO-Xt( w)

with

and

t-c2(N,1)f F(t)C/V/z-’(t)(1-tz)N-3)/Zdt

c2(N, 1)-vol(Su-2)/C/v/2- (1).

In our case F(t)-eist and, again using [6, formula 7.321], we have

,t:cz(N,1)c,(1,N/2-1)(SO)-N/ZJt+N/Z_(SO )

with c from (3.5). This leads to

(3.6) V(S’O)--(Z’n’)-N( 1)mc(m,u)c,(l,U/2 1)c2(U,l)Yt(a)

XsI-N/2 oN/2-"Jm+,(o)JI+N/2_I(SO)No"
"0

The Weber-Schafheitlin type integral on the right-hand side of (3.6), which together
with s l-u/2 represents the Hankel transform of o-"Jm+(o), is finite for ,>N/2-1
with

(3.7) oN/2-UJm+u(O)JI+N/2_I(SO)No

=c3(N,m I, I)S N/2-1+!2F((N+m+ 1)/2, (1-m+N- 2,)/2; N/2+ l; S 2 ),
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where

c3(N, m, v, l) 2u/2- I’((N+m+ l)/2)/[F(N/2+ l)r((2v N+ rn + 2)/2)]
and 2Fl is the hypergeometric series; see Abramowitz-Stegun [1, formula 11.4.33]. We
now make use of the linear transformation [1, 15.3.3] and the representation of the
Jacobi polynomials as hypergeometric series [1, 15.4.6] to get

(3.8)

2F((N+m+ 1)/2, (1-m+N-2v)/2; N/2+ 1;s)

--(l-s2)"-N/2 2F(-(m-1)/2, (l+m+ 2v)/2; N/2 +1" s2

--c4((m--l)/2, N/2+l- l)(1--s2) u-N/21a(N/2+t-I’v-N/2)(m_t)/2 ( 2s 2 )

c4(( m-- )/2, N/2+ l-1)(-1)(m--I)/2(1-- S2 )U--N/2 Ia(u--N/2’t+ N/2--1)(2S(m_t)/2 1)

(see 1, 22.4.1 ]), where

c4(n,a)=V(n+ 1)V(a+ 1)/’(a + +n).

With (3.4)-(3.8) we finally come to

"-N/Zo"-N/2 t+N/Z-l(2S2 1)Y()V(s.w) c(N,m,v,1)st(1-s2) ,,,,-t)/2’

with

c(N,m,v,1)--(2rr)-U( 1)mcl(m,v)c,(l,N/2 1)c2(N,l )

c3(N,m,v,1)(- 1)(m-l)/2C4((m- 1)/2,N/2- + 1).

Gathering the constants leads to (3.3).
Finally we want to note the simplest case for each dimension.
COOLLaR 3.2 (special cases of Theorem 3.1).
i) Let N>_ 2 and v-- N/2:

V(s.to)--rtl-U/22’-UF(m+N)/[F(m+
a(O,t+N/2-1)(2S2S (m-l)/2 --1)Y/().

ii) Let N= 2 and v (Cormack [2], Marr [17]):

V(s.)-((m+ 1)/2)’’t) t.o2_
(m_l)/2\,.,o

iii) Let N-3 and u-"

V(s.o)-r-’( m+2 ) lla(O,t+l/2)(2S22
s "(m-l)/2 1) Y(o).

The condition v>N/2-1 in Theorem 3.1 results in the fact that there are no
inversion formulas for the C,] with v_<N/2- 1, especially for the Chebyshev polynomi-
als of the first kind in two dimensions and for the Legendre polynomials in three
dimensions.
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COROLLARY 3.3. Let Wx(x) (1-1xl2 )x-u/2, and let ?( N, ,) c( N, O, ,, O) with c
from (3.3),

(N,u)-rN-’)/2F(u-N/2+ 1)/F(,+ 1/2).

Then

RW,,-e(N,,)w,,.

This generalization of a result of Davison-Grtinbaum [3] for N= 2 follows from
Theorem 3.1 with m l= 0.

Using the fact that the radial part of the function V from (3.1) is mapped into the
part of V which is dependent on s by the Gegenbauer transform (see Deans [4] and
Ludwig [18]), we can interpret Theorem 3.1 in the following way.

COROLLARY 3.4. Let p,t(s)N --(l _s2)u-N/ZD,,Nt’s) for ----.1 Then

,t(s) [e(N,m,’,l)]-lw(s)Cm(s)

with the constant c from (3.3) and the Gegenbauer transform defined as

vqg(s) vol(s U-2 )/C/2-’(1)fs’P(t)Wu/2_ (s/t)C/2- l(s/t )tu-2 dr.

4. Inversion formula. With the results from the preceding sections we are now able
to give a representation of a function using its Radon transform. But in contrast to
Radon’s original inversion formula [24] which says that the inverse transform is a
composition of a pseudo-differential operator and a back projection (see Ludwig [18,
Thm. 1.1]), we consider here the Fourier series of f with respect to the orthogonal
functions defined in (3.1). This enables us to study the behaviour of this transform
under various aspects.

THEOREM 4.1. Let f be in L2(, W-I), ,>N/2-1, and let f be its Radon
transform. Let Vmtk v- dPmtk with Pmtk wC,Ytk, m >-- O, 0 <-- l<-- m with m + even,
k 1,..., M(N, 1). Then

c m M(N, I)

(4.1) f= E h, E 2 (ef emlk w-’ Vmlk
m--0 /--0 k=l

m+ even
or equivalently

m M(N,I)
v,N(4.2) f(s’w)--(1--s2)-u/2 2 2 c(N,m,,,1)Qm,t(s) 2

m=0 1=0 k=l
m+ even

dmlk Ylk( tO )

with c, Q,from Theorem 3.1 and dmlk, h m, from Lemma 2.3.
LEMMA 4.2. The

(Qm’,t/Ytk" m>_O, O<_l<_m, m+l even, k-1,. .,M(N,I)}
form a complete set of orthogonal polynomials over f with respect to the weight W(x)-
(1 Ixl=)-N/. Similarly the l?,,t-- W,Q,Ytg form a complete set of orthogonal functions
over f with respect to the weight W-i.
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Proof. This result is a consequence of the completeness and the orthogonality of
both the Jacobi polynomials and the spherical harmonics. Let ,-v+ (1 -N)/2,

I:f"mlk(X ) #m,,,,( X ) I’Vv- l(x)dx

From the orthonormality of the Yu, it follows that

With the representation of the v,NQm,t, l--l, and the change of variables 2s - the
second integral is transformed into

c’f’ (1 +t)l+N/2-l(1--t) -A+l/2+2v-Nlg(a’fl)*.-t)/z(t)P(-)t)/(t)dt
-1

with a=v-N/2 and =l+N/2-1. The orthogonality of P’’a) on [-1, 1] with
respect to (1 t)a(1 + t)t completes the proof.

Proof of Theorem 4.1. Theorem 4.1 follows from the linearity of the Radon
transform, its continuity from L2(, W) into L2(Z,w ), and the uniqueness of the
Fourier coefficients together with Theorem 3.1 and Lemma 4.2.

COROLLARY 4.3. The V,,t. of Theorem 4.1 are the eigenfunaions ofe,, where *
is the adjoint operator of: L2(, W ) --> L2( Z, w- ):

b*g( X ) Wv(x )fsN W- x o) )g( x o o) ) do)

Proof. The Fourier coefficients offwith respect ot Vmz are defined as

(f Vmlk ) L2(,W-’)/(Vmlk, Vmlk ) L2(f,W-i) (bf,bVm,k ) L2(Z,w;’)hn
because of Theorem 4.1. The definition of the adjoint operator leads to

(f V,tk ) <,,wy’)--Cmtk (f @*tVmlk ) Lz(",W-I)

for suitable constants Cmt.
5. The null space of the Radon transform for finitely many projections. In the

following we consider complete projections of a function f in the directions 0, i.e. we
assume that f(., 0) is known. In practice this can be approximated by sufficiently
fine sampling in the radial direction. It is shown by Smith-Solmon-Wagner [28] that a
function is uniquely determined by its Radon transform for any infinite set of direc-
tions which is not contained in a proper algebraic variety on S- t. Here it is important
that complete projections of a function with compact support are given. In the case of
hollow projections of a function without compact support, i.e. f(s, o) is known for
all Isl>c>0, this result is no longer true. See Quinto [23] and Shepp-Kruskal [27].

The condition that the projections in an infinite number of directions are known is
clearly not fulfilled in practice. The linearity of the Radon transform implies that the
transform has a nontrivial null space for finitely many projections. The functions in
this space are "invisible" from thosd directions and are therefore called "ghosts". In
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practice this means that the searched for density cannot be uniquely determined by any
measurement, which led to the reformulation of the precise mathematical statement
into: "A finite set of radiographs tells nothing at ali", (Smith-Solmon-Wagner [28,
Thm. 4.2]). The contradiction of this assertion to practical experience gave rise to the
study of the possible deviations of the reconstructed distribution from the original.
Leahy-Smith-Solmon [12] have proven another negative result, to wit that the uncer-
tainty in the reconstruction cannot be reduced by imposing regularity conditions on the
null space. Positive results are known in the two-dimensional case. To sketch them
briefly we assume that p complete projections are given. The proof in [28] does not lead
to characterizations of the functions in the null space, since it is based on the existence
of solutions of a certain set of partial differential equations. First uniqueness results are
known when the solution is an element of a finite dimensional space of pixel functions.
This result has been proven by Frieder-Herman [6] in connection with ART, a recon-
struction technique where the projection of the solution on a space of piecewise
constant functions on a fixed grid is determined, see also Smith-Peters-Bates [29]. For
the study of the general uniqueness problem these spaces form a relatively unnatural
environment, see Katz 11].

The spectrum of the functions in the null space was considered by Logan [14]. He
has shown that most of its power is lying outside a circle around zero with radius p- e,
e>0. This means that the functions consist mostly of high frequency components.
Nearest to reality is Natterer [22], who assumes that only approximations to f(s, o),
j-- 1,.-., q with accuracy e are known. Restricted to the situation that we consider here,
i.e., p complete projections are given, he shows that bounds on the derivatives on the
functions in the null space reduce their magnitude. More precisely, let f be a ghost with

H6 norm 1, then

(5.1) [[f[[(a)<_cp-, c independent of p.

Besides this he shows that there is a ghost with H() norm and

(5.2) [If[[ (u)= c’P-’, c’ independent ofp,

which means that (5.1) is sharp. Finally, in Louis [17] the functions in the null space are
constructed by giving their series expansion in terms of Zernike polynomials, i.e., case
N=2, v= of the preceding section. The relation of the amount of data to the
achievable resolution is discussed, and pictures of ghosts are given. In particular, a
function which fulfills (5.2) if f(s.w)-(1-s2)/C(s)qp(W), where qp is a polynomial
of degreep which vanishes in the given directions. The behaviour of the functions in the
null space is essentially determined by the lowest degree in the expansion of the form
(4.1) or (2.9) for the Radon transform. Separation of the variables allows study of the
angular part qm(W)" The question is which of the q,,(w) are uniquely determined by the
measurements, or equivalently, which of them are identically equal to zero for the
ghosts. This corresponds to an interpolation problem on SN-. The main difference
between the cases N=2 and N_>3 is that in the former case it is sufficient that the p
given directions are different in order to guarantee that qm-O for m<p. In higher
dimensions we also have, besides this obvious condition, geometric restrictions on the
directions. Furthermore, the number of vanishing coefficients qm is also dependent on
the dimension. Now let A be the set of given directions

(5.3) A- ( ooj Su- <_j<_p w:#+_ o, forj=/: k}.
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The Radon transform of(.,60) of an L2 function with compact support in f is in
L2(- l, 1); see Smith-Solmon-Wagner [28]. Therefore we can define the null space as

(5.4) -3LA-- (fL(2):f(s,60)=O for s a.e. and for all 60 A).

Using the representation (2.10) for the functions in the range of with v-N/2

f(s,60)-wv(s) X C(s)q,(60),
m----0

we conclude that for fc

(5.5) qm(60)--0, for 60CA

because of the linear independence of the Gegenbauer polynomials. (5.5) is a system of
p linear homogeneous equations for the coefficients of the qm" The condition that as
many qm as possible vanish identically is equivalent to the fact that the matrix of the
equations has full rank. In order to solve this problem we consider first the number of
unknowns for fixed m.

LEMMA 5.1. Let 6m span(Ytk 0 <_ <_ m, + rn even, <_ k <_ M(N, l) ). Then

(5.6) dimm_ (m+N-1)N-1

The proof is a straightforward induction from M(N, !).
THEOREM 5.2. Let n >0 and p >_ dimn-l--(n-N{-2). Let A not be contained in an

algebraic variety of degree < n; i.e., there is no q c2_ 1, q 0 with q(60) 0 for all 60 cA.
LetfC -)LA. Then

(5.7) qf(s,to)=wv(s) C(s)qm(60 )
m=n

where qm C@m with qm(60) 0 for all 60 CA.
Proof. Let m_>0. Then (5.5) is a system of p equations in (m_N-l) unknowns. For

rn< n there are at least as many equations as unknowns and the matrix has full rank if
and only if the directions are not lying on an algebraic variety of order m, i.e. there is
no polynomial in m such that p(60)=0 for all 60 CA. Therefore the q, vanish identi-
cally for m<_n-1. For m>n there exist nontrivial solutions of the underdetermined
system (5.5), which means that there are q,0 with qm(60)--O for 60

Finally applying Theorem 4.1 we can restate the above result for the functions in

THEOREM 5.3. Let n>0 and p >_ dim

_
i. Let A not be contained in an algebraic

variety of degree < n. LetfC 9LA. Then

c m M(N, I)

(5.8) f(s 60)-(1 s2)v-s X X Q;.,,, (s) X Y(60) e
m=n 1=0 k=l

m+ even

with

m M(N,I)

X X emlk Ylk(60) -0
1--0 k=l C

m+ even

where Q, are the polynomials of degree m defined in (3.2).

for 60 CA
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Analogously to the case N= 2 in Louis [17] we have given an expansion of the
functions in the null space in terms of the polynomials Q, which are the generaliza-
tion of the Zernike polynomials 12Q;,;,/. If the directions fulfill the optimality condition of
Theorem 5.3, then the expansion starts with the polynomial of degree n where n--
O(p1/u-) according to formula (5.6). This has the consequence that the expansion of
the Fourier transform of these functions in terms of Bessel functions starts with the
Bessel function of order n + r with r>N/2-1. The fact that the Bessel function J(s)
of order k>_n+v are small for Isl<m+v can be interpreted in the way that the
Fourier transform of the ghosts is also very small in the circle around zero
with radius n +N/2- 1; thus we have a generalization of Logan’s result [14] to higher
dimensions. One way of expressing that is the resolution in the reconstructed image is
2/(n +N/2 1).

6. Applications to nuclear magnetic resonance. The general results in the preceding
chapters are motivated by their applications in two and three dimensions. Because of its
enormous impact in radiology the case N--2, transaxial x-ray tomography, has been
extensively studied. In contrast, NMR zeugmatography is presently only at the stage of
clinical trials for the first commercial scanners. The data measured in NMR pertain to
integrals of the unknown density over planes in R3. For the physical background see
Marr-Chen-Lauterbur [21], who also report on reconstructions from actual measure-
ments. For numerical tests on a mathematical phantom see Shepp [26]. The problem of
nonuniqueness in NMR reconstruction is tied to the choice of the directions as indi-
cated in the last chapter. Because of the rapidly increasing importance of this field we
now apply our results to the case N 3.

We introduce the usual spherical coordinates O and q to label 6o S2 so that

0 o ( 0, q) (sin 0 cos q, sin O sin q, cos 0 ),

with O[0,r[, [0,2r[. Here we have M(3,1)--21+ and

(6.1) dim,-(m+22 )-(m+ 1)(m+2)/2,

where m is defined in Lemma 5.1.
According to Theorem 5.3 we need n(n + 1)/2 complete projections if we want to

determine uniquely the first n coefficients qm, m-O,...,n- 1, in the series expansion
of the searched for density. Observing that

(6.2) s6o(0,q,) -s6o(rr-O,q,+rr),
we have to restrict one of the coordinates to avoid redundancy in the measurements.

The simplest case in which we can meet the conditions of Theorem 5.3 are

(6.3) 0j. ]0,,r[, j--1,..-,(n+ 1)/2 (or n/2),
qiG lO,r[, i: 1,- .,n (or n+ 1),

for n odd (or n even).

Applying the results of the last section we can recapitulate.
THEOREM 6.1. Let n(n+ 1)/2 complete projections be given in the directions 6oji--

6o( Oj, qO, where the Oj, qi fulfill (6.3) and 6oji must lie on no algebraic variety of degree < n.
Then the expansion coefficients qm(rO), 0< rn< n, in (2.10) are uniquely determined

and the expansion of the ghosts in terms ofQ, starts with a polynomial of degree >_ n.
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In the papers of Marr-Chen-Lauterbur [21] and Shepp [26] the angles 0 and
have been chosen equidistributed, which means that the directions are more con-
centrated at the poles than at the equator. In the practical experiments of Marr-
Chen-Lauterbur the angles have been 0i-q,-6+(i 1)12, i-1,...,30, i.e. both
angles are equidistributed over ]0,2r[. The two-fold redundancy is motivated by the
improvement of the final signal-to-noise ratio. According to Theorem 6.1 the first 15
expansion coefficients are then uniquely determined, so that the Fourier transform is
nearly exact in a circle around 0 with radius 15, see the discussion at the end of the last
chapter.

The numerical experiments by Shepp [26] have been performed for
(j- 1/2)r/n, j 1,..., n, ck- i2r/n, i- 0,--., n with n 25, 69, 99. Because of the
choice of an odd n, there is no redundancy in the data, the same projections can be
characterized by q,i ir/n, i=O,...,n- 1. In these examples the first n coefficients are
uniquely determined, a result which can also be achieved by using only (n+ 1)/2
different values for 0.
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BOUNDARY AND INTERIOR LAYER PHENOMENA
FOR SINGULARLY PERTURBED SYSTEMS*

WALTER G. KELLEY"
Abstract. Sufficient conditions are given for the existence of a solution to a singularly perturbed

boundary value problem for a system of nonlinear equations which exhibits boundary or interior layer
behavior for small positive values of the parameter. Examples are included to illustrate the results.

1. Introduction. In this paper, we establish sufficient conditions for the existence
of solutions of boundary value problems

(1)
(2) z(0)-A, z(1)-B,
which exhibit interior or boundary layer behavior as e-0. Here e is a small positive
parameter and z, H,A and B are vectors. In this setting, a solution of (1), (2) is said to
exhibit interior (boundary) layer behavior if one or more of its components experiences
a rapid transition in a neighborhood of a point interior to (on the boundary of) [0, 1]
for small e.

Howes [3] and Kelley [5] have examined the question of boundary layers for these
problems. Their approach involves the comparison of the vector problem (1), (2) with a
scalar problem which is known to have a solution exhibiting boundary layer behavior.
The results of the present paper will apply to situations in which no such comparison is
possible. The case of interior layer behavior does not seem to have been investigated for
the problem (1), (2), except in the scalar case (see Howes [2]).

2. Interior layers. In order to make the discussion as simple as possible, we will
consider only the case of two-dimensional vectors and write

H-[ F] and z-[]G

We will also assume in this section that there is a nonintersecting pair of curves in (t, z)
space where H vanishes and that one of the curves satisfies the boundary condition at
t--0 and the other curve satisfies the boundary condition at t- 1. The possibility of a
boundary layer is thus excluded in this section but will be considered in 3. To simplify
the geometry, let suitable t-dependent translations and rotations of z space be made so
that H vanishes for z 0 and. for x 0, y- v(t)> 0, 0_< t_< 1. These transformations
introduce small perturbations into the problem which can be neglected in the analysis.
Note that in (2) we now have A =0 and B- v(1), where

The following theorem gives sufficient conditions for the existence of a solution of
(1), (2) which has an internal layer as e- 0.
TOR 1. Assume:
(a) H(t, 0)= H(t, v)--Ofor O<_t<_ 1;
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(b) there exist 0<t<t2<l so that fG(t,O,s)ds>O for O<u<_v(tl) and
f<t2) G(t2 O,s)ds<O for 0_<u< v(t2);

(c) there is a D>0 and a class Cz symmetric positive definite matrix function Q(t) so
that

zrQ(t)J(t,O)z>DzrQ(t)z, O<-t<tl,

(z v) rQ(t)J( t, v)(z v) >D(z v)rQ(t)(z v), t2_<t_<

for all z, where J is the Jacobian matrix for H;
(d) Gy(t, 0)>0 and Gy(t, v)>O for t <-t<-t2, F(t, z)>0 for (t,z)R and

maxnlFylmaxlGl
minF

is smaller than some computable positive number, where R={(t,x,y):tl<_t<_t2, x in
some suitable bounded interval, 0 <-y <_ v( ) }.

Then (1), (2) has a solution z(t, e) for small e>0 so that z(t, e) O(e) for 0 <_ <-
and z(t, e)- v(t) O(e) for t2<_t<_ 1.

Remarks.
(1) Suppose it is known that (1), (2) has a solution z(t, e) with interior layer located

asymptotically at t=t* as e0. Then it is not hard to show that the line integral
fcHr.dz is zero at t-t*, where C is the limiting value of the solution curve at t--t* as
e 0. In Theorem 1, (b) requires the line integral of H along the line segment from 0 to
v to change sign on the interval [tl, t2]. The interior layer will be located between tl and
2, but the exact position may be difficult to pinpoint since the limiting value of the
solution curve is unknown. We will explore this problem in Example 1.

(2) Hypothesis (c) is a stability assumption for the reduced solutions 0 and v. For
each t, there is a symmetric, positive definite matrix Q(t) for which the inequalities
hold if, and only if, the real parts of the eigenvalues of J are all positive. (See Hirsch
and Smale 1, pp. 145-149].)

Proof. The proof involves the definition of bounding surfaces for (1), (2) (see
Knobloch and Schmitt [6] and Kelley [4]). These surfaces are defined first for O<_t<tl,

where they are chosen to be the zeroes of the bounding functions

2 -Y h, 3 X B, q)4 X B and zrQ(t)z r2(t, e); here X is the unique
increasing positive solution of

r is of the form

eX"=G(tI,O,x)--#X,
X(t,e)=v(t), limx(t,e)=O

eO

--/ (t__tl)r(t,e)-Pexp
e

(t<tl),

and h,B,o,P,I and C are positive constants. The existence of such a X follows from (b)
when 0 is small.

In order for these to be bounding surfaces, they must satisfy certain differential
inequalities which force all points of the surface bounding the region where all the
bounding functions are negative to be egress points for (1). The general inequalities are
given in Knobloch and Schmitt [6, 4], so here we merely display the form of these
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inequalities required for our special bounding functions. Our result is obtained by
applying Corollary 3 of Theorem 4.1 in [6] with- {q,<0} ( fq4= {q<0}).

For we require that

G(t,x,x+,)-eX">_O,
when Ixl<B and _>0. Letting F----G(t, O, X)-eX", we have by the mean value theorem

(3) G(t,x,x+X)-e"- F+ G(t, ,,)x+ Gy(t, O, A )X

>_r + x6(t, o,a ) Ix( t, *, x)IB,
where is between 0 and x, and A is between X and X+ 2. Thus the requirement on
is that (3)_>0 for t-t=o(1), since for larger values of t-t, =0 is the bounding
surface.

Similar calculations for 02, tp and 4 result in the respective requirements

(4) XGy(t,O, ,)-]Gx(t, -X)IB_>0

() BEg(t, ,0)-IF(t, B, )[(v(/) +X)_>0,

(6) BFx(t ,0)-[Fy(t,-B, )l(v(t) +X)_>0,
for t o(1), where represents various intermediate choices of the variables.

The required inequality for tp is"

2zrQH+ e---(zrQ’z)2+ezr(Q"-2Q’Q-Q’)z+ 2 e-zrQ’zr’-2err">_O,
2r r

for zrQz=r2. (This inequality is obtained from (4.4) and (4.12)’ in Knobloch and
Schmitt [6].) We rewrite the inequality in the form

(7) r-zrQH er" + O( er ) + O( er’) >_0

for zrQz r 2. From hypothesis (c) and the mean value theorem,

r-zrQH:r-zrQJ(-,)z>Dr-zrQz:Dr,

when zrQz r2 and Izl is sufficiently small, say Izl< E. Then (7) is satisfied if

Dr- er" + O( er ) + O( er’)

:/Pexp[ D-r/e (t-t,)] +DCe+O(er)+O(er’)>O,
which is valid if e is sufficiently small, C is sufficiently large, Izl<E and <D.

We can choose small positive constants ? and/ so that:

(8) r+x(t,0,A)>Xt, t,-t--o(1), X<A<X+?,

(9) r-’zrQH> 0, Izl_<x/1 +M-’=
(10) ay( tl, O, m ) >l.l

where M=maxlGl. It is possible to satisfy (8) for sufficiently small 2 and # because
F-O(OX) is the dominant term and is positive for (e-- O(X) and small 2, and Gy is
positive for small X-
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To make hypothesis (d) precise, we now require

maxRIFylmax]G]ht > t <_t<_t2.(11) v(t)+X mingF

Then we can choose B so that

maxRIFy]
(12) ,/x >B> (v(t)+) t<t<t2.maxlG] mlnRFx

From (8) and (12), (3)>0 for tl-t=o(1), (4) follows from (10) and (5) and (6) follow
from (12).

Recall that (7) has been established only in case Izl<E. We must show that for
Izl_>E, the surface of the region where all the bounding functions are negative does not
intersect the zero set of tp. Equivalently, we show that the intersection of the zero set of

with the zero set of each i, i- 1,2,3,4, occurs where Izl<E. From (9), (12) we can
choose

It follows that the intersection of (=0} with (2--0} and (qi=0,y_<0}, i=3,4,
occurs where Izl< E. Furthermore, by selecting P sufficiently large in the definition of r
and making D-rt>Gy(tl,O,O)-o, we can ensure that the intersection of {=0} with
{ 0} and (i 0,y_>0}, 3, 4, occurs where Izl< E. The construction is now com-
plete for the interval [0, ].

For the interval [tl,t2], we define bounding functions 2,% and % as above and
define =y-v(t)-X. Then inequalities (4), (5) and (6) must be satisfied, and for l,

a( x l) ( ) + k ) El)" a ( O, l) ( ) ) -- ax( , 1) ( ) )x -- ay( O, m ) k -- 0( , )
>-- -IGx(t, *, v(t))lB + Gy(t, 0, A)X + O(e),

where is between 0 and x and A is between v(t) and v(t)+. Choosing/ and h
smaller, if necessary, Gy( t, O, A ) >_ Ix for v(t ) <A _< v(t ) + 2, so for we require

(13) X-lax(t, ,, v(t)) ]B> 0.

Then (4), (5), (6) and (13) are consequences of (11) and (12).
The construction for the interval [t2, 1] is very similar to that given above for [0, t],

Q.E.D.so we omit the details.
Example 1.

ex" x + y (y 2), x(0) =x(1) =0,
ey"=x+f(t,y), y(0)=0, y(1)=2,

where f(t,y)-2y(y+t-)(y-2) and 8>0. Here v(t)-2, 0_<t_<l. Note that
fof(t,s)ds ](1-2t) is positive for 0_<t< 1/2 and is negative for 1/2 <t< 1. Also,

fy(t,y)-6yZ+(4t 14)y+

so fy(t, 0) and fy(t, 2) are positive for 0_<t_< 1. It is readily checked that J in assumption
(c) of Theorem has eigenvalues with positive real parts if i is sufficiently small.



LAYER PHENOMENA FOR SINGULARLY PERTURBED SYSTEMS 639

Thus Theorem can be applied to this example, provided is small enough to
satisfy (d). If we choose t .4 and 2-- .6 so that the layer is located in the interval
(.4, .6), then one can show that .019,/- 2.95 satisfy (8), (9) and (10). From (11), we
compute that (d) is satisfied if 3 < .0139.

Note that (12) yields an upper bound on the deflection of the x component from
zero in the layer. In this case, the deflection is less than (4.038)&

Finally, we will approximate the location of the layer for small values of 6. If we
multiply the second differential equation by y’ and integrate, we obtain

e(y’)2

Since y’ is bounded outside the layer,

(14) -01im fol(x(r,e)+f(,y(r,e)))y’(,e)d-O.
If t-is the asymptotic location of the layer,

(15) lim e,-
eO

We can use (14) and (15) to approximate t-, if we can approximate

lim fl ’( e) drx ( "r e )y ’r
0 .’o

Let li-(t-[)/gg, t-=t-1/2-&’-O(2), x(()-&?()+O(2) and y()=2()+
0(8) in the layer. Substituting these expressions into the differential equations and
taking into account the matching conditions, we arrive at the boundary value problems

(16) d2"9 =f( )-,)7, y(-oe)-O, y(m)-2,

and

d22(17)
dj2

=2+3y(y- 2), 2(-)-2()-0.

The solution of (16) is )7() + tanh, and the corresponding solution of (17) is
)() ( rr/2)e- 2 sinh tan- e. Neglecting terms of order , we have

(18) -01im folx(’r,e)y’(’r,e)d,r fo _ ( )-d-gdY ae
rr e_

_
2 sinh(tan- let ) sech2 d1--

Combining (14), (15) and (18), we conclude that

3
t= 16

gr2-- 0(2).
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Thus for this example, we not only can establish the existence of a solution with
interior layer behavior for small e >0, but also can use standard asymptotic methods to
estimate both the location of the layer and the behavior of the solution in the layer.

3. Boundary layers. We assume now that there is a curve in (t,z) space where H
vanishes and that the curve satisfies one of the boundary conditions, say at t= 0. As in
2, we can change coordinates in such a way that H vanishes at 0 and B has the form
[1, b>0.

Sufficient conditions for the existence of a solution of (1), (2) with a boundary
layer at t-- are given by:

THEOREM 2. Assume:
(a) H(t,O)=OforO<_t <_ 1;
(b) fG(1,O,s)ds>O forO<u<_b;
(c) there is a D>O and a class C2 symmetric positive definite matrix function Q(t) so

that

zTQ(t)J(t, O)z > DzTQ(t)z

for 0 <_ <_ and all z;
(d) Gy(1,0)> 0, Fx(1, z) > 0 for (1, z) R’ and maxR,IFylmax R,IGl/min R’F is smaller

than some computable positive number, where R’ {(1, x,y): x in some suitable bounded
interval, 0 <_y <_ b}.

Then (1), (2) has a solution z(t, e) for small e> 0 so that z(t, e) O(e) for 0 <_ <_ y,
y>0.

Proof. The proof is nearly identical to the construction given for the interval [0, t]
in the proof of Theorem 1. Q.E.D.

Remark. Theorem 2 can easily be extended to allow the occurrence of boundary
layers at both endpoints. If A =/= [], then a boundary layer will appear at t-0, provided
we assume that the line integral of H along the line segment from 0 to aA is positive for
0<a< and that a condition like (d) above holds at t=0. It is also possible to combine
Theorems and 2 to obtain solutions with both boundary and internal layers.

Example 2.

ex"=x+t3y, x(0) :x(1) =0,
ey"=3x+g(y), y(0) :0, y(1)=b>0,

where g(y)=y_y3. Note that

b2 b2

fob(y--y ) dy-- - (1-- - ) Z>O,

if b< v-. Also, the Jacobian matrix for the system has eigenvalues with positive real
parts if 6<17, so condition (c) of Theorem 2 is satisfied (see the remark following
Theorem 1). Thus the boundary value problem has a solution with a boundary layer at
t= 1, provided b< and I1 is small enough to satisfy (d) of Theorem 2.

This result cannot be obtained by comparing the system with a scalar problem. We
would need to find a scalar comparison function q,(x2+y2) which is positive for
x2 +y2 sufficiently small but positive, and which satisfies:

(19)
x+6y

(x,y)"
3x + g(y) >- x2 +y2 ,(x2 +y21
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on a suitable region ((x,y)" x2+y2r2) (see Howes [3]). However, the left-hand side
of (19) is (x+y)2+(6+ 1)xy-y4, which is negative for x--y whenever 6_>-1 and
yva0.
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NONLINEAR BOUNDARY VALUE PROBLEMS AND A PRIORI
BOUNDS ON SOLUTIONS*

P. W. ELOE AND JOHNNY HENDERSON$

Abstract. Results concerning the existence of solutions of multipoint boundary value problems are given.
The results are based on a topological transversality method and rely on a priori bounds on solutions.
Applications are made to conjugate type and focal type boundary value problems; the third order, 3-point
boundary value problem y’"=f(x,y,y’,y"), y(x)=r, y(x2)=r2, y(x3)=r3, where x<x2<x3, is dis-
cussed.

1. Introduction. Let I=[a,b] be a compact subinterval of the reals and let L be
the n th order linear differential operator given by,

n

(1) Ly- E ai(x)Yi)

i=0

where ai(x)C(I), O<_i<_n, and an(X ) does not vanish on I. We shall be concerned
with the existence of solutions of the boundary value problem (BVP)

(2) Ly--f(x,y,y’,... ,y(n- 1)),
(3) U(y)-r,

where f: I II"-11 is continuous and U: cn-I(I)-R is a continuous linear operator.
In establishing the existence of solutions of (2)-(3) we shall extend the methods
employed in Granas, Guenther and Lee [4]. In particular, we shall exploit further a
topological transversality method due to Granas [3] which is a generalization of the
continuation theorem of Leray and Schauder found in [2] or [8, p. 153].

In 2, in order that this paper be self-contained, we shall state some definitions
and results from Granas [3]. We shall then prove a general theorem, Theorem 2.3,
concerning the existence of solutions of the BVP (2), (3). Although the boundary
conditions given by (3) are more general than those considered by Granas, et al. [4] (in
[4], of primary concern were linear homogeneous two-point boundary conditions), we
show in the proof of Theorem 2.3 that their techniques carry over to problems of the
form (2), (3). This main result in 2, depends on an a priori bound for solutions of a
class of BVPs, and we shall provide applications in 3 where a priori bounds can be
found. In particular, in 3, we shall consider multipoint BVPs of the conjugate and
focal type, some of which satisfy general Nagumo-like estimates [5], [1].

2. Existence of solutions. The following definitions and Lemmas 2.1 and 2.2 are
due to Granas [3].

DEFINITIONS. Assume all topological spaces are Hausdorff. Let Y be a topological
space, A CXC Y and A closed in X.

(i) A continuous mappingf: X Y is compact if f(X) is compact.
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(ii) h: [0, 1] X--+ Y is a compact homotopy if h is a homotopy and if for each
)t [0, ], h[Pt X h a is compact.

(iii) f: X--+ Y is admissible with respect to A if f is compact and flA is fixed point
flee. Let MA(X, Y) denote the class of admissible mappings with respect to A.

(iv) fMA(X, Y) is inessential if there exists gM(X, Y) such that f[A- g[A and
g is fixed point free on X. Otherwise,fM(X, Y) is essential.

(v) A compact homotopy h: [0, 1] X--+ Y is admissible if for each 3 [0, 1], h a is
admissible. Two mappings f,gM(X, Y) are homotopic in M,(X, Y), f,-g, if there
exists an admissible homotopy h: [0, 1] X--+ Y such that ho-g and h-f.

(vi) F* denotes the class of topological spaces which has the fixed point property
for compact maps. We remark that a closed convex subspace of a Banach space is an
F* space by the Schauder fixed point theorem.

LEMMA 2.1. Let Y be a connected space belonging to F*, let XC Y be closed, and let
A =OX. Iff: X--+ Y is a constant mapping, (that is,f(x)-p for all xX), andpX\A,
then f is essential.

LEMMA 2.2. Let Y be a convex topological space and let A and X be as in Lemma 2.1.
Assumef,-g in M,( X, Y). Then f is essential if and only if g is essential.

Now for our purposes, while employing the techniques of Granas, et al. [4] to
establish the existence of solutions of the BYP (2)-(3), we shall also be concerned with
solutions of an associated family of boundary value problems

(4a) Ly-g(x,y,y’,. ,y("-’),X), O<_X<_ 1,

(3) U(y)-r,

where g: IXg"[0, 1]-+R is continuous, g(x,y,...,yn,O)=O and g(x,y,...,yn, 1)--
f(x,y,...,y,). We remark here that for the applications in {}3 and for many of those in
[4], it is the case that g=f. Moreover, note that the boundary value problems, (2), (3)
and (4), (3) are equivalent.

Let (C(I),l’[o) be the Banach space of continuous functions on I with supremum
norm and let (C(I),[.I) be the Banach space of k-times continuously differentiable
functions y with norm

ly [+- max{[y 10, [y’[0,""", [y(+)[0 }.

THEOREM 2.3. Assume that y--0 is the unique solution of the BVP Ly- 0, U(y)- 0,
and assume there exists R>0 such that 1,_ <R, for all solutions y of the BVP, (4a), (3),
for all 0<_<_ 1. Then the BVP (2), (3), has at least one solution.

Proof. Let Y-C"-(I), let X={yC"-(I) LvI,_-<R}, and let A-OX. Since
y =0 is the unique solution of the BVP Ly-O, U(y)-O, there exists a Green’s function
G(x,s) for the BVP Ly-O, U(y)-O. Define h: [0, 1] X--, Yby

h(,y)(x)- lr(x) + Sba G(X,S)g(x,y(s),y’(s), ,y("-’)(s), ) ds,

where lr(X ) is the unique solution of the BVP Ly=O, U(y)=r. For each , 0_<_< 1,
ha: X Y can be shown to be a compact map by an application of the Arzela-Ascoli
theorem and since all solutions y of (4a), (3) satisfy LVln-I <R, each ha is admissible.
Thus, h is an admissible homotopy and hoh.

Now, ho=--lr and lrX/A since [lrl,,_ <R. Thus, by Lemma 2.1, h 0 is essential; it
follows from Lemma 2.2 that h is essential. Since the BVPs (2), (3) and (4), (3), are
equivalent, the BVP (2), (3) has at least one solution.
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3. Some applications. The applicability of Theorem 2.3 depends upon the ex-
istence of an a priori ].],_ -norm bound for solutions of the family of BVPs (4a), (3),
which is independent of ,. In this section, we consider conditions under which such
bounds exist for multipoint BVPs of the conjugate and focal types.

For conjugate type boundary conditions, let 2<_k<_n be given and for a<_x <
<xk<_b and positive integers ml,...,m such that E=lmi--n, let Ul" Cn-l(I)-+R

be the linear boundary operator defined by

where ri,j=y()(xj), O<_i<_mj- 1, <_j<_k.
For focal type boundary conditions, let xl,’’’,XnEI with at least two of the

points distinct. Let U2: C"- (I)- R" be the linear boundary operator defined by

U2( Y ) ( rl r2, ,rn ),
where r; =y(g- l)(x;), <_i<_n.

We now apply Theorem 2.3 in order to establish existence results for solutions of
the BVP

(5) y(")=f(x,y,y’,". ,y(n- 1)),
(6t) Ut(y) =0,

with 1= or l--2.
THEOREM 3.1. Assume that there exists a positive real-valued function, s(t ., tn)

definedfor t >_ O, <_ <_ n, which is nondecreasing in each variable and such that

If(x,yl,’’’,Yn

for all (x,yl,. .,y,) El". If
n n

i:-I +(tl in)
--+ + as 2 ti-+ +,

i=1

then the BVP, (5), (6), l= 1,2, has a solution.
Proof. Let E { 1,2 } be fixed and consider the associated family of BVPs

(8x) y(")--3f(x,y,y’,. ,y("-’)), 0<_,< 1,

(6,) UCy) =0.

Since y(")=0 is disconjugate and disfocal on any interval, y0 is the unique solution
of the BVP y(n)=o, Ut(y)=0. By Theorem 2.3, the proof is complete if we exhibit
R>0 such that [r’l,-1 <R for all solutions y of the family of BVPs, (8x), (6t), where R is
independent of .

Let y be a solution of (8x), (6z). By (6t) (and repeated applications of Rolle’s
theorem, if necessary), there exists xEI, <_i<_n, such that yi-1)(xi)=O. Note that for

S;.y s) lY Io(b- a), ly(x) ly(n>loCb- a
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In particular, 2ivi- )lo-<KlY")k -< Kq([Vlo, [v’lo,""" ,v"- )lo), where K>0 is indepen-
dent of the solution y and of . Thus,

n iv(i- )1o _<KE ,(trio tV’lo tv(n-’)lo)i:1 "
for all solutions y of (8x), (6t). By (7), this implies there exists R>0, independent of ,
such that [vl,-<R for all solutions y of the family of BVPs (8x), (6t).

COgOLLARY-3.2. Let f: IR"R be continuous. If there exist K >0, K2>0 oti>O,
0 <_ <_ n such that =0a< and such that

n

If(x,y,,. lY l ’-’ for all

then each of the BVPs (5), (6/), l= 1,2, has a solution.
Remarks. 1) The Schauder fixed point theorem can be employed to obtain Theo-

rem 3.1 for the BVP, (5), (6). The following theorem, stated for nonhomogeneous
boundary conditions, is found in [6, Thm. 2.5, p. 109].

THEOREM 3.3. Assume that f(x,y,y’,...,y("-)) is continuous on I and let N,.,
0 <_ <_ n 1, be given positive constants. Then there exists 6: 6(No, N,. .,Nn_ )> 0
such that the BVP, (5), (6), has a solution provided b-a<_6. In fact, let

8(No,NI,...,N,_l)-min{(N/(yiQ)) ’/"-" 0_<i_<n- 1},
where Q max{lf(x yo ",y,-)l: x I, il <_ Ni O <_ <_ n -1} and "i O <_ <_ n -1, is a
constant such that

S, G(Xox, s) ds<T(b-a)

where G(x,s) is the Green’s function for the BVPy{")= 0, Ul(y) 0.
To obtain Theorem 3.1 from Theorem 3.3, choose M>0 large enough such that

b-a<_min{[M/Tick(M,. .,M)] l/"-i 0<i<n-- 1}
Let No=N =N,_ =M. Then Q<-ck(M,...,M) and b-a<6(No,...,N,_l).

2) Theorem 3.1 and Corollary 3.2 are valid for any boundary conditions (3)
provided that given a solution y of the desired BVP for each O<i<_n- 1, y{) vanishes
at some point on I.

In our next application of Theorem 2.3, we consider the BVP (5), (3); that is, we
consider y{")=f(x,y,y’,...,y{,-1)), U(y)=r. We shall impose on f a Nagumo-like
estimate as in Jackson [5] and Bebernes, et al. [1], in order to allow a faster growth rate
on f than that allowed by (7) in Theorem 3.1. The following lemma can be found in [5].

LEMMA 3.4. Let yC"(I). Then for each integer k,O<k<n,

where C,k =4eZknk- and M, max{[v")lo, 2"n!, [Vlo(b- a)-"}.
THEOREM 3.5. Given any M>0, assume there exists a continuous, positive real-val-

ued function, q(t,...,t,_), defined for t>_O, l<_i<_n-1, which is nondecreasing in
each variable, such that

If( X,Yl,’’" ,Yn )I--< qb (I>1,"’’, ly l),
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for all (x,y,.- .,yn) I M,M R 1, and such that

n--I t/i n--1

(9)
i:1 i--1

If there exists N>0 such that Lvlo<N for all solutions y of the associated family of BVP’s
y<")=f(x,y,. .,y<"-)), U(y)=rfor all 0<_<_ 1, then the BVP (5), (3) has a solution.

Proof. Let y be a solution of the BVP y")=?f(x,y,...,y<"-)), U(y)=r and
assume D’10<N. By Lemma 3.4, there exist constants C(N) and C2(N), independent of
2 and independent of y, such that

or
<

C,(N)
) +(ly’lo,’",

[y(’)[)/’ < C2(N ) ]Y(’)]o < C2(N)q’(lY’Io,""", ]y(n-1)10)

Consequently, there exists a constant C(N), independent of , and independent of y,
such that

<-C(N)
i=, +(LV’lo," ,y(’ )Io)

By (9), it follows as in the proof of Theorem 3.1, that there exists R >0, independent of
), such that [vl,- < R. As before, this completes the proof.

For our final result, we present as an example a corollary of Theorem 3.5. We
employ the theory of subfunctions and third order differential inequalities, as devel-
oped by Jackson and Schrader [7], to find a priori bounds for solutions of 3-point
conjugate type BVPs for third order differential equations. Consider the BVP

(10)
(II)

y’"=f(x,y,y’,y"),
Y(X ) r yC x2 ) r2 y(x, ) r3,

with a<x <X2<X <b. Assumef: (a,b) R 2 is continuous and satisfies a Nagumo
condition (9).

COROLLARY 3.6. Assume that solutions of 3-point conjugate type BVPs for y’"=
f(x,y,y’,y"), 0 <_ ,< 1, have at most one solution on any interval (c, d) C (a, b) and all

solutions of initial value problems extend throughout ( a, b ). Assume there exist upper and
lower solutions, v and w, respectively, of (1O) satisfying

and
W(Xl)--V(Xl)--t’I, W(X2)--vCx2)--t’2, wCx3)--I)(X3)--t’3

w"’-2tf(x,w,w’,w")>O>v’"-Xf(x,v,v’ v")

x (a, b), 0 <_ <_ 1. Then the BVP (10)-(11) has a solution.
Proof. Let 0_<?_< be arbitrary, but fixed. Let N>max(lwlo, lv[o ). By [7,Thm. 4.1],

w is a subfunction and v is a superfunction with respect to solutions of y’"=
f(x,y,y’,y") on (a,b). By (11), any solution y satisfies w(x)=y(x)-v(x), w(x2)-
y(x2)-v(x2) and w(x3)=y(x3)-v(x3). Thus, w(x)>_y(x)>_v(x), x(x,x2) and
w(x)<_y(x)<_v(x), x(xz,x3). In particular, [Yl0<N where N is independent of .
Theorem 3.5 applies immediately and the proof is complete.
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PERTURBATION OF PERIODIC BOUNDARY CONDITIONS*

LAWRENCE TURYN"
Abstract. We consider perturbations of the problem )-x"+ bx=?ax, x(0)-x(l)=0= x’(0)-x’(1)

both by changes of the boundary conditions and by addition of nonlinear terms. We assume that at ?--?0
there are two linearly independent solutions of the unperturbed problem and that a(.) is bounded away
from zero. When only the boundary conditions are perturbed either the Hill’s discriminant or the method of
Lyapunov-Schmidt reduces the problem to 0=det((?-,0)A-ell) + higher order terms, where A and H are
real 22 constant matrices. We analyse the existence of curves (?(e),e) of eigenvalues for this problem of
linear perturbation and give as an example a heat problem with H--().

The method of Lyapunov-Schmidt is used to analyse the full nonlinear problem. In a sequel to this
paper we will analyse the bifurcation problem from a "generic" point of view and we will present some
numerical examples.

1. Introduction. We consider boundary value problems which are perturbations of
a linear boundary value problem with periodic boundary conditions. The first such
problem we consider, in 2, is

x" +(?a-b)x-O,
x(0) x ( ) -e (terms linear in x ( ), x ’( ) ),
x’(O)-x’(1)-e (terms linear in x(1),x’(1)).

For this linear boundary value problem with a parameter e we establish a condition for
the local splitting of a double eigenvalue ?0 for e:0 into two curves ?= ?*(e) for e4:0.
This condition can be established either using the Hill’s discriminant or the method of
Lyapunov-Schmidt, and the boundary conditions can be permitted to be nonself-ad-
joint for e:/:0. For problems where the boundary conditions remain self-adjoint for
e4:0 some classical perturbation results of Rellich can be applied to the above situa-
tion, even though the differential operator has domain varying with e.

In 3 we consider nonlinear perturbations, i.e.

x" + (ha- b)x- (nonlinear function of x),

with the boundary conditions also having terms nonlinear in x. When the linearisation
has for e--0 a double eigenvalue ?0 the method of Lyapunov-Schmidt is used to
reduce the problem to a system of two equations in four unknowns, u, ?,

2. Linear perturbation of the periodic boundary value problem. In this section we
consider the boundary value problem

(2.1) rx=hax,
(2.2) Mx:eN(e)x

Received by the editors January 11, 1982, and in revised form July 22, 1982. This research was
supported in part by the Natural Science and Engineering Research Council, Canada, and the University of
Calgary. Portions of this paper appeared in the Proceedings of the University of Dundee Conference on
Ordinary and Partial Differential Equations, Lecture Notes in Mathematics, Springer-Verlag, New York,
1983.

Department of Mathematics and Statistics, Wright State University, Dayton, Ohio 45435.
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where rx x" + b( )x, d/dt, 0 <_ <- 1, b( ) and a(-) are continuous on [0, 1],
a(t)>_ao>O for 0_<t_< 1, Mx-(x(O)-x(1),x’(O)-x’(1))r, r denoting transpose, and
N(e)x-(H+e+O(e))(x(1),x’(1))v, where H,/ are 22 real matrices, H-
(h j.),= ,2- We will assume that H0, e is a real parameter, and that N(e) is real-val-
ued and two times continuously differentiable.

When e-0 (2.2) is called the periodic boundary conditions. Since (2.1)-(2.2) is
linear in x we call this problem a linear perturbation of the periodic boundary value
problem, although the periodic boundary conditions are perturbed by terms nonlinear
in e.

Denote by X(t,)) the principal fundamental matrix of solutions of (2.1), i.e. that
matrix satisfying

X(O,X)-I- 0

and the differential equation X’-A(t,k)X, where

b(t)-)a(t) 0

Since trA(t,))-0 for all t,) it follows that detX(t,,)- for all t,,, in particular that
detX(1,,)- for all ). Also, X(1, .) is analytic; see, for example, Hale [8, p. 82].

Define

A(), e)- det( I- (I+ eN(e))X(1, ) )).
This function is analytic in and three times continuously differentiable in e. Given ,, e
the linear boundary value problem (2.1)-(2.2) has (a) no nontrivial solutions when
A(?, e)4:0, (b) at least one linearly independent solution when A(?, e)--0, (c) exactly
two linearly independent solutions when I-(I+eN(e))X(1,)=O.

For e-0 the hypothesis a(t)>_ao>O assures that (2.1)-(2.2) has an infinity of
eigenvalues, i.e. values of for which there is at least one linearly independent solution.
For this fact, see Birkhoff [1], Coddington and Levinson [6], or Magnus and Winkler
[11]. Let us assume henceforth in this section that we are given an eigenvalue ?0 for
(2.1)-(2.2) at e-0. We will examine the question of the existence of a curve or curves
)*(e) of eigenvalues for (2.1)-(2.2) passing through the point ()0, 0).

Let Da-O/O), D-O/Oe. From Birkhoff [1] or Magnus and Winkler [11] it is
known that (2.1)-(2.2) at (2o, 0) has (a) exactly one linearly independent solution when
A()o,0)--04=DxA(o,0), (b) exactly two linearly independent solutions when A(,o,0)
=0--DxA()0,0). So, if at (2o,0) there is exactly one linearly independent solution
then the implicit function theorem implies that there is a unique curve (,*(e),e) in
passing through (2o, 0) with A()*(e), e)-- 0.

So let us consider case (b), i.e., A(k0,0)--0--DxA()o,0). By suitably modifying
def

the calculations of Magnus and Winkler [11, p. 18] it follows that O- DxaA()o, 0)
2( O11022 O12021 ) where

dej fo,a(t)xi(t,ho)Xj(t,,o)dt,
Since 012-021 and a(t)>_ao>O, the Schwarz inequality and the linear independence of
Xl(.,)o), Xz(-,ho) imply that p>0. We will need some further notation:

def- DxX(1,)o)-(tij)i,j=l, and
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Again, by suitably modifying the calculations of Magnus and Winkler [11, p. 18] one
can conclude that E-J where j_(_0). Let o-detZ. We see then that 0-2-
2 det E 2 det

Let ’--?0. Since X(1,?)-I+ u. + O(,2), one can calculate that

A(,, e)- det(I-(I+ eH)(I+ v-)) + 0((11/
v2" det 7. + ev .3, + e2. detH+ O((11/ I 1)3)

where

def

-h 1012 -[" h 220.12 -+- h 12011- h 210.22,

since ,-JZ. The validity of this asymptotic expansion follows from A(,,e) being
analytic in , and three times continuously differentiable in e. Let 6-detH. The
question of existence of a curve or curves passing through (,, e.)-(0, 0), i.e. (,, e)-(0, 0)
is thus equivalent to the question of the existence of solutions to the equation

(2.3)

This can be re-written directly as

0-A- det(,Z-eJH) + O((lel+
The fact that the terms of second degree of A are equal to det(uZ-eJH) will also be
derived, quite independently, in 3. There the method of Lyapunov-Schmidt will be
used to find the bifurcation equations when the boundary value problem (2.1)-(2.2) is
also subjected to nonlinear perturbation. When the nonlinear perturbation is taken to
be identically zero, the bifurcation equations reduce to

(2.4)  Jn)u- O( (1 1+  l)=lul)
where uR2, lul-lul+lu21. System (2.4) has solutions uv0 if and only if

0- det(vE- eJH)+ 0((11+ Pl)3)
Thus we see that the terms of second degree of A can be found by the method of
Lyapunov-Schmidt just as well as by calculation of the Hill’s discriminant.

THEOREM 2.1. Assume that at (o, O) there are two linearly independent solutions of
(2.1)-(2.2). If 3,2- 41o>0 then there are two distinct continuously differentiable curves of
eigenvalues o+ ’*( e) for all lel sufficiently small, with ,*(0) 0.

Proof. This follows from (2.3) and o >0. U]

In the above work no assumption was made about the self-adjointness of the
boundary conditions for e 4: 0. In fact we will give self-adjointness a privileged position
only when applying the classical perturbation results of Rellich in Theorem 2.7 and in
the following paragraphs.

From Coddington and Levinson [6, p. 297] it is known that (2.2) is self-adjoint if
and only if

det(I+ eN(e))- + etrH+ e2(detH+ tr/) +
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So, self-adjointness of the boundary conditions requires at least that trH--0. When
trH--0, the 2 2 real matrix JH appearing in (2.4) is Hermitian. So, we see that
self-adjointness of the boundary conditions implies self-adjointness of the matrix in
(2.4) corresponding to the term of lowest order in e.

Remark 2.2. When trH=0,
Proof. is always positive definite and self-adjoint because a(t)_> a0> 0 by as-

sumption. When trH-0, JH is self-adjoint. It follows that the eigenvalues fll of the
generalised eigenvalue problem

(2.5) JHu=flZuC 2

are real. Equivalent to fll being an eigenvalue is O--det(fllZ-JH); reality of the
eigenvalues fl implies ]t2--4Jo_>0. [S]

So we see that when trH=0 the double eigenvalue ’0 will usually split into two
smooth curves of real eigenvalues for e4:0; the exceptional case would be when
y2--4to---- 0.

Example 2.3. When a 1, b=0, trH-0, and ,0=4rn for some positive integer
n, we calculate o2-0 and 3/2-4-1/4((hlz-k-’- lhzl)z-+-klh121)>O- since H0 for
nontriviality. It follows that Theorem 2.1 is applicable, except in the exceptional case
hll --h22 --0, h12 q- lh21 --0.

As a specific sub-example, take al, b-=0, ko--4’n’Zn 2 for some n_>l, and
H=( _). Theorem 2.1 is applicable; in fact, one can calculate explicitly A(, e)--
2(1--COS,1/2) for >0. Explicitly, the curves are ,-(klo/2---2 arcsin(e/2)), which
clearly cease to exist for lel> 2. Note that the corresponding boundary conditions (2.2)
are not self-adjoint for e re0, since det(I+ ell)= -e2.

App#cation 2.4. Consider a ring of metal obtained by joining the endpoints =0,
-1. If the joining is not perfect then there will be some "contact resistance". Ap-
propriate boundary conditions for the temperature v() are then (see 0ziik [12, p. 283]
or Carslaw and Jaeger [3, p. 23])

u(O)-u(1)-eu’(1),

=0,

where e= k/h--(Biot number)- can be taken to be small and positive if the heat
transfer coefficient h is large. These boundary conditions have as a consequence a
temperature drop across the join, this phenomenon being well known in practise. See
Holman [10, pp. 45-48] for more details on the causes of contact resistance. These
boundary conditions are self-adjoint for all e, with H=(o). Since ,-(Ill >0, Theorem
2.1 guarantees the existence of two curves ?-?0+ ,*__+ (e). In fact, for the example a- 1,
b--0 one can see that u_(e)-O for all e, since the second row of H is trivial, and
further one can calculate that D,*_(0) -22, 0.

It is useful to consider further the generalised eigenvalue problem (2.5). A simple
eigenvalue fl for a pencil (L2;Ll) of two nn matrices is a value of fll for which
dime)L(A) 1-codim(A) and LlZ 6(A) where A-L2+flL and 04:z %(A).
The generalisation of the concept of simple eigenvalue to Banach space operators
(B;AI,...,AN) originated in Hale [9]. Bibliographic references and extensive material
on the use of simple eigenvalues in the analysis of linear and nonlinear problems can be
found in Chow and Hale [4].

Remark 2.5. If n n matrices L2,L are Hermitian and L is definite then fl is
simple for (L2; LI) whenever dim6Y(L2 + flLl)-- 1.
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Proof. Let A-L2+flL and 04:zG%(A). The hypotheses imply that fl=
-z*L2z/Z*LlZ is real, so that A is also Hermitian. The Fredholm alternative implies
that (A)-{aC":z*a-0}; since L is definite, Z*LlZ4:0, so that Lz(A).

With this background we can return to (2.5). If the discriminant 3,-46o>0, then
whenever 0- det(-JH+ fitZ) necessarily dimgL(-JH+flZ)- 1. This and Remark
2.5 prove

Remark 2.6. If trH-O and ’2--4o>0 then there are exactly two eigenvalues of
(-JH; Y) and both are simple.

The simplicity of the eigenvalues of (-JH; Z) is required for the application of the
results of Chow and Hale [4, Chap. 7] for nonlinear bifurcation problems. In a sequel
to this present paper we will consider such problems.

Remark. Given enough differentiability in e for the original problem (2.1)-(2.2),
Newton’s polygon helps one to calculate solution(s) of A-0. Consider the case ,-0-6:
If DxDA(o,0)4:0 or DA(,o,0)va0 for some k_>3 then Newton’s polygon guaran-
tees the existence of a curve of the approximate form X?0 4-ce

p for some p_>-. Of
course, this assumes a sufficient amount of differentiability (in e) of the boundary
conditions.

Yet another approach, besides those utilising the Hill’s discriminant or the method
of Lyapunov-Schmidt, is to set problem (2.1)-(2.2) in a Hilbert space. This approach
for the self-adjoint case will use the now-classic method of Rellich [13].

Let H be the Hilbert space of Lebesgue measurable functions x" [0, 1] C con-
structed by completion of C[0, 1] with respect to the weighted inner product (x,y)-
foax.9. Define operators T(e):(e)CHH by T(e)x--(a-l’r--,o) on the domains
(e)-{xH: T(e)xH, x satisfies boundary conditions (2.2)}. We will assume the
self-adjointness of the boundary conditions, i.e. det(I+eH+ e2ff+ ), from which
it follows that the operators T(e) on (e) are symmetric.

Let X(t,h) denote the fundamental matrix for the differential equation (2.1)
def

rewritten as a system. One can show that if the matrix Sx X(1,)-I is invertible then
the equation (T(e)+(-Jko)I)x=pH has the unique solution

X(t)-- fot[--Xl(t)X2(S)+X2(t)Xl(S)] p(s)

-fgx2P+(x(t)’x2(t))[Sx-E’x]-E’x
fdxl p

where E,x=eN(e)X(1,h), for all lel sufficiently small. From study of Hill’s equation
one knows that in fact Sx is invertible at all but discrete and isolated values of R. In
particular, Sx0 _+ is invertible, hence the operators T(e) are self-adjoint.

Therefore, from Rellich [13, pp. 71-72] we can conclude that T(e) on (e) is a
so-called regular family of self-adjoint operators. The next result follows from Rellich
[13, p. 74].

THEOREM 2.7. Assume that at (’o, O) there are two linearly independent solutions of
(2.1)-(2.2). If the boundary conditions (2.2) are self-adjoint for all e then there are two
(counting multiplicity) real continuous curves --o+ t,*( e) of eigenvalues for (2.1)-(2.2)
with ,*(0)--0. The case where there is a curve of double eigenvalues is not precluded.

We remark that one could allow the parameter e into the linear differential
equation (2.1) without substantially altering any of the discussion in 2. The same
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cannot be said for allowing , into the linear boundary conditions (2.2). Perturbation of
problems with , in separated boundary conditions has been considered in [17], and e in
the differential equation appeared in [16].

3. Nonlinear perturbation and Lyapunov-Schmidt. In this section we consider the
boundary value problem

(3.1)
(3.2)

x-ax+fo(e,;t,x,x’),
Mx-eN( e)x + f(e,,; x ),

where e, a, M, and N(e) are as in 2 and f(, x) Nt 2 represents nonlinear contribu-
tions to the boundary conditions. Assume that bothfo and f are O(lal211xll/llxll) for
some integer n_>2 as lal, Ilxll--’0, where ’=2-0, a=(e,u)R, lal=lel/ll, Ilxll=lxl
/ Ix% / Ix"l, Ixl sup0_</_< llX(t)l, the estimate on f0 holding uniformly for [0, ].
Here the symbol O(s) for s Nt / denotes any quantity F(s) which satisfies F(s)/s
constant as s 0 +. The term f may include things like fw(t)x(t) dt, but we do
assume that fo(-,-; t,.,-),I(-,-, .): (-r/,) (,0-rt, ho+,l) C2[0, 1] C[0, 1]- is
(n + 1) times continuously differentiable for some />0, this being true uniformly in
t[0, 1] for f0. Let us assume that for -=o, e--0----fo------f there are two linearly
independent solutions of (3.1)-(3.2), as was assumed in the latter part of {}2. As before,
let X(t,) denote the principal fundamental matrix of solutions.

To pose (3.1)-(3.2) as a bifurcation problem it will help to write that problem as a
nonlinear equation in Banach spaces -C2[0, 1], Z-C[0, 1] R2 with norms Ilxll, as
above, and II(v; c,d)ll=lvl +lcl+ldl, respectively Then (3.1)-(3.2) is equivalent to the
abstract problem

(3.3) (B- G(x)+ O(I-I=llxll + I-I Ilxlln+ II111 1)
where x, Bx-(zX-Xoa(.)x;Mx), Ax-(a(.)x,O), Cx-(O;H(x(1),x’(1))r), and
G(x)=(Dxfo(O, Xo; .,x,x’), Dxt(0,X0; x)). Note that G(x)=O(llxll n) as Ilxtl--, 0,

Recall that x =x(.,X0), x2=x2(.,X0) are linearly independent solutions of the
linearisation of (3.3). One can show that (B)={(v; c,d):l(v;c,d)=O for j--1,2}
where/l(V; c,d)= -d+ fvx,/2(v; c,d)--c+ fdvx2 are linear functionals on Z. Setting
Z --(Xl; Cl, 0), Z2--(X2; 0, C2) Olj-- fdx, one can define a projection Q:Z(B) by

Qz z a,- ’l,( z )z a; ’lz( z )z2

The constants c1,2 must be chosen in such a way as to assure that l(Qz)-O forj- 1,2
for all zZ, and this is equivalent to requiring l(z2)--O--12(Zl), a sort of Gram-
Schmidt manipulation. One sees then that__c. =__f0XlX2 -c satisfy this requirement.
Further, let us define a projection P" Y Y0-(linear span of Xl,X2) by Px--
Ot- l( f)xx1)Xl + otl( flxx2)x2

The method of Lyapunov-Schmidt consists of replacing (3.3) by the pair of
equations

12 n+
(3.4) Q(B ,A-eC)(Px+(I P)x) QG(x)+O(la Ilxll/l, lllxll /llxll 1),
(3.5)

( I-- Q )(B- ,A eC )( Px + (I-P)x ) ( I- Q)G(x ) + O(I,1211xll + I"111xlln+ Ilxll
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Rewrite PX--UlXI-+-U2X2 for real numbers Ul,U2. Since Bxi-O for i-1,2 and
QB(I-P)" Y-o@(B) is a linear operator with bounded inverse, equation (3.4) can be
solved by (I-P)x-w*(u,a) Y for all sufficiently small lul, lal, where lul-lul+lu21.
Furthermore w*- O(lallul+lul") as lul,lal-o0, where n is the same integer n as in the
estimate that bothfo and f are O([ol[2[[xll"[-[lxl[ n) as [a[, [Ixl[O.

Substitute x-ux + u2x2 + w* into (3.5) to arrive at the bifurcation equation

(3.6) (I-Q)(B-,A-eC)(UlX +UzXz+W*(U,O))

-(I- Q)G( nIX 1AV U2X2 + W*) o(I.Izl.I + I.I I.I "+’).
Now, (I-Q)B=-O by design of the projection Q. Using the linear independence of
z,z2 one can separate (3.6) into a system of two equations, after first multiplying
through by 1:

(3.7) ( eJH)u+ p(u) R(a, u)

where :E:(o )i : 2, oi = fdaxix, J=(-), P(’) is homogeneous of degree n, R(a, u)
--O(l121ul/lllui"/lln/U), n as aove, and H is as in 2 and the definition of the
operator C.

As one can see, all of the information in 2 concerning the linear perturbation of
the periodic boundary value problem is found also in (3.7). So, Lyapunov-Schmidt for
an equation in Banach spaces correctly abstracts the linear problem. The author has
shown [14] that the method of Fulton [7], Walter [15], Browne and Sleeman [2] et al.,
abstracting perturbations of the separated boundary conditions into the Hilbert space
L2[0, 1] C, fails to preserve the self-adjoint features of perturbation of the boundary
value problem. Specifically, the analogue of the operator B for the L[0, 1] C 2 setting
has either (i) codimR(B)_>2 for all 20 C, not just eigenvalues, or (ii) B not self-ad-
joint. Cases (i), (ii) correspond to different definitions of (B); one may recall that in
Fulton et al. the dependence of the boundary conditions on a parameter is arranged by
an efficacious choice of @(B). This is a definite distinction between the periodic and
separated boundary conditions.

Note added in proof. See also Robert Magnus, Topological equivalence in bifurcation
theory, in Lecture Notes in Mathematics 799, Springer-Verlag, 1980.
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A PR)FER TRANSFORMATION FOR LIINARD’S EQUATION*
DONALD C. BENSON

Abstract. Conditions are given for oscillation and nonoscillation of solutions of Linard’s equation. In
the oscillatory case, estimates are given for the decrement (i) of the magnitude of the solution from one zero
of the derivative to the next, (ii) of the magnitude of the derivative from one zero of the solution to the next.
In certain cases the estimates are sharp. The results are obtained by using a Pfer transformation.

Introduction. This article is the third in a series of papers, including [2] and [3], by
the author dealing with the Li6nard equation, namely the ordinary differential equation

d2x,--k(x( ))"+h(x( )) -0.

Since the present article concludes a chapter in this investigation, it seems appropriate
to discuss the theme of this series of articles.

The starting point is oscillation and comparison theory for linear differential
equations, which is expounded for example in [11] and [16]. The fact emerges that the
success of this theory is largely based upon certain very powerful devices which appear
to depend heavily on the special form of the linear second order differential equation.
These devices are three in number" the Picone identity, the Riccati equation, and the
Priifer transformation.

As seen in [11] and [16], generalizations of these devices have generally been in the
domain of linear equations. It would seem to be useful to find for some major class of
nonlinear differential equations devices analogous to those mentioned above without
resorting to linearization. It is the purpose of [2], [3] and the present paper to show that
this can be done for the Li6nard equation. In [2] and [3] are found analogues for the
Li6nard equation of the Picone identity and the Riccati equation, respectively; in the
present paper, an analogue of the Prtifer transformation is developed.

The results obtained for the Li6nard equation are only somewhat analogous to
those which are obtained for the linear case. In some cases, roughly speaking, the role
of the domain of the solutions for the linear case seems analogous to the role of the
range of solutions for the Linard equation. For example, in [2, Thm. 2] it is natural in
considering two different Li6nard equations to compare two solutions of the respective
equations with the same range, whereas, in the linear case, it is natural to compare
solutions with the same domain. Further, in [3] one does not look at the order of
magnitude of the monotone solutions themselves for Li6nard’s equation (in the non-
oscillatory case) but of the inverse functions of these solutions, whereas in the linear
case one deals with the order of magnitude of the solutions themselves.

The analogies which have already been obtained suggest that the further study of
Li6nard’s equation and its generalizations may yield a richness of results comparable to
that which is known for the linear equation. Many other authors have studied the
Linard equation in various degrees of generality; see for example [6] and [8]. These
two references have extensive bibliographies which cover work in the field up to 1970.
More recent work includes [1], [4], [7], [13], [14], and [15].

*Received by the editors August 11, 1981, and in revised form February 4, 1983.
Department of Mathematics, University of California, Davis, California 95616.
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The Li6nard equation may appear to be rather special to merit such a detailed
investigation. However, the form of the equation given above involves two arbitrary
functions; in this sense, the degree of generality is the same as that of the second order
linear equation. Beyond this, Linard’s equation is studied because it gives a model for
damped nonlinear vibrations (see [12]). The results which are obtained can be interpre-
ted physically.

The principal tool of this article, the Pr0fer transformation, is a device used in the
study of certain linear ordinary differential equations, e.g., to obtain oscillation and
comparison theorems. See [9], [10], and [11] for an account of the Prtifer transforma-
tion. A PrOfer transformation consists in giving a suitable polar coordinate representa-
tion of the trajectories of the solutions. In 1, a #-coordinate is introduced and is used
to prove a nonoscillation theorem. A phase plane different from the usual one (and
different from the one used by Linard [12, p. 105]) is used here.

In 2, a suitable r-coordinate is introduced. Among other things, it is shown that
under certain conditions, Linard’s equation can have both oscillatory and nonoscilla-
tory solutions. This is illustrated by means of an example.

In 3, an r-coordinate, different from the one of 2, is introduced and is used to
prove an oscillation theorem.

Estimates of decrement for the magnitude of the solution and its derivative are
given in 2 and 3.

1. A nonosciilation theorem. Throughout this paper we will assume the following.
Condition A. The functions h, k: are continuous; k(X) and Xh(X) are

positive unless X--0; a is a real number; x: a, oo)R is a solution, not identically zero,
of Libnard’s equation, namely the equation

(1.1) d2x
dt 2

From [8,p. 35] it is known that for any real numbers x0 and v0 a solution of (1.1)
satisfying x(a)=xo and x’(a)=vo exists on [a,c). Moreover from [2,p. 258] this
solution is unique. (No Lipschitz condition, or other condition beyond what is given
above, is needed for uniqueness.)

DEIINITION. The solution x(.), not identically zero, is said to be oscillatory if it has
infinitely many zeros on a, oo). Otherwise, x(-) is said to be nonoscillatory.

Remark. Unless x(t)=0 for all in [a, oo), the uniqueness mentioned above
implies that x(.) and x’(.) cannot vanish simultaneously. Hence x(.) must change sign
at every isolated zero. Moreover, a finite subinterval of a, ) cannot contain infinitely
many zeros unless x(-) is identically zero; if such were the case, the zeros of x(.) and
x’(-) would have a common point of accumulation which, by continuity, would be a
common zero of x(.) and x’(.).

Put

(1.2) H(X)=foXh()dl and K(X)=foXk()dt.
If x(.) is not identically zero, then K(x(t)) and x’(t) cannot vanish simultaneously.
Hence we may define O" a, oo)- R by the relation

eiO(t)= x’(t)+iK(x(t))

( K(x(t))2+ xt(t)2) 1/2
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The further requirement that O(.) is continuous and 0< 19(a)<2r determines 19(.)
uniquely.

This construction has a simple geometrical interpretation. The solution x(-) de-
termines a motion in the complex plane in which the real part is x’(t) and the
imaginary part is K(x(t)). In this phase plane the usual polar angle is O(t).

Using (1.1), we obtain

k(x)(x’2 + x’K(x) + h(x)k(x)-K(x))
dO
dt K(x +x

k(O)

Put

for x0,

for x=0.

M[x] sup(h(x(t))k(x(t))-K(x(t))- .x(t)=/=O,t[a,o)}.
The following theorem generalizes the criteria for underdamping and overdamping

of vibrations, well known in case h and k are constants.
THEOREM 1.1. Let Condition A hoM and let Mix]<1/4. Then x(.) has at most one

zero in[a, o).
Proof. At any point where the trajectory of x(-) crosses the real axis, dO/dt= k(O)

which is positive unless k(0)=0; even in that case dO/dt>O on the trajectory at least
in some deleted neighborhood of the point at which the trajectory crosses the real axis
because the expression in parentheses on the right side of (1.3) is continuous and
positive on the real axis except at the origin.

On the other hand

dO k(x)(x’+K(x)x’+M[xlK)
dt- K(x +2 X2

Note that the expression in parentheses is a quadratic form in x’ and K(x). Since
M[x]<1/4, an examination of the discriminant of this form shows that the form is
indefinite. Hence there is at least one line through the origin on which dO/dt is
negative. Let t be such that x(t)=0. The trajectory must cross the real axis in the
counter-clockwise direction at t=t because dO/dt must be positive at least in a
deleted neighborhood of the crossing. Suppose there is another zero; let t be the next
zero. We must have O(t)=O(t)+r. But then for some in (t,t), the trajectory
must cross the line l" in the counter-clockwise direction; however, this is impossible
because we must have O’(t3)<0. We conclude from this contradiction that x(.) can
have at most one zero on a, 0).

COROLLARY 1.1. Let Condition A hoM and let

(1.5) sup{h(X)k(X)-’K(X) -1" XeI,X4=O} <1/4.

Then x(. ) has at most one zero on a, ).
Proof. If (1.5) holds, then M[x]<1/4, and the assertion follows from the theorem.
DvIyn:ION. We say that the zero solution of (1.1) on [a, ) is globally asymptoti-

cally stable (g.a.s.) if every solution of (1.1) on a, ) satisfies x(t) 0 and x’(t) - 0 as
t--) o.

It is known [5] that the zero solution of (1.1) is g.a.s, if and only if

(1.6) IK(X)I+/(X) -, oo as X__+ o.
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(See (1.2) for the definitions of H(.) and K(. ).) The reference [5] makes the assumption
k(X) >0, but the argument is valid even if k(0)= 0 is allowed.

COROLLAR 1.2. Let Condition A hold. Let the zero solution of (1.1) be g.a.s.
Further let

lim sup h ( X)k( X)-iK(X)-XO

be less than 1/4. Then x(.) is nonoscillatory on a, ).
Proof. Let a’ be chosen so that

sup(h(x(t))k(x(t))-lK(x(t))-" t[a’,

is less than 1/4. We apply Theorem 1.1 with a replaced by a’, and the desired conclusion
follows.

2. The case m[x]>], M[x]< o. Let x(.) be a solution of (1.1) on a, ). Define,
in analogy with (1.4),

m[x]-inf(h(x(t))k(x(t))-lK(x(t)) -l" x(t)=/=O, t[a, )).
This section is devoted to the study of solutions of (1.1) satisfying

(2.1) mix]>1/4.
As in 1, M[x] is defined by (1.4). In this section, we assume also that M[x] is finite. In
3, we obtain further results without this assumption.

Theorem 2.1 gives upper and lower bounds for K(x(t)) at a zero of x’(t) when the
value of x’(t) at a zero of K(x(t)) is known and also gives bounds for x’(t) at a zero of
K(x(t)) when the value of K(x(t)) at a zero of x’(t) is known. In either case, it is
assumed that the interval between the two zeros in question contains no other zeros of
K(x(t)) or x’(t). In mechanical terms, we estimate the maximum displacement when
the particle is initially at equilibrium with known velocity; and we estimate the velocity
at equilibrium when the particle is initially at rest with known displacement.

Theorem 2.2 shows that, under certain conditions, equation (1.1) admits of both
oscillatory and nonvanishing solutions. A criterion is given which in a particular
example discriminates sharply between the two types of solutions.

We consider solutions of (1.1) with the same conditions on h(-) and k(. ) which are
described in 1. We define p(t) (x’(t)2 + K(x(t))2)t/2. In the phase plane described
in the {}1, p(t) is the distance from the origin. Define 0(.) as in the previous section
and put z(t)=p(t)et); the trajectory z(t), a<_t< gives us a representation of the
solution x(. ).

We compute, using (1.1),

d(02) 2K(x)k(x)x’ + 2x’(-x’k(x)- h(x))dt

which may be written

(2.2)

dp= {k(x)(sinOcosO-cosO-sinOcosOh(x)k(x)-lK(x)-)o dt -k(O)
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Also (1.3) may be written

(2.3) dO=dt { k(x)(cs20+csOsinO+sin2Oh(x)k-l(x)K-(x))k(O)
From (2.1) follows

(2.4) >k(x )(cos2 O + cos O sin O +m x ]sin20 )dt

The quadratic form on the right is positive definite as may be seen by computing its
discriminant. Moreover, k(x(t)) can be zero only at isolated points unless x(t) is
identically zero. Hence O(t) is strictly increasing and we may introduce O= O(t) as a
new independent variable. Define the function r(.) by the relation r(O(t)) p(t). We
have, by (2.2) and (2.3),

dr (sinOcsO-cs20-sinOcsOh(x)k(x)-lK(x)-l)
(2.5) - d- cos20+cosOsinO+sin2Oh(x)k-,K(x) -, if x#0,

-1 if x-O.

Below we will need to estimate dr/dO. We prove a lemma which prepares for this. On
the fight side of (2.3), put h(x)k(x)- IK(x)- a; and put

tp (0 a) sin 0 cos 0 cos2 0 a sin 0 COS 0
COS2 0 + COS 0 sin 0 + a sin20

LEMMA 2.1. The function q(O,a) is continuous in the ha@lane {(0, O)2: O

>1/4 }; Oq)/Oa is negative for 0 in the first and third quadrants (nr<O<nrr+(r/2)) and
positive in the second andfourth quadrants (nr ( rr/2)<0<n rr).

Proof. The continuity follows from the fact that the denominator

COS2 0 -- COS 0 sin 0 + a sin20

is positive definite for a>1/4, as was already observed in connection with (2.3). More-
over, a calculation yields

sin 0 cos 0
012 (COS2 0 "]" COS 0 sin 0 + a sin20 )2’

which shows immediately the assertions concerning the sign of 0p/0a, and the proof of
the lemma is concluded.

We now proceed to develop the estimates mentioned above. We prove the major
lemma, upon which all the further results of 2 are based. First we define
some terminology. Let m and M satisfy <m<_M<oo. Put -(4m-1)-/2, A--

(4M- 1)- 1/2, o arctan 8 A arctanA + 1/2 log(M/m).
LEMMA 2.2. Let Condition A hoM and let m andM satisfy

(2.6) -<m<_m[xl<_M[xl<M<

Then there exist positive, continuous functions rl(" ) and r2(.) on such that

(2.7) rl(O(t))<_r(O(t))-p(t)<_r2(O(t)) for all tin [a, c).
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Moreover rt(.) and rz(.) satisfy the following:

(2.8) rt(#o) r(Oo) r2(0o),

(2.9) r,(O+rr)-r,(O)exp --(A+8)--o
(2.10) r(O+r)-r(O)exp -(A+)+o
for all 0 in and 0o --O(a).

Furthermore, for any integer n the following relations hold:

(2.11) r nrr+- -r(nrr)exp --A---logM+AarctanA

(2.12) r n + logm+ arctan

(2.13) r(n)-r n- exp +logm-arctan

(2.14) r(n)-r2 n- exp -A+logM-AarctanA
Moreover, the functions

u(O)=q(O)sinO and uz(O)=r2(O)sinO
achieve local extrema only at points of the form 0- n vr + (,r/2) where n is an integer.

Furthermore,

(2.15) lim q(0)-0;
0---, oo

and, if

(2.16) o<(A+),
then

(2.17) lim r2(O)-O.

Proof. From (2.5) and Lemma 2.1,

(2 18) qg(0,ct)< dr <7
where a=M and fl= rn in the first and third quadrants, whereas a m and fl=M in
the second and fourth quadrants. Integrating these differential inequalities, certain
conclusions may be drawn. In particular, let tl and 2 (t2>t) be in [a,) and put
01 =O(t) and 02=O(t2); then

(2.19) r(O’)exp7(O’a)dOr(O2)r(Ol)exp2(O’)dO’ot
Putting 0o O(a), we see that (2.7) and (2.8) hold with

(2.20) r(O) r(0o)exp (,,a)d,
r2( 0 ) r( 0o )expff(, fl ) d.
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For any O and 02

(2.21) rl( 02 ) r,( O )expfiw(p, a) dq,
0

rE( 02 ) r2( O )exp/2( q,/3 ) dq.
dO

The integrals in (2.19) can be computed explicitly by using the substitution u-tan/9
and an expansion into partial fractions. In fact for constant /we have the indefinite
integral

(2.22) log(cos2 0 + cos0 sin 0 + , sin2 0)O, ) dO-

(4,/- ) 1/2arctan 2 ), tan 0 +
(4]t-- 1) -1/2"

We obtain (2.11) and (2.12) from (2.21) by putting Ol--n’a" and O2=nr+(r/2) and
/=a=M and /=fl=m, respectively; similarly (2.13) and (2.14) are obtained from
(2.21) by putting 0 nr- (r/2) and O2=nr and /=a=m and 7=fl=M, respectively.
Moreover, (2.9) and (2.10) follow from the fact that q)(O,a) and q(O, fl) are both
periodic with period r, and hence the integral of q(O,a) (similarly q(O, fl)) over an
interval of length r does not depend on the choice of the endpoints; hence, for every 0,

(2.23) fo+,q( q, a) d
O rr/2q ( q m ) dq+ Jo

and, similarly

(2.24) o+(p, fl) d+- (A + 8) + o.

Using (2.21), we see that (2.23) and (2.24) are equivalent to (2.9) and (2.10),
respectively.

Now we establish the assertion concerning u(-) and u(.). Since

dq dr
r dO =(0 a), =(0 fl)r2 dO

we have

du dr r cos 0
dO d-- sinO+q cosO-q(q(O a)sinO+cosO)-

cos 0+ cos 0 sin 0+ a sin2 0

Similarly,

du2 r2 cos 0
d0 cos2 0+ cos 0 sin 0 +/3 sin2 0"

It is clear that critical points occur only at points of the form O-nr+(r/2). Since the
derivatives change sign at these points, they are indeed extrema.

Finally, we must show (2.15) and (2.17). Let n be the largest integer not exceeding
0/rr; put

A,-sup{rl(O )
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and

A2 sup { r2( O ) 0_<0_<r}.
From (2.9) and (2.10) we have

rl(O)<_A exp -(A+)-on
r2(0 ) _<A2 exp(

The first exponent is always negative; the second is negative if (2.16) holds. Thus, since
n as O--, o, (2.15) and (2.17) hold as required. This concludes the proof of the
lemma.

Formula (2.7) is an estimate of the type described in the second paragraph of this
section. This is clarified by the following theorem.

THEOREM 2.1. Let Condition A and (2.6) hold. Let and 2 be in [a, c) and
X(/I)--0 x’(t2)--O and let x(t)=/=O and x’(t)=/=O for all between and 2.

A. If l< z, then

(2.25) [x’(tl)lexp -A--logM

_<lx’(,)lexp --- logm+arctan
B. If < then

(2.26) IK(x())lexp --+ logm-arctan

<-Ix’(, )1 <-IK(x()) lexp 7 ZX + -logM- A arctan A

Proof. We use (2.7) with a=min(tl,t) and t=max(t,t). Since for some integer
n, O(tl)=nr, O(t.)=nr+-(r/2) where the plus sign is taken if t <t and the minus if
t > ta, and since O(t)=lx’(t) and O(t)=lK(x(t))l, (2.7) together with (2.11), (2.12),
(2.13) and (2.14) imply (2.25) and (2.26). This concludes the proof.

The following result is included so that we may compare the results of this section
with the results of the next section.

COROLLARY 2.1. Let Condition A and (2.6) hold. Let and 2 (/l <t2) be consecutive
zeros ofx(.). Then

IX’(tl )lexp(- -(A+)--0 )<_lx’(t2)]<_lx’(t2)lexp(- -(A+)+tr ).
Proof. Note that there is precisely one zero of x’(.) between and 2. Indeed, if

there were morethan one zero of x’(.) in this interval then there would have to-be two
consecutive extrema which are either both relative maxima or both relative minima.
Either case is impossible.

Let denote the unique zero of x’(.) between tl and 2. We apply (2.26) to the
interval [t,t3] and then apply (2.25) to the interval [t3, t2]. These inequalities imply the
desired inequality. Alternatively, one can employ (2.9) and (2.10).

Recall that (1.6) is a necessary and sufficient condition for the zero solution of
(1.1) to be g.a.s. It is interesting now to consider the behavior of solutions of (1.1) in
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case (1.6) does not hold. We shall illustrate results of this type by means of the equation

arctanx(2.27) x"+ x’+C 0
l+x2 1+x2

with C constant and greater than 1/4. In particular, we shall find a constant V such
that the initial value problem of (2.27) subject to x(a)=0, x’(a)= vo has an oscillatory
solution satisfying x(t) 0, x’(t) --, 0 if v0< V; whereas if vo_> V, the initial value
problem has a solution which is nonvanishing for >a and which satisfies Ix(t)l o0 as
t---) 0o

THEOgrM 2.2. Let Condition A and (2.6) hoM. Let K(X)K+< o as X oo and
K(X) --, K- >_ o0 as X -oo. Put K* rain(K+ K-).

A. If (2.16) holds and x(a) O, and

(2.28) O<x’(a)<K*m/exp -arctan
then x(. ) is oscillatory and x() --, 0 and x’( ) 0 as --, .

B. Ifx(a)=O and

(2.29) x’(a)>_K+M’/exp A--arctanA
then x(t)>O for all t>a and x(t) as t--, .

Proof. A. Since (2.16) holds, r(O)--,O as 0. By (2.12), and since r(0) r(0),

( r ) _r(0)exp( "r2 -- logm+ arctan $

Then, using x’(a)=r(O) and (2.28), r2(r/2)<K*.
Next (2.16) and (2.10) show

(2.30) r2( ( ) +nrr) <r2( ) <K*
for all positive integers n. Further, Lemma 2.2 asserts that the relative extrema of
r(O)sinO occur at O=nr+(r/2) with n an integer. From this we conclude r2(O)sinO<
r2(r/2)<K* for all 0>0. Furthermore, r(O( )) < r2(O( )) for all t_>0. Geometrically,
the solution trajectory must lie in a certain compact region in the (x’,K(x)) phase
plane which is contained in the strip

S- {(UI,I)I)e2" --K- ’<I) <K+ }.
This implies that in the usual phase plane the trajectory

((u,v): u=x(t), v=x’(t), a<_t< o )

is contained in a compact subset of 2. (Note that 2 is mapped homeomorphically
onto S by the mapping u v, v K(u).)

Recall that O(t) is nondecreasing. Suppose O(t) 0oo < oo. Hence the w-limit set
must be contained in the ray 0= 0oo (in the (x’, K(x)) phase plane). Further, the to-limit
set must be an invariant set. Since dO/dt>O unless x=0, the invariance requires that
the ray be contained in the horizontal axis. (Since k(0) is allowed to be zero, it is
possible in view of (2.3) that dO/dt is zero on the horizontal axis of the (x’,K(x))
phase plane.) However, the only invariant subset of the horizontal axis consists of the
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origin alone. Hence the co-limit set is {(0, 0)), i.e.,

(2.31) x(t)O, x’(t)O as t

But on the other hand p(t)=r(O(t))>-rl(O(t)) and hence p(t)_>inf{r(0): O(a)<_O<_
0oo } >0. But this contradicts (2.31). It follows that O(t) oo as t--, .

Now the relation r(19(t))< r(19(t)) implies, just as in the proof of Theorem 2.2,
that x(.) has infinitely many zeros. Moreover, since (2.14) holds, Lemma 2.2 asserts
that r2(0)--, 0 as 0 oo; and r(O( ))< r2(O( )) implies x(t)O and x’(t)O as t o.
We have finished the proof of part A.

B. By (2.11), since r(0)= r(0),

Then, using (2.29),

( r ) r(0)exp( ,r

r- A- -logM+A arctan A ).

Hence

K+)2 K(X0)M;lim H( X) <_H( Xo ) + - ( M- -X---, o

in other words lim x- oo H(X)< c. Thus the theorem is consistent with condition (1.6).
Now we apply Theorem 2.2 to (2.27). Note the following:

k(X)
1+X-------5 K(X) arctan X,

arctanXh(X)-C H(X)- C (arctanX)2

l+X2

(2.32) rl()-->K+.
Since r(O( )) --> rl(O( )) and K(x( ))<K+ for all in a, oo), (2.32) implies

O(t) /9oo <
*r--- ast.

Therefore x(t)>0 for all in (a, o0). Since x(. ) is nondecreasing in the first quadrant,
x(t)X as t. But X cannot be finite. Indeed, suppose X<. Then
x’(t) K(X)cot8. Furthermore, in the standard phase plane (X,K(X)cot8)
must be an invariant point, which is impossible. Hence x(t) as t . This
concludes the proof of the theorem.

Remark. From (1.6) it is clear that in order for (1.1) to have a solution satisfying
x(t) as , as is asserted in part B of Theorem 2.2, it is necessary that either
limxH(X) or limx_H(X) be finite. The theorem does not appear to make this
assumption. However, since M is assumed to be finite,

h(x( )) k(x( ))K(x( ))M
for t[ a, ). If x(t) +, then

h(X)k(X)K(X)M
for all sufficiently large X, say X>Xo. Integrating, we have

1K(X)M- 1K(Xo)M.g
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/.K(X) +-- H(X)--, as X_+ o-2’ -M=m-C, -A-(4C- 1) -1/2, 0--0.

We apply Theorem 2.2 with K+ K- K* rr/2. The theorem states that if we put

V-- --tff 1/2C exp((4C1)-l/2(r-arctan(4C-1)-l/2))-
then the assertion immediately preceding Theorem 2.3 is correct.

3. The ease re[x]> , M[x]< o0. It is somewhat unsatisfactory that in 2 we must
assume M[x]< o. In this section we see that it is possible to find some conditions for
oscillation without this assumption. Let x(. ) be a solution of (1.1), not identically zero.
We introduce a new phase plane in which to represent the solution. We define O(t) as
in 1; however, instead of p(.), we make use of the function

(3.1) )2(t

Then 2*=p*(t)ee(t), t[ a, o), is the representation of the solution which we wish to
consider. If m[x]> , then O(t) is strictly increasing, therefore, as in 2, we introduce
0= O(t) as a new independent variable and define r*(. ) by the relation r*(O(t))= p*(t).

We now prove a lemma analogous to Lemma 2.2. Note that if M< and A--8,
Lemma 2.2 gives sharp results. We shall see that in this case, Lemma 3.1 does not give
sharp estimates. However, Lemma 3.1 has the advantage of being free of the assump-
tion M< o.

LEMMA 3.1. Let Condition A and (2.1) hold. Then there exists a positive, continuous

function r(.) on R such that

(3.2) r’(O(t)) _<r*(O(t)) p*(t)

for all in a, o) and for Oo-O(a). Moreover, putting (4m[x]-1)-l/2--J, r satisfies
the conditions

(3.3) r(Oo)=r*(Oo),

(3.4) r’( O + r ) r’(/9 )exp( 4r8 ).

Furthermore, for any integer n,

(3.5)

(3.6)

(r{’ nrr+ -rt(nrr)exp(-2rr+4arctan),

( r ) exp(-2ri- 4i arctan)r(nr)-r nrr-

Proof. We compute, using (1.1),

(3.7) do* k(x( ))x’( )2dt
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Now, using (3.7) and (1.3), we obtain

(3.8)
2 ,2

dr* -x’2(K(x +x )
dO x’2 + x’K(x) +

2 Xt2-x"-(K(x + )
x’2 + x’K(x)+ m[xlK(x)2

COS2 0 -+- sin 0 cos 0 -+- m x ]sin20

-2r*

COS2 0 q’- sin 0 cos 0 +m x ]sin20

Put p*(O,a)--2(cos20+sinOcosO+asin-O)-. Recall that O(t) is nondecreasing.
From (3.8) follows

(3.9) r*(O(t)) _>r*(19( a ))expfo(t)p,( O, m Ix 1) dO,
"O(a)

for all in a, o). Thus, in order to satisfy (3.2), we put

(3.10) r(O)-expf q*(+,m[x])a+.
(a)

This integral can be computed explicitly; in fact, we have the indefinite integral

(3.11) fw*(O,m[x])ao--48arctan(8(2m[x]tanO+ 1)).

From (3.10) and (3.11) follow the properties (3.3), (3.4), (3.5), and (3.6). This concludes
the proof.

We now prove a theorem analogous to Theorem 2.1.
THEOREM 3.1. Let Condition A and (2.1) hold. Let and 2 be in [a, ) and

x(tl)=0, x’(t2)= 0, and let x(t) and x’(t)vaO for all between t and t2.
A. lf t <t2, then

(3.12) -x,( tl )2exp(_2rrS+48arctani)<H(x(t2))

B. If 2> l, then

)2.(3.13) H(x(t2))exp(-2rrs-aSarctanS)<-x (/1

Proof. The result follows from (2.1), (3.1), (3.5), and (3.6).
The next corollary is included so that we may compare the estimates of this section

with those of the previous section.
COROLLARY 3.1. Let Condition A and (2.1) hold. Let and 2 (t <t2) be consecutive

zeros of x(. ). Then

(3.14) Ix’( t, ) exp( 2r8 ) _<Ix’( 2 )l"
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Proof. As shown in the proof of Corollary 2.1, there is exactly one zero 3 of x’(.)
in the interval (t, t2). We apply (3.12) to the interval (tl,t3) and we apply (3.13) to the
interval (t3, 2). Combining these inequalities yields (3.14).

Remark. If M-m-m[x], then Corollary 2.1 gives a much better result than
Corollary 3.1. In fact, Corollary 2.1 yields

or, in other words,

IX’( )I exp(-rr8 ) --<Ix’( 2 )l -<Ix’( t, )I exp(-rr8 ),

IX’( t2 )l- IX’( tl )] exp(-rr8 ),

which we compare with (3.14). However, if M, and hence also o, are large, (3.14) is a
better lower bound for Ix’(t2) than the one given in Corollary 2.1.

We conclude this section with an oscillation theorem. Note that a similar theorem
could have been proved using Lemma 2.2. However, such a result would have been
weaker because it would have to include the hypothesis M[x]< oo.

TnEOlI 3.2. Let Condition A and (2.1) hold. Let the zero solution of (1.1) be g.a.s.
Then x(. ) has infinitely many zeros; i.e. all solutions of (1.1) oscillate.

Proof. Since the zero solution is g.a.s., we must have p*(t)0 as t oo. Suppose
IO(t)l<M for some constant M. Then we would have

p*(t)-r*(O(t))>_r(O(t))>_inf(r(O) 101_<M) >0,
which contradicts the fact that, since the zero solution of (1.1) is g.a.s., p*(t)O as

oo. Hence O(t) is unbounded and since O’(t)_>0, we have O(t)- + oo as oo. A
zero of x(. ) occurs whenever O(t) is equal to a multiple of r. Hence x(. ) has infinitely
many zeros; i.e., x(.) is oscillatory. This concludes the proof.

The following corollary is a result previously obtained by the author using other
methods [3].

COROLLARY 2.2. Let Condition A hold, and let

lim inf h ( X)k( X)- K( x)-l> 1/4.
x-o

Let the zero solution of (1.1) be g.a.s. Then x(.) has infinitely many zeros; i.e., all
solutions of (1.1) oscillate.

Proof. Since x(t) 0 as 0, we may choose a’ such that

inf(h(x(t))k(x(t))-lK(x(t))-" x[a’, oo)} >1/4.

The result follows by applying Theorem 3.2 with a replaced by a’.
Remark. Theorem 3.2 can be proved much more simply if the hypothesis

(3.15) inf(k(x(t))" t[a, oo)} >_0

is included. In this case, note that (3.15) implies (1.6) and, therefore, the hypothesis is
unnecessary that the zero solution of (1.1) is g.a.s. Let/ be the inf in (3.15), and let

X inf{cos219 (t) + cos 19 +m x ]sin219 }.
Observe that (2.1) implies >0; in fact, , is the smaller of the two eigenvalues of the
quadratic form. Then (2.4) implies dO/dt>-Ih>0, and hence 19(t)- oo as t--, oo. As in
the proof of Theorem 3.2, this implies that x(.) is oscillatory.
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ON THE EXISTENCE OF A FREE BOUNDARY FOR A CLASS
OF REACTION-DIFFUSION SYSTEMS*

J. ILDEFONSO DIAZ AND JESUS HERNANDEZ:

Abstract. Some nonlinear stationary reaction-diffusion systems involving nonlinear terms which may be
discontinuous are considered. Such systems occur, for instance, in the study of chemical reactions, and the
discontinuities correspond to reactions of order zero. In such concrete models, the set where the reactant
vanishes plays an important role. Here we prove the existence of solutions for a general class of such systems
satisfying Dirichlet or nonlinear boundary conditions. Necessary and sufficient conditions are given assuring
that the reactant component vanishes on a set of positive measure. Estimates on the location of such set are
given.

AMS-MOS subject classifications (1980). Primary 35J65, 35J15, 35B99

Key words, reaction-diffusion systems, discontinuous nonlinearity, nonlinear boundary conditions, dead
core set, chemical reactions

Introduction. Many papers have been devoted during recent years to the study of
reaction-diffusion systems which arise very often in applications such as, mathematical
biology, chemical reactions, and combustion theory.

Here we consider a system describing a single, irreversible, nonisothermic sta-
tionary reaction of the form

(0.1) -Au+l2F(u)eV-V/v-o in ,
-Av-vl2F(u)eV-V/v-o in ,

Ou +e(u-1)-O onOn
Ov +(v--1)--O on

where is a bounded open subset of R N, 2 is the Thiele number, v is the Prater
temperature and is the Arrhenius number (see [3]). Here e and " (the Biot numbers)
are positive, being in some cases infinity, in which case (0.2) is interpreted as the
Dirichlet boundary conditions

(0.3) u- 1, v- on

The function F(u) is assumed to be nondecreasing and it is also assumed to satisfy
F(0) 0, F(1) and F(s)>0 if s> 0. The unknowns u and v are nonnegative and
represent, respectively, the concentration and the temperature of the reactant.

Very often F takes the simple form F(u)--up, where p_>0 is the order of the
reaction (see [3, Vol I]). In the case of a reaction of order zero F is given by F(0)-0 and
F(s) if s>0 (thus F is a discontinuous function).
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author was sponsored by the U.S. Army under contract DAAG29-80-C-0041. This work was completed while
this author was visiting the Mathematics Research Center at the University of Wisconsin-Madison, Madison,
Wisconsin.
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Existence and uniqueness results for the parabolic problem associated with (0.1),
(0.2) (or (0.1),(0.3)) have been given by some authors (cf. e.g. [2],[4],[18]). Existence
and, in some particular situations, uniqueness results for the elliptic problem can be
found in [2], [21], [15] and [19] for p_> 1. The case 0_<p< is considered in [3,p. 311]
(see also [20]) but existence theorems are not given. It is shown in [3] and [20] that for
p-0, if g is large enough, no strictly positive solution can exist. It is also shown that, in
some particular examples, the set 0={x: u(x)=0} (called the dead core) is not
empty and has positive measure if 0_<p < 1.

The main idea used in [20] and many other papers (cf. [3]) is to reduce (0.1), (0.2)
to a nonlinear elliptic boundary value problem for u alone. Here we follow a different
approach which allows us to obtain better results. Moreover, we are able to treat the
case of nonlinear boundary conditions, which cannot be handled by the preceding
device.

We shall consider the case of discontinuous functions F(u) in the framework of
maximal montone graphs in 2 (see [8]). For the reader’s convenience, we recall that a
maximal monotone graph a in 2 is always specified by a real nondecreasing function
0 by a(r)=(-oc,O(r-)] if 0(r-)=-oo, a(r)=[O(r-),O(r+)] if -o<0(r-)_<
0(r+)<+ and a(r)=[O(r-),+c) if 0(r+)=+. We define D(a)={rR:
et(r) =/= } and the sections a+ and a- by

a+(r)=max{z: za(r)} if rD(a),

a-(r)=min{z: za(r)} if rD(a),

a+(r)=a-(r) +o if rqD(a), r>_supD(a),

a+(r):a-(r) -o if rD(a), r_<infD(ct).

Finally, we define a(r) as the element of a(r) with minimal absolute value.
Through the paper we shall study the following general formulation including the

system (0.1) as a particular case:

(NLS) Au+ a( u)f(v) 0

with the boundary conditions

(DBC) u=tp, i)-- q02

as well as the nonlinear boundary conditions

Ou(NBC) Bu =---n + b(u)
Ov

Cv + c( v )

in ,
in

on 0,

on O

where 2 is a bounded open subset of [ N with smooth boundary 0. We also assume
for the rest of the paper that

(0.4)

(0.6)
(0.7)

and fl are maximal monotone graphs such that 0 a(O) f3/3(0).
and g are C functions and f(s ) _> O, g( s ) _> 0 if s _> O.

ql, q2, q and 2 C2(2)
and c are C2 nondecreasing real functions.
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In particular, if a and/3 are single-valued (i.e. they are continuous real functions)
then the set inclusion of (NLS) should be replaced by equality.

In the general situation, (u,v)HZ()HZ() is a solution of (NLS) if there
exists a,dL(f) such that a(x)a(u(x)), d(x)B(v(x)) a.e.x and

-au+af(u)-O, -av-dg(v)-O in f.

We shall prove the following existence result, which extends in some sense those in
[2], [21] and [15].

THEOREM A. Assume
(A.1) D(a) =D(#) ,
(A.2) f(s)>_m >_OVs and
(A.3) O<_g(s)<_m 2 VsR.
Then there exists at least one solution ( u, v) of (NLS) (DBC) (resp. (NLS) (NBC)).

Moreover u, v W2’V(fl) for any p, <_p< + o.
We also consider the existence and nonexistence of a dead core f0 where u 0 and

consequently the existence of the free boundary 0.l Roughly speaking, such a dead
core for (0.1), (0.3) arises when it is impossible for diffusion to supply enough reactant
from outside to reach the central part of . (cf. [20]). This may happen if the reaction
rate F(u)e-/ remains high as the reactant concentration decreases. Thus (for
(0.1), (0.3)) the existence of f0 depends essentially on three things: the reaction order,
the Thiele number and the size of f.

Our main result in this direction can be stated in the following general terms.
THEOREM B. Assume that the hypotheses of Theorem A are satisfied. Then the

followingproperties are true:
i) If a(s)--g2lslV-s and (u,v) is any solution of (NLS) (DBC); then a dead core
may exist only if 0 <_p< 1.2

ii) Let a(s)=g2lsl-ls with 0<p< and let (u,v) be a solution of(NLS) (DBC). For
A>0 let

Then

fx-- (xf" f(v(x))>_A}.

(0.8) fo {Xx: d(x, Oftx-(Of-suppp,))> Kxm,,,
where M--IIlll0)and

Kx’t k/x2(1 -p

(iii) Let o(s)-/x2. sign s. Then the estimate (0.8) holds if we replace M by M*
IlzllL=<u), where z satisfies Az--g2m in f and z-cp on Of. Furthermore, if f is convex,
the above results are still validfor (NLS) (NBC) in the sense that if 0 <_p< 1, then o has
a positive measure for g large and it is possible to estimate fo (see (2.22)).

There is a large literature about this subject in the case of a single nonlinear equation. See, e.g. the
systematic study of [12].

2By convention Isl-s=signs (= if s<0, =[- 1, 1] if s=0 and if s>0).



FREE BOUNDARY FOR REACTION-DIFFUSION SYSTEMS 673

The above theorem is specially meaningful if m in (A.2) is strictly positive (this is
true in the case of the combustion system (0.1)), (0.3): indeed, in this case v>0 on f
and then we have t2x-t2 for any , (0, m] So the estimate (0.8) reads

(0.9) {0) X(" d(x,0) > gm,,

From the definition of Kx, in Theorem B we deduce that Kx, N0 when hN 0 or/,,a 0,
and that Kx,/ + oo if A/ + 00 or // + o0. Therefore for a fixed bounded t2 the
existence of a dead core f0 may only be guaranteed (by estimate (0.9)) if

M )(l--p)/2
where 3(t2) is the radius of the largest ball. contained in t2, assuming 0_<p< 1. Then a
critical value/c of/ can be found such that t20 has positive measure if/>/. In fact,
direct computations show (when N= 1) that function u is strictly positive in if/</c
(for _>0) and u vanishes only at one point if/ =/c. (see the proof of Lemma 2.1 and
also [20]). Estimate (0.8) of Theorem B can be also written independently of the
function v for other systems in which it is not difficult to estimate the set t2x (for
instance t2x= if in (NLS) we assume f(s)= s and 2>3>0 for 3 large (or A small)
enough).

Through the paper we also remark on other more general formulations of (NLS).
The parabolic problem associated with (NLS) will be studied in a forthcoming paper by
the authors. The case of f unbounded will be also treated elsewhere.

1. Existence results. Consider first the problem

(DP) --Au+a(u)f(v)O int2,
--Av--(u)g(v)O int2,
u-qo, u=2 on 0,

where f is a bounded open subset of Rv with smooth boundary 02 and
satisfy (0.4), (0.5) and (0.6). Set X=(H2())2.

DEFINITION 1. We shall say that (u,v)X is a solution of (DP) if there exist
functions a, b L2(f) such that a(x) a(u(x)), b(x) /3(v(x)) a.e. in f and

Au(x) + a(x).f(v(x))-0

and the boundary conditions (DBC) are satisfied.
DEIINITION 2. The pair [(uo, v0), (u, v)]XX is a sub-supersolution of (DP) if

Uo<_U, Vo<_V a.e. on f and

(1.2)
--auo+a-(uo)f(v)<--O<----au+a+(u)f(v) Vv [vo,v],

)  ue[uo,u],
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(1.3) U0(]Ol U0 on

(1.4) v0< q02 <v on 0,

where [K,1]- (h L2(f)lK(x)<_h(x)<--l(x) a.e. on f} if K,lL2(2).
Our main existence result for (DP) is the following
THEOREM 1.1. Suppose that [(u0, v0), (u, v)] is a sub-supersolution satisfying

(H)
and that

(H2)

Uo, Vo, U,vL()

D(a) D( fl ) -R

Then there exists at least one solution (u,v) of (DP) such that Uo<-U<_U, Vo<V<_V. In
addition u, v W-’l"(f) for any p, <_p< +

Remark 1.1. This theorem generalizes results of [2], [15], [16] and [20].
To prove Theorem 1.1 we define E-- [L2(fa)] 2 and K=[uo, u][Vo,V]. It is clear

that K is a convex, closed and bounded subset of E. Now we define a nonlinear
operator T: KE in the following way: for (if,) K, T(,)- (w, z) is the unique
solution of the uncoupled system

(1.5) --Aw+a(w)f()+wff in

(1.6) w=p on 0,

(1.7) -Az+M.z=fl()g()+M. in

(1.8) W’-" qO2 on

Here M>0 is such that the right-hand side of (1.7) is increasing in (we can choose
such a M because g is C and (H) has been assumed). Indeed by (H2) we can apply
the results of [10] to obtain the existence of a unique solution w of (1.5), (1.6).
Moreover, by (H1), (H2) and the L’-regularity results (see e.g. [14]) wE W2,P(f) for
any p, _<p < +. A similar argument works for z.

The proof of Theorem 1.1 will follow from Schauder’s fixed point theorem applied
to the operator T. It is sufficient to check that T is compact and that it sends K into
itself.

LEMMA 1.1. T is compact.
Proof. As K is bounded it is easy to show that

with C independent of (if,)K. Thus it is sufficient to recall the compactness of the
imbedding H1(2) L(f) to see that T sends bounded subsets into relatively compact
ones (the same for z). To prove that T is continuous, suppose that (u,, v,)(u,v) in E.
Then

--A(w-- w,) + a(w)f(v)--a(w,)f( v,) + w--w,
w- w. =0
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Multiplying by w-w and integrating by parts we obtain (for the case a single-valued
for simplicity)

f.Ix7(W--Wn)I+f.[<(w)i(v)--<(Wn)f(v.)](W--W.)+f.IW--Wnl
+ [a(w)f(v)-a(wn)f(v)](W-Wn)

=f.(u-u.)(w-w.)
>falx7(w Wn)12 Sa_+_ (wn)(f(v)--f(vn))(W--Wn)

and by the Cauchy-Schwarz inequality it follows that

IIw nll - --<HI() II<(Wn)II,=(,IIf(v)--i(Vn)II-(.IIw--w.II(.
+ Ilu.- ull2a)llw wnlla).

Now it is easy to conclude that Wn-O w in H(). A similar argument can be used
for z.

LEMMa 1.2. T(K)CK.
Proof. We first prove uo_< w, i.e. (u0- w)+ 0, with h + max(h, 0). For v--

(1.1) yields

0 _> A( uo w ) + a( uo )f() a(w)f( ) + uo w.

(We again suppose a single-valued for simplicity in the notation.) Multiply this inequal-
ity by (uo- w)+ integrate over and use Green’s formula to obtain

o>_:o-,<uo-w><uo-w>+ + +

+ f.(uo-w)(uo-w) +

’

by the monotonicity of a. This gives (Uo-W)+=0. A similar argument shows that
wu.

For the second component v we have, with u--ff in (1.2),

0_>-a(Vo-Z)+()g(e)-()g(vo) +M(vo_).
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Multiplying by (vo z)+ and integrating yields

o_> a(Vo )(Vo )/+ [t()g(Vo)+tVo-()g() tz](vo

(by the choice of M the second integral is positive).
Then T has at least one fixed point (u,v) in K which is a solution of (DP).

Moreover u,vL(fl) and this implies that u,v W2’(fl) for anyp, <p<
Remark 1.2. It follows easily from Morrey’s theorem (W2’P() ct’r() if p>N

with r= 1-N/p) that u,vCt’() for any 0<8< 1. On the other hand, if we suppose
for instance that a and/3 are C then u,vC2,() for every 0<8< 1. Indeed, in this
case a(u)f(v), fl(u)g(v)C() and we can apply Schauder theory ([ 14]).

The main conclusion of Theorem A (for the Dirichlet problem) follows from the
next lemma.

LEMM 1.3. Suppose (Ht), (H2) and

(H3) O<m, <_f(s) Vsl.

Then if uo, vo, u, v H2()satisfy

(1.9)
(.0)
(.)
(1.12)

--AUo+m,a-(Uo)<O<----Au+m,a+(u) in f,
u<--q <--u on Off,

U0(p2O0 on

the couple [( uo vo ), ( u, v)] is a sub-supersolution for (DP).
Proof. Let Uo<_U*<U, Vo<_V*<V. By the maximum principle we have

Then, by (1.9)

Auo+ a- ( uo )f(v*) _< Auo+m a- ( uo ) _< 0,
--Au + a+ (u)f(v*)_> Au+ma+(u) >0,

and also by (1.11)

Vo- flo( u*)g( Vo ) -< ZXVo- flo(_ ,I1,<0))g( Vo ) _<o,
vo flo( u*)g( v ) >_ Av-fl (11, (0))g( v ) >-0.

Moreover, a simple argument gives vo_<0 _< v. V]

Now the problem is to find uo, u, vo, v L(fl) satisfying (1.9)-(1.12). The fact
that such uo, u exist follows from the results of [10] applied to a. It is easy to check
that vo and v can be taken as the (unique) solutions of the problems

Aw-am2 in fl,
w-2 on Off
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and
Aw-- a*m2 in

w=P2 on 0

respectively, being a-fl(llqlloo) and a*- fl(-IIqllloo). This proves Theorem A.
Remark 1.3. It is clear that assumption (A.3) of Theorem A is only used to find vo

and v. If for example, g is such that the nonlinear problem

in ,
W-2 on

has a solution, then we can remove (A.3). There is a very extensive literature for this
kind of problem with different assumptions on g, but we do not want to consider this
point here (cf. e.g. 1] and the survey 17]).

Remark 1.4. If a is assumed to be single-valued and C the hypothesisf(s)_>m -> 0
is not necessary (cf. [15]). On the other hand, if a and fl are single-valued and a, fl,f and
g are C with sufficiently "small" Lipschitz constants, then it can be shown (cf. [2],[15])
that the solution is unique.

It is very easy now to apply the preceding results to the particular example (0.1),
(0.3) considered at the beginning of this paper. It is sufficient to take f(v)-g(v)-
ev-v/v, a(u)-l2up, fl(u)-vl2u’, p>0 and 1-2-1. A sub-supersolution is given
by Uo=0, u- 1, v0=0 and v the unique solution of

At90- l,l2e in , v- on 0f.

The case of nonlinear boundary conditions can be handled in a very similar way.
We only point out some differences. First, the definition of subosupersolution is the
same except that the boundary conditions

BUo<--I<--Bu C19o--<2< Ct
should be satisfied instead of (1.10), (1.12).

The main existence result is
THEOREM 1.2. Suppose that [(Uo,Vo),(u, v)] is a sub-supersolution satisfying (Hi),

(HE). Then there exists at least one solution ( u, v) of
--Au+a(u)f(v)O in f,

Bu-1’ CI) 2 on 0,

such that Uo<_U<_U, Vo<_V<_V. Moreover, u,v W2’e(f) for anyp, <_p< + o.
Proof (sketch). We just give the definition of the nonlinear operator T; the other

details are very similar to those for the Dirichlet problem. For (,3)K, define
T(ff, )-(w, z) to be the unique solution of the system

-Aw+a(w)f() +w ff

BW-I
-az+
Cz-q2

in ,
on

in f,
on 0.

The existence and uniqueness of w and z follows from [6, Thm. II.1] (for z we can also
use the results of 10]). E]
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A result very close to Lemma 1.3 can also be proved for the boundary conditions
(NBC).

Remark 1.6. The operator -A in (NLS) can be replaced by two (possible different)
elliptic second order differential operators or even by nonlinear operators of the form

i=1

with <q<. Indeed, in this case one can define a nonlinear operator T by using
again [6] (cf. also [13]). The more involved situation of b and c maximal monotone
graphs can also be studied by similar methods.

2. Existence of a "dead core". In this section we shall consider the existence of a
"dead core" for solutions u of (NLS), i.e., we shall prove that the set 20 =(x2:
u(x)=0) has a strictly positive measure under adequate hypotheses on a and eventu-
ally on IIlllLa or Ifl. In fact much more precise information is obtained about f0.

Our study will be carried out by using results concerning a single nonlinear
equation but arguing in a different way than usual for the combustion example. Indeed,
if (u, v) is any solution of (NLS) (DBC) [resp. (NLS) (NBC)] then u satisfies

(2.1) --Au+f(x)a(u)F(x) in 2,
(2.2) U--01 on

[respectively,

0u--+b(u)--l on(2 3) On

where F---- 0 and f(x ) =f(v(x)) a.e. on f.
The study of the subset f0 corresponding to solutions of (2.1), (2.2) (or (2.1), (2.3))

has occupied the attention of many authors, but, as far as we know, all these results are
given for the simplest case f(x)-- constant. We recall the two different approaches in
the literature:

a) f RN [7] or 2 being an unbounded set [11];
b) a being multivalued at the origin [9], [5], [13], [22].

More recently, a systematic study has been made in [12] giving a unified view of both
situations, but always for f(x) constant. Our results, in this section, follow the ideas of
[12].

2.1. Dirichlet problem. We now prove parts i), ii) and iii) of Theorem B. For this
we begin with some useful lemmas.

LEMMA 2.1. Let FL(f), C2(2) and suppose that uH2(2) satisfies

(2.4) --AU(X)+l2f(x)lu(x)lPsignu(x) gF(x) in

(2.5) u=q on

wherefL(2),f>O on f andp>O.4 IfO<_p< and fx denotes the set

>0,

3Equation (2.1) also appears in the study of a stationary isothermical single reaction (see [3, Chap. 3]).
4If p=0, (2.4) should be interpreted in the sense that there exists w G L2(2) such that w(x)sign(u(x))

a.e. x2 and -Au+/2fw--F in
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we have the estimate

(2.6)
no=-{n: u()=0)

D {1 Cf,-suppF: d(x, O(x-suppF)- (O2-suppp)) >(/_Kx,
Here

forp>O and r=llzllvo) (with Az--t2h in 2, z--q) on Of) forp--O. Kx,, is given by

(2.7) Kx# X/x2( -P

Proof. If we denote by u+ (resp. u_) the solutions of (2.4), (2.5) corresponding to
the data F+, q+ (resp. F-, q-) then by well-known comparison theorems we have
u+_>0 (resp. u_<0) and also u_(x)<_u(x)<_u+(x) a.e. x. Hence it is clear that
foD {xf: u_(x)=0 and u+(x)=0}. For the sake of simplicity we shall only con-
sider the case F=F+ q=q0+ the other case being analogous. Let ux n2() such that

(2.8)

We claim that O<u(x)<ux(x ) a.e. on x. Indeed, taking/(x)=-Au+%F2ue, it is
clear that _#(x)-F(x)+%l2ue-f(x)l2u and hence #<F on 2x. Moreover, -Au+
%/2u’-# on x and thus by the comparison results (cf. e.g. [12]) one has O<u<ux.
Therefore the conclusion of the lemma will follow by constructing one of such functions
ux and the set {xEx: ux(x)=0} will give the estimate (2.6) for f0. We will choose
ux(x)=h(Ix-Xol) for some x0Efx. First, note that for h E C2() and any /E(0, 1) we
have

- h(Ix-xol) +lZh(lx-xo[)p

--h"(Ix-xol)- IX-Xol h’(Ix-xl)/Xt =h(Ix-xl)P

-h"(Ix-xol)+t2h(Ix-xol)p

/(1-)tZh(Ix-xol)p- (N- ) h’(lX-xol)IX-Xol

5We shall only prove this inequality for p>0. Ifp=0, a natural adaptation of the argument leads to the
claim.
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Now, for a fixed r/, let hn be a solution of the Cauchy problem

(2.9) h’n’( r ) nXtlh,(r )(sign( hn( r )),
hn(0) h’n(0) 0.

It is easy to check (recall that 0<p< 1) that

(2.10) hn( r ) Lrlr2

where

(2.11) Ln- (
is a solution of (2.9). We hffve

l/(p-- l)

(1-r/)X/2hn(r)v- (N- 1) h,(r)_L,r2p/(l_,)r

choosing /such that

(2.12) p+l
l+p+(N-1)(1-p)

2(N-1) ].1--p

leads to

Ahn(Ix--xol ) +t=h.(Ix-xol)PO
for any x

Finally, consider the set (-[x-suppF. The considerations made above show
that the function

ux(x) Kx,,lx, Xol 2/(1 -p)

with Kx,, given by (2.7) satisfies

--AUx-Jr-hp,2u>-0-F(x) in (,
ux_>0-(p on ( (-supp).

Hence it is sufficient to have

(2.13)
to obtain

ux->max(, Ilull()) on ( (0( (0 supp q))

O_u(x)_ux(x) on .
But, by the maximum principle we know that u(x)< on and this implies that
(2.13) is satisfied if we choose x0 such that

(2.14) [x-xl>( f’t )(I-p)/2-
Kx,
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for every x 0t] (0( f3 (0f supp q)). The conclusion now follows trivially from
(2.13) and (2.14) (we recall that ux(x0) =0).

Statements ii) and iii) of Theorem B follow immediately from the above lemma.
We remark that the constant Kx,, given in (2.7) is such that Kx,’0 when A 0 or/,,a 0
and that Kx,), + if h/ + or// +. Then, if fx is bounded and not empty,
estimate (2.6) shows that the measure of 0 is positive at least if

(fx_ suppF)> (Kxr,,) (1 -p)/2

where 6(fx-suppF) is the radius of the largest ball contained in fx-suppF (ass.um-
ing 0_<p< 1). Therefore, if fx is given, 0 "exists" if / is large enough or M is
sufficiently small. In the simple case of problem (0.1), (0.3) withf(s)=s, 0_<p< 1, it is
easy to find a critical value/c of/ (now depending on p, , and f) such that o is not
empty if/>/c- When N= direct computations show that, for p, and f fixed, the
function u is strictly positive if/</c (see e.g. [3] and [20]).

We shall prove part i) of Theorem B. Indeed, we shall prove that if p_> then for
any value of ,,/ and 6() there exist functions (u, v ) satisfying (DP) (with a(s)= Islp- IS )
such that u(x)>0 on . To do this .we shall consider the worst case, i.e., when
6() + (for instance N=1 and f (0, )) and even for a larger class of nonlinear-
ities a.

LEM_ 2.2. Let u H2(0,) satisfying

(2.15) -u"(x)+f(x)a(u(x))O, x(O, ),
u(0)=l,

where a is a maximal monotone graph such that 0 a(O) and the functionj(s)= fa(r) dr
satisfies

(2.16) fo
(These hypotheses are satisfied when a(s)-lslv-’s, p 1.) Assume that fL(O,) and
O<_f(x)<m2 a.e. x(O, ),for some m2>0. Then u(x)>O for any x[0, ).

Proof. We shall use some ideas of [7] and [13]. By reasoning as in the proof of
Lemma 2.1 we can always suppose without loss of generality that a-(0)-0 and that
is single-valued. By a comparison argument completely analogous to the ones in the
proof of Lemma 2.1 we show that if u H2(0,) satisfies

-u"(x)+m2a(u(x))-O on (0,), _u(O)-

then u(x)<u(x) for any x (0, + ). Thus it suffices to prove that u(x)>0 for any
x (0, ). Suppose that u has compact support and we shall obtain a contradiction.
The maximum principle implies 0 <u(x)< and hence u" L(0, ). Thus u
C([0, )) with u"_>0. Let R-sup{x" u(x)4=0} (R>0 and finite by assumption). As
u’(R)-O it is not difficult to see that u’(x)<0 and u(x)>0 on (0,R) (it is a conse-
quence of u" > 0). But (2.16) yields

ds_ u’(r)g(l) j(s) fo j(u(r))



682 J. ILDEFONSO DIAZ AND JESUS HERNANDEZ

and we will get a contradiction by estimating u’(r)/(j(u(r)) on (0,R). Defining
w(x ) ( u’(x ))2 we have

(j(u)), a(u)u, 2],,(u’)m2- 2m2
But w(R)-O andj( u(R)) 0. By integrating we getj(u)-w/2m2, and, finally,

fol u’(r) dr_(2rnzfo,dS<+Oj(u(r))

a contradiction.
Remark 2.1. By arguing in a similar way as in [11] we can prove that if f is an

unbounded subset of , the maximal monotone graph a satisfies

(2.17) ds <+o j(s)- a(r)dr,

and u satisfies

-Au+f(x)a(u)F in (f_>k),
u- on

where F and p are assumed with compact support, then u has compact support. We
point out that the improper integral (2.17) converges when a(s)= Is’ signs if and only if
0_<p< and hence the compactness of the support of u is an obvious consequence of
Lernma 2.1.

Remark 2.2. Lemma 2.1 (and then Theorem B) can also be obtained when the
operator -A in (NLS) is replaced by other elliptic second order differential operators
as in Remark 1.6. The new definition of the functions ua(x)-h(Ix-xol) in the proof of
Lemma 2.1 can be found by the methods of [12].

2.2. Nonlinear boundary conditions. Statement iv) of Theorem B will follow as in
the preceding section by considering the nonlinear equation

(2.18) --Au+lx2](x)lulVsignuF in f,
Ou

Bu--n + b( u ) q on 0.,

where fL(f), f>0, 0_<p< 1, b is C nondecreasing with b(0)-0, FL() and
C:(Of).
First, we remark that "interior estimates" for 0 can be obtained as in Lemma 2.1.

More precisely, we have

(2 1) ao xax-suppF: d(x,(ax-suppF))> Kx

where now6 M*-llull(a). To show this it is sufficient to choose Xo in such a way that

ux>--M* on , being -fx-suppF in the proof of Lemma 2.1. It is clear that (2.19)

6One obtains estimates for M* by means of comparison theorems (see e.g. Lemma 3 in [12]).
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does not give any information about the behavior of f0 near the boundary of Kx-
supp F.

To improve the estimate (2.19), we introduce the following notation: given a
smooth curve F in R N and xo R v, we define

(2.20) O(xo,F)-inf(cos(n(x y, x-xo)"
where if(x) (n l(X),’ , n(x)) is the unitary outward normal vector to F at x and
(n(x)’, x-Xo) denotes the angle between the vectors K(x) and x-x0. It is clear that the
value of O(x0,F) depends essentially on the "geometry" of F. If for instance F-Of
and f is a convex bounded set of Rw it is easy to see that O(x0, F)>0 when x0.

LEMMA 2.3. Assume that u H2(f) fq L(f) satisfies (2.18). For >0, let x- {x
f: f(x)_>X}. Moreover, suppose 0_<p< and

(2.21)

Define

O(xo 0(2x- supp F) fq 02) _>0 Vxo fx- supp F.

F- O(x- supp F) 710 supp q.

Then

(2.22) fo D xf]x-suppF: d(x,r)_> i-(xy and

d(x 0(x- supp F) 0f) > Kx,
(1 --p)/2},

where M*-Ilull().
Proof. Arguing as in Lemma 2.1 we only consider the case F_>0 and _>0. Let

)-fx-supp F. By again using comparison results (cf. e.g. [12]) it is not difficult to see
that if ux satisfies

(2.23) --Au

(2.24) ux>_M*

(2.25) 0ux
On

(2.26) 0ux >0
0n

on F-O Off supp q,

onO (0 supp q),

then O<_u(x)<_ux(x) for xO. From the proof of Lemma 2.1 we know that the
function

ux(x ) gx,lx- xol
2/(1-p)

satisfies

--Auh+2U>_0 onO
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for any x0 . Condition (2.24) is satisfied if

( M* )
(l-p)

(2.27) Ix- x0l_> Vx 0f 0f.Kx ,,
On the other hand,

Oux (x)- 2N ( ) ()0ux 2 [X_Xo[fl+p)/(l-P)cos(n(x)x_xo)On oxi
-x-’n’-x’-Kx, l-pi=1

Kx, 1-p x )

Thus (2.26) is a consequence of (2.21), and (2.25) holds if we choose xo satisfying

]X_Xot ( (1 -P)IIIIL(aa) )
This completes the proof.

Remark 2.3. Part iv) of Theorem B follows from Lemma 2.3 if we set F----0; (2.21)
holds easily if, for instance, f(s)_>m >0 X/s (as in the combustion system) and f is
a convex set.

Addendum. After the completion of this work, the authors learned that C. Bandle,
R. P. Sperb and I. Stakgold have recently obtained, in the paper Diffusion-reaction with
monotone kinetics, results similar to our Lemma 2.1, by using different methods. Some
results related to Remark 2.1 can be found in a paper (to appear) by M. Schatzman,
Stationary solutions and asymptotic behaviour of a quasilinear degenerate parabolic equa-
tion.
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ON THE BEHAVIOR OF THE SOLUTIONS TO THE LAMM
EQUATION OF THE ULTRACENTRIFUGE*

ATSUSHI YOSHIKAWA

Abstract. Let c(r,t) be the solution, i.e., concentration of the solute, to the Lamm equation of ultra-
centrifugal analysis: Oc/Ot= r- I(r{DoOc/Or- roO2SoC/(1 + kc)})/Or, O<r <r<rb, t>0, with the (nonlinear)
boundary conditions DoOc/Or-ro-Soc/(l +kc)=0 at r=r and r=rb, and the initial data c--co(r) when
t--0. Here D0, so and k are positive constants independent of c. We discuss the behaviors of c(r,t) as

+ or DO0. Studies are also made on the limit equations corresponding to the cases DO=0 or t-- + o.
The main theorems are stated in the Introduction.

0. Introduction. We discuss mathematically the behavior of the solutions c(r, t) of
the Lamm equation of ultracentrifugal analysis [11]:

Oc_
_

0 ((0 1) 0---r - r C

O<ra<r<rb, t>0, with the (nonlinear) boundary condition

(0.2) ac
Oo-- rto2sc O

at r-r and r-r, and the initial data

(0.3) C-co(r ) when t-0.

Here c(r, t) stands for the concentration of solute in a two-component system, DO is the
diffusion coefficient, s the sedimentation coefficient, and o the frequency of the rotor.
We assume DO to be a positive constant independent of c as a first approximation while
taking

SO(0.4) s s(c) + kc’

conforming to experiments, where so and k are positive constants independent of c. For
more details, see Fujita [6, Chapt. 1].

The initial concentration co(r) naturally satisfies

(o.5)
and

(0.6)

co(r)>--O

mo- co(r)rdr>O.

The problem (0.1)-(0.6) makes sense mathematically. Namely, we have existence and
uniqueness of solutions. Let Eoo stand for the space C(ra, rb) of the continuous
functions on the closed interval [ra,rb], and EP, <p<, for the space LP(ra,rb; rdr)
of the p-summable functions over the interval (ra,rb) with respect to the measure rdr.
The norms of EP are denoted by [’lp. Using the notion of a generalized solution

*Received by the editors June 6, 1982, and in revised form March 1, 1983.
tDepartment of Mathematics, Hokkaido University, Sapporo, Japan.
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introduced in Definition 1.4 below, we prove in the next section, 1, the following:
TI-IEOM 1. Assume co(r) P, <_p <_ oo, satisfy (0.5) and (0.6). The initial boundary

value problem (0.1)-(0.4) then has a unique generalized solution c(r, t) in the large in t.
The solution is nonnegative, the mapping t-c(r,t)Ep is continuous for t_>0, and
[c(, t)[p is uniformly boundedfor t>_ O. Mass is conserved:

fr[C(r,t)rdr-mo for t>0.

Moreover, if co(r) is nondecreasing in r, then so is c(r, t)for each t>0. Furthermore, if
co(r ) is smooth and compatible with the boundary condition (0.2), i.e.,

Do---Oc rw2s( co )co 0

at the boundary r= ra, r--rb, then the solution c(r,t) is a smooth classical one.
In particular, we may write the solution c(r, t) of the problem (0.1)-(0.4) as

(0.7) c(r,t)-c(r,t; Do,soo2,k,ra,rb; co,mo)

by making explicit all the parameters involved. The following homogeneity relation is
easily established:

(0.8) ac( flr, yt; Do,soo2,k,flra,flrb; co,mo )

t-c r,t; ,--,r,rb; Co,

for any >0, B>0, y>0.
We may rather schematically say that the classical Faxen solution [5] corresponds

to the case k 0, r 0, r +, and the Archibald solution to the case k 0.
Our principal purpose in the present article is a study of the behavior of the

solution c(r,t; Do)=C(r,t; Do,soo2,k,r,rb; co,mo) when t+ or D00. Actually
the equilibrium solution is important in the experiments, and so is the estimate of the
convergence rate as + o. The equations (0.1)-(0.4) yield to an equation of a kind of
conservation laws (with a boundary condition) when Do0. Solutions to the latter
equation, generally easier to handle, provide much information on the properties of
solutions to the original Lamm equation, especially for small t.

The equilibrium solution ce of the Lamm equation (0.1)-(0.4) is a solution to the
following equation:

(0.9)

ra<r<r, with

cEDo--r r2s( ce)ce= O,

(0.10) ce(r)rdr-mo

The problem (0.9)-(0.10) is essentially a two-point boundary value problem for a
second order ordinary differential equation. The requirement (0.10) reflects (0.6) through
the conservation of mass in the system (0.1)-(0.4).
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In [}2 we prove the following:
THEOREM 2. The problem (0.9)-(0.10) has a unique solution ce(r)=

ce(r; Do,sow2,k, ra,rb; mo). ce(r ) is everywhere positive and strictly increasing in r. For
r<rb, we have

SoO2(0.11) ce(r)O as
Do +.

For any Lipschitz continuousfunction f( r), we have

(0.12) frSbf( r )ce( r )rdr mof( rb)

as So602/Do + oo.
Note the homogeneity relation:

( DlJ- k amo)(0.13) ace(fir; Do,s0t2 k,flra,flrb; mo)--ce r; -A-S,s0w2 --,ra,rb;

for any a>0,/3>0.
To discuss the convergence of the solution c(r, t) of the Lamm equation (0.1)-(0.4)

to the equilibrium solution ce(r ) of (0.9)-(0.10), we introduce the following linear
operator Le: for u(r) C2(ra,rb) satisfying

Ou(0.14) Do--rsow2S( ce( r ))u-O

at r=ra and r rb, we put

(0.15) Lru----r-l- r Do--rsowSi(ce(r))u
ra< r< rb, where

c(0.16) s,(c)- +kc
and s(c)-----c

The operator Le with the boundary condition (0.14) is extended to a nonnegative
selfadjoint operator L; in the Hilbert space L2(ra, rb; q(r)r dr), where the density
q(r)rdr is related to

(0.17) q(r)- exp (-D(sow2frs;(ce(r’))r dr’}.ra

Let ,e be the smallest nonzero eigenvalue of L. In 3, we show the following:
TI-IFOIM 3. Let co(r ) be smooth, compatible with the boundary condition (0.2) and

satisfy (0.5)-(0.6). Assume further that co(r) is nondecreasing in r. Let c(r,t) be the
corresponding solution to (0.1)-(0.4) and ce(r) the equilibrium solution with the same
mass as co. There is a positive constant C independent of t, r such that, for each > O,

(0.18) ]c(, ) ce] <-- Cexp( Xet ).
In the last section, 4 we discuss the equation with the vanishing diffusion coeffi-

cient: D0-0, which is given by

(0 19) Oc+ O
Ot r- - (r2w2s(c)c)=O
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ra<r<r, t>0, with the boundary condition

(0.20) c-O atr-ra

and the initial data

(0.21) C-co(r ) when t-0.

Note that no boundary condition is imposed at r= rb. ?.(r,t) is said to be a generalized
solution of (0.19)-(0.21) if, for any T>0, and for any continuously differentiable
function (r, t) which vanishes at r-rb and at t-T, we have

(0.22) fr[Ck(r,O)co(r)rdr+fordt fr[b(r,t) Otk(r’t)
O-------[ r dr

+ f_rdt ?.(r t))frrsoto2s ( Oq(r,t)
O------7-- rdr- O.

"o ra

The analogues of the Rankine-Hugoniot condition and the entropy condition are
readily introduced in the present situation.

THEOREM 4. Let co(r) Eoo be nonnegative and nondecreasing in r. Assume further
that co(r ) vanishes for r<-ra+ e for some e>0. Then there is a generalized solution 6(r,t)
to the problem (0.19)-(0.21) such that for each > O, 6(r, t) is nonnegative almost ev-
erywhere in r(ra,rb) and nondecreasing in r. Moreover, there is a family of classical
solutions c( r, t; Do) of (0.1)-(0.2) with (0.4) for DO small enough such that c( r, t; Do)
(r, t) as DO 0 almost everywhere in r for each t>0. If co(r) is smooth, then the same
conclusion holds if we assume co( ra) C’o( ra) O.

The system (0.19)-(0.21) is not quite a conservation law because of the boundary
condition. In fact, we have the following:

THEOREM 5. Let (r,t) be the generalized solution of (0.19)-(0.21) as given by
Theorem 4. For any T> O, we have

(r,T)rdr+soo2r (e(r-O,t))dtco( r )rdr=
rb r

S

ra

Moreover,

(0.24) JraO?.(r,t)rdrO as t +

There remains much to investigate. The assumptions that the initial data are
nondecreasing in r in Theorems 3-5 are stringent. As to Theorem 3, we include
supplementary information in 3. Theorem 4 is certainly incomplete. We must weaken
requirements on the initial data co and complete Theorem 4 by evaluating the conver-
gence rate as DO 0 of the solutions of the Lamm equations with the same initial data.
The uniqueness question remains open for the moment.

In this respect, we recall that when the sedimentation coefficient s(c) is given by

(0.25) s(c): kc,

(0.1)-(0.3) is linearized essentially by the Cole-Hopf transformation (Weiss [17]). The
above questions have then naturally been settled mathematically in a rather complete
way.

The ultracentrifuge, as a means to measure the weight of proteins, is said to have
become less important recently. Probably owing to this situation, few comprehensive
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studies have recently been done, although physicochemical interest in the ultracentri-
fuge still prevails. (Some of the latest studies include Dyshon, Weiss and Yphantis [3]
and Fujita [7].) On the other hand, in spite of the simple forms of (0.1)-(0.4), mathe-
matical studies similar to the present one seem to have been rarely carried out.

1. Existence and uniqueness of generalized solutions in the large. Consider the
initial boundary value problem for the equation:

0--=r - r Do-r-
r I (ra, rb ), > 0, with the boundary data

OC-rS(c)c-O(1.2) D0-

at r--ra, r rb, and the initial data

(1.3)

when t=0. Here S(c) is a slightly more general function than o2s(c) of (0.4). Namely,
we take S(c) to be a twice continuously differentiable function of c such that

inf(S(c); cEl } >0,

M=sup S(c)+c dc
cR < +c,

dS( c) cd2S( c)
(1.6) 2

dc + <0 forc_>0
dc

and

(1.7) N=sup{cS(c); c>O} < + o.

Let S,(c) cS(c). From (1.5), we have IS,(c)l< Mlcl, whence

for all c(r)Cp, <_p<_.
Actually we take

(1.9)

IS,( c( r ))lp<--M[c( r )lp

S(c)=o2s(h(c))

where s(c) is that of (0.4) and h(c) is a twice continuously differentiable function of c
such that

h(c)-
c, c>

4k’
3
4k’ k’

and h’(c) _> 0 everywhere. Then (1.4)-( 1.8) are easily verified.
If the initial data co(r) is smooth and compatible with the boundary condition

(1.2), the existence and uniqueness of a local classical solution to the problem (1.1)-(1.3)
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is known (see Ladyzhenskaya, Solonnikov and Ural’ceva [10, Chap. 5, Thm. 7.4]).
However, we here argue a bit differently and rewrite (1.1)-(1.3) into an integral
equation.

Let

(1.10) u

for uD(Lo)-(uC2(I); Ou/Or-O at 0I}. The selfadjoint extension Lff of the
operator L0 to the Hilbert space 2 is nonnegative definite and generates a contraction
semigroup Wo(t ) of operators in 2. Let Wo(t,r,r’)= Wo(t,r,r’; Do,I) be the kernel of
the semigroup Wo(t):

(1.11) u( r, ) Wo( )u-fWo( t,r,r’)u( r’)r’ dr’.

Then u(r, t) satisfies the equation

(1.12) -+Lo u(r,t)-O,

with

t>O, rI,

(1 13) au’r’t’=o rI, t>0r
(1.14) u(r,O)=u(r), reI.

Note the homogeneity relation:

(1.15) Wo(Yt,flr,flr’; Do,flI)- Wo( t,r,r’; ,I)
for fl>0, y>0, flI--(flra,flrb).

It is well known that Wo(t,r,r’) is expressed by means of the Bessel functions of
order zero. In particular, we see that Wo(t,r,r’) determines a contraction semigroup,
which we still denote by W0(t), of operators in each E P, <p< o. The following basic
estimate is proved in the Appendix.

LEMMA 1.1. Let o be the smallest nonzero eigenvalue of the operator LS. We can

find a positive constant C independent ofDO such that

f OW(t’r’r’) C(l +Ol/2t-l/2)e otsup r r’ dr’ <_
rI

and

sup f,
rl

OWo(t,r,r’) r’dr’<_C(1 +Dl/2t-l/2)e-Xot

for all > O.
Remark. We shall omit D0>0 in applying Lemma 1.1 unless a reference to DO is

absolutely necessary.
Now we give the integral equation which replaces the initial boundary value

problem 1.1)-( 1.3).
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PROPOSITION 1.2. Let c=c(r,t) be a smooth solution to the problem (1.1)-(1.3).
Then c satisfies the integral equation

(1.16) c-R(c)- Wo(t)co,
where

(1.17) R(c)(r t)=fotdt’ fl oW(t-t’’r’r’) S(c(r’,t’))r’2drOr’

This follows from the next lemma. Recall that W;(I; rdr) denotes the Sobolev
spaces of the functions f(r), -summable over I with respect to r dr up to their mth
derivatives Orf(r), _< m, and W’(I; rdr) the closure in wm(I; rdr) of C(I).

LEMMA 1.3. Let gCl([0, oo); W21(I; rdr)) be given. Then the initial boundary
value problem for the equation"

OU --l 0 ( OU) --l O(r2g(r,t))(1 18) O---[--r - rDo-- -r Or

( r, t) I (0, oo), with the boundary datum

Ou(1.19) Do-r+rg=O at OI

and the initial data

(1.20) u- Uo when t- 0,

is solved by

(1.21) U- Wo(t)Uo+U,
where

(1.22) ul(r,t )- fotdt’fl oW(t-t’’r’r’) r’ ’)r’2Or’ g( ,t dr’.

Proof. Note that u(r,t) is well defined because of Lemma 1.1. Let G(r,t)-
lfr.g( r,t)r’dr’ and u v G. Then v is the solution of the problem

Lov-OG/Ot, V-Uo+G(,0), in 2. Thus, u- Wo(t)Uo+U2, where

tdt’ fl t’,U2--- Wo( t-- r r’) OG(r’,t’) r’ dr’ + Wo( )G( O) G.

Since the definition domain D(Lo) of the operator L and W2(I; rdr) are dense in E2,
we get, using integration by parts in t’ and r’, u- u2 in

Remark. Let gL([0, o); ) be measurable in(r,t), u of (1.22) is then well
defined because of Lemma 1.1. For Co([ 0, o); D(Lo)), we have

foOdt u(r, ) Oq( r,
rdr

:ftu0(r)(r, 0)rdr-fodt ft( Lock)(r,t )(u(r,t)+ G(r,t )}r dr.

In this sense, u(r,t) of (1.21) is a generalized solution of the initial boundary value
problem (1.18)-(1.20).
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DEFINITION 1.4. We call c(r, t) a generalized solution to the initial boundary value
problem ( 1.1 )-( 1.3) if c(r, ) is a solution to the integral equation (1.16)-(1.17).

Now we show the existence of the solution to the integral equation (1.16)-(1.17).
PROPOSITION 1.5. Assume (1.4), (1.5). Then for any co(r) L(I; rdr), the equation

(1.16), (1.17) has a solution c(r,t)L([O, oo); L(I; rdr)). If CoE, then c(r,t)
C([0, oo)I). For any Cop, l<_p<_oo, the equation (1.16), (1.17) has a solution
c(r,t)C([O, oo); P).

Proof. We employ successive approximations. Let co= Wo(t)co and c"=c+
R(c"-1) for n_> 1. Then for n>_ 1,

(1.23) cn+ n=fotdtt fi OWo(
t-- tt’l"l’t)
Or’ {Sl(cn(r"t’))--Sl(c"-l(r"t’))}r’2dr"

Let co L(I; rdr). By Lemma 1.1 and (1.8),

(1.24) [cl(,t)--c(,t)loo<_rbMIColooBF - r - t 1/2,

for some constant B depending on Do. Thus, for n _> 2, we get inductively from (1.23)

(1.25) Ic"( ,t)-"-’( ,t)[-<lColoo BMrF 7 r +- t"/,

where M is given by (1.5). If co oo, then c(r, t) is continuous up to t-O and so are
for n _> 1. If co , then (1.24) and (1.25) are replaced by

1) (3)
-1

(1.26) Ict( ,t)-c( ,t)l, <_roMlcoI,Br’ F - t/2,

and for n_> 2

(1.27) Ic"( ,t)-c"-’( ,t)l <_lco[ OMrr 2 r 1+ "/2,

respectively. Now, for each c-l, the right-hand side of (1.23) defines a nonlinear
operator of u--c"- c"- l, which is quasilinear in the sense of Kree [14] on the space
+ Eoo under the assumption (1.5). Hence, we can apply the real interpolation method

to (1.23) (see also Komatsu [13]). Thus, if coP, <p< oo, we can then derive the
estimates

(1.28) [c’(,t)--c(,t)l,<_M,Mlcol,rBr - r t/

and

(1.29) Ic"(,t)-c"-(,t)l,<_M,lCol, Mrr +2 "/

for n-> 2. HereM is a positive constant. Since

X(1.30) (x)- X r(1 +i/2)
_<(1 +ax)exp(x2)

i>_0

for all x>0 with a-sup(I’(j+ 1)/F(j+3/2); j>_O), we see that c(r,t)-c(r,t)+
Y>_ l(ci(r, t) ci- l(r, t)) converges in E’ uniformly with respect to t, 0 _< t_< T, for any
T>0. c(r, t) is then readily seen to be a solution of the integral equation (1.16), (1.17).
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PROPOSITION 1.6. Let c-c(r,t) and c*-c*(r,t) be such that c-R(c)-Wo(t)co
and c*-R(c*)- Wo(t)c. If co, C P, <_p<_o, then,for each t>0,

(1.31)

where dp is given by (1.30) and C1 is a positive constant.

Proof. We have c- c* R(c) + R(c*) W0(t)(co c). Hence, again by the in-
terpolation,

Ic(, t) c*( t)lplco- clp+ rbMf;fot(t- t’)-1/2IC( t) C*(, t’)lpdt’

with some constant C. Now by a routine argument in proving Gronwall’s inequality,
we get (1.31) with Cp-rbMCF(1/2).

The inequality (1.31) implies not only uniqueness of the solution to the equation
(1.16), (1.17), but also its continuous dependence on the initial data. In this respect, we
may write

(1.32) c--c(co)--c(r,t;co)

for the solution c(r, t) of the integral equation (1.16), (1.17). We have mentioned that
we have unique local classical solutions for smooth initial data compatible with the
boundary conditions. Thus, from what we have shown, we conclude that the problem
(1.1)-(1.3) has a unique smooth solution c(r,t) in the large for a smooth compatible
initial datum. Any generalized solution can then be approximated by classical solutions
in P.

PROPOSITION 1.7. Let co EP, <_p<_ o. Then for c(r,t)-c(r,t; Co), flc(r,t)rdr
flco(r)rdr for all t>O.

Proof. We may assume co to be a smooth compatible initial datum. Then the
proposition is immediate from ( 1.1)-(1.3).

PROPOSITION 1.8. Let coP, <_p<_ , be nonnegative. Then so is c(r,_t; Co).
Proof. We show the nonnegativity of a classical solution to (1.1)-(1.3) with a

smooth compatible initial datum. We owe the following device to Hiroshi Matano. Let

(-r2S(O) foC S(O) S( C’) dc,}v(r,c)-cexp
2D0

+ S(c’)

Then Ov/Oc-S(O)v/S(c), v/c>O, so that c is a function c-c(r,v) with the same sign
as v. Moreover, S(c)-Oc/Or-S(O)-v-lOv/Or+rD-1, or DoOc/Or-rS(c)-
DoSl(c)(S(O)v)-Ov/Or, and Oc/Ot-S(c)(S(O)v)-Ov/Ot. It then follows that

OV (OV) 2Ov
Do )r

2v +A( r v ) -r +B( r v) -r
in IX(0, o) with the boundary condition 8v/Or-O at I and the initial data V-Vo--
v(r, co(r)) when t-0. Here, at c-c(v,r), A(r,v)-r-Do+rS(c), and B(r,v)-
S(O)-lDov-c{f S’(cO)dO+S’(c)),’ denoting the differentiation in c. An immediate
consequence of this rewriting is that for any classical solution v(r, t):

rnin v( r, ) >_min v( r, t’)
rI rI
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and

max v(r, t) _<maxv(r, t’)
rl rl

for t>_t’>_O. If c0_>0, then v0_>0 so that v(r,t)>_O. Hence c(r,t)>_O.
Now we discuss the implications of the extra requirement (1.6) or (1.7).
PROPOSITION 1.9. Assume (1.7). Let co(r) p be nonnegative, 1 _<p _< o. Then, for

c=c(co),

IC(, ) [p_<lColp + CpD- IN.

Here Cp is a constant depending only on p.
Proof. From (I.16) and (I.17), we have Ic( ,t)l<-Icob/IR(c)( ,t)l. By Lemma I.I

and (1.7), [R(c)( ,t)[_<CpN/Do since ’o is homogeneous of degree in Do.
PROPOSITION 1.10. Assume (1.6). Let co(r) p be nonnegative and nondecreasing,

<_p <_ o. Then c c(r, t; co) is a nondecreasingfunction of rfor each t> O.
Proof. We show Oc/Or>_O for the smooth solution to (1.1)-(1.3) when co is a

smooth compatible initial datum. In fact, u- Oc/Or satisfies the equation

u 2u u
-7-- Do Or--g+ ( r- lDo- rS;( c))-r ( r-2Do+ 3S(c))u- rS;’( c)u2

in IX(0, oo). At the boundary, u=rS(c) at I and u=Oco/Or when t=0. By the
maximum principle, u cannot take negative minima for >0 under assumption (1.6).

Remark. Under a milder assumption, Matano [15] has recently shown that the
lap-number, or the minimum number of a solution’s monotonicity intervals at each t,
does not increase as o.

Proof of Theorem 1. Recall (1.9) for the choice of S(c). Since s( h(c))= s( c) for
c_> 0, Theorem follows from Propositions 1.5-1.10.

2. The equilibrium solution. Let Sl(C)=C/(1 +kc). Let a_>0. Consider the prob-
lem:

(2.1) ace(r)
Or --ars,(ce(r))--O

in I=(ra,r) with

(2.2) ftce(r)rdr-mo,
m0 being a given positive constant. In the original notation, a S06)2/D0

The problem (2.1)-(2.2) can be treated as a two-point boundary value problem for
a second order nonlinear ordinary differential equation (consult Hartman [9], for
instance). But we here argue in a more naive way. First we observe the following facts"

PROPOSITION 2.1. The problem (2.1)-(2.2) has at most one solution. Any solution is

positive and strictly increasing.
Proof. We first show uniqueness of a solution. Let *(r) be another solution to

(2.1)-(2.2). Then u=ce-c* satisfies the equation )u/)r--otrs2(r)u, where s2(r)=
(Sl(Ce(r))--Sl(C*(r)))/(ce(r)--c*(r)). Then u(r)=uoexp(afrs2(r’)r’dr’). u0=0 fol-
lows from fl u(r)rdr O.

To show the positivity of a solution, we first modify the function Sl(C) for negative
c so that Sl(C)=C/(1 + kh(c)), where h(c) is the function appearing in (1.9). Let v(r) be
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any function which satisfies (2.1) in I (ra, rb). Then v(r) cannot take negative local
minima nor positive local maxima at interior points of I. Observe v(r) is strictly
decreasing where v(r)<0 and strictly increasing where v(r)> 0. Thus, v(ra) cannot be
a negative minimum and V(rb) is a negative minimum provided v(r) never takes
positive values on I. We thus see any solution ce(r) to (2.1)-(2.2) is nonnegative. Since
ce( r ) exp(kce(r) ar2/2) constant, as is immediately verified, we conclude ce(r ) >0
and thus ce(r) is strictly increasing.

PtOPOSTION 2.2. For any a>_O, the problem (2.1)-(2.2) has a solution ce(r,a).
Furthermore, cn(r, a) is real analytic in a.

Proof. Let X=X(mo) be the set for which the problem (2.1)-(2.2) has a solution.
Note 0 X. We will show that X is an open and closed subset of the interval [0, ),
hence X=[ 0, o). We first verify closedness. Let aX,a o. Since each ce(r, a) is
strictly increasing in r, supce(ra,a)<mo/ftrdr=C because of (2.2). From (2.1),
OcE( r, Otn)/Or<_rbk- SUPn Otn= C2. Therefore, ce( r, a,) <_ C + C2rb. Now aX follows
from the Ascoli-Arzela theorem.

We are now going to show openness of the set X and at the same time real
analyticity in a of ce(r,a). Note that we may reduce k= in the function s(c) since we
may take kc as a new unknown instead of c. So we assume k- in the rest of the proof.
Let a X. As a candidate for ce(r, a + z), we consider a power series

(2.3) d(r,a; z)- ci(r,a)z i,
i_>0

where c(r, a) are successively determined from the following relations:

(2.4) co(r,a)-ce(r,a),
i.e., the solution of (2.1)-(2.2), and for i_> 1,

(2.5)

(2.6) ftc,( r, a)rdr=O.
Here s0 and g_ are given as follows:

(2.7) si( Co,..., c ) s(co ) c(i)iv(i)!

where c(i)-(c,...,c) and the summation is taken over the multi-indices v(i)-
(n 1,’" ", n) of nonnegative integers such that

(2.8)
and

(2.9)

Namely,

(2.10)

n + +in--i, n + +ni=p

,)( Co, c_ ) Z Co )
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where the summation is taken over the multi-indices v(i) in (2.8) with n-0. In
particular, g(o-0 (cf. for instance, Bourbaki [2, Chap. I, 3, Exercise 7]). We claim that
the series d(r, a; z) converges for small z at each a X. From (2.6), (2.7), we have

(2.11)

where

(2.12)

X F,.(r’,a) (co(r", "dr"M(r,r’,
r

frrt’F’(r"a)frrt’ }Sl(co(r",a))r"dr"M(r,r’,a)r’dr’

Fi( r, a): s(i_ 1)( Co(r, a),""", C,_ ,(r, a)) + a;(,_ 1)( Co(r, a),""", C,_ l(r, a)),

M(r,r’ Or)-- sl(c(r’t))

We then obtain the following estimates:
LEMMA 2.3. Let B-suPrelmax(s(co(r,a)), S(co(r,a))) and 8-supreiS(co(r,a)).

Then for i>_

ic,(r,a)l<_a,S,(co(r,a))K’ B(4-ra2)
B K=

2

Here a andfor i>_

ai+l--a(i)’(i) P!
v(i)!
+aKXa(i),(i) P!

v(i)!’

with a(i)-(a,...,ai), the first summation being taken over the multi-indices v(i)-
(n l," ", n i) and nonnegative integers p such that n + + in i, n + +n --P, and
the second summation being taken over n + + in + 1, n + + n -p.

In fact, we have

(2 13) Icl(r a)l<Sl(co(r a))"o- ’2

from (2.11) and (2.12). Note that

f/s IF(r’, a)l
c (r, a)l_< ( Co( r, a)) 7-_-77_-,--__x r’ dr’.

Thus, from (2.11), (2.12) and (2.7)-(2.10), Lemma 2.3 now follows by induction on i.
We return to the proof of Proposition 2.2. From the choice of a in Lemma 2.3, we

have

(2.14) ’ axj-
(1-V(1-4(l+aK)x)}

j>_, (2(1 +aK)}
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The right-hand side of (2.14) is holomorphic for Ixl< 1/(4+4aK). It then follows that
the series d(r,a; z) in (2.3) converges for Izl< 1/(4K(1 +Ka)). In particular, we con-
dude that each aX is an interior point of X, whence X=[ 0, ). Note that we may
take B i in Lemma 2.3. Thus, ce(r, a) for

2(4-4)
has the following convergent power series expression"

ce(r, a) X aci(r, 0),
i>_O

2tooco( r, O) r_ ra2

Cl(r O)--2-1Sl(Co(r O)){ ra+r26

and so on. Actually we may take a sequence a;) --, , i--, , by a)-0 and

o(i)-- a(i- l) + 4-1(r-- ra2 )- { + a(i-1) r-- ra2 } -1

2

for i_> so that ce(r, a) is analytic in a with

la- a{i}l< 2(a{i} a{i- ) )
for each i. We have thus completed the proof of Proposition 2.2.

Now we try to give some idea how c(r, a) behaves when a_>0 varies. Let

(2.15) y=y(r,a)-exp tr2

2 2

and put

(2.16) mooty( r, et)
c ( r, ot ) i ._---f-(-r-a -)

Then

(2.17) dc(r’a)-arc(r a)dr

and

(2.18) ftc( r, a)rdr- mo

Let

(2.19) ce( r, a) c( r, ct)(1 + w(r, a))
be the solution to (2.1)-(2.1). Let

(2.20) ti
km

1-y(ra,a)
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Then regarding w(r,a) as a function of y: W-w(y)=w(y,a), we obtain the following
differential equation for w"

(2.21) dw( y ) F( y, w )

c(1 +w)(2.22) F(y,w)- (1 +t(1 /w)y)
with the vanishing mean value:

(2.23) fylW(y)dy-O,
y --y(ra, a), --Y(rb,

We know in particular

(2.24) w(y) > 1.

Since F(y, w)<0 for w>- 1, we see w(y) is strictly decreasing. Because of (2.23), we
have

(2.25) W(Ya)>O>w(1 ).
Let Y0--Yo(a) be the unique zero of

w(yo)-0.(2.26)
PROPOSITION 2.4. Let

Then

(y,z)--log
l+tiz

(2.27) (y,yo)<-w(y)<--1 + (1 (y,yo)) -,
where the equality holds only when y =yo.

Proof. Since F(y, w) is strictly decreasing in w>- 1, we have dw(y)/dy>-4/(1
+ty) for Y>Yo, and dw(y)/dy<-t/(1 +cy) for Y<Yo. On the other hand, let

(2.28) FI(y w)- -4 (1 +w)2

l+fiy

Then (Fl(Y,w)-F(y,w))w<O for wv0, w>-l. Hence, dw/dy<Fl(y,w) for Y>Yo,
and dw/dy>F(y, w) for Y<Yo. From these inequalities, (2.27)readily follows.

The trouble here is of course that we have no practical means to evaluate Y0 =Y0(a)
of (2.26). Yet we may say that Proposition 2.4 gives an approximation of w(y) for small
t, and hence, of ce(r,a) because of (2.19). A rather rough estimate of yo(a) follows
from (2.27). In fact, determine.9o =9o(a) from fYa (Y’Yo)dy-O or

fio(Ct)__t_l+e_{ u(t)}Bu(aYa)

with u(x) (1 + x)l+,/3=(1-ya)-6-1. Then the left-hand side of (2.27) implies

(2.29) ya<_Yo( a) <_9o( a)
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since O(y,z)/Oz>O. The fight-hand side of (2.27) does not seem to imply a better
estimate.

LEMMA 2.5.

w(y)>(l+y--yo)-w(y)<(l+Sy--Syo)-
Proof. Note F(y, w)>-ti(1 + w)2 for w> 1. Then

(2.30) O<liminfyo(a)<limsupyo(a)<_

since ya<-ayo <- +Ya from the second inequality of Lemma 2.5. Since lim_.o)o(Ct)
1/a, (2.30) is sharper than (2.29) for large a. (2.27) and (2.30) now imply 0_<

lim inf,_, oo W(Ya) <- lim sups_, oo W(Ya) < (1 log 2)- log 2. From Proposition 2.4 and
(2.24), we conclude

lim w(1)- -1.

Proof of Theorem 2. Because of Propositions 2.1 and 2.2, what remains to be
proven is (0.11) and (0.12). Returning to (2.19), we have

k- lty( r, ot)O <- ce( r a) <- i Z -( i-y-o i
(0.11) then follows immediately. Now for a large enough, a_>a0>0, we observe
Ice(r,a)(r-r)l<C/(r+ r), rI, for a positive constant C depending on ao. If f(r) is
Lipschitz continuous, we have If(r)-f(r)l <_ Clr- rl for some positive constant C so
that

CC
I(f(r)--f(rb))cE(r’a)l<-

(ra+ rb)

(0.12) is then dear.

3. Convergence to the equilibrium solution. Let E+, _<p_< oo, be the subset of Ee,
consisting of the nonnegative elements. Theorem then means that the problem
(0.1)-(0.4) defines a continuous mapping U(t)" E++, t_>0, which assigns to each
co(r) E+ the generalized solution c(r, t; c0) of (0.1)-(0.4). Then we have U(t) o U(t’)

U(t+t’), t_>0, t’_>0, and Up(0)=the identity operator in +. In other words, we
have a dynamical system (R)v (E+, Up(t)} for each p, 1 _<p < o. Let

(3.1) top(co) O closure of ( U(t)Co; t-> t’)
t’>0

for co E+e. Here the closure is taken in the space E P. We call the set top(co) the 0-1imit
set of co (see Hale and Infante [8]). Since E+ C E+q p> q, we have top(Co)ct%(Co) if
co E+. Let

c(3.2) J((7) cO"r rs)2s ( )

for c-c(r,t). Here s(c) is given by (0.16).
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PROPOSITION 3.1. Let co + be smooth and compatible with the boundary condition
(0.2). Assume either co(r) is nondecreasing in r or

(3.3) IJ(co)loO-So o2r k
Then ,0p(Co) (ce}, 1 _<p_< oo, where ce is the equilibrium solution with the same mass as
CO

For a proof we employ a kind of Lyapunov functional IJ(c)12..If c(r,t) is a classical
solution to the problem (0.1)-(0.4), then J(c) satisfies the equation:

(3.4) OJ(c) 02j(c) +A(r,c) OJ(c)-B(r,c)J(c)
0t DO 0r2 Or

in I (0, oo) with

(3.5)
and

(3.6)
Here

J(c)=0 atr=ra, r=rb

J(c) J(co) when t-- 0.

(3.7) A(r, c)=Do-SoO2s(c)r,r

(3.8) B(r,c)--Soo2Sl(C) Do+r2

The maximum principle then yields the following:
LEMMA 3.2. Let c= c(r, t; Co) be the classical solution to the problem (0.1)-(0.4).

Then [J(c(, t))[oo is nondecreasing in >_ O.
In particular,

IJ(c(,t)) Io_<lJ(co)l

LEMMA 3.3. Let co be as in Proposition 3.1 and c(r, t)--c(r, t; Co). Then there is a
positive constant a such that

[J(c(,t)) 122 <e-atlj(co)[.
Proof. By integration by parts,

2-1 dlJ(dtc ) l -DO OJ(orC ) 22 +f/{2- ( _r+ r_ lA )+0AB}J(c)2rdr.
Then (3.7) and (3.8) imply

(3.9) 2_( 0A ) 0c
--r + r- lA +B-Dor-2 2-1soo2s (c)-.
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If co(r ) is nondecreasing in r, then _>0. Since s’(c)<0, the left-hand side of (3.9) is
nonnegative. Now let co satisfy (3.3). Since

2-1( 0A ) )2.- +r-lA +a-Dor-2-2-1 (So62r s (C)Sl(C)
Do

> 2-1D- lsor2rs’( c)
Soo2rk

2_ 1SorO2rs’l’( c)S(c)
Do

> --2-1Dlsoa2rs’( c)
Sooo2rk

+J(c))
IJ(c)loo

we see 2-1(OA/Or+r-lA)+B>_O because of Lemma 3.2. Note that (3.5) implies

OJ(c)IJ(c)12 c Or 2

with a positive constant C. In fact, this is a variant of Poincar’s inequality. Now the
lemma follows immediately.

Proof ofProposition 3.1. For any function (r) Cd(I), we set

J(c,d#)- ft{c(r)Do (;) +rsoo2Sl(C(r))q(r) } dr,

so that J(c,)--ftJ(c)q(r)dr when cCl(I). Let 6p(C0). There is a sequence
tl <t2<" <tv< oo such that c(r,t)8(r) in P. Then

J(C’,) ,-+lim S(c( ,ti),q)-- i-+olim fJ(c(r, ti))q(r)dr-O
by Lemma 3.3. A routine regularity argument shows that is the desired equilibrium
solution.

Now we discuss the convergence rate of the solution as t oo. Let ce(r ) be an
equilibrium solution, and recall the operator Le of (0.14)-(0.15). Le has a nonnegative
selfadjoint extension L in L2(I; q(r)r dr), where q(r) is given by (0.17). Let We(t)
exp( tLe ) be the contraction semigroup of operators in L2( I; q(r )r dr) and We( t, r, r’),
the kernel of We(t):

(3.10) We( )u=frwe( t,r,r’)u( r’)q( r’)r’ dr’

for u L2(I; q(r)r dr). Recall A e is the smallest nonzero eigenvalue of the operator L.
We prove in the Appendix the following:

LEMMA 3.4. There is a constant B>0 such that

sup r’dr’<B(1 +t-l/e)exp(-,et)
rl Or’

for all t>O.
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Let c- c(r, t; c0) be the solution to the problem (0.1)-(0.4) and ce(r), the equi-
librium solution with the same mass as c0. Then the difference v-c-ce satisfies the
equation:

v_ -i

_
{ V_rsoo:s(ce)v_rsoo2g}O---- r O0--

in IX (0, o) with the boundary condition

Do-67- ( ) v 0

at r-ra, r-rb and v-vo when t-0. Here Vo-Co-Ce and g-v2gl(r,t) with

g,(r,t):fo’(1--O)S’l’(ce(r)+O{c(r,t)--ce(r)))dO.
Therefore, as in the proof of Lemma 1.3, we have

where

v(r,t)- WE(t)t)of-fotdt’ flK(t-t’,r,r’,t’)v(r’,t’)2r’dr ’,

(3.12) K(t- ", r, r’, t’) Soto2g, ( r’, t’)r’ O( We(t- t’,r,r’)q( r’))

By Lemma 3.4 and Proposition 1.6, we see that (3.11) is valid for the generalized
solution c(r, t; Co)E which is not necessarily classical. When we regard (3.11) as an
equation for v, we note that the kernel K(t-t’,r,r’,t’) does not involve v since g is
determined from known functions c and ce.

PROPOSITION 3.5. Let ce be an equilibrium solution. Then ce is asymptotically stable.
More precisely, there are >0 and C>0 such that if ICo-Celo<, Co, then
IU(t)Co-Cel<-Cexp(-2tet) for all t>0.

Proof. We show from (3.11) that if Iv01 <, then Ivl -< Cexp(-ht) for a suitable
choice of i and C. Let us denote by K(v) the second term in the right-hand side.of
(3.11). We claim that (3.11) is solved by successive approximations. Let v= We(t)vo
and, for n _> 1, v v +K(v’- 1).

LEMMA 3.6. There is a constant A >0 such that

(3.13) Iv"(, t)l _<A8 exp(-Xet)

for all t>0, n-0, 1,2,..-.
Proof. Since ftvo(r)q(r)rdr-O, we get Iv( ,t)l<Colvolexp(-het)<-

Ao exp(- et), where Ao Co& Since Ig(r, t)l is bounded, Lemma 3.4 yields to

(3.14) ftK(t-t’,r,r’,t’)r’dr’<B(1 +(t-t’)-’/2)exp(-2te(t-t’)).

Therefore, putting a-AoB(1 +2t/e2B(1/2,1/2)/(2e))/2t E, we have Iv’l<
Ao(l+a)exp(-et ). Let A,-I+A2,_a. By induction on n, we obtain Ivnlo<--
AoAnexp(-et). Hence, if a_<J, then An_<2/(1 +((1-4a))=Ao and (3.13) holds
with C=AAo. The requirement a<1/4 is always assured if we take 6 small enough.
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End of the proof of Proposition 3.5. Since

v"+-v.-K(v.)-K(v,’-’)

=ftdt’ fK(t-t’, r, r’, t’)(v"+ l)n--l )(1)"--v"-’)r’ dr’,
"o "I

we have

Iv"+’-v"loo <_2AoABexp(-Xet)fot(1 +(t--t’)-l/Z)lv"--v"-lldt’
for n_> 1. The inequality v -vloo <_Aoaexp(--)Et) then implies v"+l -v"]oo
Aoa(2Aooa)"exp(-AEt ). Thus, if 2Aooa< 1, we get v-Y,>_o(V"+-v")+v in oo and

a )exp(_,et )Ivloo ao +1 2Aooa

We have just completed the proof of Proposition 3.5.
Proof of Theorem 3. Let co satisfy the hypotheses of Proposition 3.1. Then since

oooo(Co)-{ce}, we see for T large enough IUoo(T)co-celo <, where i is as in Proposi-
tion 3.5. Then for t>_T, [Uoo(t)Co-Celoo<_Cexp()eT)exp(-)et) while IUoo(t)Co-Celoo
<- Cr for t_< T. Consequently, we conclude IUoo(t)Co- cel= <-C exp(-,et), taking C
max(Cexp(heT), Crexp(heT)).

4. The case of the vanishing diffusion coefficient. Assume that the diffusion coeffi-
cient vanishes, i.e., DO =0. We first study the relation between the solutions c(r, t) of
the problem (0.1)-(0.4) and (r, t) of the problem (0.19)-(0.21). The topic is very
closely related to well-known discussions on equations of hyperbolic conservation law
by the artificial viscosity method (cf. Lax [12]). Here, however, the present problem is
posed on a finite interval with boundary condition (0.20), a deviation from classical
theories.

Recall (0.22) for the definition of a generalized solution (r, t). Note that if (r, t)
is smooth, then it is actually a classical solution of the problem (0.19)-(0.21), as seen
from integrations by parts. If, on the other hand, (r, t) is piecewise continuous and if
r= r*(t) is a smooth nonsingular discontinuity curve of (r, t), then we can derive from
(0.22) an analogue of the Rankine-Hugoniot relation:

(4.1)

where

(4.2)

dr*(t) (s (c+
dt =s2r*(t) (t))-s(c-(t))}

{c+(t)-c-(t))

c t)=(r*(t)+-O,t):lim(r*(t)+-e,t)
eO

and S1() is that of (0.16). These relations have in fact been introduced in Fujita [6]
after a physicochemical argument.

To assur uniqueness of the (Cauchy) problem for (0.19), it is customary to impose
the so-called emropy condition. In the present context, at every discontinuity point
(r*(t), t), the entropy condition should be:

dr*(t) P+(t)(4.3) #-(t)> dt
>
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Here t+(t) and t-(t) are the characteristic directions of the equation (0.19) respectively
on the right side and on the left side of the discontinuity curve. Namely,

(4.4) +-( t ) -SoooZr*( )s( c+--( ) )
at (r*(t), t). (4.3) is immediately seen to be equivalent to

(4.5) (r*(t) -0, t) <e(r*(t) +0,/)

at every discontinuity point. Although the above discussions are not entirely valid when
(r, t) is not piecewise continuous, the condition (4.5) makes sense as long as values like
(r__+ 0, t) are well defined. In particular, this is the case when (r, t) is nondecreasing in
r.

LEMMA 4.1. Let co(r) be continuously differentiable and nondecreasing in r.
Assume

(4.6) co( ra ) C’o( ra ) -O.

Then, for a suitable 8> O, there is a family co(r, Do) , 8 >--Do> O, smooth, compatible
with the boundary condition (0.2)for each >-DO>0, nondecreasing in r and in Do"

(4.7) Oc(r’D )
>0

Oc(r’D )
>-0Or 0Do

Furthermore, for some constant C>0,

(4.8) ICo(, Do)loo --< Icoloo /C
and

(4.9) ICo(, Do) Col -< CDo

for all $>-Do>0.
Proof. Let (x) C(R) such that ’(x) _> 0, supp’ 1, ], and ’(0)> 0. Then

supp 1, + oo) and (0)>0. We set, for DO small enough, co(r, DO ) co(r) +B((r
rb)(1/DO C’o(rb)/B)), where B is to be chosen so that co(r, Do) satisfies (0.2). Thus,

Bck’(O) = rbSotO2{Co(rb) + Be(0)}/{1 + k(co(rb) + Be(0))} at r = rb. We have
rbsotO2co(rb)/(1 + kco(rb))>0 for sufficiently small DO since co(rb) > 0. The inequalities
(4.7) are then dear. The boundary condition at r=ra for co(r, Do) is obvious from (4.6).
(4.8) holds with C<(rb- ra)rbfo d(r) dr. (4.9) is obvious.

Let co(r) be as in Lemma 4.1. Let us denote by c(r,t; Do) the solution to the
problem (0.1)-(0.4) with the initial data replaced by co(r, Do). We now apply the notion
of potential fl(r, t:Do) of Rozhestvenskii and Yanenko [16, Chap. 4, 2.7], with neces-
sary modifications.

LEMMA 4.2. Put

(4.10) (r,t; Do)=rc(r,t; Do)dr

+r(DOc(r’t; t; Do))} dt.

Then the potential

(4.11) d#(r,t; Do)=[(r’t)(r’,t’; Do)
"(r,,,o)
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does not depend on the choice ofpaths connecting the points (ra, O) and (r, t), r I, t_>0.

Furthermore, d(r,t; Do) are Lipschitz continuous in r, t, uniformly with respect to Do,

0<Do_<&
Proof. Since c(r, t; Do) is a classical solution of (0.1), df 0, whence (r, t; Do) is

well defined. We see

W=r
In particular, satisfies the equation

(4.13) (1) ( }r- r-

for (r,t)IX(O, ), and

(4.14) =0 atr=r,

(4.15)

(4.16) -fco(r,Do)rdr at r-rb,

= co(r,Do)rdr when t-O.

By Lemma 3.2, we have IDoOc(r,t; Do)/Orlo C for 0<Do<& We now claim

(4.17) Ic(,t; Oo)l <-C,

independent of DO and t. In fact, since c(r, t; Do) are nonnegative and nondecreasing in
r, we see by the maximum principle Ic( ,t; Do)l <Max(Ico( ,Do)l, maxc<_tc(rb, t’) ).
Since Sl(C) is a nondecreasing function of c, we get (4.17) from the boundary condition
(0.2) and Lemma 3.2. Lemma 4.2 is thus proved.

LEMMA 4.3.

O(r,t; Do) >_O,aDo
Proof. v r-10(I)/0Oo. Then v satisfies the equation:

019 0219..t_(90 )0190t -DO 0r 2 --/-+ rs2s( c) )Dr +so2s( c) v +-r
in I(0, o) with v_>0 at the boundary t=0, r=ra and r=rb. Since Oc/Or>_O, v cannot
take a negative minimum in t_< T for any T> 0.

PROPOSITION 4.4. Let co(r) be that of Lemma 4.1 and c(r, t; Do), the solution
to (0.1)-(0.4) with the initial data co(r, Do). Then there is a generalized solution (r, t) of
the problem (0.19)-(0.21) such that, for each > O, we have

(4.18) c(r,t; Do)-?(r,t )

as DO 0 almost everywhere in r [ra, rb]. g(r, t) is nonnegative almost everywhere, and

for each > O, is nondecreasing in r almost everywhere.
Proof. From Lemma 4.3,

(4.19) d(r,t; Do)O(r,t 0) asDo0
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for some function (r, t; 0). (r, t; 0) is Lipschitz continuous in r, t" I(r, t; 0) (r’, t;
O)l<_AIr-r’l and I(r,t; 0)-(r,t’; O)l<_BIt-t’l, .4, B being positive constants inde-
pendent of r, t. The convergence (4.19) is thus uniform in r I, 0_< t_< T, for any T> 0.
Furthermore, for each t>0, r-lO(r,t; O)/Or exists almost everywhere in r. If co is
nondecreasing, r-O(r,t; Do)/Or are nondecreasing in r, uniformly bounded with
respect to t>0 and Do>0. This means that the set {r-lO(r,t; Do)/Or; i_>Do>0} is
bounded in the Sobolev space Wll(I: r dr) uniformly with respect to t. We thus
conclude that, for each > 0,

-10(r,t; Do) --1 )(r,t; O)(4.20) r rOr Or

as DO 0 almost everywhere in r. Let

(4.21) g(r t)-r-1 0tI)(r,t; 0)
Or

We claim that ?(r,t) is the desired generalized solution of (0.19). Let w(r,t) be a
smooth function of class C such that w(r, T)-O. Multiply (4.13) by w. Using (4.14)-
(4.16) and integration by parts, we obtain

ftrv(r,O)(r,O; Do)dr+foclt flrvt(r,t)(r,t; Do)dr

T
+DO (w(r,t)dr(r,t;Do))lr=rb

r= ra dt

foTdt fi(rw(r,l))rDot’-ldPr(t’, t; Do)dr

+So602foTdt flw(r,t)sl(r-’r(r,t; Do))r2dr,

where w w/Ot, w Ow/Or, etc. Therefore, letting D0- O, we have

flw(r,O)t(r,O; O)dr-foTdt flwt(r,t)d(r,t; O)dr

+SotO2foTdt flw(r,t)sl(O(r,t))r2dr-O.
Let v(r,t)=ffbw(r’,t)dr’. Then v(rb, t)--O=v(r,T), and Vr--W. Then again by
integration by parts, we finally get the relation (0.22) with (r, t) replaced by v(r, t).
Since (r, t) of (0.22) can be approximated by functions like v(r, t) in the C topology,
we conclude that ?(r,t) given by (4.21) is a generalized solution to the problem
(0.19)-(0.21) with the required properties.

COROLLARY 4.5. C( t) El+ and the convergence (4.18) is in 1 for each >0.
In fact, c(r, t; Do) are uniformly bounded for > 0, i _>DO> 0.
PROPOSITION 4.6. Let co(r)E be nondecreasing in r, and vanish in r<_ra+e for

some e >0. Then the same conclusion as Proposition 4.4 holds.
Proof. Extend c0(r) to the whole real line by setting co(r) c0(rb) for r> rb and

co(r)=0 for r<r. Let

Co( r, Do) D- [co(r+ r’) dr’.
"o
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Then c(r,Do) are nondecreasing in each of r, Do. Furthermore, c(r,Do) Co(r),
c’(ra, Do)= 0, and Co(ra, Do) Co’(r, Do) 0 for Do< e. Therefore, as in the proof of
Lemma 4.1, we have a family of initial data Co(r, Do), smooth, compatible with (0.2) for
each 0<Do_< min(e, ), uniformly bounded, and nondecreasing in each of r, Do. The
conclusion now follows as in the proof of Proposition 4.4.

Proofof Theorem 4. Immediate from Propositions 4.4 and 4.6.
Proof of Theorem 5. Let tk(x) be a smooth nondecreasing function such that

if(x)=0 for x_< and c(x)= for x_>0. Let e>0. Apply

(r,t)=(T-t){q((ro-r)/e)- 1)
to the formula (0.22). Since

foT(T-t)dt.f1{ -e-l’((ro-r)/e) ) (s(6(r,t))r2-s(6(r6-O,t))r} dr

-s,(C(r-O,t))q) dp,

we see that this integral tends to zero as e-0 by Lebesgue’s dominated convergence
theorem. Therefore, letting e 0 in (0.22) with the above q}, we have

+ rb2Sota2f0T(T- t)s,(.(rb--O, I) dt.

Differentiation in T leads to (0.23). Now (0.23) implies that, for some rh_>0,
ft 5(r, t)rdr rh as T- oo. If rh > 0, then for some T >0 and n >0, we would have
5(r-O,t)>_rh for t>_T. But then S l( 5(r O, )) >_ rh for t>_T with some rh>0,
contradicting (0.23). Therefore, we must have (0.24).

Appendix. Let P(r) be a smooth (C) positive function on the interval I a, b ],
0<a<b< oo, and let

(A.1) Mpu=-P(r)-’r(P(r) ou

for u.(R) ={u_C(I); u/Or=O at I}. Mp has a selfadjoint extension _M2 in the
Hilbert space L(I; P(r)dr). M[, is nonnegative definite and generates a contraction
semigroup We(t) of bounded operators in L(I; P(r) dr). Let W,(t, r, r’) be the kernel
of We(t):

(A.2) We(t)u( r ) =ftwe( t, r, r’)u(r’)P(r’) dr’

for uL2(I; P(r)dr).
PROPOSITION A. 1. Let Ix be the smallest nonzero eigenvalue of the operator M. Then

there is a constant C>0 such that for all >0 we have

OW,(t,r,r’).r x- +t-’/2)e-t
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and

ft Wp(t,r,r’) Ip(r,)dr,<C( +t_/2)e_t

Proof. Let u+(r,h) and u-(r,) constitute a fundamental pair to the equation

(A.3) -hu+P- P-r =0, AeC.

We may choose u- (r,,) so that they are entire analytic in A and have the asymptotic
expansions:

(A.4) u(r,X)-(4X)-/4e(r)-/2(1 + O(A- /2))exp( rX1/2 }
for Ihl large enough outside the negative real s, larghl-e, for any e>0. Note then
the wrons:
(A.5) w(r,X)-P(r)(U+r (r,A)u-(r,h)-u;(r,A)u+(r,X)} 1,

where Ur+ 0u+/0r etc. Let

a(r,r’,X)=u+(r,X)u-(r’,X)-u+(r’,,)u-(r,A)
and

}r’

Then w(r, h)- P(r)(r, r, A)= 1. Let tr(-M ) be the spectrum of the operator
-M. For htr(-Me), let Gp(,) be the resolvent (A+Me)-1 and G(r,r’,A) the
kernel of Ge(A )"

(A.6) Ge(h)u(r):ftG(r,r’,A)u(r’)P(r’)dr’
for uL2(1; P(r)dr). Let us set

Ua(r,A)-e(r,a,X ) and u(r,X)-e(r,b,X).
Then (,+Mp)ua-O in I with OUa/Or=O at r=a and (A+Me)ub=O in I with OUb/Or
=0 at r-b. Since Ua(r,h)ub(r,h)/Or-r(r,)Oub(r,h)/Or-A(h)/P(r), where A(,)

+(a,h)u-(b,?)}, we have-{u+(b,X)u;(a,X)-Ur
(A.7) a(-M; )= {X eC; A(A)=0}.
It then follows that, for A o(-M ), we have

ub(r,X)Ua(r’,X) r>r’,
a(x)

(A.8) Gv(r,r’,X)- U.a..(r...;X)ub(r,,X ) r<r’.
A(X)

Consequently, for t>0, the semigroup kernel is given by

(A.9) We(t, r, r’) (2ri )- freXtGe( r, r’,
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where F is a path from oe- to oe, r/20r, cncircling the negative real axis
counterclockwise. Since Rc/20 for F with I,1 large enough, we see from (A.4)
that

A(X)- -2-]/2(p(a)P(b)}-I/2{1 +O(,-1/2)}exp((b-a)]/2),

ub( r,, )Ua( r’,, ) 4-l{p(r)P(r,)P(a)P(b) }-1/2
{-1 +O(,-l/2)}exp{(r’-a+b-r)X1/2}

for r> r’ and

ua( r, , )ub( r’, X ) 4-l{p(r)P(r,)P(a)P(b)) -1/2

{-1 +O(X-l/2)}exp{(r--a+b--r’)X1/2}
for r’ <r. Therefore,

(A.10) Ge(r,r’,X)-2-1(Xp(r)P(r’)}-l/2( +O(X-1/2)}exp{-Ir-r’lX1/2}

for rr, F, I,1--’ . It follows immediately from (A.9) and (A.10) that

IW’(t r’)l<-ct-l/2exp{ Ir-rf

for small t>0, r=/= r’. Differentiating (A.10) in r or r’, we obtain similarly

(A.11) f/
and

OWe(t,r,r’) 1/2e( r’) dr <_ ct-

(A.12) f/ OW,(t,r,r’)
Or’ e( r’) dr’ <- Ct-1/2

for small t, 0<t< 0. Let F(N) be a contour in the complex plane which coincides with
F for I,1 large and the first N eigenvalues ,(i), i-0,...,N-1, lie outside the region
encircled by F(N). Then if

we have

W(ev)(t,r,r’)-(2rri)-l fr eXtGe(r,r’,,)d,
(N)

We(t,r,r’) 2 e-X(i)tui(r)ui(r’) + WN)(t,r,r’)
i<N

Here ui(r ) are the orthonormal eigenvectors of M corresponding to (i). Note
(0) 0 and Uo(r) (f1P(r) dr)- i. We then have

(A.13) f OW,( t, r, r’) P( r’) dr’ <_ Ce-x()t
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and

ft OW,(t,r,r’) Ip(r,)dr,<Ce_X(1)(A.14) -r-;
for large enough. Since A(1)= t, Lemma A. is thus proved.

Remark. For a derivation of (A.4), consult Yosida [18] and Erdelyi [4]. If P(r)-r,
the result is classical.

Proof ofLemma 1.1. If DO 1, we verify Lemma 1.1 immediately from Proposition
A.1 by taking P(r)=r, a=r, b=r. For general Do>0, we apply the homogeneity
(1.15).

Proof ofLemma 3.4. Let DO 1. Since, by (0.15),

O {rq(r)-10Leu r- r - (q( r ) u )

we see q(r)-lwe(t,r,r’) We(t,r,r’)q(r’) if P(r)-rq(r)-1, a-ra, b-rb. Since q(r)>0
on I, Lemma 3.4 follows at once from Lemma A.1.
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ON THE EIGENVALUES OF A CERTAIN INTEGRAL EQUATION*

B. F. LOGAN"
Abstract. It is shown that the integral equation

f0 sin(x/) dt=hf(x) (x>0)f(t)
r(x-t)

has a solution f for any (complex) h, excluding the real numbers A-<0, h> 1. The closure of the set of
eigenvalues, i.e., the spectrum of the integral operator (over all functions in its domain) is then the entire
complex plane.

The integral equation

f sin(x-t) dt=,f(x) (x>0)(1)
J0

f(t) r(x-t)

was shown by Krein and Nudel’man [1] to have a solution f for any in (0, 1). They
remarked that [0, 1] constitutes the spectrum of the integral operator. Actually, this
statement should be qualified in the context of L2(0, ). The linear transformation Af
defined by the integral (1) carries L2(0, o) into L2(0, o) and the norm of the transfor-
mation is dearly 1. However the eigenfunctions do not belong to L2(0, o) because the
transformation is not "completely continuous" (See Riesz-Sz. Nagy [2, pp. 231-232])
Landau and Pollak [3] have shown that (1) has "approximate solutions" in L2(0, ) in
the sense that for any h in (0, 1) and any e>0 there exists f in L2(0, o) such that
Ilaf-hfll<e. The purpose of this note is to point out that (1) has a solution f (such
that the integral is absolutely convergent) for any (complex) , excluding the real
numbers h<0, h> 1. The closure of the set of eigenvalues, i.e., the spectrum of the
integral operator (over all functions in its domain) is then the entire complex plane.
This is rather interesting, particularly in view of the fact that the integral kernel is
positive definite.

Now we will show that

(2) f(t)-e-it f (0<Re),< 1)iFl(,,l 2it) sinr, eXtdx

satisfies (1) with h=(1- e-2riv)-l.
These functions are Fourier transforms of the eigenfunctions of the finite Hilbert

transform, which apparently have not been pointed out in their entirety. Those in [1]
correspond to Re,- 1/2.

Supposef(t) and (sgn t)f(t) have Fourier transforms:

(3) F(x) = f(t)e-iXtdt,

Ga(x):f (sgnt)f(t)e-altle-iXtdt (a>0).(4)

Received by the editors March 12, 1982.
Bell Laboratories, Murray Hill, New Jersey 07974.
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We find that

(5) Ga(x)=i -ooF(t),t[(t-x +a

(6) lim G(x)- -i f-_o F(t__) dt= _il(x )
a---)O oo rr( x-- )

where P (often _/0) is called the Hilbert transform of F. (The cut in the integral sign
indicates a Cauchy principal value.)

We suppose in (1) that f(t) is defined for negative .argument by the integral; i.e.,
f(x) is the restriction to the real line of an entire function of order 1, type 1, and iffhas
a Fourier transform it must vanish outside [- 1, 1]. Then writing

f(t)e-iX’dt=- (l+sgnt)f(t)e-iXtdt

we infer from (1) that

(7) -{F(x)-iP(x)}-,F(x) (-l<x<l)

or

(8) /(x)- i(2,- 1)F(x) (- <x< 1),

(9) fl F(t) dt-IF(x) (- l<x<l)
-1 ,r(x-t)

where

/- i(2X- 1).
For t-0, a nontrivial solution of (9) is

F(t)-(l-t2)-/2,

which gives f(t) J0(t) a solution of (1) for , 1/2.
Generally one can evaluate finite Hilbert transforms explicitly (then by an indirect

method) only for certain elementary functions; for example,

fl Pn(t) dt (0<Re,/< 1)
--I (1-t)v(1 +t) 1-3’ ,r(x-t)

where P,(t) is a polynomial in t, can be evaluated using the theory of functions analytic
in the upper half-plane. We will find that

(10) fl dt =1.___
-, (1-t)v(1 +t)l-’ "tr(x--t) tanrr, (l_x)V(1 _X)1-’

(- <x< 1, 0<Re-/< 1),
which with (3) and (9) shows that (2) satisfies (1).
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To obtain the result (10) we use the fact that for functions H(z) analytic in the
upper half-plane, satisfying a local integrability condition on the real axis, and a
condition at infinity, for example, H(z) 0, the imaginary part of H(x) is the Hilbert
transform of the real part of H(x): i.e., writing

h(x)=ReH(x)
we have

f f (xh(t)t-----dt-l(x) a.e(11) Imn(x)-lim
1 x)2t h(t)=

y-O 71"
_

(x-t +y2

Now consider the function analytic in the upper half-plane

(12) H(z; ,)
(z- 1)V(z+ 1) ’-v

where 3,=a+ ifl, 0<a< 1, - <fl< o, and we take the branches so that

0<arg(z-1) <r, 0<arg(z+ 1)<r
and on the real axis

arg(x+i0- 1)- ( 0r (x< 1),
(x> 1),

arg(x + i0 + 1)-{ 0r (x> 1),
(x< 1).

Then writing

and

H(z, ,) e vlg(z- 1)-- (1 --T)log(z+ 1)

q(x) =log l+x
1-x

we have

(13) II-x 11 +xl

(x> 1),

(-l<x<l),

(x<-l),

(7-- c+ ifl).

Now defining

(14)
(15)

n ( 2 IX, ) iH(z; + ifl ) + iH(a; ifl),

H2(z; tx, fl ) H( z or+ fl ) H( z ot fl )
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we see that on the real axis both H and H2 take pure imaginary values outside [- 1, 1];
i.e., the imaginary parts of these functions are Hilbert transforms of functions sup-
ported on (- 1, 1). We have

(16)

hl(x)-ReHl(X; Ot,fl )
0

sin( flq,- ar) + e-t’ sin( flq + ar)
a --a(Z-x (1 +x)

(-l<x<l),

(Ixl> 1)

(17)

eos(,-,.,) / e-ros(,/,.,)

l, ( x ) ImH, (x a, fl )
] 2 cosflq,

(-l<x<l)

(18)

e’cos( ,t,- ," )o( e-’" cos( t’t’ + )
h2(x)-ReH2(x;a,fl)- (l-x) l+x)-"

0 (]x]> 1),

(19)

l_(x)-ImHz(x; a,B)-

e#’ sin( fig,-- ar ) + e-# sin( fig, + ar )
a --a(Z-x (1 +x)

(sgnx) 2 sinflqb (Ixl> 1).
Ii_xlll/xl -’’

(In (16)-(19), q,=-,(x)-logl(l+x)/(1-x)l, 0<a<l, -<fl<o.) Now a certain
linear combination of h and h 2 will give the result (10).

First we find, eliminating sinflq between h and h 2, that

(2o) gl(x)--coshflr sinarr hl(X)+sinhflr cosar h2(x )

(cosh 2flr- cos 2ar)

0

cos#,t,(x)
-a(1-x (1 +x)

(-l<x<l),

(Ixl>l)

with the corresponding linear combinations of/1 and/2 giving

(21) l(X)-coshfl,n" sinarr/l(X) + sinhflr cosarr ]2(x)
sinh 2flrr sinh flq(x) + sin 2art cos flq(x)

(1-x)(1 +x)l-
(-l<x<l).
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Then, eliminating cosfl between h and h 2, we find

(22) gE(x)-coshflr sinarr hE(X)-sinhflr cosarr hi(x)

(eosh2r-cos 2act)

0

sinfl(x)
(1 -x)’*(1 +x)’-’*

(--l<x<l),

(Ixl>l),

with the corresponding linear combinations of ]2 and ]1 giving

(23) g2(x)-coshflrr sinarr/2(x)- sinhflrr cosarr/,(x)
sinh 2flrr cos fl(x) + sin 2art sin fl(x)

(I-x)"(1 +x)-’

Then we have

(-l<x<l).

(cosh2flrr-cos2ar)
(1 x)(l+x)’-’(24) g,(x)+ig2(x)-

0

(-l<x<l),

(Ixl>l),

(25) g,(x ) + igE(X) (sin2ar- sinh 2flrr )
(1-x)(1-+-x)’-

(-l<x<l).

Writing

eifl’l’(x)

),,(1 +x),-, )l-v(1-x (1-x)V(l+x
we have

(26)
dt

-l (1--t)v(1 +t) ’-v r(x-t) (1-x)(1 +x)’-

(- <x< 1,

(-l<x<l, 0<ReT<l),

where y a + ifl, and

sin 2art- sinh 2flrr
cosh 2flrr- cos 2art tanrry

which is the desired result (10).
We note from the asymptotics of the Kummer function that f(t) defined in (2),

with y- a + ifl, satisfies

]f(t)]=O( I__L+ )Ill ill
Thus for 0<a< 1, the integral in (1) with f(t) given by (2) is absolutely convergent.
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FOURIER INVERSION
OF THE ATTENUATED X-RAY TRANSFORM*

ANDKEW MARKOE"
Abstract. A variably attenuated x-ray transform is shown to be invertible via an integral formula for the

inversion of the exponential x-ray transform.
The attenuation must be known and constant in a convex set containing the unknown emitter. However

the attenuation can be otherwise arbitrary.
If/ denotes the attenuation constant of the exponential x-ray transform then the integral formula

computes the Fourier transform of the emitter on all of R from the values of the Fourier transform on the
set A’={o+iltoCnltoS"-i, o_l_to}. Of course F. Natterer [Numer. Math., 32 (1979), pp. 431-438]
showed that the values of the Fourier transform of the emitter can be obtained from the Fourier transform of
the exponential x-ray transform. In essence however the basic method is analytic continuation from the set
A.

A consequence of the integral formula is a uniqueness theorem for attenuated x-ray transforms of the
type considered here: if the transforms of two objects agree at infinitely many directions, then the objects are
the same.

1. Introduction and notation. The attenuated x-ray transform occurs in mathemati-
cal models of single photon emission tomography. This paper is concerned with invert-
ing a variably attenuated x-ray transform by obtaining the Fourier transform of the
unknown emitter from its attenuated x-ray transform. The main tool is an extension
theorem in several complex variables since it was shown by F. Natterer [3] that the
(constantly) attenuated x-ray transform can give the Fourier transform on a portion of
complex Euclidean space. The emitter is assumed to exist in a convex region of
constant attenuation, but otherwise there is no restriction on the attenuator except that
it be measurable and bounded. The problem of inverting the attenuated x-ray trans-
form for an arbitrary bounded and measurable attenuator is apparently still open.

The problem of inverting the constantly attenuated x-ray transform has also been
solved by Piacentini et al. [1], Quinto [4] and Tretiak and Metz [5]. F. Natterer [3] has
found an approximate inversion, but he also proved the important analogue of the
projection theorem referred to above and the spirit of this paper most closely follows
Natterer’s. The paper along with the others cited assume that the attenuation is known.
In practice this can be obtained by transmission tomography.

Let B" be the unit ball of R and let Sn- be the unit sphere. If 0S then to
+/-

denotes the hyperplane through the origin orthogonal to to.

The attenuated x-ray transform is defined by

e"f(s,to)- f(s+tto)exp- i(s+zto)dr dt,

wherefL2(B"), toS"-, sto- and # is the attenuation.
If/ is constant then P" is called the constantly attenuated x-ray transform.
The exponential x-ray transform is defined by

Qf(x,to)= f(s+tto)exp(lt)dt

Received by the editors December 4, 1981, and in revised form March 2, 1983.
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(cf. Tretiak and Metz [5]). It is useful since if/ is constant then the relation

P’f(s, o )-exp(-/x(1-Islz) ’/) Q’f(s, o )

holds. Furthermore it will be shown that the inversion of the variably attenuated x-ray
transform considered here can be reduced to the inversion of the exponential trans-
form.

The series of papers by Budinger and Gullberg ([2] for example) are a good source
of results and references on the practical side of attenuated x-ray transforms.

2. An extension problem in several complex variables. In this section it is shown
how to analytically continue an entire function whose values are known on

A- {o/iloloSn-l, o0+/- }
from A, to R". This will lead to aninversion of the attenuated x-ray transform.

DEFINITION 2.1. Let t: R" R be defined by

(2.1) t(ol-(o2 +o2z +lx2)/2.
Now define the parametrized family of plane curves I’o by

(2.2) Fo(0) t(a) sin O + it cos 0.

Then define Z: CR-* C by

(2.3) ZI(’), o) It

Z2( ")t, O ) [O? + O? __.]/2] 1/2,
Z(V, o)- oj, j=3,...,n.

The branch of the square root defining Z is arbitrary except in two cases. If the
argument is positive then the positive branch is taken; if y-Fo(0) then Z2(y,o) is
taken to be

(2.4) Z2(y, o ) -t(o ) cos0 + i/ sin 0.

It is easily shown that in this case Z2(, o)2-[o+o-y2]/-.
Finally if u C, then u_ denotes the reflection of u in the second coordinate. The

notation also applies to functions; F_(z) F(z)]_
THEOREM 2.1. Let F be an entire holomorphic function on C andfollow the notation

of Definition 2.1. Then

(2.5) Z(ro,o)cA.

for all o R".
Furthermore F R" can be recoveredfrom values ofF on A by the integralformula

fo [t(o)cosO-itsinO]-(Z(Fo(O),o))+Oz(Z(Fo(O),o)) dO(2.6) r(o) -- t(o)sinO+ilxcosO_o

where E-F+F_ is twice the zz-even part ofF and f-F-F_ is twice the zz-oddpart of
F.
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Proof. Assume that o R" is fixed. Then define

0(0) (cos 0, sin 0,0, 0,..., 0) S"-
s(0 )- (t(o) sin 0, -t(o) cos0,03,...,

It is then clear from Definition 2.1 (especially (2.4)) that

z((ro,o))(0)-
thus proving (2.5).

It is also clear from the definition of Z that for fixed o, Z(,, o) is not continuous,
much less holomorphic in . But if G is holomorphic on C" and even in z2, then G(Zo)
is indeed holomorphic. Here we have let Zo(y)-Z(y, o). In such a case the Cauchy
integral formula holds"

froG(Z(V))dv(2.7) G(Z(/ )) -’-
for "to interior to I’o. Note that Fo is oriented clockwise.

For an arbitrary entire F on C" we let F be the z2-odd part of F: FI-1/2(F-F_ ).
It is easy to see that F -ZEG for an entire G which is z2-even. Now let F2- G2 be the
z2-even part of F.

Observe that if ’0- 01, then Zo(,o)- o. Thus

f(o)-r(zo(’Yo))-(F + FE)(Zo(,o))
( zo(Yo )) + zo( o ))).

Since both G and G2 are z2-even, (2.7) holds. Also z2(Zo(’O))--Z2(O)--O2. SO

(2.8) r(o)
V-V0

The integral formula (2.6) now appears after using the parametrization (2.2) of
in the formula (2.7), thus completing the proof.

Remarks. Although Theorem 2.1 only states that the values of F on R" can be
recovered from its values on A, actually more is true: A" is a set of uniqueness for
holomorphic functions in C". This fact actually follows directly from Theorem 2.1 as
was pointed out by one of the referees. For it is enough that an entire function
vanishing on A" should vanish on C" also. But Theorem 2.1 shows that an F vanishing
on A" vanishes on R" and hence also on the complexification C" of R", by the
Cauchy-Riemann equations.

The second referee produced a stronger result" Let be an infinite subset of S"-I.
If F is holomorphic on C" and F(o+i#o)-O whenever0 ando+/-, then F=0
Oil Cn.

Proof. Let 0 be a limit point of . Let 0:-(01 +i02101,020+/-) be the com-
plexificatio of to-. As above, F vanishes on to if it vanishes on to +/-. By continuity
then F vanishes on - Choose coordinates so that o-e, the direction of the0,C"

x-axis. Then F(z+ile,) is divisible by z,. But now F(z+ile,)/z, vanishes for
z-o+i#(o-e) when o:[. Again by continuity F(z+ile,)/z, vanishes on 0,C"
Thus F(z+ile,)/z, is divisible by z. By continuing in this manner, F(z+ile,)

for any k. Hence F=O. Note: In this proof F+/- and is divisible by zvanishes on e,
denotes F(z + i#o:) for z
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3. Fourier inversion of the attenuated Radon transform. F. Natterer [3] observed
that the attenuated Radon transform determines the Fourier transform on A. This is
the analogue for attenuated transforms of the Helgason-Ludwig slice-projection theo-
rem.

The Fourier transform of an L-function f on R is defined by

(3.1) f()-(2rr)-n/2f exp(-i.x)f(x)dx,
CR

The next theorem is a precise statement of Natterer’s result in n-dimensions.
THEOREM (Natterer [3]). If to S and o to

-L then

(3.2) f(o+ilto)-(2r)-/2(Qff (o,to).

Recall that the transform Q was defined in the introduction ((1.2)).
Proof. (omitted, but follows directly by making the change of variable x--o+ i/to

in the definition of the Fourier transform).
Natterer used this result [3] to approximately invert the attenuated x-ray transform

on R2 by integral equation techniques.
An exact inversion of Q is then accomplished by using the projections Qfin (3.2)

to find f on A. Since f is a compactly supported L2-function, f is entire so (2.6) can be
used to find fon R. Finallyfcan be recovered by standard Fourier inversion.

Now assume that suppfcDCsupp/, that D is convex and that/1o is constant,
with a the constant value.

Let T=((s,w)ls+/-}.
LEMMA. There are bounded measurablefunctions e: T-R such that

e(s, to) exp /(s + rto ) dr exp(at)

for all such that s + to D.
Proof. Let L(s,) denote the line through s in the direction to. For every (s,) T

such that L(s, w) D :/: , choose d(s, ) such that s + d(s, w )to D. Then let d d(s, )
and define

Now

if L(s,to)fqDva ,
otherwise.

2(s, to) exp /x (s + zto ) d exp g
But if s + zto D, then convexity implies that the line segment (zs + ztolr between and
d(s, 0)} is contained in D. Since/ a on D we get

exp (s + to ) dr+ ad(s, to ) exp[ az-- ad+ ad exp(ar).
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LEMMA. #Pf- Qf
Proof. By the previous lemma

e"(s,o)Pff(s,o) f(s+-o)#(s,,o)exp- (s+,)d dt

f(s +r ) exp( dt- f(s, ).

By combining this result with Natterer’s theorem we get
ToN.

f(o+ia)-(2w)-’/2(#Pfy (o,) ifo-.
Since Pff is assumed to be known and since e can be calculated, f can be

recovered by Fourier inversion.
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DECOMPOSITION OF HARDY FUNCTIONS INTO
SQUARE INTEGRABLE WAVELETS OF CONSTANT SHAPE*

A. GROSSMANN" AND J. MORLET:

Abstract. An arbitrary square integrable real-valued function (or, equivalently, the associated Hardy
function) can be conveniently analyzed into a suitable family of square integrable wavelets of constant shape,
(i.e. obtained by shifts and dilations from any one of them.) The resulting integral transform is isometric and
self-reciprocal if the wavelets satisfy an "admissibility condition" given here. Explicit expressions are ob-
tained in the case of a particular analyzing family that plays a role analogous to that of coherent states
(Gabor wavelets) in the usual Lrtheory. They are written in terms of a modified F-function that is
introduced and studied. From the point of view of group theory, this paper is concerned with square
integrable coefficients of an irreducible representation of the nonunimodular ax+ b-group.

1. Introduction.
1.1. It is well known that an arbitrary complex-valued square integrable function

(t) admits a representation _by Gaussians, shifted in direct and Fourier transformed
space. If g(t)-2-1/2r-3/ae-t/2 and o, 00 are arbitrary real, consider

(1.1) g(t’)(t) e-ioto/2eiOotg( t- o )
and form the inner product

(1.2)

Then

to, Oo ) fg<to,o,o)( )k( ) dr.

(1.3) ffig(to,oo)l=dtodoo:f l(t)l=dt.
The function (t) can be recovered from the function t’(t0, 00) through

(1.4) /( ) ffg(t’)( )ffZ( tO, 00 ) dtod,o0

The above statements remain true if the Gaussian g is replaced by an arbitrary
square integrable function. The advantages of the Gaussian are (i) maximal concentra-
tion in direct and Fourier transformed space and (ii) the possibility of a simple intrinsic
characterization of the space of functions ’t’(t0, o0).

This representation of functions has been used in quantum mechanics, quantum
optics and signal theory. (See e.g. [1 ], [4], [5], [6].)

1.2. Consider now the case where the object of interest is not a complex-valued
function (t), but a square integrable real-valued function s(t), say the wiggle of a
seismograph. It has been known for a long time that it is very useful to consider s(t) as
the real part of a complex-valued square integrable function h(t) which has the special
property that its Fourier transform vanishes on a half-line (say/(0)-0 for 0< 0). The

*Received by the editors September 21, 1982.
Centre de Physique Th6orique, Section II, Centre National de la Recherche Scientifique, Marseille,

France.
Elf Aquitaine Company, O.R.I.C. Lab., 370 bis Av. Napol6on Bonaparte, 92500 Rueil-Malmaison,

France.
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space of such functions h(t) is denoted by H and called the Hardy space on the line. It
is a dosed subspace of the space L2 (R,dt) of all square integrable functions. The
functions s and h are in a natural one-to-one correspondence, and special properties of
the function h(t) (in particular its phase) make it a valuable tool.

1.3. This paper is concerned with the decomposition of functions hH into
square integrable "elementary wavelets", and with the corresponding reconstruction
problem. One can of course analyze the function h(t) by applying to it the general
results described in 1.1, applicable to any function in L. This is indeed what is done
traditionally (see e.g. the famous paper [4]). It is however dear that, when we follow
this procedure, we are not taking advantage of the special features of the function h(t)
which led us to introduce it in the first place; we are analyzing a function that belongs
to the subspace H2 CL2 in terms of wavelets that do not belong to this subspace (the
Fourier transform of a Gaussian does not vanish on a half-line). It will not help (at
least in principle) to replace the Gaussian by an elementary wavelet that belongs to H2,
since we have to consider all of its shifts in Fourier transformed space, and these are
sure to bring it out of H2.

1.4. In several papers devoted to the study of seismic traces [7], [8], one of us has
suggested analyzing them in terms of wavelets of fixed shape, and has produced strong
numerical evidence for the soundness of such analysis. The aim of the present paper is
to give mathematical underpinnings for this procedure, which also avoids the objections
that were raised in 1.3. The main idea is to analyze functions in terms of wavelets
obtained by shifts (only in direct space, not in Fourier transformed space) and dilations
from a suitable basic wavelet.

1.5. The group G2 of shifts and dilations (which is the only two-parameter Lie
group and thus the "smallest" noncommutative Lie group), acts on H through a
natural irreducible unitary representation U(3,) (3’ G2). If we fix a function g H2

("the analyzing wavelet"), we obtain a correspondence between an arbitrary hH2,
and the matrix element me,(’t)=(U(’)g,h) considered as a function on the group G..
The main question, both from a conceptual and practical point of view, is whether the
correspondence h mg has a well-behaved inverse, allowing a "stable" reconstruction
of h from mg. Stated somewhat differently, the question is whether, for a suitable
invariant measure d3, on G2, one has

(1.5) flm% ,(v)l=dv flh(t)ldt

in analogy to (1.3).

1.6. It turns out that the answer depends on the choice of the analyzing wavelet g.
For (1.5) to hold, the wavelet g, in addition to being in HE, has to satisfy an "admissi-
bility" condition.

The main general result, proved in 3, can be stated without reference to group
theory:

Let h(t) (the function to be analyzed) satisfy

(i) f lh( )l dt<
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and

(ii) /()-0 for w<O.

(Conditions (i) and (ii) say that h H2.)
Let g(t) (the analyzing wavelet) satisfy (i), (ii), and also the "admissibility condi-

tion"
(iii) f dueUfi,(o),(e)iEdo<. Associate to h the function (h)(u,v)of two

variables, defined by

(1.6) fg(eUt )h(t)dt(eh)(u,v) g -v

where

Cg= due u [g()g(eo)12do- 2r d0
Ilgll 2 0

and

Ilgll --f lg(t)l=dt.

Then
(a)

ffl(eh)(u,v)l -dudv-flh(t)l dt

and
(b) h(t) can be recovered from (h)(u, v) through

=1____ uth(t)
fg ffeu/2g(e -v)(eh)(u,v)dudv.

If g is not admissible, then cg= oo, and the transformation (1.6) is not defined.
The need for an admissibility condition may seem surprizing. It stems from the

fact that G2, in contrast to all other "everyday" groups, is nonunimodular (i.e. has no
right-and-left-invariant measure) (compare [2], [3]).

Section 4 is devoted to a more detailed study of the transformation in the special
case where g is a "particularly good" wavelet which plays a role analogous to that of
the Gaussian in the conventional theory. We find it convenient to introduce a special
function F(z) which may be of independent interest. In [}4 we gather the results
necessary for an intrinsic characterization of the range of , which will be given in a
forthcoming paper.

This paper can also be viewed as the description of a natural quantum-mechanical
representation for particles that "only know how to move in one direction".

This interpretation and further developments will also be found in forthcoming
papers.
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2. Notation and preliminaries.
2.1. The inner product of square integrable functions is written as

(f,g)=ff(t)g(t)dt
where fis the complex conjugate of f.

The Fourier transform off(t) is

inverted by

f(0 ) (2 ,r )-l/2fe-’"f(t) dt

f( ) (2,r)-l/2fei’tf(o) d.
We also write

The shift operator T is defined by

(TVf)(t)-f(t-v)
The corresponding multiplication operator is EV;

f=-lf

(vl).

(EVf’)(to)-eiof(o).
The dilation operator Z is defined by

(ZUf)(t)-e-U/af(e-Ut).
The relations

(2.1) Tvzu-zuTv/expu, EvZu-ZUEvexpu,
ZUTv- Tvexpuz u, ZUEv- Ev/expuzu

will be basic for all that follows. They correspond to

( TvZ"f)( ) e-./2f( e-ut- e-.v ),

( Z"TVf)( ) e-./2f( e-.t_v ).
The commutation properties with oy are

(2.2) @T-E-@,
(2.3) VZu-Z-".

We have TV,T--Tv,+v2, and Z",Z"2-Z+. The operators , T, E, Z are all
unitary in L2().

2.2. We say that a function hL(ll,dt) belongs to the. Hardy space HCL if
/(0)- 0 for 0<0.

H is a closed subspace of L.
A real-valued function cannot belong to H-.
If hH then/and/ (where l(t)-h(-t)) are orthogonal to all of H2. However,

h*H2, where h*(t)-(-t).
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The Hilbert transform in L2(R dt) can be defined as H= _oy-le where e is the
operator of multiplication by sgnto (the sign of to). We have H= -1; H is unitary,
anti-Hermitian and real (commutes with complex conjugation). If hH2, then h iHh,
giving Imh HReh and Reh HImh.

If s(t) is any real-valued, square integrable function then

belongs to H2. We have

(2.4)
for every g H2. Also

hs-s+ ills

(hs,g)-2(s,g)

(2.5) IIhll- 211sll =
where IIJql 2- (f,f)

2.3. Shifts and dilations in H 2. If h IH2, then TVhH2 and ZUhH2 for all u, v.
For our purposes it is crucial to remark that the family T, Z acts irreducibly in

H2. That is: If V is a closed subspace of H2, containing at least one nonzero vector; if
V is stable under all Z, T (which means T"ZVh V whenever h V), then V is all of
H2. For a proof see e.g. [9].

Another important, if obvious, remark is that shifts and dilations are "real", in the
sense that

(2.6) Re(rh)-TV(Reh)

Re(Z"h)-Z"(Reh).

and

(2.7)

3. The 0_.-transform: arbitrary admissible wavelet.
3.1. Admissible analyzing wavelet. We shall say that a function g, not identically

zero, is an admissible analyzing wave&t, if
(i) g belongs to H2

and
(ii) g satisfies the condition

(3.1) ff l( z- TVg,g)l2dudv< oo.

By (2.2) and (2.3), the condition (3.1) can also be written as

(3.) ffl(Z"E-Vg,,)ldudv-ZfdueUflg(w)g(eU)ld<

2 , llgll 2f0 I (toto )1-----2 alto.

Examples. 1) Let 0<a<b< o. Define g(t) through its Fourier transform: g(to)
if a <to<b, and 0 otherwise. Then g(t) is an admissible analyzing wavelet, as can be
shown by a simple calculation.

2) Let a> 0. Define g,,(t) through its Fourier transform g(to) exp( (a/2)ln2 to)
=0-1"/2 for 0>0, and g(o)-0 for 0<0. Then g(t) is an admissible analyzing
wavelet which will be studied in 4.
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Remarks. 1) There exist functions in H2 that are not admissible analyzing wave-
lets; this is the case e.g. if the Fourier transform of g is defined by

( .0-- l/2+e 1)
-’/2-* (I<w<O0)

(e>0)

and (0)-0 for 0_<0.

2) A Gaussian cannot be an admissible analyzing wavelet since it does not belong
to H. However, if 0o is positive and sufficiently large, the function ei’’t exp(--t2/2) is
very close to an admissible analyzing wavelet.

3) From (3.2) we see: If (0) is the Fourier transform of an admissible wavelet
then, for any real-valued qo(0), the function ei(’)(o) is also the Fourier transform of
an admissible wavelet.

3.2. The number %. If g is an admissible analyzing wavelet, we denote by cg the
number

c- ffl(z-uzg,g)l=auav.

By (2.2), Cg can also be written as

Cg
Ilgll 2 ffl(ZUE-V , )12dudv

which gives

(3.3) Cg=2rfodfdue"lg(o)g(e")[2-2r 1()12
d.

Ilgll 2

3.3. e ansIorm. Let g be a fixed adssible analyzing wavelet. For arbitrary
real u, v, define

(3.4) g("’v)=Z-"TVg.

For every hH2, define the function h of variables u, v by

(3.5) (h)(u,v)- (g(" ,h)

i.e.

(3.6) fg(eut_v)h(t) dt.(eh)(u,v)-
In words: (h)(u,v) is obtained by "testing" the function h with the help of

dilated and shifted analyzing wavelet. The dilation parameter is u, and the shift
parameter is v. The result of testing is multiplied by a normalization factor which
depends on the choice of the admissible analyzing wavelet.

We call h the @transform of h (with respect to g). By (2.4) we have, with
s(t)-Reh(t),

e./2fg(eut_ v )s(t) dt.( eh )( u, v )
fg
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Alternative ways of writing (h)(u,v) are, by (2.2), (2.3),

=_L1 __L_I v(3.7) (h)(u,v) (Z-TVg,h)- ___ (ZUE
fc.

--u/2ffg
e

o
(e-Ut )/(t)exp[ ive-Uto dt.

From (3.7) one sees that

I(h)(u, v)l-L-1 Ilhll Ilgll

for all u, v..
The correspondence h --, h-is linear.

3.4. Isometry of . We claim: For every hH, the function (Eh)(u,v) is square
integrable, and

(3.8) ffl(h)(u,v)l=dudv -Ilhll.
Proof. (i) The equality (3.8) holds for h- g, since, by (3.5),

ffl(eg)(u v)ldudv Cg 2ff I( Z-TVg, g)12du dv ---c I111

(ii) Equation (3.8) also holds for every h of the form h- Z-oTVog. Indeed,

_UTVg _UoTVog)_1__ uo_,TVg(eh)(u,v)- ___ (Z ,Z (T-voz ,g)
c
(z.o-rv-ox.-.og,g)

=(eg)(u-uo,V-voeU-o),
by (2.1), (3.5) and (3.7).

Now

ffl(eg)(U-Uo,V-voe"-U)lauav=ffl(eg)(u’,V-Voe"’)12du’dv
ff l( e. )( .’. .’)la. a,’- IIll

with u’ u uo v’ v Voeu-u.
(iii) By standard arguments, (3.8) is extended to all finite linear combinations of

vectors of the form ZUTVg. By irreducibility (2.3.), these vectors are dense in HE, and
so (3.8) is extended by continuity to all of HE This completes the proof.

By the polarization identity, one has

(3.9) (hl,h2) L2(a2,dudv)---- (hi,h2)

for all h H2, h 2 (H2.
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3.5. Inversion of . We now sketch a verification of the fact that E, considered as
an integral transform, is self-reciprocal. In other words" If Eh is given by (3.6), then h
can be recovered from Eh through the formula

(3.10) ffeu/2g(eUt-v)(h)(u, v) dudv.

Since the integral (3.10) cannot converge for every h and every t, the formula (3.10) has
a sense that is familiar from the L2-theory of Fourier transforms or from [1].

In order to obtain (3.10) we write, with a slight stretching of notations, and using
(2.4), (3.9),

h( o ) ( to, h ) L2(.,dt)-- ( t(o+),h )H2--(t(o+) h ) Lz(.2,dudv)
where Bto(t) B(t 0) (Dirac measure) and +)( ) 6( o) + (i/r)P/( o) (prin-
cipal part). The function (}+)(u, v) can be found by using (2.4)"

(3.12)  / f (eUt )to+)(t) dt(eSt(o+)l(u,V)- vg e -v

l_L 1 ulna, -v)=2 cg eu/2f’(eUt-v)(t-t)dt-2 Vg e (et

Inserting (3.12) into (3.11) gives (3.10).
Remark on redundancy. Equation (3.10) is a way of recovering the function h(t)

(and s(t)-Reh(t)) from the function (Eh)(u,v). The function h(t) can also be re-
covered from values of (Eh)(u,v) on suitable subsets of the plane, e.g. from the
function

(h)(0,)-c (0)/(o)e do.

We see that/(0) can be obtained from (h)(0,e) through Fourier transformation and
division by (w). The last step, however, corresponds--at best--to an unbounded
operator. This makes the recovery of h(t) from (h)(0,) an impractical proposition in
general, and shows the advantage of working with the isometric transformation (3.10)
or with suitable discrete approximations to it.

Covariance of. By the construction of , we have" If h Zu’h, then

If h2- TV2h, then

(eh)(u,v)-(h)(u+u,v).

(eh2) (u, v)-(eh)(u, v-v2eU).
3.6. Reproducing equation. The range of is not all of L2(l2, dudu). In this

section we derive a condition that has to be satisfied by all functions of the form Eh,
with h H2. More specific results are given in 4, for a particular analyzing wavelet.

Define a kernel G(u, v; u’, v’) by

(3.13) G( u, v; u’, v’) (g(,,v), g(U’,V’) ) ( Z -UTVg, Z -U’TV’g )
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with

(3.14) UI=U--U’ and v=v-v’eu-u’

Then a function f(u, v) that belongs to the range of E must satisfy

(3.15) __1 ffG(u, v’u’, v’)f(u’,v’)du’dv’.f(u,V)-c
Indeed, by the definition and isometry of E,

(eh)(u,v)- g (g(U ,h)- g (g(U’V),h)

u,v)) u’ff(eg( (u’,v’)(h)( ,v’)du’dv’.

Now

,g(U,V)(egu,v)(u’, v’)- (gu,,v, )

giving (3.15).

3.7. Cycle-octave representations.
THEOREM. Let s( t) be any real-valued square integrable function, and g an admissible

analyzing wavelet. Associate to s the function S( u, ) defined by

(3.16) 2-- fg(eUt- e-z )s( ) dt.s(u,)-
Then s( ) can be recoveredfrom S( u, ) through

(3.17) s(t)=Reh(t)
where

(3.18) ffg(eUt e-uz)s( u, ’) dud"h ( ) vg
One has

(3.19) fflS(u,,)12dud’-2f(t)a,.
The function h(t) defined by (3.18) belongs to H2.

An approximate discrete version of (3.16), (3.18), was discovered by one of us [7].
The statements of this theorem are an immediate consequence of the results

proved so far, if we introduce the variable

"r=e%.
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3.8. Group-theoretical comments. The objects that we study, namely

fg ( eh )( u, -v ) ( g, TvZUh ),

are matrix elements (coefficients, in another terminology) of the irreducible representa-
tion, in H2, of the two-parameter group of shifts and dilations. We have shown that
these coefficients, considered as functions on the group, are square integrable with
respect to the right Haar measure dx =dudv, if the vector g is suitably chosen.

If the standard theory of square integrable representations were applicable here
(see e.g. [2]), it would follow that all coefficients of this representation are square
integrable i.e. that all wavelets are admissible. However, the standard theory holds only
for unimodular groups (i.e. groups possessing a right- and left-invariant Haar measure),
while the group here is the prime example of nonunimodularity. (The left-invariant
Haar measure is dXL-e-Ududv). Our results fit into the general theory of square
integrable representations of nonunimodular groups, developed by Duflo and Moore
[3].

4. The transform: wavelet g.
4.1. The function . Among all admissible wavelets there is one that plays--in

the H2-theory that we are concerned with--the same privileged role that the Gaussian
plays in L2-theory. The Fourier transform of this wavelet is just the image of a Gaussian
under a natural map.

Let a> 0. Consider the function (co) defined by

exp -ln2o for w>0,(4.1) ()-
0 for o_<0.

Notice that g(0) is infinitely differentiable everywhere, in particular at 0 0. Further-
more, (0) tends to zero at infinity faster than any inverse polynomial.

We shall first verify that g is admissible, by using the criterion (3.2): one has

/ el/8ae-aU2/2-u/2Ig(’)(e’")l=d’’-

and consequently

due" dco---e1/(4a)

which shows admissibility, and also gives

(4.2) Cg-- 2’rt’3/2ot-1/2.

The basic functional equation satisfied by g() is

(4.3)

It corresponds to the equation relating a shifted Gaussian to the Gaussian multiplied
by an exponential.
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4.2. Condition satisfied by functions in the range of . We can use (4.3) to derive
conditions satisfied by all functions in the range of . Writing

and evaluatingZ by (4.3), we obtn

--au2/2--u/2f(eh)(u,v)- e
,o

exp(ive u)u()()d.

Introducing variables

and writing

we see that

(4.4)

z au-1 and q-- ve-u

9(z,q)=(eh)(u,v),

1_ -(z2-z)/2af iqotozff’(z,q)--
fg

e
,o

e

It follows from (4.4) that ’t,(z, q) satisfies

O’t’ ieZ/,9(z + 1, q ),Oq

and, more generally

e-
Oq""P(z+n q)-(-i)’ (nz+(n--l)n)/2ot

4.3. The |unction F(z). The wavelet g(t) is given by the inverse Fourier trans-
form

g(t)- (2rr)-1/2fei’tg,(o) dw,
0

wch does not seem expressible in closed form throu# speciM functions known to us.
In order to evMuate it and related quantities we have found it convenient to introduce
the function F(z) wch will now be discussed and wch, we believe, is also intrinsi-
cally interesting.

If a>0 and if z x + iy is arbitrary complex, define F(z) by

(4.5) L(z) z-le-exp in2 d.

Ts definition is modeled on the definition

of Euler’s gala function. Because of the factor exp(-ln/2), the function F() is
entire analytic in , in contrast to F(). If the factor exp(-lna/2) were replaced by a
step function, the resulting integral would be an incomplete gamma function.
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The substitution e brings F(z) to the form

 4.6)

We may think of F(z) as being a hybrid between a Gaussian and the F-function.
Ts is made precise e.g. throu the following statement:

If Rez>0, then

(4.7) F(z )-2a f-=e-u2/zaF(Z iu ) du.

The function F(z) satisfies a functional equation that goes over into the classical
F(z)=(z-1)F(z-1) in the limit a-0. Denote by F") the nth derivative of F with
respect to z. We have then

(4.8) F,(z)=(z-1)F(z- 1)-aF’)(z 1)
and, more generally,
(4.9)

Fn)(z)=(z 1)F")(z 1)- aF"+l)(z 1)+ nF"-)(z 1) (n= 1,2,... ).
The function F(z) has asymptotic expansions for large Izl. For instance, we shall

write the analogue of the formula F(z)-(2rr)l/2e-+<z-l/2)l’z(1 + 1/12z):
Denote by z the solution of

Z =z--alnz1,

which is positive when z is large and positive. Then

Zl+a 24(z + a)5z2r
_Zl +(Z2_Z21)/2ot Z

_+_e

The expression (4.10) is numerically quite accurate even for small values of [z[.
If for fixed y,x is let go to -o, one has

F(x+iy) 2ra e(x+iy)/2t

We consider next the variation of F(z) with a. From (4.6) we see that F(z)
satisfies

(4.11) 01’, 021-’,
Oct 20z2

Notice the minus sign in (4.11). We obtain the usual heat equation if we consider
F,(x + iy) as function ofy for fixed x:

(4 12) OF(x+iy)=l 02F,(x+iy)
Oa 2 Oy 2

The function F(x +/y) is bounded by its values on the real axis: II’(x + iy)l< F(x).
Along parallels to the imaginary axis, it decreases faster than any inverse polynomial.
Considered as a function of a, I’(x) is monotonically decreasing. On the positive real
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axis, F(x) is bounded by Euler’s F-function to which it tends as a0. For every x,y,
we have IF(x+ iy)l< /2r/a ex2/2. If we let a tend to + while keeping z fixed, then
F,,(z) behaves as v/2@/a ez2/2.

Details and further results will be given elsewhere.

4.4. A class of integrals. With the help of the function F,,(z) one can evaluate
integrals of the form

(4.13) h,,B(q)- foB-lexp(--ln26o)eiqdoo
which will be needed below. Here fl is complex and arbitrary, a >0, q:/= 0, and Imq_>0.

It is convenient to introduce the variable

7 q -lnlql + iargq- i.
If q is real, then Im x (r/2)sgn q.

The integral (4.13) is first transformed into

h,(q)- -exp-e+s--s2+Bs ds

by the substitution w=es. Then the substitution s’--s+ x and a shift of the path of
integration back to the real axis bring it to the form

h,a(q) exp +(ax+fl)s s2 ds,

giving the result

(4.15) h,,(q)-exp(--c2-flx,)F,(otx+fl).
Remarks. The value of the integral (4.13) for q--0 can be computed directly. It is

r2

The function h,a(q) defined by (4.15) and (4.16) is infinitely differentiable on the real
axis, and it decreases at infinity faster than any inverse polynomial. Furthermore, h,a
belongs to H2.

As a function of fl, h, is entire analytic, and square integrable on every parallel to
the imaginary axis. We have, from (4.13)

n h a,13 inh a,/+n

4.5. Explicit expressions. We can now write down expressions for various quanti-
ties of interest:

1) The wavelet g,(t) is given by

g(t)--(2r)-l/2e--/2-F(aO+ 1) O-ln( It
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2) The -transform of g, is given by

( ga)( U,1) ) 2-1/27r-3/40tl/4e-U2a/4e-a*12-*l[’2a(20tl + 1)
where r/= ln((1/i)ve-u/E).

3) The kernel of the integral equation satisfied by the functions in the range of E is
(compare (3.15))

G(u,v; u’,v’)-e-""/4-"n-n’F2(Eal + 1)
where U U- U and

u’)/2 u’)/2 ).’01 In -[ ve
(’- -fie "
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STARLIKE AND PRESTARLIKE
HYPERGEOMETRIC FUNCTIONS*

B. C. CARLSON AND DOROTHY B. SHAFFER

Abstract. A linear operator is defined which acts on an analytic function in the open unit disk by
forming its Hadamard product with an incomplete beta function. The operator is shown to be convenient in
discussing starlike, convex, and prestarlike functions. It is applied to the study of certain classes of hypergeo-
metric functions which constitute dense subsets in the classes of starlike functions of order a, convex
functions of order a, and prestarlike functions of order a. Integral representations of the functions in these
classes are obtained from the integral representation of the starlike functions of order a.

1. Introduction. Connections between the theory of univalent functions and the
theory of special functions have not received much attention. Univalence has been
investigated for a few hypergeometric series, in particular the Gauss hypergeometric
function [7] [$6] [$7], the Bessel function zl-"J,,(z) [$5] [$2] [$8], the error function
Eft(z) [$3], and exp(z2)Erf(z) [$4]. See also [1, pp. 95-96] and [6]. At least one family
of univalent functions, a class of Schwarz-Christoffel maps, is known to be connected
with multivariate hypergeometric functions [4] [2, 8.2]. However, there are more
extensive connections that have not previously been explored, much less exploited. The
purpose of this paper is to uncover some of these connections in the hope that they will
prove useful in the theory of univalent functions. The work reported here was initially
stimulated by observing that an integral occurring in a paper on univalent functions by
R. R. Hall [5] is an integral representation of a multivariate hypergeometric function.

In 2 we introduce a convolution operator that allows very concise proofs of the
results in this paper and should be convenient in many other contexts related to
univalent functions. At the beginning of 3 we summarize some properties of a hyper-
geometric function of k variables called the R-function [2]. It is a symmetric and
homogeneous variant of Gauss’s hypergeometric function if k-2, Appell’s F if k-3,
and Lauricella’s Fn for general k. In terms of the R-function we define-classes of
analytic functions on the open unit disk and show that certain of these classes are dense
in either the starlike or prestarlike functions of order a. Some classes are shown to
consist of convex functions, and the question of what other classes are convex is
suggested as an open problem. Section 4 uses the Fo notation in dealing with convex
functions of order a. In 5 we give integral representations of functions in the closure
of the hypergeometric classes and hence, in particular, representations of prestarlike or
convex functions of order a.

2. Convolution with an incomplete beta function. Let A be the class of analytic
functions f(z) on the open unit disk, normalized by f(0) 0 and f’(0) 1. The class A is

*Received by the editors March 10, 1982, and in final revised form August 11, 1983. This work was
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Laboratory is operated for the U. S. Department of Energy by Iowa State University under contract no.
W-7405-ENG-82. This work was supported by the Director of Energy Research, Office of Basic Energy
Sciences.

*Department of Mathematics, Fairfield University, Fairfield, Connecticut 06430.
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closed under the Hadamard product or convolution:

f, g( z ) OlnnZn+ l, wheref(z)- 0ln7-,
n+ l, g( 2,) X [3n2n+ l"

n=0 n=0 n=0

In particular we consider convolution with the function (a, c) defined by

(2.1) (a,c; z)-- (a), n+l Izl<l c0 2
n=0 (c). ’- ’-

where (a)-F(a+n)/F(a), i.e., (a)0- 1, (a)n-a(a+ 1)..-(a+n- 1), nl. The
function (a, c) is an incomplete beta function, related to the Gauss hypergeometric
function by (a,c; z)-z2F(1,a; c; z). It has an analytic continuation to the z-plane
cut along the positive real line from to . Note that (a, 1; z)- z/(1 z)a and
W(2, 1) is the Koebe function.

We define a linear operator on A by

(2.2) L(a,c)f=w(a,c),f fA.
If a-0,- 1,-2,. ., then L(a,c)f is a polynoal. If a@0,- 1,-2,- ., application
of the root test shows that the infinite series for L(a,c)f has the same radius of
convergence as that for f because fim,.l(a),/(c),]/"- 1. Hence L(a,c) maps A into
itself. The Ruscheweyh derivatives [9, (2.2)] off are L(n + 1, 1)f, n-0, 1,2, .

If c>a>0, L(a, c) has the integral representation

1(2.3) L(a,c)f(z)= -lf(z)d(a,c_a)(),

where is a beta distribution:

ua-l(1--u)C-a-l d"

Equation (2.3) is readily verified by expanding f in a power series. More generally, if
c 4: 0, 1, 2,. ., L(a, c) has the integral representation

(2.4) L(a,c)f(z)---- u-lf(u)q(a,c; z/u)du,

where , is a simple closed contour contained in the open unit disk and encircling the
line segment [0, z] in the positive direction. Let K be the closed disk with center 0 and
radius r< 1. Choose { to be the circle with center 0 and radius (1 + r)/2, and note that
I(a,c; z/u)l is bounded for zK and u,. If a sequence (f}=0, f, A, converges to

f uniformly on compact subsets of the open unit disk, and in particular on 7, then
L(a, )fn L(a, )f uniformly on K by (2.4). Hence L(a, c) is continuous on A in the
topology of uniform convergence on compact subsets.

If a4:0,- 1,-2,-.., then L(a,c) has a continuous inverse L(c,a) and is a 1-1
mapping of A onto itself. Clearly L(a, a) is the unit operator and

(2.5) L(a,c)-L(a,b)L(b,c)-L(b,c)L(a,b), b,c4:0,- 1,-2,..-.

The convolution operator provides a convenient representation of differentiation and
integration: if g(z)-zf’(z), then g-L(2, 1)land f=L(1,2)g.
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The class of normalized starlike functions of order a_< is

(2.6) S*(a)- (fA" Re[zf’(z)/f(z)]>_a, Izl<l},
and the class K(a) of normalized convex functions of order a is

(2.7) K(a) L(1,2)S*(a).
The class K(0) is denoted by K. Two theorems due to Suffridge [12] take the following
forms:

THEOREM A0. Ira<_ andf g S*( a), then f, g L(2 2a, 1)S*(a).
THEOREM B. If a<_fl<_l and a< 1, then L(2-2fl,2-2a)S*(a)CS*(fl)cS*(a).
We define the convolution M,N of two classes M and N to be the class

of all convolutions f, g wherefM and g N. Then Theorem A0 states that

S*(a), S*(a) CL(2-2a, 1)S*(a).

The inclusion is actually an equality, for the right side is the class of all convolutions
(2-2a, 1),f where fS*(a). Since (2-2a, 1) also i in S*(a), each such convolu-
tion is in S*(a), S*(et). Thus we may replace Theorem A0 by Theorem A:

THEOREM A. S*(a) S*(a) L(2 2a, 1)S*(a), a_< 1.
This result is simpler in terms of the class Q(a) of normalized prestaflike functions

of order a introduced by Ruscheweyh [10]:

Q(a)-L(1,2-2a)S*(a), a< 1,

Q(1)-(fA" Re[f(z)/z]>, Iz]< 1).
Note that Q(O)-K and Q(1/2)-S*(1/2). Ruscheweyh [10] proves Q(a),Q(a)cQ(a),
a_< 1, and the inclusion is actually an equality because Q(a) contains the identity
tp(1, 1) for convolution.

THEOREM A1. Q(a), Q(a)=Q(a), a<_ 1.
The case a< follows from Theorem A by operating with L2(1,2 2a), but results

for Q(1) go beyond Theorems A and B.
By substituting S*(a) L(2 2a, 1)Q(et), a _< 1, in Theorem B, we obtain

L(2 2fl, 1)Q(a) cL(2 2fl, 1)Q(fl) cL(2 2a, 1)Q(a),
the case a -/3- being trivial. The first inclusion yields Q(a) c Q(/3), a_</3< 1, but
Ruscheweyh [10] proves this for a<_fl<_l. The second inclusion yields L(2-2fl,
2-2a)Q(fl)c Q(a) if a<fl< and a< 1.

THEOREM B1. If a<_fl<_ and a< 1, then L(2- 2fl,2- 2a)Q(fl) c Q(a) c Q(fl).

3. Classes of multivariate hypergeometric functions. Let u-(ul,-.. ,uk) be a k-tu-
ple of nonnegative weights with /k-- U 1. The set E of all such k-tuples is the
standard simplex in R- 1. Let x-(x,... ,Xk) be a fixed k-tuple of complex numbers
with Rexi>0, 1 <_i<_k. Then the set of all convex combinations U.x--k= UiX forms a
polygon (including its interior) in the open right half-plane with one of the x’s at each
vertex. (Some of the x’s may lie in the interior of the polygon.) If is a real number and
b-(bl,...,bk) is a k-tuple of positive parameters, k_>2, we define

(3.1) Rt(b,x) =f(u" x)tdlXb(U),
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where the integration is over E and the probability measure/b, P’b(E) 1, is called a
Dirichlet measure or multivariate beta distribution,

(3.2) dgb(u)_F(b + +bk) k

r(bl). FbT) i= u i- dgl duk-

Thus R is a weighted integral average of Z over a polygon in the right half-plane. If
k- 1, we define Rt(b, x) x[.

A binomial expansion of the integrand yields the series representation

(3.3) R_a(b l-x)- X .(a n Rn(b x) Ix,l< <_i<k
n=0 n.

where x (1 x t, , Xk). The function Rn, n 0, 1,2,..., is a homogeneous
polynomial with coefficients that can be determined from (3.1). The explicit formula [2,
(6.2-1)] for R, implies the generating relation

k

(3.4) II (1--sx,) -b’- s n
(c)n

i=1 n=0
n! Rn(b’x)’ [sx,l<l, l<-i<-k,

where c- x/k=l bi. Comparison of (3.3) and (3.4) yields

k k

(3.5) R_c(b,x)-iI-I x-b’, c= X bi.
i-l

From (3.3) it can be shown [2, 6.3] that Rt(b,x) has an analytic continuation to all
complex values of bl,’",bk such that Y.k=l bi:/=0,- 1,-2,-... In particular, if bi-0,
then b and x can simply be omitted [2, (6.3-3)], as in (3.5) for example. In [2, Thm.
5.9-2] it is shown that Rt(b,x) is analytic in xl,...,xk if Rex>0, <_i<_k.

For every a_>0 and c>0 we define a class of functions analytic on the open unit
disk in the z-plane:

k

(3.6) Y(a,c)- ZR_a(CWI, ,CWk; 1-zl, ,1--Zk)" Wi>--O, X W--1,
i=1

1, l<_i<_k, k- 1,2,3,... t"
Since R0= 1, R(0, c)= {z}. The class Y.(a,c) differs from Y(a, c) only by the restriction
that El= 1, <_i<_k. Thus ,(a, c) C X(a, c) CA. It follows from (3.5) for each c>0 that

(3.7)

(c,c)- z (1-zffi) -cw’’ wi>_O, 2 wi-1, Ig,l_< 1,__,1<i<k k-l, 2,3,...
"= i=1

It is easy to verify from (2.6) that

(3.8) ,(c,c) CS*(1-1/2c), c>O.
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Equation (3.3) implies

(3.9) ZR_a(CWI,""" CWk; z,’",1 z)

E" (aln’Rn(cw,’"n’! ’CWk; l’’’" ’klZn+’
n:0

and hence, if a->0 and a, c> 0,

(3.10) ,(a,c)-L(a,a),(a,c) and Y.(a,c)-L(a,a),(a,c).

TH.ORM 1. lf c>_a>_O and c>0, then Y(a,c)CS*(1-1/2a).
Proof. By (3.10) and (3.8), ,(a,c)-L(a,c)Y(c,c)CL(a,c)S*(1-1/2c). Use of The-

orem B completes the proof.
COaOLLR 1. If C> 2 then Y(1, c) C K.
Proof. By (3.10) and Theorem 1, E(1, c)= L(1, 2)(2, c) CL(1,2)S*(0) K.
If a, a >0, then L(a, a) is a continuous operator with a continuous inverse. Hence

(3.10) implies, if a, a, c>0,

(3.11) (a,c)-L(a,a)(a,c) and (a,c)-L(a,a)(a,c),
where an overbar signifies closure in the topology of uniform convergence on compact
sets. Also, (3.11) holds trivially if a-0.

THEOREM 2. lf a>_O and c>0, then (a,c)-(a,c)-L(a,c)S*(1-1/2c).
Proof. By (3.8), Y.(c,c)CY.(c,c)CS*(1-1/2c). It is well known [6, (1.2)] that

Y.(c, c)- S*(1 1/2c). Therefore,

(3.12) l(C, c)-(c, c)- S*(1 1/2c).

Application of L(a,c) completes the proof by (3.11).
Since R_a(CW, X) tends to Y.wix7a as c0 [2, Ex. (6.3-4)] and to (Y.wixi) as

c o, it is natural to define, for every a->0,

(3.13)

(a,0)- (z/k=, wi(1--zi) -a" Wi>--O, /k= Wi- 1, Ig, l--< 1, l<_i<_k, k: 1,2,. ),
Y( a, o) ( Z(1-- Zo ) -a" I 01_<1}.

It is known [9, (1.3)] that (a, )- Nc>OY(a,c) for a- and hence, with the help of
(3.11), for every a_>0. A theorem of Brickman, MacGregor, and Wilken (see [11, Thm.
2.11]) implies that Y.(1,0)-Q(1). This allows c to be 0 in the following Corollary,
obtained for c>0 by writing L(a, c)- L(a, 1)L(1, c) in Theorem 2.

COROLLARY 2. (a,c)-L(a, 1)Q(1-1/2c) if a,c[0, oo). In particular, (1,c)-
Q(1 1/2c) and Y(1, 2)-K.

Hall [5] observed that Y,(1,2)-K. The functions in (1,2) are Schwarz-Christof-
fel maps of the unit disk onto convex (not necessarily bounded) polygonal regions.

By using Corollary 2 the next two theorems are easily proved from Theorems A1
and BI"

THEOREM A2. _(t,c), ,(a,c)-L(a, 1)(a,c) if t, c, a[0, oo). In particular,
Q(1 1/2c) E(a, c)- (a, c).
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o /
/

/

FZG. 1. Classes of hypergeometric functions. Each point in the quadrant corresponds to a class ,( a, c), and
each class is contained in every class lying tertically below it. A point with a-c is the class S*(1-a) and is
contained in each class with a larger value of a-c. All classes with fixed a and with c>--a are starlike of order
a (and unitalent if a_2)..4 point with a- is the prestarlike class Q(1 1/2c). The point with a- and

c- 2 is the class K of convex functions, and all classes vertically aboe it are convex. Each class with a> and
each class below the curve c-2/a+a- contains a function that is not comex.

THEOREM B2. L(c,e)(a,c)C(a,e)C,(a,c) /f a, c[0, o), e(0, o), and c<_e.
Since a starlike function of nonnegative order is univalent, every function in

E(a,c) is univalent if 0_<a_<2 and c>_a. It is an open problem to determine what other
classes are univalent. The class Y.(a,c) contains the function z(1--z)-a, which is not
univalent if a>2. The following example proves that not every function in (a,c) is
univalent if c< 1/2(a-1)(a+2). The coefficient of z in the odd function zR_,(1/2c, 1/2c;
+ z, z) is a(a + 1)/2(c+ 1); this exceeds if the inequality is satisfied, and hence

the function is then not univalent by [8, Thm. 1.5].
It follows from [2, (6.2-24)] that the coefficient of z+ on the fight side of (3.9) is

bounded by (a)Jn!. Hence the same coefficient bound holds for every function in
(a,).

By Theorem B2 and Corollary 2, ,(a,c)CK if a-1 and c_>2, but it is an open
problem to determine other values of a and c for which this holds. The class Y.(a, c)
contains z(1-z)-a, which is convex if 0_a_< and not convex if a> 1. Since 2(0,c)
consists of the single convex function z, it suffices to consider the case 0<a_ 1. Some
initial conjectures were disproved by plotting numerically the image of the unit circle
for various examples. The elliptic integral zR_I/2(1/2, 1/2, 1/2; 1-z, + iz, 1- iz) for z-e,
0<0<2r, shows a small deviation from convexity as 101 approaches r/2 from below.
The plot of the function

f(z)-zR_,/2(1,1; l+z,l-z)-(l+z)l/2-(1-z) 1/2

shows an even smaller deviation from convexity as 0 approaches 0 or or. This can be
verified analytically by writing f(ei)-u(O)+ iv(O) and expanding in powers of 0. We
find

d,

u 1--0/2+ O(O), O--+O+.
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The negative sign of the second term on the fight side proves that f is not convex. The
same procedure, starting from [2, Ex. 5.9-13], shows surprisingly that zR_a(1, 1; +z,
1-z) is not convex if 0<a< 1, although it is convex if a-0 or a- 1. The value of the
function at z- 1 is 2-a/(1--a) and

dv (art) (avr)(O) a

 =-cot -T -csc +o(0), 0-,0+.

A similar but longer calculation starting from [2, (8.3-10)] shows that we can choose w
so that ZR_a(CWI,CW2; +z, l-z) is not convex, provided that O<a<c<2/a+a-1.
In particular this proves thatX(1, c) contains a nonconvex function if <c<2. It leaves
open the question whether Y,(a,c)CK if 0<a< and c>_2/a+a- 1.

4. Convexity of order x. The convex functions of order 1- 1/2c comprise the class
K(1-1/2c)-L(1,2)S*(1-1/2c), which is the closure of the class L(1,2) X(c,c). It follows
from (3.6) and (3.9) that every function in the latter class has the form

(4.1) X (c)n Rn(CWI,’’’,CWk; l,’’" ,k)Zn+l
.=o (2),

for some value of k. By [2, (6.2-6)] and (3.3), this may be rewritten as

(4.2) X Rn(cw1,"" ,CWk,2--C; 1’’’" ,k,O)Zn+l
n=O

=2R_I(CW1, ,CWk,2--C; 1--7-,1,’’" ,1-zk, 1).
If c_<2 (but not otherwise), this is a function in Y.(1,2) with one of the " ’s equal to 0;
the corresponding weight is (2-c)/2, the order of convexity. If c-2, that weight is 0;.
the last parameter and the last variable on the right side of (4.2) can then be omitted by
[2, (6.3-3)], and we recover the general form of a function in (1,2).

The multiple power series Fo introduced by Lauricella (see [3]) is convenient in this
context. We may write

(4.3) zFo(a; CWI,’’’ ,CWk; d; 21,... ,Zk )

=2R_a(CWI, ,CWk,d--c; 1--21,""" ,1--2k 1)

X (a)n(C)nRn(CWl’’’" CWk;l’’’’’k)2n+l
n=0 (d),,n[

where d>0 and Izl< 1, <_i<_k. This suggests defining, for every a_>0, c_>0, and d>0,
a class of functions analytic on the open unit disk in the z-plane"

(4.4) T(a,c,d)- zFz(a; CWI,’’’ ,CWk; d; ZI,’’" ,Zk ) wiO X Wi--1,
i:1

I,l <_ l, <-i<_k, k- l,2,3, ).
As in Theorem 2 the closure of this class is unchanged if the " ’s are restricted to lie on
the unit circle. We define T(a, O, O)- ,(a, O) and T(O, c, O) X( c, c). Several relations
follow at once from the series in (4.3) and (3.9). If ac-O and d>0, then T(a,c,d)-
by [2, (6.2-7)]. It is evident also that

(4.5) T(a,c,c)-,(a,c),
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(4.6) T(d,c,d)-X(c,c),
(4.7) T(a,c,d)-L(a,a)T(a,c,d)-L(,d)T(a,c,), d,a,>O,
(4.8) T(a,c,d)-L(a,d)X(c,c)-L(c,d)X(a,c), d>0.

THEOREM 4. If a,c>_O and d>0, then T(a,c,d)-L(__a,d)S*(1-1/2c)-
L(c,d)(a,c). In particular, (d,c,d)-S*(1-1/2c), T(a,c,c)-X(a,c), T(1,c,c)-
Q(1- 1/2c), and T(1,c,2)-K(1-1/2c).

Proof. Since the case ac-O is trivial, we assume ac>O. By continuity of L(a, d),
L(c,d), and their inverses, (4.8) and (3.12) imply

(a,c,d)-L(a,d)(c,c)-L(a,d)S*(1-1/2c)-L(c,d)(a,c).
The next two theorems follow easily from Theorems 4, A2, and B2.
THEOREM A3. T(a,c,6)* T(a,c,d)-L_(a, 1)L(c,6)_T(a,c,d), where a,c,a[ O,

and d, (0, oo). In particular, Q( 1/2c) T( a, c, d_) T(a, c, d ).
THEOREM B3. L(c,e)T(a,e,d)CT(a,c,d)CT(a,e,d) if a, c[O, c), e,d(O,

and c<e.
COROLLARY 3. T(a,c,d)CS*(1-1/2a) ifa<_d and c<_d.

Corollary 3 is proved by putting e-d in the second inclusion in Theorem B3 and
using (4.5) and Theorem 1. It follows that every function in T(a,c,d) is univalent if
a_<2 and a,c<d. By [2, (6.2-24)] the coefficient of z+ on the fight side of (4.3) is
bounded_by (a)(c)/n!(d). Hence the same coefficient bound holds for every func-
tion in T(a,c,d).

5. Integral representations. It is well known [6, (1.2)], [11, Thm. 2.13] that g
S*(1- 1/2c) if and only if there exists a probability measure w on the unit circle T such
that

(5.1) g(z)-zexp[-cfrln(1-z)dw()].
Since (a, c, d ) L(a, d )S*( 1/2c), we can obtain integralrepresentations of functions
in (a,c,d) by using (2.3) or (2.4). If d>a>0, then fT(a,c,d) if and only if there
exists a w such that

f(z)--ZfoeXp[--CfTln(1-uz)dw()] d(a,d_a)(U ).

If w consists of point masses Wl,...,w with unit sum, then fT(a,c,d) and we
recover the representation of Fo by a single integral. The right side of (5.2) is especially
simple iff K(1 1/2 c) T(1, c, 2),since d, o(u) du.

If a,c>_O and d>0, thenfT(a,c,d) if and only if there exists a w such that

f(z)- exp -c n(1-u’)dw(’) p(a,d; z/u)du,

where 3’ is the same as in (2.4). In the case fK(1-1/2c) we note that (1,2; z/u)-
-ln(1 -z/u).
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THE QD-ALGORITHM FOR PADI-APPROXIMANTS
IN OPERATOR THEORY*

ANNIE A. M. CUYTt

Abstract. It is well known that the quotient-difference algorithm can be used to construct univariate
Pad&approximants. In this paper we see that the Pad&approximants for nonlinear operators F: X-, Y where
X is a Banach space and Y a commutative Banach algebra, introduced by the author, can also be obtained by
means of the QD-algorithm and can consequently be obtained as convergents of a continued fraction, if the
scalar QD-algorithm is reformulated as in 1. The definition of abstract Pad&approximants will be repeated
in {}2, while the operator QD-algorithm will be treated in {}3.

1. The scalar QD-scheme. Let us consider a nonlinear real-valued function f of
one real variable x, analytic at the origin

,,(0).f(x) E c,xk with ck-.f
k=0

We will present the QD-algorithm in a slightly different way than usual, but the two
approaches are equivalent. The advantage of this approach is that it can be generalized
to the case where F is a nonlinear operator from a Banach space X to a commutative
Banach algebra Y.

Let the series fbe normal, i.e.,

Cnn
Cn+lXn+l

Cn+k_lXn+k-I

Cn+IXn+l n+k-1
Cn+k--lX

=/=0

Cn+2k_2Xn+2k-2

for n-0, 1,2,... and k- 1,2,.... This determinant is a monomial of degree k(n+k-
1) in the variable x. Demanding that this monomial be nontrivial is equivalent to
demanding that this determinant evaluated at x- be nonzero.

For a normal series we can construct a double entry table of numbersq and e
defined as follows"

eo")- 0, n-0, 1,...,
n+l

qn)--Cn+IX
CnXn

n--O, 1," ",

en)--qn+l)+o(n+l)k- q(kn) n-0, 1,2,. -, k- 1,2,.- -,

q(kn+ l)e(kn+ l)

q(kl-- n-0, 1,2,.-., k= 1,2,....
e (kn)

From this QD-algorithm we can obtain Pad6-approximants to the function f as follows.

*Received by the editors November 24, 1982, and in revised form March 1, 1983.
tAspirant M.F.W.O. Department of Mathematics, Universitaire Instelling Antwerpen, Universiteitsplein

1, B-2610 Wilrijk, Belgium.

746



THE QD-ALGORITHM FOR PAD-APPROXIMANTS 747

The (l,m) Pad6-approximant (numerator of degree and denominator of degree
m) for l>_m is equal to the (2m)th convergent K2m of the continued fraction

Cl_m+ Xl-m+
CO" CIX -- + Cl-mXl-m "’]

q}l-m+l’ et-m+l)[ q(2t-m+OI
-I1 -1 -1

if Ko 2_,k__OCkXl-m k, and to the (2m + 1)th convergent K2m+l of the continued fraction

Ct_mx,-ml qt-m)[
Co+ClX+’’’+C’-m-X’-m-+[ 1 --[ 1 --1 1’ 1 --""

if K0 xt-m- [1].k=0 lckxk
The terms q( and e( each contain a factor x now because of the definition of

q[. Since the series f is normal the Pad6-approximants are also normal [1].

2. Abstract Pad-.approximants for operators. We briefly repeat the definition of
Pad-approximant in operator theory and a determinantal formula for the calculation.
More details can be found in [3]. Let X be a Banach space and Y a commutative
algebra (0 denotes the unit for addition and I the unit for multiplication). Let F:X Y
be analytic in the open ball B(O,r) with centre 0Xand radius r>0 [5, p. 113]

F(x)- X -.. F(k)(O)xk
k=0

where F-)(0) is the kth Fr6chet-derivative of F in 0 and thus a symmetric k-linear
bounded operator, and where (1/O!)F)(O)x=F(O).

DElqNITION 2.1. F(x)=O(x)(k[) if nonnegative constants r< and K exist
such that IIF(x)ll<_gllxll for Ilxll<r.

Write D(F)-- {xXlF(x) is regular in Y, i.e., there existsy Y: F(x).y=I).
DlqNITION 2.2. An abstract polynomial is a nonlinear operator P:X Y with

P(x)=Ax +An_ xn-I + +.,40, whereA is a symmetric/-linear bounded operator
(i-0,...,n) [5, p. 194].

When we have two abstract polynomials P and Q, we can construct an abstract
rational operator Q-.P where Q-(x) is the inverse element of Q(x) for the multipli-
cation in the Banach algebra Y. Of course division by Q(x) can only be performed
when x is in D(Q).

DEIINITION 2.3. The pair of abstract polynomials (P(x),Q(x))=
lm+t lm+j(Y,=oAtm+iX , Xi=0Bt,+.ix ") such that the abstract power series (F.Q-P)(x)

lm+l+m+O(x ) is clled a solution of the Padb.-approximation problem of order ( l, rn ).
The shift of degrees by I. rn provides us with many nice properties [2], [3] and will

also provide us with an abstract QD-scheme.
Let us denote by Qsl.P/ a reduced form of the abstract rational operator Q-1. p;

in other words P-P/x" T and Q--Q/. T and we have cancelled this abstract poly-
nomial T in both numerator and denominator. Different solutions of the Pad&ap-
proximation problem and different reduced forms are equivalent (denoted by -); i.e.,
they satisfy the relation

(P, Q)-(R,S)oP(x).S(x)=Q(x).R(x) VxX.
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DEFINITION 2.4. The abstract Pad&approximant of order (1, rn ) for F is the equiva-
lence class containing all the pairs (P, Q) satisfying Definition 2.3 and all the pairs
(P/, Q/0 which are the numerator and denominator of a reduced form of Q-. P.

Let us write C,-(1/k!)F(*)(O). We call the series F normal if there exists x in X
such that

H,(C.)-
CnX" Cn+lXn+l Cn+k_lX

c/_,x/-’ c/_x

n+k-1

n+2k-2

is regular in Y for n-0, 1,2,-.. and k- 1,2,.... When the series

Co+ 2
k=l

is normal, a representation of P(x) and Q(x) satisfying Definition 2.3 is given by

F,(x) F,_,.(x) F,_m(X)
C,+,x’+’ C,_+IX’-+’

C/m’/ CX’

Q(x)-

I I I
X1+1 el_m+/+l xl--m+l

c/x/ c:
where Ft(x)- Y,=oC,xk [3, p. 251.

From now on we shall denote these determinants by Pit,ml(X) and Qit,ml(X),
respectively. The pair (PIt,ml, Qtt,ml) can be considered as a representative of the
abstract Padr-approximant of order (1, m) for F. If we introduce the notation

ACkxk-- Ck+ lXk+ Ckxk
then normality of the series Co’-k=l(Ckxk--Ck_lxk-I) is equivalent to Hk(AC)
being regular in Y for some x in X and for all n-O, 1,2,... and k-1,2,.... So
normality of the series Co+Z=oACkxk implies regularity of QIt,I(x)-Hm(ACt_m+)
for some x and thus existence of Q-[t,m]’P[t,m]

3. The abstract QD-seheme. For a normal series F we can define the abstract
QD-scheme as follows"

n=0,1,...,

n--0, 1,. .,
n=0,1,-.-,

n--0, 1,..-,
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The existence of all the E(") and Q(") is proved as in [4, pp. 610-611]. Let us construct
the following continued fractions in the Banach algebra Y:

(1) X Ckxk -47 Cl-m+ xl-m+
k=0

I_Ql-re+l)

I--Et-m+l)
I-Q(21-m+ l)

I- E(2l-m+ O

and

(2) X Ckxk "- Ci-mxl-m
k=O

I-Qt-m)

I-El-m)

I-Q(2t-m)
I- E(21-m)

where division means multiplication by the inverse element for multiplication in Y.
We shall now prove that these continued fractions are of the same form as in the

univariate case where only a factor x remains in qk") and e") after division of their
numerator by denominator and we shall also prove that the convergents of these
continued fractions yield our abstract Pad-approximants.

THEOREM 1. If we write Q")-Nq,k,n/Dq,k,n and E(kn)- Ne,k,n/De,k,n then ONq,k,n--
ODq,k,.+ 1 and ON,k,.-ODe,k,.+ 1, where indicates the degree of the abstract poly-
nomial.

Proof. The proof is by induction. For k- 1 we have

so that

+1 __CnxnNq,k,n Cn+ xn Dq,k,n

xn+2Ne,k,n-(Cn+lXn+l)2
CnXn’Cn+2

ONq,k,,,-- n + ODq,k,,, + l, ONe,k,n

Xn+lDe k,n Cnxn On+

2n + 2- ODe,k,n + 1.

Suppose the theorem holds for Qt"), ..., Q("), El"), .,E("); we shall prove it then for
Q+), and En+),.

Since Q,- Q"+’).E"+’).(E"))-’, we have

Nq,k,nw Ne,k,n+ Oe,k,n Nq,kW l,nQn)_+, Ne,k,n-"i-k,-n-; "’b-e,’kl-n---F Oq,k+ ,,n

Thus ONq,k+ ,,.- ONq,k,.+ + ONe,k,n+ - ODe,k,n OOq,k+ l,n

analogous.
+ 1. For Ek+ 1,n the proof is
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Consider the following descending staircase:

Ptz-m,01 (x)"Q -m,ol(x )
Ptt-m+l,ol(x)’O--,,+l,ol(X) PI,-,+l,l(x)’Q-m+l,l(x)

Pt’-m+2,11( X ) Qt l_m+ 2,1]( x )

THEOREM 2. P[t,m](x)’Q-l[l,m](x) is the (2m)th convergent of the continued fraction
(1).

Proof. Let on the above staircase P[t_m+i, jl(x).QIm/i, jl(x) bc denoted by
i+j-O, 1,

Regularity of the Hg(C) and the Hk(AC) implies that [3, pp. 38-39]

)i-i,(c,_+,+ )i;-,(ac,_ )n;-(ac,_ )K2i+1-K2, (-1) Hi+l(Cl_m+i+ m+i m+i+l

KEi- KEi_ (- 1) ’- n,(Ct_m+,+ )Hi( Ct_m+,)H- l( AC,_m+,)H_l( hCt_m+, ),

Ki+g- Ki+1_2- ( 1)g- I-I( Ct_,,+i )]2 HjT ( hCt_m+i )tl--’( hCt-m+i+ )

are regular.
So it is possible to construct the continued fraction

tram

(3) , Cx + Ct_m+ ,X
k=O

l--m+l

K -K2

KE-Ko

I+ (Kn-l-Kn)(Kn-2-Kn-3)
n=3 (Kn-Kn-2)(Kn-l-Kn-3)

i

with convergents Ko, K1, K2,..., where division again means multiplication by the
inverse element for multiplication defined in Y. It is easy to verify that

KI K2 (K2-K3 )( KI Ko ) E[l-m+ 1)K2_Ko-Qt-m+1) and
(K3_K1)(K2_Ko)

using the representation of Ptt_m,Ol(X), Qtt_,,,o](X), P[l_m+l,O](X), Q[l_m+l,O](X),...
given in the previous section.

Let us denote

(Kn-I-K,)(Kn_2-K,_)
(Kn-Kn-z)(Kn_l-Kn_3)

by .Xn/2zl(l-m+ 1) if n is even and by //(l--m+1).,(n_1)/2 if n is odd. We write also Atl-m+ 1) Qlt-m+ 1).
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If we write down the continued fraction that is the even contraction of (3) (i.e., a
continued fraction having as convergents Kzn for n-O, 1,2,... ), we get

lmm

(4) Ckxk’- Cl_m+ x/-m+l
k=O

I_Al-m+ 1)_Al-m+ 1)O/-m+ 1)

I- B(l-m+ l)-A(21-m+

If we write down the continued fraction that is the odd contraction of (3) with
l-m replaced by l-m-1 (i.e, a continued fraction having as convergents the
P[t-m,o](X)" Qt-m,ol(X), P[t-m+l,](X)" Qt-m+,](x), on the descending staircase
(6)), we get

(5) X Ckxk+Ci-mxl-mAl-m)
k=0

I-Al-m)-nl-m)-nl-m)Al-m)
I-A(21-m)-o(21-m)-...

Because (4) and (5) have the same convergents, we have

k-l,2,..-,

if we put B(ot-m+ 1)--0. So

al-m+ 1)_ Q(kl-m+ 1), n(kl-m+ 1)- E(kl-m+ 1), k-- 1,2, .
This completes the proof.

Analogously we can formulate and prove the next theorem.
THEOREM 3. etl,ml(X)" --1Q[t,m](X) is the (2m+ 1)th convergent of the continued frac-

tion (2).
This can easily be seen by writing down the continued fraction (3) with 1-m

replaced by l-m-1; the convergents of this continued fraction are the abstract
Pad6-approximants on the following descending staircase:

(6) e[l_m_l,o](x).Qllm_l,O](X)
Ptt_m,ol(x).O- (x) (x).O

_
,l(x)[l--m,0] P[t-m,] m

Pt,-m+ Qtl-m+ 1,1](x)

We illustrate Theorems 2 and 3 by means of a simple example. Consider

F" C’([0, T ]) ---) C([0, T ])" x(t) ---) e x(t) dx
-d- (1 +d).

The unit in the Banach algebra C([0, T]) is the constant function x(t)- 1, so we shall
write I 1.
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The Taylor series development of F around x(t)- 0, is

dx __(.xk(t)"f(x)- -(l +d)+"
k=O

Let us calculate, for instance, the (/,2) abstract Pad6-approximants for l_>0. If we use
the determinantal representation of P[I,zl(X) and Q[I,z](X) we find that

Ptt’2(x)-- " lt(l-1)’ k-O

2X(t) ,1 Cx+-------/+1
k=o

dx 2 x2t-2(t) -Qtt’El(X)- "- lt(l-1)! l+l t(t+ l)

x (t)
1(1+ 1) =0

Now P[t,2|(x)" Q[I,2](x) is the 4th convergent of the continued fraction (1). We calculate
the necessary elements in the QD-table

+1 x(t)Q,)_C,+x"
Cnxn n

En)_Qn+,)_Qn) --x(t)

En)

n
=x(t)(n+l)(n+2)"

Note that in Q") the quotient of an (n+ 1)-linear operator by an n-linear operator is a
linear operator, which is not true in general but which simplifies the calculations a lot.

It is easy to check that

1-2

p[l,2](X) -1Q[I,2](x) CkXk’- Cl_lX, l-I
k=0

-E
l-Q(2t-l)

where the division is here a division of continuous functions. Analogously we can see
that Ptt,zl(x). -Qtt,21(x) is also the 5th convergent of the continued fraction (2).
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RESTRICTIONS OF NORMAL OPERATORS,
PADI APPROXIMATION AND AUTOREGRESSIVE TIME SERIES*

GEORGE CYBENKO

Abstract. This work studies restrictions of normal operators on a Hilbert space to so-called Krylov
subspaces with special attention to selfadjoint and unitary operators. It is shown that the characteristic
polynomials of these restrictions are orthogonal polynomials and furthermore are intimately related to
denominators of Pad approximations to certain moment generating functions. These relations are seen to
unify certain aspects of Lanczos methods for eigenvalue approximations of selfadjoint operators and autore-
gressive modeling of time series.

1. Introduction. In recent years, there has been a growing suspicion that similar
ideas underlie Rayleigh-Ritz-Krylov-Lanczos eigenvalue approximation methods [19],
[20], [25], [26] (see [24] for a modern treatment), Pad6 approximation [1], [15], [16], and
autoregressive time series modeling [3] and linear prediction [23]. Perhaps one of the
most compelling clues to such a connection has been at the algorithmic level, where
numerous recursions were noted to be quite similar, many involving orthogonal poly-
nomials. The sense in which autoregressive modeling is an eigenvalue approximation
method has never been made explicit and will be precisely described by the end of this
paper.

Whereas connections between the Lanczos method [20], polynomials orthogonal
on the real line and Pad approximation are not too difficult to extract, the connections
between linear prediction and Pad approximation have not been fully realized, per-
haps because the relation between Pad approximation and polynomials orthogonal
over the unit circle has not been succinctly identified, although Gragg has shown how
Fourier-Pad approximation and such orthogonal polynomials interact [15] (see [6]
also).

In this paper, we deriv exact relationships between certain restrictions of normal
operators on a Hilbert spac and polynomials orthogonal over the spectrum of the
operator. The case for a sdfadjoint operator leads to orthogonal polynomials on the
real line and Pad6 approximation to a certain moment generating function. The case
for a unitary operator leads to orthogonal polynomials on the unit circle and corre-
sponding Pad6 approximations of generating functions for moments on the unit circle.
In time seres analysis and linear predictive signal processing, the unitary operator is
the bi-infinite shift operator on/2(), the Hilbert space of bi-infinite square summable
sequences and the restriction of the shift to a finite dimensional subspace of/2(7/) is an
object of primary interest.

What is particularly striking about the difference between Rayleigh-Ritz-Krylov-
Lanczos methods and autoregressive modeling of time series is that in the former case
the operator is the object of primary interest in that its spectrum is sought, the
particular subspace is essentially arbitrary, and the approximation gives information
about the spectrum of the operator, while in the latter case, the operator is completely
trivial, in the sense that its spectrum is completely known, the subspace is determined
by the time series and its shifted version, and the approximation then gives information
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about the spectral content of the particular sequence with respect to the shift operator.
These statements will be made more precise after the main results in the general case
are derived.

Numerous authors have observed and used relationships between some of the
subjects under discussion in this paper. For instance, Toeplitz matrices arise naturally
in the computation of Pad approximants. Furthermore, moment matrices for measures
on the unit circle are Toeplitz so that recursions for orthogonal polynomials on the unit
circle are related to recursions for denominators of Pad approximants. These connec-
tions were implicitly or explicitly exploited in [4], [5], [6], [17], [22]. On the other hand,
the relationship between moments of real measures, Pad approximants and rational
functions were important ingredients of the works [2], [18], [28]. Further background
with excellent bibliographic material can be found in [4], [16].

Section 2 studies the restrictions of a normal operator to so-called "Krylov"
subspaces and establishes a precise relationship between the characteristic polynomial
of the restriction and orthogonal polynomials over the spectrum of the operator.
Section 3 looks at the special cases of selfadjoint and unitary operators while 4
develops the case for time series analysis, namely for autoregressive modeling and
maximum entropy spectral estimation.

2. Restrictions of normal operators to Krylov subspaces. Let A be a bounded
normal operator on a Hilbert space H and let bH be an arbitrary nonzero element.
Consider the subspaces for p_>0

Kp-span[b,Ab,A2b,. ,AP-b].
These subspaces have been used extensively for approximating the spectrum o(A) of A
and are commonly called Krylov subspaces. Rayleigh used the subspace K [25] to
approximate the spectrum of a selfadjoint operator, Krylov used Kp for H--C P to find
the characteristic polynomial of a pp matrix A [19], while more recently, Lanczos
used K, to approximate eigenvalues of linear differential and integral operators [20].
Lanczos’s method is currently one of the most efficient methods for computing eigen-
values of large, sparse symmetric matrices [24]. In the case of time series H-12(7/) and
A is the shift, so that Kp is the space generated by a finite "history" of the series, in the
sense that, componentwise, elements of Kp involve information about the series drawn
from a finite time frame.

In general, K is not invariant under A, but clearly, if AKp CKp for some p, then
AKp, CKp for all p’_>p. We shall let p*>0 be defined by

p* minimalp for which AKp CKp if such ap exists,

p*- + oo otherwise.

For each Kp, let rrp denote the orthogonal projection of H onto Kp so that

is the restriction of A to Kp followed by orthogonal projection onto Kp. Clearly, Ap is a
linear operator on the finite dimensional space Kp. Let us assume that p <p* so that Kp
is in fact p-dimensional. Now let

dp(t)-det(tlp-Ap)
be the characteristic polynomial of Ap acting on Kp. Here Ip is the identity on Kp.
Clearly there is nothing to be gained by the study of cases p>p* since then Kp--Kp.,
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7rp r/p,, Ap Ap, and dp(t) dp,(t). Note also that

Our goal in this section is to identify the polynomials d(t), p=O, 1,2,-..,p*, with the
monic orthogonal polynomials determined by a finite measure on the spectrum of
A,o(A).

We recall the spectral resolution of a normal bounded operator A [27], [31];
namely there is a resolution of the identity P for which

A =f(,)hdPx.
Now the measure on C defined by

d < e b, b> =fs d (Pxb, Pxb)

is clearly finite and positive. In particular, we have

where (.,.) is the inner product on H. Let be the space of complex polynoals of
degree no greater than p*, so that for u, v

(1) (u,v) =fo u())v(X)d(2t)
()

defines an inner product on @ and so there is a unique sequence of monic orthogonal
polynomials q0, ql, q_," ",q, so that

-0 if iV=j,degree(q)-i, (q’q) :/:0 ifi=j.

Our first result is then
THEOREM 1. Forp_<p*,

dp( h ) det(hlp-Ap) qp( h ).

Proof. Consider the matrix representation of Ap on Kp with respect to the basis
b, Ab, A2b, .,A- lb, which is of the form

0 0 0 -a0

0 0 0 --a

0 0 -a_

0 --ap_ 2

0 -ap_

where ao,a,...,ap_ are determined by the condition that

2

I[APb+ ap_lAp-lb+ aobl[
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is minimized over all ap_l,...,aoC. This follows from the fact that Ap(Ap-lb)is the
orthogonal projection of APb AAP- b on Kp. Putting dp(t) tier(tip Ap ), it is clear
that

dp(t)-tP+ap_tp- + +alt+ao,

and we have that Ildp(A)bll 2 is minimal over all monic polynomials of degree p.
However,

116( )bll=- (6(A)b, dp(A)b)

and it is a classical fact that the monic polynomial solving this minimization is precisely
the monic orthogonal polynomial q(h) of degree p. Hence dp() is precisely that
polynomial. [3

COROLLARY 1. The eigenvalues ofAp lie in the convex hull of the spectrum ofA.
Proof. A classical result of Fejer’s [10], [13] states that the roots of polynomials

orthogonal with respect to a measure on C like (1) lie inside the convex hull of the
support of the measure. U]

It should be noted that the normality of the operator A is used only to show that
the inner product is actually a classical inner product .induced by an integral in the
complex plane. Contained in the proof of Theorem is the fact that the minimizing
polynomial of any operator A defined by the condition that

II(Ae+ap_lAP-l + +alA +aoI)bll
is minimal over all ap_ 1,"" ", a0 also gives the characteristic polynomial of Ap and is the
monic pth orthogonal polynomial with respect to the inner product (u,v)=
(u(A)b, v(A)b). Furthermore, in the general setting, one has that if , is an eigenvalue
of Ap, then rrArrpc=rr,e for some c in H, whence (,rpc, Arrpc)=h and so h is in the
field of values of A. For a normal A we can then conclude that then belongs to the
closed convex hull of the spectrum of A, since the field of values for a normal operator
is precisely the closure of the convex hull of the spectrum of A.

This result simultaneously explains the fact that Lanczos polynomials have roots
inside the interval containing the spectrum of a selfadjoint operator and that predictor
polynomials have roots inside the unit circle, since as already mentioned the autoregres-
sive case involves a unitary operator whose spectrum is the unit circle.

This is furthermore a generalization of the fact that Rayleigh quotients lie inside
the convex hull of the spectrum of A since this is the case p 1. The Hausdorff-Toeplitz
theorem [9] states that

is convex. A natural conjecture is that the roots of the above polynomials, as b varies,
form a convex set in P"

Conjecture.

(tl,...,tp)C" 1-[ (t-ti)-d,(t)somebH
i=1

is convex.
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As shown above, the finite dimensional sections of A on Krylov subspaces are
intimately related to polynomials orthogonal over the spectrum of A. The two cases
where a significant orthogonal polynomial theory over a set has evolved are for the real
line, corresponding to selfadjoint operators, and for the unit circle in C, corresponding
to unitary operators.

The next section develops the relationships between det(AIp-Ap) and Pad6 ap-
proximations of "moment generating functions" of the form

-o

(-Xw) d(w)

in the selfadjoint case and

fl w-P

=l (1--Xw) dt(w)

in the unitary case.
Before proceeding however, it is worth pointing out how Theorem explains the

occurrence of orthogonal polynomials both in Rayleigh-Ritz-Krylov-Lanczos eigenvalue
approximations from the subspaces Kp and in time series analysis and signal process-
ing. In the case of Lanczos eigenvalue methods for symmetric operators, A is a
selfadjoint operator and b is essentially arbitrary. The information in d;(t), namely its
zeros, is used to model A’s spectrum. The situation for time series analysis, and
autoregressive modeling in particular, is similar in form but quite different in spirit.
Here H 12(7/), the space of bi-infinite square summable sequences, A Z, is the shift
operator with b the time series. In that case, d(t) is the pth order autoregressive
scheme that best describes b in the least squares sense. The spectrum of A in this case is
completely trivial, namely the unit circle, and the spectral information in K, and d(t)
then give information on the "periodic" properties contained in b in the following
sense. If e 0(7/) then Z-eaI has only the zero vector in its null space (that is, has no
proper eigenvectors) but for any e>0 there exists vectors u so that

and

A completely heuristic argument might go as follows: For an eigenvalue of Zp on Kp,
there is a value of the spectrum, e, which is close to h and an almost periodic u so that
u would have a large component in the eigenvector of Zp in Kp corresponding to . It is
well known that in the symmetric case, there need not be very strong relationships
between approximate eigenvectors (in the finite dimensional case) and the exact eigen-
values [24], and so this is indeed completely heuristic.

In the next section, we therefore show that the moment generating function for Zp
is a Pad6 approximant of the moment generating function for Z with respect to I. More
precisely, this approximant should be called a variant of Fourier-Laurent-Pad ap-
proximation as will be made precise shortly.

In any case, although the occurence of orthogonal polynomials in both Lanczos
eigenvalue approximations and autoregressive time series modeling has typically been
treated as coincidental, the results of this section have shown that they are part of the
same underlying principle.
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3. Selfadjoint and unitary operators. Recall that the (n,m) Pad approximant,
n >_0, m_>0, denoted by rn,m(t), to a function f(t) analytic in a neighborhood of t-0 is
determined by the condition that

rn,,,, is a rational function which is a quotient of a numerator polynomial of

degree n and a denominator polynomial of degree m, that is,

P,m degree( p,m ) n, degree(q ,m ) m
qll,m

and

f(t)qn,m(t)--Pn,m(t)--O(tn+m+l) as t-0.

See [1], [16] for details about Pad6 approximants and their theory.
First we let A be selfadjoint, so that o(A)CR. Define for It[< 1/I[AI[

f(t):fn (1--tw) dl(W)

where/ is defined as in the previous section. Now

j=o j=o j=o

which justifies callingf the moment generator of A with respect to b.
Our basic result is then an identification of the relationship between the character-

istic polynomial of A, the (p-1,p) Pad6 approximant to f(t), and the moment
generating function of Ap with respect to b. Our first step is to show that Ap is also
selfadjoint.

LEMMA 1. IfA is selfadjoint, then so is Ap (with respect to (.,.)).
Proof. Since ,rp is an orthogonal projection, it is selfadjoint. Now for c, d Kp, we

have

It follows that Ap has a similar spectral resolution and that there is a positive
measure on so that

We thus definef(t) by

(b,Apb)=ft:dl?(t) for allj>O.

f(t) =f l_twdlp(w)

and by Corollary 1, fp(t) is also analytic for Itl< 1/IIAII. In fact, fp(t) is clearly rational.
THEOREM 2. With the notation ofabove, the following are true"

(i) f(t) is the (p- 1,p) Padb approximant to f(t).
(ii) Iffp(t)-u(t)/v(t), degree(u)-p- 1, degree(v)--p and v is normalized to have

constant coefficient 1, then

det( Ip tAp ) Pdp ( - ) v ( )
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(iii) The poles off( t) are located at the reciprocals of the eigenvalues of Ap and the
residue at 1/, is precisely -[(b, ej)12/h where e is the eigenvector ofAp for eigenvalue

and (e, e ) 1.
Proof. To show (i), it is sufficient to establish that

(b,AJb)- (b,Ab) forj-0, 1,-..,2p-1.

Now for j<p, AJb-AJb while for j--p we have that (AP-A)b is orthogonal to Kp
and so

(Aib,Aeb)- (Aob,Alb) for i-0, 1,-.. ,p- 1.

Since both A and Ar are selfadjoint, we in fact have that

(b,Ap+ib)- (b,A+/b) for i-0,.--,p-1.

This establishes (i).
To see (ii), note that/x, has support contained in the spectrum of Ap and hence the

support of # consists of precisely p points since we previously assumed that p<_p*.
This means that f(t) has poles located at the reciprocals of the eigenvalues of Ap. On
the other hand, the roots of d,(t) are the eigenvalues and so tldp(1/t) has roots at the
reciprocals of the eigenvalues and must therefore be, up to a constant multiple, the
same as the denominator off(t) expressed as a rational function.

Finally, (iii) follows from the observation that f(t) has the form

P (b, ej.) 2 P (b,e)2/Aj.
j:l (1-tXj) .= (1/)j-t)

establishing the final claim.
Throughout the remainder of this section, we shall assume that A is unitary.
Although the relationship between orthogonal polynomials on the real line and

denominators of certain Pad6 approximations are well known, albeit difficult to trace
historically, the relationship between orthogonal polynomials on the unit circle and
denominators of Pad6 approximations has not been identified. This is perhaps due to
the fact that polynomials orthogonal on the unit circle, although thoroughly studied
[14], [29], have not been studied by a wide audience. Our first result is to make this
relationship evident.

To this end, let

gp( ) flw W-P

I=l (1--tw)dl(w)
where/ is a positive measure on Iwl- 1. We shall suppose that/ is supported by more
than p points over Iwl- 1. For Itl< 1, we have

g,,(t):[ X (wt yd (w)
=1 j=0

X Jr wJ-P al(W).
j=0 "tl--I
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THEOREM 3. Let cv(t ) be the denominator of the (p-1,p) Padd approximation to

gp(t) at O. Then 6p(t) is precisely the pth orthogonal polynomial with respect to ix,
normalized so that Cp( ) p + lower order terms.

Proof. We first show that Cp(t) can indeed be normalized so that its leading term in
p has a nonzero coefficient. Looking at the desired relationship and letting Cp denote
the vector of coefficients of Cp(t),

gp(t)_uv-l(t) 2

we require that

ixl

-0]

where X is some possibly nonzero entry and/x-fwd#(w). Now if the last entry of Cp
were in fact zero, then Cp(t) would in fact be of degree p- or less and so Tp, the pp
leading submatrix of Tp+ l, would be singular. Now if Cp_ is the vector consisting of
the first p entries of Cp then we would have

c- Tpcp- 0-fttl_ ICp_(t)l=dt(t).

But Cp_ l(t) has only p- zeros and so ix must be supported on p- or fewer points.
This contradicts our earlier assumption that/ is supported on at least p points.

Finally, since Tp+lCp has p leading zeros, we have for any a(t) of degree p- or
less,

anp+ lp- 0--fill ,a(t---6p(t) dix(t)
so ?p(t) is indeed the pth monic orthogonal polynomial with respect to/. Here we have
used the fact that Tp+ is Hermitian, and of course Toeplitz. E]

This result also follows from the determinant representation for orthogonal poly-
nomials on the circle [29] and the determinant representation for Pad6 approximants
[1], [16].

We know from 2 that the characteristic polynomial of Ap is precisely the pth
orthogonal polynomial with respect to the inner product

(u,v) =flI=1
u(t)v(t)dix(t),

and now we have seen that the denominator of the (p-1,p) Pad6 approximant to
gp(t) is the conjugate of the characteristic polynomial of Ap. It remains to be seen how
the analogous function for Ap is related to the various quantities introduced above. To
this end, we have the following results:
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THEOREM 4. Let

g,,(t)-- (ApPb, b)+ X (App-lb,Ab) tJ+l"
j=0

Then g,p(t) is a rational function of degree (p,p) and is precisely the (p,p) Padb
approximant to gp( t) defined above. Furthermore, the denominator polynomial of g,p( t),
say v( ), satisfies

tPv(-) -det(tI-Ap)-6p(t),

provided that v is normalized to have constant coefficient + 1.
That is, v is the reflection of the characteristic polynomial of Ap and the reflection of

the conjuguate of the denominator polynomial of the ( p 1,p) Padb approximant to gp( ).
Proof. First we note that

and

(b,Aj-p+ lb)- (ApP-lb,Ab)- (Ap-lb,AJb) forj-0, 1,... ,2p-1.

Thus g (t) and g(t) have the same MacLaurin series coefficients up to and including
the tern for 2p. Hence it suffices to show that g(t) is a rational function with
numerator and denominator both polynomials of degree p, in which case it will be
established that gA_(t) is precisely the (p,p) Pad6 approximant to go(t).

To this end, let dp(t) be the characteristic polynomial of Ap act’ing on Kp, and let

g,(t)- X csts"
j=0

By the Cayley-Hamilton theorem, we know that dp(Ap)=O, so that if dp(t)=tP+
ap_ tp- + + al / ao then

Cn+ap_lCn_ +’’" +alCn_p+ +aoCn-p- (A1;-lb,dp(Ap)A-Pb)-O
for n>p. Note that the relationship does not necessarily hold for n-p because co is
anomalous in a sense. Hence the sequence c, c2,.., satisfies a pth order difference
equation and must therefore have the form

km-I
Cj--X E Jk)kJmgm,k

rn k--O

where m is the mth root of dp(t) occuring with multiplicity km. It is straightforward to
verify then that

o u(t) tu(t) w(t)X Cjtj-t
j=l IIm(1--)mt) Im tPdp(1/t) tPdp(1//t)

where u(t) is a polynomial of degreep- 1. Hence

g( ) Co- tu(t) w(t)
tPdp(1/t) tPdp(1/t)

and so the theorem is proved.
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It is important to note that unlike the selfadjoint case, the unitary case does not
guarantee that Ap is itself unitary, nor even normal. It is for this reason that the
theorem is more complicated in this case, and that a moment generating formula for A
cannot be written in terms of a spectral measure directly. AlthoughA is not unitary it
is close to unitary in the following sense.

LEIA 2. There is a rank one selfadjoint operator E so that ifA denotes the adjoint
ofA then

ApA +E-Ip
where Ip is the identity on Kp.

Proof. Clearly, since rrp is an orthogonal projection operator and hence selfadjoint,
we have that

on Kp and so ApA is the identity on the subspace generated by Ab,A2b, .,AP-b and
so there exists a rank one operator E so that ApA +E-Ip and the selfadjointness of E
follows from taking adjoints. [2

We actually have the following characterization of the situation when Ap is unitary
also.

THEOREM 5. Ap is unitary if and only if dp( has all of its roots on the unit circle

Itl- 1, and in that case Kp is an invariant subspace for A and so p --p*.
Proof. Let d(t)=ao+ tq(t)+ p where q(t) is a polynomial of degree p-2. Hence

from the definitions and previous results,

A;b- -aob-Aq(A)b.

Since A is unitary, it follows that

whence

ab- --A-lq(A-I)Ap-Ib oAP-Ib

ApAb- t(A- )Ap- lb+ d0( a0b +Aq(A)b).

For ApA*p I, it is then necessary for [ao[2- and

It follows that

and so

-Ap-2q(A-l)Ab+ goq(A)Ab- O.

--tP-2(T) +g0q(t)-0

--dp(7)tP+odp(t)--O.
Thus if is a root of dp(t) then so is 1/[, but all the roots of dp(t) lie inside the unit
circle or on it, so that and 1/[ are actually on the unit circle whence t- 1/[. Hence we
have established that if Ap is unitary, then all of its eigenvalues lie on the unit circle.
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Conversely, should dp(t) have all of its roots on the unit circle then it is obvious
that the identity

must hold and so Ap is indeed unitary by working the above argument backwards.
It remains to be seen that K is an invariant subspace for A if the roots of dp(t)

happen to lie on the unit circle. Now since we are assuming that Ap is unitary, it follows
that

[Iapap- lb[lZ--[lrpaPb[I- IlaPbl[,
and since rp is the orthogonal projection onto Kp the only way for this equality to hold
is for APb Kp so that Kp is invariant under A.

4. Linear prediction, autoregressive modeling and maximum entropy spectral esti-
mation. In this section, the previous results are interpreted in terms of the various
constructs that occur in linear prediction, autoregressive modeling of time series and
maximum entropy spectral estimation. The reader unfamiliar with these areas is re-
ferred to [23] for an introduction to linear prediction and its applications, to [3] for
autoregressive modeling of time series, and to [7] for maximum entropy spectral
estimation. Although all of these topics are traditionally studied in the context of a
stochastic system, our discussion involves no statistical ingredients. Thus, this presenta-
tion can be viewed as being analogous to the relationship between multiple linear
regression and linear least-squares theory--linear regression consists of a purely geo-
metric component, namely linear least-squares which is free of statistical hypotheses,
plus a statistical component, which interprets the least-squares solution. Our presenta-
tion in this section is independent of statistical assumptions, dealing solely with the
algebraic and analytic parts of linear prediction, autoregressive modeling, and maxi-
mum entropy spectral estimation.

First of all, we should note that all three of the above named topics are essentially
the same, the choice of name being dictated by subtleties of the information being
sought and the discipline of the author.

The ingredients are as follows:
H=/2(7/), the Hilbert space of bi-infinite sequences,

(x,Y)-E) for x,y e/2(Z);
J

A is the bi-infinite shift operator, namely

(Ax)-x._ , so that A is clearly unitary.

It is well known that the spectrum of A is precisely the unit circle, Iwl- 1, in the
complex plane. We shall begin with some simple observations.

LEMMA 3. Let b 12(), b (bj). Then

flw wgd (Pwb’b)--Ebjb2+g--Rg

is the so-called kth autocorrelation orb.
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Proof. Trivially,

:wd (Pwb, b) (b,Ab) R,

as claimed.
Given b:/:0, b12(’) and a positive integer p, we now define the predictor

coefficients ao,a,...,ap_ to be the values minimizing the expression

2 Ibj + al-bj_ + a2bj_ 2 +... + a0b._l -.
J

lap-The corresponding predictor polynomial is qp(t) p + tp + +a0. The name
"predictor" comes from the fact that the minimizing coefficients are the coefficients
which best predict the next future value of bj given the previous p values bj_ ,..., b2_p.

THEOREM 6. The predictor polynomial is the reflection of the denominator of the
(p,p) Padb approximant to the function

g(t)-Rp+Rp_t+Rv_2t2+ +RotP+RltP+ +

is the characteristic polynomial of Ap, and is the conjugate of the denominator of the
(p-l,p) Padb approximant to g(t). Of course, the pth predictor polynomial is also
precisely the pth monic orthogonalpolynomial with respect to the polynomial innerproduct

(u’ v) =fl:lu(w----v(w)( dPwb,b)

Proof. From the proof of Theorem 1, qp(t) is the characteristic polynomial of Ap
and is the pth monic orthogonal polynomial with respect to the above inner product on
polynomials. The claims about being denominators of various Pad approximations
follows from Theorem 4 and Lemma 3.

It is quite clear that for b:0, none of the subspaces K can be invariant under A
(since this would mean that the coordinates of b satisfy a finite difference equation
which is impossible for a nonzero element of 1.(7/)). Thus, by Theorem 5, the character-
istic polynomial cannot have all of its roots on the unit circle. The question remains
whether it is possible for some, but not all, of A,’s eigenvalues to lie on the unit circle.
The following result settles the issue.

THEOREM 7. All roots of dr(t) lie strictly inside the unit circle.
Proof. Suppose that h is a root of d(t) with IXI- 1. We first show that the measure

d Pwb, b)-d#(w) is then concentrated on a discrete set of the unit circle. Since Jk is a
root, we can write

dp(t)-(t-X)-(t-X)q(t), degree(q) =p 1.

Thus

q(w)dp(w)d(Pwb, b):O-(q’4)=
:l I:l

(w-X )lq( )12dtx( w )
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since dp(t) is thepth orthogonal polynomial with respect to the above polynomial inner
product and q is of degreep- 1. Solving for we get

flwl= wlq(w ) 12dt ( w )

flM=l Iq( w ) 12dt ( w )

Now g is a positive measure, so this expresses A as a convex combination of the points
on the unit circle. But the unit circle is strictly convex, so this can only happen if the
measure Iq(w)l2 dg(w) is concentrated only at ,. Hence, the measure dg(w) has support
contained in the set consisting of A and the roots of q(w) on the unit circle. This set
consists of p or fewer points. It cannot be p, however, since then d(t) would have all p
roots on the unit circle, which is impossible by Theorem 5 and the previous comments.
Now if the set consists of p’ <p points, then there is a monic polynomial r(w) of degree
p’ with

r(w)r( w) d(w)-flwl=11r(w)ld(w) ( r,r ).

By Theorem 1, this polynomial must be the p’ monic orthogonal polynomial with
respect to the inner product induced by #(w), and so by Theorem 5, K, is an invariant
subspace for A. This is also impossible, so that none of the roots of dp(w) are on the
unit circle as claimed. Vq

Although this result was stated for the shift operator, it remains true for arbitrary
unitary operators A provided that Kp is not an invariant subspace for A. Using the
notation of the previous section, we thus have proved" If p <p*, and A is unitary, then
the roots of d(t) lie strictly inside the unit circle.

We now turn our attention to the computational aspects of finding the characteris-
tic polynomials d,(t) for p-0, 1,2,.... As we have seen, d(t) is precisely the pth
monic orthogonal polynomial with respect to a certain measure over the spectrum of A.
In the selfadjoint case, the polynOmials are orthogonal over the real line, and so a
three-term recursion can be used to compute them. In the selfadjoint case, we thus have

where

d. l( ) ( t- ap )d,( ) fld,_ l( )

Clearly all that is needed for this recursion are the values of dp(A)b-b which gives
rise to a recursion of the form

bp+t-(A-apI)bp-flpb,_,, bo-b, b_,-O.

This is precisely the Lanczos algorithm for tridiagonalizing a symmetric matrix [20],
[24].

In the unitary case of linear prediction and autoregressive time series modeling, the
spectrum of the operator is the unit circle and so the recursion relations for polynomial
orthogonal over the circle are used. The recursion is named after Szeg6 who discovered
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them [29]. For real/2(7]’), let alp(t) be the reflection of dp(t); that is,

1

Then the Szegi5 recursions are do-o- 1,

where

dp+ l(t)- tdp( ) + kpdp( ), drp+ l(t)- tkpdp( ) + dp( ),

Once again, all that is needed are the vectors dp(A)b--bp, so the recursion resembles

lip+ 1--Al}p + kpp, p+ 1- kpAbp -q- p, kp-

This recursion is described in greater detail in [8], while the use of the recurrence
relations for polynomials orthogonal over the unit circle is implicitly used in [12], [21],
[30] to find the polynomial d(t) directly from the matrix of moments M=(m) where

m-fw-dl(w). Note that the case for selfadjoint operators leads to moment matrices
which are Hankel, while the unitary case arising in time series analysis leads to Toeplitz
matrices. Thus the theory developed above serves to unify the computational aspects of
Lanczos methods and linear prediction by showing that they are both manifestations of
the same basic construction. The relations with Pad6 approximations, although not
fully exploited yet in the selfadjoint case but which are known, appear to be new for the
unitary case.

5. Summary. In this paper, certain relationships between Rayleigh-Ritz-Krylov-
Lanczos methods, Pad6 approximation, and autoregressive time series modeling have
been made explicit. This serves to unify the constructions arising in these areas and
explains the similarity exhibited by numerous algorithms used in these areas. In cases
where H is a finite dimensional Hilbert space, the moment generating functions used in
this paper are in fact rational functions themselves, so that using results from the
theory of Pad6 approximation, it is possible to describe explicitly the relationships
between the poles of the moment generating function and the poles of the approxima-
tions. This direction is currently being pursued and should be forthcoming in a separate
paper.

Although a heuristic description of the sense in which roots of predictor polynomi-
als approximate eigenvalues of the shift matrix (in the finite case, the cyclical shift
matrix has eigenvalues which are the roots of unity) it is still far from being precise.
Work in this direction is also being pursued.
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PRODUCT FORMULAS OF WATSON, BAILEY
AND BATEMAN TYPES AND POSITIVITY OF THE
POISSON KERNEL FOR q-RACAH POLYNOMIALS*

GEORGE GASPER" AND MIZAN RAHMAN*
Abstract. A new method is introduced for proving certain important formulas due to Watson, Bailey and

Bateman for products of F1 hypergeometric series, and it is used to extend these formulas to products of 43
basic hypergeometric series. The 4q3 analogue of Watson’s product formula is used to give conditions under
which the Poisson kernels for q-Racah polynomials, q-Hahn polynomials and little q-Jacobi polynomials are
positive. A transformation formula for a certain ,t3 series and expansion formulas for basic hypergeometric
series are also derived.

1. Introduction. Among the most useful product formulas for hypergeometric
functions are Watson’s formula [22], expressing the product of two terminating hyper-
geometric functions in terms of an F4 Appell function

(- 1)n(1 +a-c)
(c)n nF4[-n’n+a;c’l+a-c;zZ’(1-z)(1-Z)]’

;Z]-F4[a,b c, + a+ b-c; z(1--Z),Z(1--z)],

Bailey’s formula [3], [4,p. 81]

[
_

2F a,bacb ;z
+a+b-c(1.2) 2El

and Bateman’s formula [5, p. 392]

(1.3) 2Fl[ -n’n+a+b+ ;z 2Fl[-n’n+a+b+l;Zla+
(-1)n(b-f_nl)n (--n)k(n+a+b+ 1): (l_z_Z)g(’i k:o k!(b+ 1)k

-k,k+a+b+ 1. zZ
a+ 1-z-Z J’

where (a)n-a(a+ 1)-.. (a+n- 1) for n_> and (a)0- 1. Bailey [3] showed that (1.1)
follows easily from (1.2) and used (1.1) to derive an F4 representation for the Poisson
kernel for the Jacobi polynomials

(1.4) P’a)(x)-(a+ 1),, I-n,n+a++ 1. l-x]n’’--’-7.2F1 a+l ’-
which was the first known formula to give the positivity of this kernel for a, fl>- 1.
Watson [23,pp. 372,413] used (1.1) to derive an integral representation for a certain
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*Department of Mathematics, Northwestern University, Evanston, Illinois 60201. The research of this

author was supported in part by the National Science Foundation under grant MCS-8002507 A01.
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this author was supported in part by the Natural Science and Engineering Research Council under grant
A6197.

768



PRODUCT FORMULAS OF WATSON, BAILEY AND BATEMAN TYPES 769

sum of a triple product of hypergeometric functions, which was the main tool used by
Gasper [6], [7] to derive an integral representation for the product of Jacobi polynomi-
als and a convolution structure with a positive kernel for Jacobi expansions. Bateman’s
formula (1.3) was used by Koornwinder in [11] to give a relatively simple proof of his
integral representation for the product of Jacobi polynomials. In view of these and
other applications, one is naturally led to look for generalizations of these product
formulas which are applicable to other orthogonal polynomials. It was in order to prove
the positivity of a discrete Poisson kernel and a kernel in a projection formula for Hahn
polynomials

(1.5) Q,,(x;a,B,M)=F2 -n,n+a+B+l,-x
a+l,-M

;1

that Gasper [8], [9] showed how (1.1) and (1.2) could be extended to 3F2 series.
Extensions of (1.3) to 3F2 series and of (1.1) to 4F3 series were given by Rahman [13],
[14], [15], and extensions of (1.1) and (1.2) to 21 and 32 basic hypergeometric series
were recently given by Verma and Jain [21].

Here, as usual, an r+ lCr basic hypergeometric series in a base q is defined by

(1.6) r+lr bl ’’’" br
,z r+l bl,. ,b

oo (al;q)n...(ar+l;q) n Z n

=0 (bl;/3 (br;q-n (q;q)n’

whenever it converges, where

1, n-O,
(1.71 (a;q),-- (1-a)(1--aq)-..(1--aqn-), n-l,2,...

The r+lr series in (1.6) is said to be balanced if bib2"’" br--qala2.., ar+ and z=q,
well-poised if qa bla2 b2a3--... brar+ 1, and to be very well-poised if it is well-
poised and a2- qavra- -a3, b al -b2 where the same value of the square root is
used throughout. Since from now on we will be only dealing with basic hypergeometric
series, to simplify the notation we will write (a), in place of (a; q),. The Pochhammer
symbols used in (1.1), (1.3) and (1.4), which indicate the usual shifted factorials, are not
to be confused with the basic (a),’s used throughout the rest of the paper.

We shall say that a formula is of Watson, Bailey or Bateman type if it has formula
(1.1), (1.2) or (1.3), respectively, as a special or limiting case. In this paper we introduce
a new method for proving (1.1) and (1.2) and use it to derive very general extensions of
them to products of 4qb3 series which are applicable to the q-Racah polynomials [2]

(1.8) W(x; q)---- W(x;a,b,c,M;q)
+ x cqx--M

--43
q--n abq, q-

aq q-, bcq
q

n-0,1,..-,M. Note that this 43 series is balanced and that W(x;a,b,c,M;q) is a
polynomial of degree n in the variable I(x)=q-X+cqX-t. Askey and Wilson [2]
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showed (in a slightly different notation) that these polynomials satisfy the orthogonality
relation

M m,n(1.9) 2 O(x;q)Wn(X;q)Wn(x;q)-h,,(-),
x--0

where

(1.10)

(1.11)

p(x; q)=--p(x; a,b,c,M; q)

( cq-)x(1 cq2X-)(aq)x( bcq)x(q-)x(abq) -x

(q)x (1 cq-t)(ca-lq-M) x (b- lq-M)(cq)
h.(q)---h.(a,b,c,M;q)

( abq ) n (1 abq2n+ l)(aq)n(bcq)n ( q-M ) n ( bq )M( ac- q )M( c- lqM ) "
(q)n (1 abq)(bq)n(aC-lq), (abqM+2), (abqZ)M(C--1)M

and it is assumed that a,b,c are real numbers such that O(x;q) is nonnegative for
x=0, 1,. -,M.

In addition to the Racah polynomials [12], [2]

(1.12) W(x; a,fl,,M)- lim W.(x; q,q,q,M; q)
ql

--n n+a+fl+ l, -x,x+’r--M
=4F3 a+ 1,-M, fl+y+

;1

the q-Racah polynomials also contain as limit cases the classical orthogonal polynomi-
als (Jacobi, Laguerre and Hermite polynomials), their discrete analogues
(Hahn, Meixner, Krawtchouk and Charlier polynomials) and their q-analogues.

Our extension of (1.1) (and of (1.2)) to the product of 43 series, which is more
general than that recently given in Rahman [17], is derived in 2 and then used in 3 to
give conditions under which the Poisson kernel

M

(1.13) tnhn(q)Wn(x;q)Wn(y;q), 0__<t< 1,
n--0

and the so-called discrete Poisson kernel

(1.14)
(q-Z)n

n=0 (q-i
h"(q)W(x; q)W"(y; q)’ z-O, 1," ",M,

are nonnegative for x,y=0, 1,.-.,M. Additional bilinear sums are considered in 4,
and extensions of Bateman’s formula (1.3) are derived in 5. This work has also led to a
new transformation for 4q3 series derived in 3 and to the expansion formulas derived
in 5.

2. Product lormulas of Watson and Bailey types. Our method originates with the
observation that since

j--1

(q-X)(aqX)-yo +aq2-q(q-+aqX))
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is a polynomial of (exact) degreej in powers of the variable q-+ aq, there must exist
an expression of the form

(2.1)
j+k

(q-X)j(aqX)j(q-X)k(aqX)k-- Am(j,k,a;q)(q-X)m(aqX)m,
m--O

and hence, replacing x by a nonnegative integer n,

j+k

(q-n)j(aqn)j(q-n)k(aqn)k-- ’ Am(j,k,a;q)(q-n)m(aqn)m"
m-0

To compute the coefficients it suffices to observe from the formula [19, p. 247]

q-n,a,
(2.3) 32 ;q

c, abc- lq ,--,,-(-c-/’----,,
that

3q2[q-J, qk-x, aq+X lq-X)j(aqX)jaq,ql+-j
;q- --ii-q-j

for k_>j, and hence

( q-X )j( aqX )j(q- ) k ( aq ) k
J (q-J)m(qk-x) (aqk+x) qm=(q-k)j(aqk)j(q-x)k(aqX)k X m

m=O (q)m(aqk)m(ql+k-J)m
j+k

----(q-k)j(a)j+k X (q-J)m-k(q-X)m(aqX)mqm-k
i 7-;:-)

m--k (q)m-k(a)m(q )m-k
j+k (_ [ , [ l)_m(j+k)

=(q)j(q)k(a)j+kq(()+(2) lJ:+k+m.q-Xlm.aqX:mq("
m=k (q)m-J(q)m-k(q)J+k-m(a)m

where we used the standard identities in [19,App..II] and the notation ()=j(j- 1)/2.
Thus both (2.1) and (2.2) hold forj, k-0, 1,... with

(2.4) (q)j(q)k(a)j+k(--1)j+k+m
A,,(j,k,a; q)--

(q)m_j(q)m_k(q)j+k_m(a)m
q()+(2)+(mfl)-m(j+k)

Observe that since (q-n),-0 for m>n and 1/(a)m_j-O for j>m, the terms in the
sum in (2.2) are zero unless max(j, k) _< rn _< min(j+ k, n). Hence, using (2.2) and (2.4),
we find for n-0, 1,-.- that

(2"5) 43
q-n’aqn’b’c

d,e,f
;q 43 q-",aq",g,h

u,v,w,
;q

(--1)J+k+m(q__n)m(aqn)m(a)j+k(b)j(C)j(g)k(h)k
-’-j k m (q)m-J(q)m-k(q)J+k--t)m(d)j(e)J(f )J(U)k(V)k(W)k

q( )+()+(m )+(1--m)(j+ k),
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where the triple sum is taken over all (finitely many) nonzero terms, i.e. over all
(nonnegative) integer values ofj, k,m such that max(j,k)<m<min(j+k,n). Now let
j= rn- r to see that

(2.6) X (- 1)J(a)j+k(b)j(c)jq({)+fl-m)J
j (q)m-j(q)j+k-m(d)j(e)j(f)j

a)m+k_r( b)m_r( C)m rq(m{r)+(l -m)(m-r):X (--1)m-r(
(q)r(q)k-r(d)m-r(e)m-r( f )m-r

(--1)m(a)m+k(b)m(C)mq-()
(q)k(d)m(e)m(f)m

[ q-k,d-lql-m,e-lql-m,f-lql-m def ]"4q3
a-q-m-k,b-q-m,c-lql-m ab----

If the first 43 in (2.5) is balanced, i.e. if abcq= def, then the 43 in (2.6) is also balanced
and we can apply Watson’s transformation formula [19, (3.4.1.5)] to find that the 4q3 in
(2.6) equals

(ae-lq)k(af-lq)k
(ae-lf-lq2-m)k(aqm)k

db- lc-- lq-m, qf-, qf-, db- , dc- , e-lql-m,f-lql--m, q-k
"8*7 f-,._f-,c_lql_m,b_lql_m,af_lq, ae_lq,ae_lf_lq2_m+k

ad- lqk+ 1],
where, as elsewhere, the square root denotes one of the square roots of the first
numerator parameter a in the 87. Using this and (2.6) in (2.5) with the above 87
having r as its summation index, setting k=r+j and m=r+s, changing the order of
summation and simplifying, we obtain the rather general product formula

(2.7) abcq q 4q3 q-"’ aq", g, h q43 d,e, de
u,v,w

n--r (q-n)r+s(aqn)r+s(b)s(C)s(g) (h)r(d/b)r
(q)r(q)s(d)r+s(e)(abcq/.de)siU)r(v)r(w)r=O s=O

( d/c) db- lc- lqr-s r+s- rs

(db-lc-lql-S)r 1-db-lc-lq-S
q

q-, Iqr+ 1- lqr
q4

gqr, hqr, ae- deb-

uq r, tgq r, wqr, db- IC-- lql +r--s

If we also assume that the second 43 in (2.7) is balanced, i.e. if aghq= uvw, then
the above sea is balanced and it can be summed by (2.3) whenever it reduces to a 32
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series. For instance, setting v aq/e and w= de/bc in (2.7) yields the product formula

(2.8) abcq q 403 bcgh aq de q43 d, e, de d e bc
n r (q-n)r+s(aqn)r+s(g)r(h)r(d/b)rrld/)r(b)s(C):X

r=0 s=O ( qitY-’cg+-iaq/e ) d’b-c3;i-d-e-’gC)r
(bcg/d)s(bch/d)s

( e ) ( bc/d ) ( abcq/de )
db- tc- lqr-S, qr+S

-db-lc-lq-s

If b=q-x and g=q-Y with x,y=0, 1,. ., then (2.7) and (2.8) also hold even if n is
not a nonnegative integer, and so by relabeling the parameters we obtain the following
generalizations of Bailey’s product formula (1.2) (and of its discrete analogue in Gasper
[9, (1)]).

(2.9)
cqX

b q-Y, hqyabcq ;q 4t3 a, ;q43 d,e, de
u,v,w

X X (a)r+s(b)r+s(q-X)s(cqX)s(q-Y)r(hqY
r=O s=O (q)r(q)s(d)r+s(e)s(c-7’(-u’)-(-

(dqX)r(dC-q-X)r 1-dc-lqr-s

(W)r(dc-lq’-S)r l-dc-’q-s
qr+s--rs

q4[ q-, qr-Yhqr+y, abe- lqr+ I, dec- Iqr
uqr, tgq r, wq r, dc- lql +r-s

,cqX a,b,q-y hqy

abcq ;q 4 ch abq de ;q(210) 4 d,e, de d’ e c

y x (a)r+s(b)r+s(q-y)r(hqy)r(dqX)r(dc-lq-X)r= (q)(’q)s(d)’r+’s(’ch/d’)"’+s(abq/e)’r(dq/c)’"’r=O s=0

( q-X )s ( cqx )s (cd-lq-’v )s (chd- lqy )s
( de/)r( e )(c/d )(abcq/de ),

r+s

where x,y= 0, 1, . Formula (3.9) in Verma and Jain [21] is a limit case of (2.10).
Additional product formulas can be derived by applying Sears’ transformation

formula 18]

d,e,f
;q

(f),,(e),, --d- 43
q_ d d

’a’b’ c
de df

q
d, bc’ bc
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where abcql-"=def, to the balanced 43 series in (2.7)-(2.10). In particular, application
of (2.11) to the first 43 in (2.7) and the substitutions b d/b, c d/c, e aq/e yields
the following generalization of Watson’s formula (1.1) (and of the product formulas
[8, (2.2)], [21,(3.1)], [21, (3.2)], [15,(1.9)], [17, (4.10)])

(2.12)

q-n aqn b c

abcq43 d,e, de ;q14d?3[ q-"’aq"’g’hu,v,w ;q]
( aq/e ) n ( de/bc ) n bc E ( )r+s(aqn)r+s(d/b)s(d/c)s

r=0 s=0 (q)r(-s--a---(e-)-s
(g)r(h)r(b)r(C)r 1-bcd-’q r+s-rs

(U)r(1))r(W)r(bcd-lql-S)r" 1-bcd-’q-s
q

.54[ q-S,gqr, hqr, eqr, abcd-le-’qr+’
U lql+r-

;q
q vq r, wqr, bcd-

Similarly, (2.8) gives the double-sum Watson type formula

(2.13)
q-",aq’,b,c

abcq4q
d,e, de

;q 43 dgh abcq q

(aq/e)n(de/bc)n bc n (q-n)r+s(aqn)r+s(g)r(h)r(b)r

( C)r ( d/b )s( d/c)(dg/bc)( dh/bc)s
bcq/d )r ( abcq/de )r ( aq/e) ( d/bc) ( de/bc)s

1- bcd- lqr-s r+s

bcd-lq-s
q

which is equivalent to formula (4.10) in Rahman [17] and yields the product formulas
for q-Racah and q-Wilson polynomials in [17, 5].

An extension of formulas (16) and (17) in [9] to a product of 43 series can be
derived from (2.9) as follows. Let v= abq/e and w-eh/u so that the 54 series in (2.9)
reduces to a balanced 43 series which, by Watson’s transformation formula
19, (3.4.1.5)], equals

(dc-h-q-y-S)s(dc-ql+y-s)
(dc-lh-lql-r-S)s(dc-lql+r-S)s

ch cu
chd- lqr-1, qf- qf- -U -e qr-y, hqr+y, q-S

87
f-, -(- uq,heu- qr, chd- q, cd- q-Y, chd- qr+

eqs

Then, using this in (2.9) withj as the index of summation in the above 8q’7, replacing s
by s+j, and changing the order of summation, we obtain the desired expansion
formula
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(2.14)

cq
abcq ;q 4q44q3

d,e, de

a,b,q-Y,hqY
abq he q

U e U

min,y) ( a )y( b )y( ch/du)y( cu/de )y( ch/d )y( q-X )y( cqX )y
j--O (q)j(d)j(e)j(u)j(eh/u)j(c/d3abcq/de)j

Y-J --J (bqJ)r+(q-Y)j(hqY)J )q) (aqJ)r+s (dqx)
(ch/d)2y (- eq

r=O s=O (q)r(q)s(dqJ)r+s

( dc- lq-X )r( qj-y )r( hqy+y )r( chd- ’qy )r( qy-) ( cqy+)
( chd- ’q2J)r+s ( uqj)r( abq/e)r dq/c)r ( ehu- ’qj)r( eqj)s

(chd-’qJ+Y)s(cd-’qJ-Y)s(1-dc-lqr-j-S!ll-chd-lqr-’+2J) qr+s,

x,y=O, 1,2,. ., which reduces to a double sum whenever u=de/c or u-ch/d (giving
(2.10)).

These formulas yield such a large collection of product formulas for the q-Racah
polynomials that we shall not present them here. In addition, because of the (essential)
duality of the q-Racah polynomials in n and x, duals of these formulas follow, e.g., by
replacing n by x in (2.7), (2.8), (2.12), (2.13) and x and y by n and rn in (2.9) and (2.10),
and choosing the other parameters appropriately.

3. Generalized Poisson kernels. In this section we shall start out by considering
the following generalization of the Poisson kernel (1.13) for q-Racah polynomials

(3.1)
Pz(x,y)= Pz(x,y; a,b, c, a,’y,K,M,N; q)

(q-Z),,hn(a b c,M;q)W(x;a,b,c,M;q)Wn y;a,-- "t,N;q
n=O (q-K a

where z--0, 1,. ., min(K,M) and M<_N. If a=a, ),=c and N=M, then (3.1) reduces
to the discrete Poisson kernel (1.14) when K--M and it has the Poisson kernel (1.13) as
a limit case. From the Watson type product formula (2.12) it follows that

(3.2)

( )W(x’a b c,M’q)Wn y;a,--,/,N’q

n+l x x M(bq)n(aq/c)n
cn r (q-n)r+s(abq )r+s(q- )r(Cq )r

(-- (b-q)- r--0 s=0 (q)r(q--)Z(-qi(’-q--
(q--Y)r(yqy--N)r(qX--M)s(c--q-x) 1--cqr-s Ar,sqr+s-rs
(abyq/a)r(bq)s(aq/c)s(cq-S)r 1-cq-"
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with

(3.3) Ar,s--SdP4
q-S’qr-y"tqr+y-N’aqr+l’bcqr+l
otqr+ 1, qr-N, ab’a- lqr+ 1, cql +r-s

q

By using (3.2) in (3.1) and changing the order of summation we find that

(3.4)

(bq)m(aq/c)m r (q-Z)r+s(abq2)2r+2s
Pz(x’Y)- (abq2)m(c-)t r:0 s:0 (q)r(q),(q-K)r+’s(abqM+2)r+s

(q-X)r(Cqx-m)r(q-Y)r(/qY-S)r(q-)s(c-q-X)s 1--cqr-s

(aq)r(q-S)r(abrq/a)r(bq)(aq/c)(cql-)r 1-cq-"

with

(-" |)r+SAr,sBr,sqM(r+s)-rs-(r)

(3.5)
abq2r+2s+ I, qf’- qf" qr+S-M, qr+S-z

f-, f-,abqM+2+r+S,qr+s--K
qM--r--s

(A similar formula holds with the term abq2+1 in h(a,b, c,M; q) replaced by 1.)
We will now point out some special cases in which P(x,y) is nonnegative.
Suppose K=M. Then the 4 in (3.5) reduces to a nearly poised 4q3 series, which

by means of the transformation formula

a qf-
(3.6) 43 ’, V, w aq ( w/aq

where (a)oo (a; q)oo (1 a)(1 aq)(1 aq2)..., is equal to

z--r--s [ qr+S-z, ql+r+s-z abqg+2+z
(q-)

2’1 l+M--z
(3.7)

(abqM+2+r+S)z_r_ q

and hence is clearly nonnegative when z = 0,1,. .,M, r+ s_< z, 0_< q< 1, 0 <_ abqvt+ 2< 1.
The special case of (3.6) in which b is a negative integer power of q was first

proved by George Andrews at the 1980 Summer Meeting of the American Mathemati-
cal Society shortly after George Gasper told him that in view of this work such a
transformation should exist. Here we shall give a proof of (3.6) which is much shorter
than Andrews’ proof of the terminating case. It suffices to observe that, since 1- aq2

1-q+q(1-aq) and by [1,p. 576,12]

(3.8) (bt)oo(c/b)oo b,
2’ acb : t,ic 2’1

bt
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the left-hand side of (3.6) equals

21[ aq,b. w
w a

w(1-b) [aq,bq.+ aq(1 w) 2tl wq w]
( wb/a)oo (w/b)oo.
(w/a)oo(w)oo

b,bq ] w(1 b)(wb/a) (w/b)
2tl wb - + oo-- aq(w/aq)oo(w)o

_(wb/aq)oo(w/b)oo[ b’bq ]w(w/aq)(w)oo 2I wb ;’"
a

b,bq
w

wb
a

Returning to the case K=M of (3.4), we also need to consider the sign of A,. If
a a then the 54 series for A, in (3.3) reduces to a a’/’3 series which, by (2.11), equals

(3.9)

From (3.4), (3.7) and (3.9) it follows that

(3.10) Pz( x,y; a,b, c,a,,,M,M,N; q) >_O

for x-0, 1,...,M, y=0, 1,-..,N, z=0, 1,...,M when 0<q< 1, 0<aq< 1, O<_bq< 1,
O<c<aq and cq</<qV-<q-. Hence the discrete Poisson kernel (1..14) is non-
negative for x,y,z=O, 1,...,M when 0<q<l, 0<aq<l, 0<bq<l and O<c<aq.
Also notice that the balanced 43 series in (3.9) reduces to a summable 32 series when

If in (3.1) we write the sum with M as the upper limit of summation, replace
(q-) by (tq-r), and let K--, o, it follows from (3.4) that

(3.11)
Lt(x,y; a,b, c, a,’/,M,N; q)

=- , thn(a,b,c,M;q)Wn(x;a,b,c,M;q)W y;a,-,’t,N;q
n’-0

r+s 2 --x x--Mx M-x (-’t) (abq)2r+2s(q, )r(Cq )r
(abq2)t( c(bq)lvt(aq/c)t- I)M r=0 s=0 (’q)’(’q’)s(abq’M+2)r+s(aq)’(q-’)rN

(q-Y)r(’yqy-V)r(qX-M)s(c-q-X)s 1--cqr-s

(abyq/a)r(bq)s(aq/c)s(Cq-S)r 1-cq-s
A (7. t7 M(r+s)-rs-(rs)

for x =0, 1,...,M with A,, defined in (3.3) and
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abq2r+2s+l q _q qr+s-M
(3.12) Cr,s--4, f_, f_,abqM+2+r+

tqm-r-s

In our work on the nonnegativity of the Poisson kernel for the continuous q-ultra-
spherical polynomials [10] we derived the transformation formula

(3.13) ]__ (t)oo(aq)o [b,tbtb
(tb)(abq) 21 tq- aq

which turns out to be exactly what we need here to show that

(3.14) [qM-r-S, tqM-r-sCr’s (t)M-r-s(abq2r+2s+2)m-r-s’2dP!
tq

;abq2r+2s+2’

from which it is obvious that Cr,s>O for O<t< 1, r+s<_M when O<_abq2< 1. Combin-
ing this with our previous observation that Ar, equals the expression in (3.9) when
a-a, it follows from (3.11) that

Lt(x,y; a,b, c,a,l,M,N; q)>O

for x-0, 1,.-.,M, y-0, 1,..-,N, 0<t<l when 0<q<l, 0<aq<l, O<_bq<l, 0<c<
aqM and cq<__.<qN--l<__qM--l. In particular, the Poisson kernel (1.13) is positive for
x,y-O, 1,...,M, 0_<t<l when 0<q<l, 0<aq<l, O<_bq<l and O<c<aqM. The
depth of this result can be seen from the observation that the Poisson kernel equals zero
when t- and x

Since W(x; a,b, c,M; q) tends to the q-Hahn polynomial

-n’abqn+l’q-x(3.16) O(x;a,b,M;q)-3q2
aq, q-M

;q

as c0, (3.4) and (3.11) lead to similar formulas for the q-Hahn polynomials and, in
particular, our observations above lead to

(3.17)

! n+l z()n(abq (1-abq2 )(aq)n(q- )n --1 Mn--n--(’)

n=0 (q)1--abq)(--b-qi-n-(--q-;t-7--i --a- q

"Qn(x; a,b,M; q)On(Y; a,b, q)
--z 2 --x --y x--M y--N, zr (q )r+(abq )2r+2s(q )r(q )r(q )s(q )

-J- -a?--b-r=0s=0 (q)r(q)s(q )r+s(q )r+s( q )r+s( q)r( q)s

qM--Z)z_r_
abqM+2+r+S ) z_r_s

(-- 1)r+Sa-sqM(r+s)-(x+Y+ l)S--(rs)

q+M-z
abqM+2+z >_0,
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(3.18)
(abq)n(1-abq2n+l)(aq)n(q-m)n-t qMn-n-()

Q,(x; a,b,M; q)Q,(y; a,b,N; q)
x 2 --x --y x--M )sM-x (abq )2r+2sCq )rCq )r(q )s(qy-N=X X

r=O s=O (q)Cq)+(q )r+s(abq )r+s(aq)rCbq)r

( ) M_r_s ( abqEr+2s+2 ) M-r-s(- t) r+s -sqMCr+s)-Cx+y+ l)s-Cr-+)a

qM-r-+, tqM-r-+
"2tl tq

abq2r+2s+2 >0,

which hold for x=0, 1,...,M, y--0, 1,..-,N, z--0, 1,...,M, 0<t< when 0<q< 1,
0<aq< 1, O<_bq< and M<_N.

In addition, since the q-Hahn polynomial Q(M-x; a, b, M; q) tends to the little
q-Jacobi polynomial

(3.19) Pn(qX;a b;q)-2dPl[ q-n’abqn+laq ;qx+l

as M- , it follows from (3.18) that

(3.20)
(abq)n 1--abq2n+l)(aq)

)-"
n=O (q)-(1-abq)(bq)n "(aq tnp,(q;a,b;q)P,(qY;a,b;q)

o+ min,y) (q_)(q_y) a_
:(t)o(abq2) X X (x+y)(r+s)-2rs-s

r=O s=O (q)r(q)s(aq)r(bq)s q

.tr+s x (abq2r+Zs+2)j,
j=0 (q)jCtq)9

which gives the positivity of the Poisson kernel for the little q-Jacobi polynomials for
x,y-O, 1,. ., 0_<t< when 0<q< 1, 0<aq< and 0<bq< 1. A formal power series
formula for the left side of (3.20) with n replaced by (abqZt)"q+"-0/- is given in
Stanton [20].

4. Additional bilinear sums. Analogous to a bilinear generating function consid-
ered for the Racah polynomials in Rahman [15, Thm. 2], we shall here consider the sum

(4.1) K+(x,y)=K+(x,y;a,b,c,a,/,M,N;q)

(aq)n(abq),(bcq),(-c)-"
n=O C(7(

n(Z)q()

(x;a,b,c,M;q) y;,,,N;q
where 0, 1,. ., M,MN, and

(q-)++
+=0 (q)+( )+
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for n-0, 1,. .,z and an arbitrary (fixed) sequence (/k} of constants.
Using (3.2) in (4.1), setting n=r+s+j, k-m-s-j, and observing that the sum

overj is a multiple of the very well-poised series

abq2r+2s+ l, q(-, q--, qS-m
43 f-, _(-,abq2+2r++m

(which equals if m-s and 0 if m>s by a q-analogue of Dixon’s theorem [19, (3.3.1,5)])
we find that

(4.3) K(x,y)= r (q-Z)r+slr+s(q-X)r(qX-M)r
r:O s:O ( q)r(q(’-i’-+(S-(-q-ir

(q--Y)r(’yqy--N)r(qX--g)s(C--lq-x) 1--cqr-s Ar,sq-rS,(abq/a))"("b"q)’s(aq)c)(cqi"S)r cq-s

with Ar, as defined in (3.3).
Formula (4.3) has many interesting special cases, some of which we shall now

consider.
Case 1. ’n(z ) proportional to a balanced 3q2. Let

(d)k(e)g q(4.4) lk (q-Z-delab)k

where d and e are arbitrary parameters. Then (z) is a multiple of a balanced 3q2
series which can be summed via (2.3) to give

(4.5) ,(z ) ( abq2/d )" ( abq2/e )z
(abq2)z(-a-bi-

(q-Z)n(d)n(e)n(abq2)2nz+2 (- -e nq
( abq

nz+2n--()

Hence it follows from (4.3) that

(4.6)

r (q-Z)r+s(d)r+s(e)r+s(q-X)r(CqX-M)r(q-y)(_r.yqy-N)r
r:O s=O (q’r(’(----- l--de"’r-r-(’r3+s"’ii’ (a----;)r

(qX-t)s(c-q-X)s 1--cqr-s Ar,sq(bq)(aq/c)s(Cq-)r 1-cq-s
r+s--rs

(abq2/d). (abq2/e) q-Z
(q2(-a}-

( )(d)n(e)n(abq2)2(aq)(abq)
n=0 (q)n(abqZ+2)n(abq2/d)n(abq2/e)n(bq)n

(bcq) n [ ab
(aq/c)’(abq)2’ -e qz+2

n

ab
W(x’a b,c M;q)W y;a,--,/,N;q
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From the left-hand side of (4.6) and our observations concerning (3.9), it is clear
that if a-a, x-O, 1,...,M, y-O, 1,...,N, z-O, 1,...,M, 0<q< 1, 0<aq< 1, O<_bq<
1, O<c<aqM and cq<_<qS-<_q-I, then the kernel on the right-hand side of (4.6)
is nonnegative if either

(i) Idl< 1, lel< 1, abq 2 <de, or
(ii) both d and e are nonnegative integer powers of q, or
(iii) d, e_> q-".
Case 2. h(z) proportional to a balanced 4’3. Let

(d)(e)(q-m) k qk.(4.7) txk- ( f )(q_M__lde/abf )k

Then, for n 0, 1,...,z,

(q-Z)n(q-m)n(d)n(e)nqn(4.8) hn(z)-(f )n(q_m_z_lde/abf )n

dq" eq q.-M n-z,q

"43 qn-M-z- lde q

abf
’abq2+2

(abfq2/de)z(f-lql-M-Z)z
( f ), ( q-m-Z- ’de/abf )z

(q-Z)n(q-m)n(d)n(e)n ( de)z-n( b-’q2-;-n"(?i---) n abq2
qn

qn+2ab ----..---q n+2ab ,qn-M q,,-z
43

d e
;q

f-lqn-M-z+l qn+2abf abq2n+2de

by (2.11). These 43 series can be summed only in very special cases. If

(4.9) d=q3/2v/, e-qf-, f=q(-M-)/2,

then

(4.10)
(q-,+z,/)(q-,),(q-M)( q3/2V/’) (qfa--

( q(2-M-z)/2 )z ( q-(M+z)/2 )n ( q(l-m-z)/2 )n

qn+3/2f,qn+l(d’,qn-m, qn-Z
43

q,,+(l__)/2,q,,_(+)/2,abq2,,+2

Since this 43 series can be summed by the formula

(4,11)
qa/2, q(a+ 1)/2, qa+ l-w, q-m

43 a+l,q(l+a--w-m)/2,q(2+a--w--m)/2
;q

q

(qW/2; ql/2)m(_ql/2 ql/2)m
( q<W-a)/2; ql/2 )m(_q(a+ 1)/2; q,/2 )m

m--0,1,...
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which is a special case b-O of [16, (1.8)], it follows from (4.3), (4.7), (4.10) and (4.11)
that we have the rather strange looking formula

(4.12)

=o =o (q)r(q)(q1--z)/2 q--j)zr+z(aq),’( q-N )r

( --7-q-/’-(r ( bq -( a-c-))i-q -- 1- cq-
(q-(M+zl/2)z (q-Z)n(--ql/2;ql/2)z--n(q(n+2--M)/2r-;ql/2)Zn--n-(q(2-M-z)/2i; n--0 (qi;i---i--)/--Sii/53;i-i----3-ib-l:---,z

(qf;ql/2)2n(q-M)n(abq)n(bcq)n (ql/2)n
W(x;a,b,c,M;q) y;,-,’,N;q

where the same square root of ab is used throughout. As in our consideration of the
sign of the kernel in (4.6), from the left-hand side of (4.12) it follows that if a=a,

Mx--0, 1,.-.,M, y-0, 1,...,N, z-0, 1,...,M, 0<q< 1, 0<aq< 1, O<_bq< 1, O<c<aq
and cq<.<qN-<q-, then the kernel on the right-hand side of (4.12) is nonnega-
tive.

If (4.9) is replaced by

(4.13) d-qf-a-, e-q/2f-a, f=_q(M+z)/2,

then ?,(z) becomes a multiple of the series

(4.14) 43
qn+lv,qn+3/Zf-,qn-M, qn-Z

q,,+(-,-z)/2, q,,+(2--z)/2, abq2,,+2
q

This series can be summed by the formula [16, (4.8) with b-0]

q(a+l)/2,q(a+2)/2,ql+a-W,q-m
(4.15) 43 qa+l,q(Z+a--w--m)/Z,q(3+a-w--m)/2

;q

(- ql/2 ql/2 )m( qW/2; ql/2 )m( q(1 +q-w-m)/2 )m( q(W-a-m)/2 )m
(__ q(a+ 1)/2; ql/2 )m ( q(W-a)/2; ql/2 )m ( q(W+a-m-1)/2 )m ( q(2+a-w-m)/2 )m

to yield a formula similar to (4.12), which we shall omit.

5. Product formulas of Bateman type. In order to derive our Bateman type prod-
uct formulas we first set s-k-r in (2.13) and change the order of summation to obtain
the expansion
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(5.1)

[q-",aq",b,cllq-",aq",g,habcq q 43 dgh abcq q43 d e
de e,-c’ -dTe
(aq/e)n(de/bc)n ( bc )n (q-n)k(aqn)k(d/b)k(d/C)k(dg/bc)
"(--n-(-a-b-c’)-n - ( q ) k ( d ) k-( aq/e ) k ( d/bc) k ( de/bC) kk=O

(dh/bc)k qk
(dgh/b) 

q-kbc q- --q- b,c g,h
q-e ql-kbc

_
--d--" a de q

abcq
"109 ql-kc ql-kb q-kbc q-bc abcq bcq’dEgh[-’--/-’---d--’ d 7-g’--’---e ’e’ d

If abcq/dgh were equal to q, then this 09 could be transformed via Jackson’s
transformation formula 19, (3.4.2.4)]

(5.2)

a,qf,-qf,c,d,e,f,g,h,q
1o9 f aq aq aq aq aq aq ;q

’-- ’---’-d-"--’--f-’ g’ h
’aqm+l

( aq )m(aq/fg)m ( aq/fh )m ( aq/gh )m
( aq/f )m ( aq/g )m ( aq/h ) m ( aq/fgh )m

aZq aq aq aq
e qf- qf- --de --ce --cd f g, h q

"lOt9
’--_f-,aq aq aq a2q 2 a2q 2 a2q2 a2qm+2 ;q’

--’--’ -’ cdef’ c-eg’ cdeh’ cde

where a3qre+z- cdefgh and rn is a nonnegative integer. However, in order to avoid the
restriction abcq-/dgh =q and derive our Bateman type formula we first need to use
the following expansion formula (which will be proved at the end of this section) in an
appropriate way:

(5.3)

I a,q-,-qf-,c,d,e,f,g,l,q-m 1o9 V /--aq aq aq a._q aq 7 "zq
va -- -d -- f g

aq +

=(q’-m/h),n(aq/hz)m , (q-m/hz)j(q-)j(--qf-)j(z-l)j(q-m/a)J
(ql-m/hz)m(aq/h)m j=0 (q)j(f-)j(-f-)j(q’-m/h)j(aq/hz)j

(q-m)j (aqm+l )J(q/hz)j h
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a, qf, qf, c, d, e ,:, g, hzq-j, qj-m
"10t9 f f aq aq aq aq aq qj+ la q

"--’" e ’--f’ g’ hz
’aqm-+l

where a3qm+2 cdefghz.
Assume, temporarily, that b=q-x, where x is a nonnegative integer, and replace

a,c,d,e,f,g,h,q-m in (5.3) by q-k-Xc/d, g,h,q-ke/a, ql-k-Xc/de, q-k, c,q-, respec-
tively, to obtain that the 1o9 in (5.1) equals

(5.4)

(c-lql-X)x(q-t’dgh/ac)x , (d2gh/ac2q)(q/-)j(-qf-)
(g)i (-----S-xx j:o (q).(f-)(- -).

( qX- ld2gh/ac)j ( qkd/c)j( q-x ).i( d- lql-k )J
( C- lql-X )j( q-,dgh/ac).i( qXd2gh/ac2)

q-’-Xc qf- -qf-,g,h q-e,,
d a

lO(9

f- _f- q-t,-xc ql-k-c
dg dh

ql -Xac
de

ql -k-xC
de

q -c
d

q-’, q-j-xac2

dEgh
qJ-kdgh ql-j-kc

ac d

Now we can apply (5.2) to the above o9 to find that it equals

(.)
( qXd/c) k ( ql -xac/dgh ) k ( acq/dh ) , ( dg/c) , ( dh/ac)j( q-dgh/ac )j
( qXdg/c) k ( ql -xac/dh ) k ( acq/dgh ) k ( d/c ) k ( q-dh/ac)j( dgh/ac)j

( qgdg/c )j ( d/c )j
( dg/c )j ( qgd/c )j

q-Xac q-,_qf-,e q-ac
dh -’ deh

’aq’g’
10t9 q ql-k-xc I-

f-_f- -Xac q

q -J-Xac2 qJ-x, q-,
dEgh

qJdg q -ac q +k Xac
c dh dh
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Writing the above 10@9 series with rn as the index of summation, substituting (5.5) into
(5.4) and summing overj we find that

(dEgh/acEg)j( qf-)j(-q-)j(qX-ldEgh/ac)j(qd/c):(q-X)j(d-q-)J
(q)j()j(- f-)j( c-lql-x )j( q-dgh/ac)j( qXd2gh/ac2 )j

( dh/ac)j( q-kdgh/ac)j( qkdg/c)j( d/c)j( q-J-xac2/d2gh )m( qj-X)m
( q-dhlac)j( dghlac)j( dglc)j ( qkd/c)j ( qdg/c) ( ql -Jacldh ) m

(q-)m(q-’acZ/d2gh)m
(acq/dh)m(dg/c)m

d2gh,. qf-, _q- q-d2gh ,m-x q-mdh d qdg
ac2,-.tt a .,1 ac c c

"87
q’-mdgh q"’dg dgh q-kdhf’- __f- c-lql-x

ac2 c ac ac

(d2gh/ac2)x(d-lq-X)x(q-X)m(C)m(q-Xac/dgh)m
( dgh/ac)x ( c- lq,-X )x( acq/dh )m( dg/c)m( d )m

qm-k, q,,,-,, qX-ld2gh d

"43
ac C

dqm qmdg q-kdh
;q

c ac

d-lql-k

by [19,(3.4.1.5)]. Finally, using the above observations in (5.1) and simplifying, we
obtain the following generalization of Bateman’s formula (1.3):

(5.6)

q-n, aqn, b c
abcq ;q 4t3d, e, de

q-",aq",g,h
dgh abcq q

( aq/e ),, ( de/bc) n bc n[ (q-")k(aqn)k(dh/bc)u.(acq/dh)k

(dg/C)k
( abcq/dh ) k

k (abc/dh)m(qf-)m(-q-)m(q-k)m(aqk)m
m=O(q)m(f--)m(-<)m(qk+ labc/dh )m(q-kbc/dh )m

( b )m( e/h )m( abcq/deh )m( g)m( C)m
( acq/dh )m ( abcq/de )m ( e )m ( d )m (dg/c)m

m

qm_k,bqm, d2gh d
abcq c

"41#3 ;q

dqm,
qmdg q-kdh__

c ac
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where, by analytic continuation, b can now be an arbitrary parameter.
It follows from (5.6) that the q-Racah polynomials have a Bateman type formula

of the form

(5.7)

W,(x; a,b,c,N; q)Wn(Y; a,b,c’,N; q)

(bq)n(abqN+2) -n q-n n+l (bctqy+l)k
_(_)_n__q___..n

n (bqN+l) ( )(abq )
=o (ql,(bq)k(abqN+2),

k( ql +X-Ya/c,) k ( bql +N-x-y ) qt: X( bc’q ) k ( ql -Ya/C’) k m:O

(q-Ya/C’)m(q<)m(--q<)m
(q)m(<)m(--<)m

( q-" )m ( abq’+ )m ( q-X )m ( ql +N-Ya/Ct)m ( q-Y )m ( q-Y/Ct)m ( cqx-N)m
(ql+k-Ya/c0 m (q-y-k/bcO m (ql +X-Ya/cO m (q-N)m(bCq)m(aq)m (bql+N-x-y)m

m

m-x bcc’ b..l+N_xqm-k, q "-- q

"4t3 y--x--k..,
l+N-x--y+m qbcqm+ 1, bq

A similar formula for the product W(x;a,b,c,N;q)W(y;a,b,c,N’;q) also follows
from (5.6).

By letting c and c’ tend to zero in (5.7) we find that the q-Hahn polynomials have a
Bateman type formula of the form

(5.8)

3do[ q-n, abqn+ l, q-x

aq, q-N
q 32

q-,,, abqn+ 1, q-y
aq, q-N

q

_(bq)n(abqN+2) -n (q-n)k(abqn+l)(bql+N-x-Y): q(x+l)k-(2t’--(---;i-’n" (bqN+l) :o (q)k(bq)(abqN+2)

k (q-k)m(abqk+l)m(q-X)m(q-y)m (bqN+2-x)mm:OX i’mi--:-(--_--(-q’i+N_x_Y)m

qm--k, qm--X, bql +. N--x

bql +N+m-x-Y, O
q

A Bateman type formula for Hahn polynomials follows from (5.8) by setting a= q,
b--q/ and letting q-, 1-. In addition, by replacing q-X and q-Y in (5.8) by xq-N and
yq-N, respectively, and letting N we find that the little q-Jacobi polynomials have
a Bateman type formula
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aq
;xq )_q

aq
;Yq

(bq)_ (_b)-,q_n(,+O/2 (q-")(abq"+’)g (_byq2)q)
(aq) :=o (q),(bq),

! (q-k.) (abqk+l)m(xq) [q
m=O (q)m(aq)m

"-t’,bxq, b-ty-]
To complete our proof of (5.6), it remains to prove (5.3). However, since (5.3) is a

special case of more general expansion formulas, with a view to future applications we
shall first derive these more general formulas. Observe that from Jackson’s formula
[19, (3.3.1.1)]

(5.10)
q,qf-d,-qfd,b,c,d, q+m-ka2 qk--m

bcd
87

aq aq aq qk-rnbcd
q

’-- ’---’-’"-’" a
aq +m-"

( aq)m_k ( qk-mbc/a)m-k ( qk-mcd/a)m-k ( aq/bd )m-k
( aq/d )m_k ( qk-mbcd/a)m-k ( aq/b)m-k ( qk-mc/a)m-k

(q-mb/a)k(q-mc/a)(q-md/a)k(q-mbcd/a)k
( q-"cd/a ) ( q-mbd/a ) ( q-mbc/a)m ( q--mcd/a )m

with

( aq/b )m ( aq/d )m ( q--mc/a )m ( q-mbcd/a )m
( aq ) rn ( aq/bd ) m ( q-mbc/a)m ( q-mcd/a)m

Hence

(5.11)

q-rob q--mc q-d
al’" "’ar+l’ a a a

,q-m
r+Sqr+4 q_mcd q_mbd q_mbc q_mbcd ;t

bl"" ’br’ a a a a 2

m

--am (a)k... (ar+)k(q-m/a)(q-m)
k=o (q)k(b,)k... (br)k(q-mbcd/a)k(q-mbcd/a2)k

k

( a )2( qvr-d 2( qvrd 2( b )2(c)2(d )2( q’ +m-ka2/bed )j( qk-m )j

l+m-k)j
qJ

j=o (q)j(fd)j(-f-d)j(aq/b)j(aq/c)9(aq/d)9(q-mbcd/a)j(aq
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m (a)j(qf)j(-qf-d)j(b)j(c)j(d)(q"+a2/bcd)j(q-")
-Am

j=o (q)(f-d)(-f-d)(aq/b)(aq/c)(aq/d)j(q-mbcd/a)(aqm+l)
qJ

al,’’’,ar+l,a-lq-j-m,qj-m

"r+3r+2
b," ,br,

qj-mbcd q-j-mbcd
a a2

by a change in order of summation. Setting c e/d and letting d o in (5.11) gives

(5.12)

al"’"ar+l’-----d -’q
r+3r+2 q--_ e q-_be -bl ’" ’br’ a a 2

(aq/b)m(q-mbe/a)m (a)j(qfd)J(-qfd)J(-qfd)J(b)j(qm+la2/be)j
(aq) (q-me/a)mm j=0 (q)j(fd)j(--fd)j(aq/b)j(q-mbe/a)j

(aqm+l)j
r+3qbr+2

al,.

b|,

,ar+ a- q-j-m, qj-m

qJ-"be q-J-"be ;t
’br’ a a 2

Formula (5.3) now follows from the case r--7 of (5.12) by replacing t,a,b,e, al,...,a8,
bl,...,b7, respectively, by q,q-m/hz, z-1, aq/h2z, a, qfd, -qfd, c,d,e,f,g, vrd, -vrd,
aq/c, aq/d, aq/e, aq/f, aq/g.
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GENERALIZED CHEBYSHEVIAN SPLINES*

G. NRNBERGER’, L. L. SCHUMAKER:, M. SOMMER" AND H. STRAUSS"
Abstract. In this paper we study a space of splines in which the pieces are drawn from a linear space

spanned by an ECT-system U. The splines here generalize the usual Chebyshevian splines in that the pieces in
the various intervals are restricted to come from varying subspaces of U. For our class of generalized splines
we discuss zeros, determinants associated with certain Lagrange and Hermite interpolation problems, and
properties of certain local support basis splines.

1. Introduction. Over the past twenty years, the concept of a polynomial spline
has been generalized in many ways, resulting in an extensive hierarchy of splines--see
e.g. [5] and references therein. Chebyshevian splines, which lie in the middle of this
hierarchy, are of particular interest because they have almost all of the nice features of
the classical polynomial splines.

The purpose of this paper is to study a class of generalized splines which retains
most of the features of the Chebyshevian splines, including interpolation properties
(which are studied here) as well as approximation properties (which are studied in [3]).
The spline spaces of interest are introduced later in this section.

Section 2 of this paper is devoted to zero properties of our splines, including a
version of the Budan-Fourier theorem. In 3 we examine Lagrange and Hermite
interpolation, and show that interpolation is possible precisely when a certain interlac-
ing property holds. In 4 We use our results on Hermite interpolation to construct a
basis of local-support B-splines.

Section 5 of the paper contains a variety of examples to illustrate the material. Our
examples also show that any further generalization of the spline spaces will result in the
loss of some of the key properties. We conclude the paper with remarks and references.

We devote the remainder of this section to definitions. For convenience, we follow
the notation of [5]. Given positive functions w cm-i[a,b], i- 1,2," .,m, we define

(1.1) Ul(X)-w,(x),
U2(X)--WI(X ) W2(s2)ds2,

Um(X)--Wl(X)faXW2(S2) faS2"’’ faSm-lwm(Srn)dSm’’’ds2
These functions form a canonical extended complete Chebyshev-(ECT-) system on
[a,b]. We write=span(ui}’.

Suppose now that %=(n0,..-,ng) is a vector of integers with O<_n<_m, i-
0,...,k. We write

(1.2) ,- span(uj).’__,, i-0,...,k.

The pieces of our splines will be drawn from these spaces. We now need to introduce a
partition of the interval [a,b]. Let a-xo<x <... <Xk+l--b. Then A--(x) divides
the interval [a,b] into subintervals Ii-[xi,xi+), i-0,...,k-1 and Ik--[Xk,Xk+l].

*Received by the editors October 14, 1982.
Institut far Angewandte Mathematik, Universit.t Erlangen, Erlangen, Germany.
Center for Approximation Theory, Texas A&M University, College Station, Texas 77843.
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Finally, we need a way to describe the smoothness of the splines. We do this with a
vector=(rl,. ., rk) of integers satisfying 0_< r_< n, i- 1,.-., k.

DEFINITION 1.1 (generalized Chebyshevian splines). Given ,%,, and A as
above, we define

(1.3) (%;%;;A)-- (s" sl,,e%i, i=0,..-,k and

DJ-ls(xi)-DJ+-ls(xi),j- 1,. .,ri and i-1,-..,k}.
When there is no chance of confusion, we shall usually shorten the notation for the

space (1.3) to . In addition, we shall use the abbreviations T-spline for Chebyshevian
spline and gT-spline for generalized Chebyshevian spline. The space of gT-splines
defined here generalizes the classical T-spline spaces in that here the structure of the
splines is allowed to vary from interval to interval (although all pieces are drawn from
subspaces of one fixed ECT-space ). The usual T-splines correspond to the case
where m n 0 n k.

THEOREM 1.2. The space defined in (1.3) is a 6near space of dimension

k

(1.4) n-no+ 2 (n,-r).
i--l

Proof. We observe that if s , then

ni

x )
s(x)-

0

in I if ni>0,

in I if ni-O,

for i--0, 1,...,k. Now writing down all the smoothness conditions leads to a system of

r + + rk equations in the n o + + ng unknowns. Since it is easily seen that this
system is of full rank, the result follows.

The proof of Theorem 1.2 is very much like the proof for ordinary T-splines. The
result does not, however, follow from the usual dimensionality theorems (cf. [5, Thm.
11.4]) since here we have allowed r>n_ in general.

The usual approach to studying a space of splines once the dimension is identified
is to then define a one-sided basis for the space. While this is possible here (cf. [5, 11.2]),
the resulting one-sided splines are rather complicated due to the fact that the nature of
the spline varies from interval to interval. A basis for $ will be given in 4.

2. Zero properties. In this section we show that any spline s in the space defined
in (1.3) can have at most n-1 zeros in [a,b], counting multiplicities in a very strong
way, where n=dim(). In addition, we shall establish a Budan-Fourier-type theorem
for gT-splines. While the results here are very similar in nature to well-known results
for T-splines, the proofs require some modification to make them work in the gT-spline
setting.

We begin by defining our scheme for counting zeros. Suppose that s. Since s
restricted to a subinterval I of the partition belongs to the ECT-space c_, it
follows that s must either vanish identically throughout the interval I, or it can vanish
only at a finite number (at most n-1) of isolated points in this interval. Taking our
cue from [4], [5], we are led to the following definitions.
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DEFINITION 2.1 (isolated zero). Suppose that

s( ) D_s( ) Dt_Y Is(t)--0::7/: Dt_s( )
+ 0 ==

and that s does not vanish identically on any interval containing t. Let a-max(l,r).
Then we say that s has an isolated zero at of multiplicity

a + if a is even and s changes sign at t,
z- a + if a is odd and s does not change sign at t,

a otherwise.

DEFINITION 2.2 (left end interval zero). Suppose that s(x) 0 for all a<x<xp
while s(y):/:O for some xp<y<xv+. Then we say that a,x,) is an interval zero ofs of
multiplicity

p--I

z:n0+ (ni-ri).
i=1

DlqmON 2.3 (fight end interval zero). Suppose that s(x) 0 for all Xq<x< b
while s(y):/:O for some Xq_ <y<Xq. Then we say that(xq, b] is an interval zero of s of
multiplicity

k

Z--l’lq -Jr- X (hi--re).
i---q+

DlqNmON 2.4 (interior interval zero). Suppose that s(x)--0 for all xp<X<Xq
and does not vanish identically on any larger interval containing (Xp,Xq). Let a--np +
Y]_+ (ni- ri). Then we say that (xp,Xq) is an interval zero ofs of multiplicity

a + if a is even and s changes sign,
z- a + if a is odd and s does not change sign,

a otherwise.

Given a spline s, we use the notation Z(s) to stand for the number of zeros of
s in the interval [a, b], counting multiplicities as in Definitions 2.1-2.4. The key tool in
establishing bounds on Z(s) is an appropriate version of Rolle’s theorem which we
now present. Before stating it, we need some additional notation.

Associated with the canonical ECT-system (1.1), we introduce the differential
operators

(2.1) Dof=f, Df=D(f/w), i: 1,. .,m

and

(2.2) Li--DiDi_.’’ Do i:O,. .,m.

At times we will write these operators with a superscript of / or to indicate right or
left derivatives, respectively.

It follows directly from the definitions that if s(;%;@;A), then L-s
g(’; %’; @’; A), where

(2.3) -Y’= (n),... ,n,), n;=max(ni- 1,0), i=0,...,k,

(2.4) ’= (r(,... ,r), r’ max(r,-1,0), i: 1,.-. ,k,
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and where ’-span(u)m__-] is the first reduced space defined by

"a
Wm(Sm)dSm" dS3"

THEOREM 2.5 (Rolle’s theorem for gT-splines). For any s g(6"O,; )L; 3; A)fq C[a,b],

(2.6)
where (R)$-(’; 9L’; ’; A).

Proof. The proof follows along the same lines as for T-splines; see [5, Thm. 9.29].
We are now ready for the main result of this section.
THEOREM 2.6. For any nontrivials, Z(s)<_n 1, where n is the dimension of.
Proof. We consider first the case where m- 1. Let {i <... <ip}- (j: O<_j<_k and

nj-.>0}, where we set r0- 0. Then it is easy to see that the spline s defined by

s(x)- ((-1)Jw,(x)in [xi,xi+,), j-1,... ,p)
has a maximal number of zeros (p- 1) among splines in . Since

k p

n-- 2 (ni-ri)- 2 (nij--ri)=P,
i=0

we have established the result for rn- 1.
We now proceed by induction on m. Suppose that the theorem is correct for

gT-spline spaces of order m- 1, and suppose that s is a spline of order m. We define

{v, <". <vv} { <i<_k" s has a jump at x,,}.

Let J-[x,,x,+], where for convenience, we set ,0- 0, ,q+l-k+ 1. Finally, set

sg(x)- lims(t),
tx

for i-0, 1,..., q. We examine the zeros of s on J,..
Case (s vanishes identically on J). In this case J counts as an interval zero of

multiplicity z, where

vi+

zi--n,,+ 2 (nj--.).
j---liq-

Case 2 (s does not vanish identically on J). In this case s has at most z- zeros
on J/. Indeed, if it had more, then since it is continuous on this interval, we could apply
Rolle’s theorem 2.5 to deduce that L-si has z- zeros on J/. But since L-s belongs to
a (z-1)-dimensional space of splines on J, this would be a contradiction of the
inductive hypothesis.



794 G. Nt3RNBERGER, L. L. SCHUMAKER, M. SOMMER, H. STRAUSS

It remains to count the total number of zeros of s. Let a=number of intervals J,.
where Case 2 applies. Then we have

q q q

Z(s)<_ Zs,(si)+(a-1)_< ] zi-a+a-1- zi-l,
i=0 i--0 i--0

since the number of zeros of s is at most equal to the total number of zeros of its pieces
s in the intervals J, plus a possible extra for each interval or knot where a sign
change occurs. But there can be at most a- sign changes.

It follows immediately from Theorem 2.6 that $ is a weak-Chebyshev space. The
technique of proof used in Theorem 2.6 can be used to establish a refined bound on
Z(s) in which we take account of the behavior at the endpoints.

THEOREM 2.7 (Budan-Fourier theorem). For any nontrivial spline s

(2.7) Za,b)(S)<_n--1-A(s,a)-B(s,b),

where for a general t,

(2.8) A(s,t)- S+IS(t-l-), (-1)a-lLL lS(

t)- s+ ),

Here a and fl are the exact orders ofs on the intervals a, X ) and Xk b], respectively, and
S+ counts weak sign changes (cf. [5]).

Proof. For rn-- 1, the result reduces to Theorem 2.6. We now proceed by induction
on the order rn of the spline. Assume the theorem is correct for splines of order m- 1,
and suppose that s is a spline of order m. If s is continuous on [a, b], then we apply the
same argument as in the polynomial- or T-spline case (cf. [5, Thms. 4.58 and 9.32]) to
obtain the result. (Here it is necessary to use Rolle’s theorem for ECT-systems--see
[5, Thm. 9.11].)

If s is not continuous, then we break the interval [a, b] into pieces in the same way
as in the proof of Theorem 2.6. In particular, let v0 <... < Vq+ be the integers defined
there. Then the restriction of s to each interval J=[x,,,xi+ is continuous. Let J and s
be as in the proof of Theorem 2.6, i-O,...,q. We examine the zeros of s on J. In the
interval J0 we now use the Budan-Fourier theorem which we have already established.
This gives us a bound of z0- 1-A(s,a). In the last interval we again use our result for
continuous splines to give a bound of Zq-1- B(s,b). Adding the zeros in the various
intervals together and taking account of what happens at the knots x,,.., x we
arrive at (2.7).

3. Interpolation. In this section we discuss interpolation using the n .dimensional
space defined in (1.3). We begin by formulating three typical interpolation problems,
each one more general than its predecessor. Throughout we assume {Bj.}] is some basis
for $.

Problem 3.1 (Lagrange interpolation). Let a<_t <... <tn<_b, and suppose that
v,---, v, are given real numbers. Find s such that

(3.1) s(ti)-vi, i- 1,2,. .,n.
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Discussion. It is well known that this problem has a unique solution for every
choice of v;’s provided that the determinant

tl,’", -det( )),=
is nonzero.

Problem 3.2 (Hermite interpolation). Let a<_t<_... <_t<_b, and suppose that
v,...,v are given real numbers. Define

di=max{,: ti= =ti_}, i= 1,... ,n.(3.3)
Find s such that

(3.4) L.s(t)-vi, i-l,2,...,n.

Discussion. Clearly we do not want to specify more interpolation conditions in any
one subinterval of the partition than the dimension of the ECT-space from which that
piece of the spline is drawn. Thus, in posing the Hermite interpolation problem, it is
natural to make the assumption

(3.5) if Xj_ <_ti<x2, then di<nj_l,

for all i--1,...,n. The unique solvability of the Hermite interpolation problem is
equivalent to the nonvanishing of the following determinant:

t’’’’’tn -det(L+ n(3.6) D
nl ,nn diBj(ti))i,j:l.

Problem 3.3 (extended Hermite interpolation). Let a<_tl<_... <_t,<_b, and for
1,. ., n define

f if t-x, for some _<j_< k,(3.7) Oi
0 otherwise.

Suppose 0,.-., 0, is a sequence of signs, and define

," t- -ti_ with Oi-... -0_,} if 0i- +,
(3.8) d,- pi+max(’t -ti+andOi-... -Oi+} if0i--

for 1,..., n. Then given real numbers v ,..., vn, we seek s g such that

(3.9) LdS(ti)--vi, i--l,...,n.

Discussion. This problem generalizes the Hermite interpolation Problem 3.2. (It
reduces to it if we take all O’s to be + except for those associated with t’s which are
equal to b.) The idea here is that if t falls at a knot x2, then we can specify as many
right derivatives as we want (up to n2- 1), and that in addition, we can also specify left
derivatives of order . and up at the same point. In order for the problem to make sense,
we impose the following restrictions"

(3.10) if t,AU (Xk+} then O= +,
(3.11) if ti=xg+ l, then 0i= -,
(3.12) if xj_ <ti<x, then d<nj_,
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if 0- +
(3.13) if ti--Xj, then di< n_ ifOi--,

(3.14) if 0i- + and Oi+ --, then ti<ti+

if 0- with ti<Xk+l, then there existsj>i with 0j.- + and t-ty,

(3.16) if 0i- and 0i+ +, then for somej,

ti= =ti+r-Xj and Oi+ "--Oi+rj-- 21".

Condition (3.10) requires that we specify only right derivatives at points which are
not knots. Condition (3.11) requires that we specify only left derivatives at xg+ I.
Conditions (3.12)-(3.13) are to insure that the number of interpolation conditions
forced on a piece of the spline does not exceed the dimension of the space to which that
piece belongs. Condition (3.14) makes sure that the t’s are in a natural lexicographical
order. Finally, conditions (3.15)-(3.16) insure that a full set of right derivatives is
specified at a point before any left ones are.

It is now clear that the extended Hermite interpolation problem has a unique
solution for an arbitrary set of data values Vl,...,v if and only if the determinant

(3.17) D
tl,. .,ln

BI,...,Bn

is nonzero. (We have introduced the powers of 0i’s in the definition of this determinant
in order to make it have a certain sign--see Theorem 4.5 below.)

We are now ready for the main result of this section, in which we give certain
interlacing conditions which are equivalent to the nonvanishing of the determinant in
(3.17). We shall specialize this result later to Hermite and Lagrange interpolation.

THEOREM 3.4. Suppose is the spline space defined in (1.3), and that B,...,B, is

any basis for it. Let a<_t <_... <_tn<_b and suppose 0,. .,0 is a corresponding sequence
ofsigns such that (3.10)-(3.16) are satisfied. Then

(3.18) D
tl,. ,tn
01,’’" ,On
B!,... ,B,,

if and only iffor each i- 1,... ,k the following conditions are satisfied:

(3.19) tn--n,k+<--Xi<--tno+l,

(3.20) ifx-t,o,+ , then/,0,+l =t,o,+_r, andO,o,+= =O,o,+l-r

(3.21) if n_n.k+
X then On_,,k+ -.

Here

(3.22) n,=dimltx,,x,) allO-<v</-<k+l.

Proof. By the discussion of the extended Hermite interpolation Problem 3.3, if

(3.18) holds, then we can find a spline s interpolating arbitrary data. Now if
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(3.19)-(3.21) fails, this would mean that we could interpolate n0i+ pieces of data at
points in [a,x] by a spline which comes from a n0-dimensional spline space, or we
could interpolate rti,k+ 1-4- pieces of data at points in [xi, b by a spline which comes
from a n,g+ -dimensional spline space. In either case we have a contradiction, and we
have proved that (3.18) implies (3.19)-(3.21).

We turn now to the converse. Suppose that (3.19)-(3.21) hold, but that (3.18) does
not. Then there exists some nontrivial spline s with

Ls(ti)-O, i-1,...,n.

We now show that this leads to a contradiction of our results on the zeros of gT-splines.
Let J-[x,x] be a largest subinterval of the partition such that s does not vanish

on any subinterval of J and such that there is no t in (x,x) with 0- -. It is easy to
see that

j-I

ni-diml-ni+
r=i+l

( nr-- rr ) n-- noi-- nj,k+ -t- ri + rj

where we recall our convention that ro-rk+-O. We now show that

(3.23) Z (g) _> n ij where g= slj.

To count the zeros of g, we need to know exactly how many t’s are equal to x and x.
Suppose 0_< 1, r are integers such that

Xi-- tno+ tnoi+l< tnoi+l+ <

<tn-nj.k+l_r<tn_nj.,+_r+ ---tn_nj ,+ --Xj.

Clearly g has n--noi--nj,k+l--r--I zeros in (x,x). It remains to count the multiplici-
ties at the ends.

First, we claim that g has an (r+ 1)-tuple zero at x. This is clear if i-0 as r0- 0.
Suppose now that i>0. Then either g vanishes identically to the left of x, or some left
derivatives are specified at x. In either case g has at least an r-tuple zero at x and our
claim is correct if 1-0. It remains to check the case where/>0. In this case (3.20)
implies that

tno+ _ri--- tnoi-- X with

Onoi+ l_ri-" Onoi- -3
t-

and since tno,+l,’",tno,+ also fall at x with positive O’s, we conclude that. g has an
(r+ !)-tuple zero at x as asserted.

The analysis at the right end point xj. is similar. We claim that g has an ()+ r)-tuple
zero at xj.. If j--k+ this is clear since we define rk+l 0. Suppose now that j<k+ 1.
Then either g vanishes identically to the right of x, or some left derivatives are
specified at x.. In either case g has at least an )-tuple zero at x and our claim is correct
if r=0. It remains to check the case where r>0. In this case we have tn_n,+=Xj, and
thus by (3.21), 0,_, -. But then by (3.15)-(3.16), there are at least an additional rj.j,k+

s wth positive 0 s which fall at the point xy. It follows that g has an rj. + r-tuple zero at

xy as asserted.
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We now add up the zeros of g in J. We have r+ at x, t+ r at x, and a total of
n-noi-nj,+-r-I in (xi,xj). This adds up to ni, and we have established (3.23).
Since n is the dimension of the space from which g came, we have a contradiction of
Theorem 2.6. This completes the proof of the theorem.

In the following two corollaries we specialize this result to the cases of Hermite
and Lagrange interpolation.

COROLLARY 3.5. Suppose is the spline space defined in (1.3), and that B,. .,Bn is
a basis for it. Let a<_t <_... <_tn<_b be a set of points defining a Hermite interpolation
problem as in Problem 3.2 and satisfying (3.5). Then

tl,...,tn )(3.24) D
B, ,B v0

ifand only iffor each i- 1,..-,k the following conditions hold:

(3.25) t,_,,.+, t0;+
(3.26) if t,o,+ xi, then tno,+ t,o,+ -r,"

COROLLARY 3.6. Suppose that is the spline space defined in (1.3) and that B,...,Bn

is a basis for it. Let a <-t <... < t<_b. Then

tl,...,tn )(3.27) D
BI ,Bn

if and only if
(3.28) t,_,,,+, t,o,+l,<xi< i-1 k,

where equality is allowed on the right when r-O.
Corollary 3.6 asserts that if r>0, i-1,...,k so that c_ C[a,b], then satisfies

the interlacing property of [2]. It then follows from [2,Thm. 2.5] that $ has the
properties listed in the following corollary.

COROLLARY 3.7. Suppose is a gT-spline space as in (1.3) with r>0, i-1,.-.,k.
Then

(3.29)
(3.30)
(3.31)

Here

(3.32)
(3.33)

and

is a weak-Chebyshev space,

IbdZ(s)l<_nijfor all sij., O<_i<j<_k+ 1,

dim(pNq,k+)--max(n--nop--nq,g+,O), <_p<q<_k+ 1.

.- (s" s(x)-O for all x . [xi,xj] },
n/j.- dim/

Z(s)- (x[a,b]" s(x)-0},
bd Z(s ) boundary of the set Z( s ) in a, b

Ibd Z(s )1- number ofpoints in bd Z(s ).
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4./I-splines. In this section we construct a basis for the space of gT-splines. Our
basis will consist of analogues of the classical B-splines. We begin with some notation
and a lemma which will be useful in our construction. Given O<_p<_k and <_j<_np-rp,
let

(4.1) q(p,j)-min{," ,>p and npv-l’p-jt’v}.
Such a q always exists in view of our convention that r0 =re+= 0.

LEMMa 4.1. For any O<_p<_k and <_j<_np-rp, the integer q(p,j) satisfies
(4.2) rg<npq- rp -j<n

_
Proof. The left-hand inequality follows from the definition of q. The definition also

implies np,q_--rp--j<rq_. Now using the elementary relationship npq=np,q_+
(n q_ rq_ 1) leads to (4.2). U]

Our next theorem states the existence of certain splines in the space with special
properties. In view of these properties, we call them B-splines.

THEOREM 4.2. Fix O<_p<_k and <_j<_np-rp, and let q=q(p,j) be defined as in
(4.1). Then there exists a spline Mpj with

(4.3) Mpj(x)>O for allxp<X<Xq,
(4.4) Mpj(x)-O forallx[xo,Xp)U(Xq,Xk+l]
(4.5) fxiMv(x l dx-1,

(4.6) L+_Mp(Xp)-O, v-1,...,rp+j-1,
(4.7) L+.i_ lMpj(Xp ) >0

(4.8) i;_lMpj(Xq)-O ’-- 1,. .,npq--rp--j.

Proof. Consider the spline space -$(;.;; Z) on [Xp,Xq] corresp.onding to
--{Xp+l,...,Xq_l} )--(np,...,nq_l_, and =(rp+,...,rq_). Clearly $ is of di-
mension npg. Now consider findingp satisfying the Hermite interpolation problem

L+_lfP(Xp)--O, ,-1,. .,rp+j-1,
L+

L-_lq)(Xq)--O ,-- 1,. .,npq--rp-j.

Lemma 4.1 assures that this problem makes sense, and it is easily checked that the
inter.lacing conditions of Corollary 3.5 are satisfied, and hence there exists a unique
p$ with these properties. By Theorem 2.6, p can have at most npq--1 zeros in
[Xp,Xq]. Since it has precisely these many zeros (counting multiplicities) at the points Xp
and Xq, it cannot have any other zeros in (Xp,Xq). Since the first nonzero derivative of
p is positive at xp, it follows that p is positive throughout (Xp,Xq). Now we define

Mpq(X)-- { oP(X)/1qep(t)tit, otherwise.XpX<Xq’
It is easily checked that Mpq (_.g and satisfies (4.4)-(4.8).

It is clear from the definition of the B-spline Mpj that its support starts at the
point Xp. How far its support extends to the right depends on the size of q--in some
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cases we may have to choose q-k+ in which case the support set will extend all the
way to b. (See Example 5.1.) The following theorem shows that each B-spline Mpj has a
minimal support set.

TI-IEORM 4.3. Fix O<_p<_k and <_j<_np-rp, and let Mpj be the B-spline defined in
Theorem 4.2. Then there does not exist any spline s and integer ?t< q with

(4.10)
(4.11)

s(x)--O forallx[Xo,Xp)tJ(x,x,+],
s(x)>0 for allxp<X<X,7,
L+_,S(Xp)--O, ,-1,. .,rp+j--1.

Proof. Indeed, we can show that there does not exist any nontrivial spline s
satisfying (4.9), (4.11) and not vanishing on subintervals of [Xp,X]. If s were such a
spline, then it would have an (rp +j- 1)-tuple zero at xp and a r,7-tuple zero at x. By
the definition of q, np-rp-j<r, and we conclude that s has at least

rp +j-- +r>np-
zeros on [Xp,X]. But since s restricted to this interval is a member of a spline space of
dimension np, this contradicts Theorem 2.6. Vq

We now show that the B-splines constructed in Theorem 4.2 form a basis for the
gT-spline space .

THnOREM 4.4. The B-splines (MpX"-p’ form a basis for $.
Jj= l,p---0

Proof. Suppose that for some set of coefficients

E E
=o j=

for all Xo<X<Xk+

Then on the interval [Xo,XI) we have c01M01 q- "4-Co,noMo,no--O. But then properties
(4.6)-(4.7) show that c01 =c0,0-0. Now we can look in the interval [Xl,X2) to
eliminate the next set of c’s (namely c,’",Cl,,_r, ). This process can be continued to
show that all of the c’s are 0, thus establishing the linear independence of the M ’s. As
the M’s are clearly in , the theorem is established.

In [}3 we showed that certain determinants formed with any basis for the spline
space $ are nonzero under appropriate interlacing conditions. We now apply those
results to obtain some important total positivity properties of the B-splines.

THEOREM 4.5. Let BI,’",Bn be the B-spline basis for given in Theorem 4.4.
Suppose that a<_t <_. <_t,<_b is a set ofpoints and O,. .,0 is a sequence ofsigns such
that conditions (3.10)-(3.16) are satisfied. Then

(4.12) D
tl,. .,tn
01,’’" ,On
BI,...,Bn

>_0

and strict positivity holds if and only if (3.19)-(3.21) hold.
Proof. We already know that D is nonzero precisely under the conditions (3.19)-

(3.21). The fact that D has one sign (and that that sign is +) is established by the same
continuity and perturbation argument which works in the polynomial spline case (cf.
[5, Thm. 4.72]).

Theorem 4.5 can now be used to obtain a total positivity result.
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THEOREM 4.6. For any integers <v
and any sequence ofsigns ,..-, 0v,

(4.13) D

<... <Vp<_n, any points a<_tl<_... <_tp<_b,

tl,. ,tv
O,. ,Op >0

and strict positivity holds if and only iffor 1,...,p

(4 14) tio(L’B,) (x" B,(x) 4=0} tO (x" LB,(x)=/=O}d

Proof. The proof uses the same algebraic argument as for polynomial splines--cf.
[5, Thin. 4.731.

Theorem 4.6 asserts that the B-splines {B}7 forming a basis for the gT-space g
form an order-complete-weak-Chebyshev-(OCWT-) system--see [5,p. 41]. It then fol-
lows immediately (cf. [5, Thin. 2.42]) that gT-splines have the following variation
diminishingproperty:

(4.15) S-( cjBj) <-S-(c,...,cn)
j=l

for every nontrivial B-spline expansion. Here S- counts strong sign changes (cf. [5]).

5. Examples. In this section we give two examples of gT-spline spaces to illustrate
the above material. In addition, we give two further examples to show that some
natural related generalized spline spaces do not retain all of the features of gT-splines.

Example 5.1. Let [a, b] [0, 3], =span{1,x,x}, A= (1,2}, %=(3, 1,2) and =
(1, 1). Let g =$(; %;; A).

Discussion. It is easily checked that dimg=4. Each spline in g belongs to C[0, 3]
and consists of quadratic, constant, and linear polynomials, respectively, on the three
subintervals defined by the partition. The B-spline basis for this space is given by

3(l--x) 0_<x<l,Mo(x)
0 otherwise,

[ 6x(1-x), 0_<x< 1,Mog(X)-
0 otherwise,

M03(x) 1, l_<x<2,
3-x, 2_<x_<3,

Mzl(x)=2(x--2)+

Example 5.2. Let [a, b] [0, 3], "/L= span{1,x, x2}, A=(1,2), %=(3,0,2), and =
(0, 1).

Discussion. It is easily checked that dims =4. Here the splines in $ must vanish
identically on [1, 2] and be continuous at 2. They may have a jump discontinuity at the
knot located at 1. In this case the B-spline basis for $ is given by the B-splines Mo,
Mo_, and M_ coupled with

2 0_<x< 1,M03(x)-
0 otherwise.
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A natural way to generalize the space of gT-splines considered in this paper is to
allow the spaces ,...,k from which the pieces of the splines are drawn to be
arbitrary ECT-spaces (rather than all subspaces of one fixed ECT-space). The following
example shows that, in general, we will not be able to perform interpolation with such
generalized splines.

Example 5.3. Let [a, b] [-15, 5], and let A=(1}. Suppose 0=span(1,x,x2}
and =span{x, xZ, x3). Let

).
Discussion. o is an ECT-space on R while is an ECT-space on [1, o). It is

easily checked that dim$ 4. Thus it would be natural to consider interpolation at four
points. Then the analogue of the interlacing condition (3.28) for Lagrange interpolation
would be t<x<t4. But the points t=-14, t2=-9, t3=3, and t4=4 satisfy this
interlacing condition, while Lagrange interpolation at these four points is not uniquely
defined. Indeed, the spline

(x+ 91(x+ 14/, 0_<x< 1,
s(x)- 25x(x-3)(x-41, l_<x_<2

interpolates 0 values at these four points.
Our last example shows that if we weaken our assumption on the space $ from

which the pieces of our gT-splines are drawn, then the Hermite interpolation property
may no longer hold.

Example 5.4. Let [a, b] [0, 2rr] and A= (rr}. Let=span( 1, cos(x), sin(x)}, %=
(3,3) and qb= (2). Consider the spline space=(;%;; A).

Discussion. It is well known that is an ET-space on any subinterval of [a,b]
which does not contain both end points--thus in particular, it is an ET-space on both
[0, r and rr, 2 rr ]. The smoothness conditions assure that each spline s belongs to
C[0, 2r]. It is easily checked that dim =4. Now consider Hermite interpolation at the
four points t-t2-O and t3-t4-2r. These points satisfy the interlacing conditions
(3.25)-(3.26) for Hermite interpolation. But Hermite interpolation at these four points
is not uniquely defined since the spline s(x)= -cos(x) interpolates 0 at these points.

Although Hermite interpolation does not work for this spline space, it is interesting
to note that Lagrange interpolation is always possible at any set of points <... < 4

which satisfy the interlacing conditions (3.28). This fact follows from [2, Thm. 2.5] once
we check its hypotheses. These hypotheses are precisely conditions (3.29)-(3.31).

We begin with (3.29). We need to show that there is no spline s with 4 sign
changes. Suppose s were such a spline. Then s’ would have at least 3 zeros in (0, 2 rr),
and thus at least 2 zeros in one of the intervals (0, r] or rr, 2 r). In either case this is a
contradiction since ’=span(cos(x),-sin(x)} is a Chebyshev space on both (0,rr]
and rr, 2r).

Condition (3.30) is easy to check since the space 1 is spanned by the spline

{0,1 +cos(x), rr<x<2r.

while $2 is spanned by

0

Finally, condition (3.31) is trivial.
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6. Remarks. 1). For some historical notes on Chebyshevian splines, see [5,p. 417].
Some notes on generalized splines can be found on [5, p. 482].

2). Throughout this paper we have assumed that the basic space is spanned by
an ECT-system. All of the results given here are also valid in the more general case
where is spanned by a canonical complete Chebyshev (CCT-) system as introduced in
[4]. A CCT-system is a set of functions defined on [a, b] such that u is positive and

x
U2(X)--UI(X d0"2(82),

where %,...,om are bounded, right continuous, monotone increasing functions on
[a,b]. In this case we must replace the differential operators Do,...,Dm by the follow-
ing operators:

f(x)
Dof(X)-u,(x )

f(x+)-f(x)Df(x)-lim
$0 Oj+I(X-[-C)--Oj+I(X)’

j=l,.-.,m-1.

See also [5, p. 407].
3). We have posed the Hermite and extended Hermite interpolation problems in

terms of the operators L (cf. (3.4) and (3.9)). It follows immediately from the form of
the L’s that it is equivalent to work with ordinary derivatives; i.e., the specification of
f(t), Lf(t),. ",Lrf(t ) is equivalent to the specification off(t), Df(t),. ",Drf(t).

4). While interlacing conditions are well known in the theory of splines, the
general kind of interlacing which appears in (3.19) is relatively novel. This kind of
condition was introduced in [7] in connection with the study of generalized spline
spaces consisting of pieces of Chebyshev spaces tied together continuously.

5). For a discussion of the history of extended Hermite interpolation problems, see
the historical notes for [5, {}4.8].

6). A complete characterization of all generalized spline spaces for which Lagrange
interpolation is possible if and only if the interpolation points interlace the knots of the
spline appropriately is given in [2].

7). The space of gT-splines (along with certain other spaces of generalized splines
having a certain interlacing property) enjoys a variety of nice approximation properties.
For a treatment of approximation by generalized splines, see [3].

8). Usually B-splines are introduced by some kind of divided difference process.
Our approach here via Hermite interpolation is entirely different. The divided dif-
ference approach leads to a number of very nice results for polynomial and
Chebyshevian splines which are missing here. These include a partition of unity, a
Marsden identity, and recursions for computing the B-splines. (See [6] for more on
recursions for generalized B-splines.)

9). Many of the results presented here have analogues for certain spaces of
periodic and discrete generalized Chebyshevian splines.
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FORMULAS FOR ELEMENTARY SPHERICAL FUNCTIONS
AND GENERALIZED JACOBI POLYNOMIALS*

LARS VRETARE

Abstract. Elementary spherical functions on symmetric spaces can be considered as orthogonal poly-
nomials in several variables. This paper deals with the weight function

) - )+W(Xl," ",xl) II(1-x, (l+x,)alI(x, -l<_xi<_l.

Recurrence relations for polynomials corresponding to different spaces are derived and generalized to other
values of the parameters a, fl and %

1. Introduction. Elementary spherical functions or more generally intertwining
functions on real and complex Grassmann manifolds were considered as generalized
Jacobi polynomials, pv’’, by James and Constantine [6]. See also [5]. In the case of
two variables, these polynomials have been studied for general values of the parameters
a, fl and 3’ as well. This was done by Koornwinder [7] together with Sprinkhuizen-Kuyper
[10] and [9]. See also [8].

In the present paper we consider generalized Jacobi polynomials in I variables. We
establish the correspondence between these polynomials and intertwining functions on
the spaces Km\U/KI, where U=SO(n), SU(n) or Sp(n) and KI=SO(n-I)SO(1),
S(U_t Ut) and Sp(n-1)Sp(l) respectively. By combining the polynomial and the
group-theoretical aspects we obtain formulas for pv,’ which are generalizations of the
well-known formulas for ordinary Jacobi polynomials

2(n + 1)(x-1)Pn’+ l’)(X)-- Zn+ ot+ fl + 2 ,,+ ,X)

and

2(n+a+ 1) p’’#)(x)
2n+a+fl+2

n+a+fl+l n+l,t)(x) n+fl ,,,+ 1,t)(x)P’’O)(x)-2n+a+ fl+ 1"" 2n+a+ fl+ t,,,-

The importance of such formulas is obvious. They express intertwining functions on
one space in terms of intertwining functions on another space. For example it is
possible to express elementary spherical functions on SO(n)/SO(n-1) in terms of
those on SO(n / 2)/SO(n + 2 1).

We are also led to simple expressions for pv,,+-1/- in terms of ordinary Jacoby
polynomials. In this way we get an explicit formula for the intertwining functions on

S(Un-mX Um)\SU(n)/S(Un-!X Ut)
which improves the result for elementary spherical functions obtained by Berezin and
Karpelevi ].

In the case of two and three variables where explicit calculations are possible we
derive some more formulas of the same type.

The plan of the paper is as follows. After the necessary preliminaries in [}2,
concerning elementary spherical functions and intertwining functions, a more detailed
investigation follows in 3, in particular of the orthogonality relations. The polynomials

*Received by the editors March 30, 1982.
Department of Mathematics, Lund Institute of Technology, Lund, Sweden.
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pv’’ are introduced in {}4, where we also establish their interpretation as intertwining
functions. A list of possible values of ct, and 3’ is given in Theorem 4.2. Section 5
contains the statement and proof of the formulas and finally in 6, 7 and 8 we
consider special cases in two and three variables.

2. Notation and definition of intertwining functions. Let U/K be a compact sym-
metric space of type A III, BD I or C II, i.e., U/K is one of the following spaces:

SU(n)/S(Un_t Ut), SO(n)/SO(n-I)XSO(I), Sp(n)/Sp(n-l)Sp(l).

Let u and t be the Lie algebras of U and K, and let

be a decomposition of tt into eigenspaces of an involutive automorphism of u. Choose a
maximal abelian subspace of . Extend i to a maximal abelian subalgebra b of tt

and put

When considering two symmetric spaces corresponding to the same group U we use the
rank as an index to avoid confusion. For example the maximal compact subgroups of U
will be denoted by K and Km respectively. Throughout this paper we also assume that
l<_m.

Let A be the highest weight of an irreducible representation, TA, of U on a finite
dimensional vector space V with scalar product (.,.). If there is a unit vector e V
which is invariant under all TA(k), kK, the representation is said to be of class one
with respect to K. In this case the function

/A: U(e, TA(U)e)

is constant on two-sided cosets K\U/K. A will be called an elementary spherical
function. More generally, ifTA is of class one with respect to K and K, the function

’m" u(em, TA(U)et)

is constant on Km\U/K. ,m will be called an intertwining function.
The weights as well as the roots will be considered as real valued linear forms on

ho, we also assume that coordinates in ho,, denoted by Ol, Oz, have been chosen in
such a way that the roots are

+ Oi+ Oa. +0 +20

Among the roots we have the simple roots

Oli-- Oi-- Oi__

and

OQ-- 01
also called the fundamentalroots. Each weight of the form

i=1

i-1,...,1-1
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where m are nonnegative integers, is the highest weight of some irreducible representa-
tion of U. In particular,

k

E
i--I

are called the fundamental weights for class one representations, which refers to the
fact that the highest weights of class one representations with respect to K are those of
the form

A nkk, n k nonnegative integers.
k-I

Remark 2.1. Since the multiplicity of the roots ---20 is zero in the case BD I, the
correct definition of/t should be

i=1

Our definition of/t means that we do not consider all class one representations of

SO( n )/SO( n 1) SO(I)
but only those of

O(n)/O(n-1)O(l).

Let us identify h 0, and its dual by means of the Killing form (.,-). In this way
Ol,...,Ot can be considered as an orthogonal basis for h. We also introduce a partial
ordering in h by setting

h <h 2 if (h2-h 1,1xk) >--0 for all k.

The restriction to exp b ,
ric polynomial

of the elementary spherical function qt,t is a trigonomet-

(,l(exph)- E c(,A)e-x(h), hib,.
<A

It is invariant under the Weyl group Wt, i.e.

(’t(exp Sh ) ,t(exp h )

for all S Wt. W is the group generated by all permutations of 0,...,Oz and arbitrary
sign changes.

3. Further properties of intertwining functions. The following two lemmas are
fundamental for further investigations of intertwining functions.

LEMMA 3.1. There exists an automorphism of U

such that

U’--’) x- lux, .X, U U,

X-1 expibt x--expibm X-1 expibv,xCexpib,,, x- expibt, xDexpim.
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LEMMA 3.2. To each S W there is a k KtNKm such that

exp Sh k- exp h k.

for all h i.

Proof. The two lemmas can be verified directly in each of the three cases under
consideration. Because of similarity we only treat C II (cf. [3, p. 351 ]).

Let I, denote the unit matrix of order n and put

A matrix u belongs to the group U= Sp(n) if and only if u is a unitary matrix of order
2n, satisfying Ju-fiJ. This latter condition means that u has the form

u- /T or u-(u, Un -Jl ,’" ", -Jfi.),

where u,...,un are column vectors of length 2n. A maximal compact subgroup Kt,
where <l<_n/2, is given by Sp(n-l)Sp(1) embedded into Sp(n) according to the
rule

A 0 B 0
0 C 0 D
-B 0 A 0
0 -D 0 C

The Lie algebra u-O(n) is the set of all skew Hermitian matrices for which Ju-ffJ
is given by the matrices of the form

0 0
0’ 0
0 0
0 0

where the order of 0 is n- IX and

0 0
0 0
0 0
-0’ 0

To verify Lemma 3.1 in this case let $ be obtained from In by permutation of
suitable columns and put

Then x U and since the mapping
-1yx yx

permutes rows as well as columns, it is clear that
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for a suitable choice of x. Here the multiplication means ordinary matrix multiplica-
tion. If we now define 9 m by

we automatically obtain

x-li,xDi,,,
from the fact that is the orthogonal complement of i v in . This shows that Lemma
3.1 holds with x chosen as above.

For the verification of Lemma 3.2 we note that the Weyl group W)s generated by
transpositions and change of signs of 0,..-,0t. The corresponding k and k can be
chosen in a similar way as and x and it is easily checked that k KtKm.

Consider two equivalent representations of U belonging to the same highest weight,

u T(u) and u T(x-’ux).
On one hand the highest weight can be considered as a linear functional v on b t,

corresponding to a weight vector f.
T(exp h )f e"h f h

On the other hand it can be considered as a linear functional/ on 9 rn corresponding to
the weight vector T(x- )f. Since

T(x- exp hx ) T(x )f= e"h T(x )f, h

the relation between v and/ must be

t*(x-lhx)-v(h), h
In view of Lemma 3.1 we now see that if the restriction of v to 9 is zero, then the
restriction of/x to m is also zero. Using [2, Lemma 2] which states that if v is zero on
9, then 2v is of class one with respect to Kt, we obtain

LEMMA 3.3. Let v be the highest weight of an irreducible representation of U and
assume that the restriction of v to is zero. Then there is an irreducible representation
TA, of class one with respect to Kt andKm, having highest weight A- 2v.

COROLLARY 3.4. To each weight of theform

A n glxk, n nonnegative integers
k=l

there is an intertwining function ’’. Moreover, in the cases A III and C II there are no
more.

As an immediate consequence of Lemma 3.2 we have
COROLLARY 3.5. The restriction of ll’m to expi9v, is Wt-invariant. //’m(Sh)-

’n(h), S Wt, hGexpio,.
By use of the expansion of elementary spherical functions in [2, Lemma 2] we also

get some information about the other weights appearing in the expansion of ’m(exp h),
h 9 v. From

q

’t(exph)-(et, TA(exph)et)- Ic12e-z), c00,
j=0
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and
q

q’m(exph)-(em,TA(exph)em)- Idjl2e-2"j(h), do=/:O
]=0

we conclude that
q

d/’m(exph)-(et, TA(exph)em) cje-2j(h), cod-o=/:O.
j=0

Here ,j denote the other weights of the representation with highest weight ,, and ’0- ’.

Note that 2,j. A. The properties of t.m obtained so far can now be summarized:
THEOREM 3.6. The restriction to expigv, of the intertwining function /,m is a W

invariant trigonometricpolynomial

aPAt’m(exph)-- c(,A)e-x(h),
A

where the sum ranges over weights of the form

nklk, n k integers.
k-I

Belonging to nonequivalent irreducible representations of U, the intertwining func-
tions must be orthogonal with respect to the invariant measure on Km\U/Kt. This
measure has been computed by James [4] in the cases A III and BD I. We now treat the
remaining case C II. The method is due to James but we use a somewhat different
formulation. Our first goal is to obtain a decomposition of a matrix u Sp(n)

u-kmexphkt,

where kmKm, ktK and h io,. This will be broken up into several lemmas._
LEMMA 3.7. A skew Hermitian matrix A of order 2k, satisfying JA =AJ can be

diagonalized by a matrix in Sp(k ). More precisely, there is a S Sp(k) such that

A-S*( A0 A0) S’ A-diag(h"’" k)’

Proof. In the space of column vectors of length 2k, equipped with the scalar
product u’v, any vector u is orthogonal to -J. Furthermore if Ex denotes the
eigenspace of A corresponding to the real eigenvalue then, by the assumption JA -AJ,
it is clear that uEx implies that -JEx and vice versa. To build up a basis for Ex
assume that there are orthogonal column vectors

UI’’ ’Uj--I’ --Jl," -Jj-1

spanning a proper subspace D of Ex. Choose uD+/- Then -Jffj. also belongs to D+/-

In this way all the columns of S* can be chosen,

S*--(Ul,’",uk, -Jffl,"’,

Hence S*, and then also S, belong to Sp(k).
LEMMA 3.8. Let X and Y be matrices with equal number of rows and assume that X as

well as Y have orthogonal column vectors. Then all eigenvalues of X*YY*X lie in the
interval 0 <_2 <_ 1.
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Proof. Denote the columns of X by XI,’’’,Xq and the orthogonal projection of x
on the space spanned by the columns of Y by Px i.e.

YY*X--(PXl,. .,PXq).
Then since

the diagonal elements in the matrix,

(YY,X)*Yr,X,
are numbers between 0 and 1. Now let S be a unitary matrix diagonalizing X*YY*X,

SX*YY*XS*- diag(hl,.. -,,).
Applying the above argument with X replaced by XS* we find that the eigenvalues
A l,--- ,h a considered as diagonal elements in

( rr*xs,),rr,xs,
lie in the interval 0<,< 1.

DEFINITION 3.9. The critical angles between the matrices X and Y are defined by

cos0-, 0_<0_<
where , denote the eigenvalues of X*YY*X.

Here we find it convenient to introduce the following notation. A matrix Y is said
to belong to Sp(n,m) if Y is a 2nX2m matrix, Y*Y=I2m and JY= YJm" We also say
that Y spans a vector space or Y belongs to a vector space if its columns do. Finally we
write

f(01)

f(O,)

f(01)

Now let YSp(n,m) be a fixed matrix spanning a vector space M and let
XSp(n,l) span L. Choose S Sp(l) according to Lemma 3.7 and 3.8 such that

X*YY*X= S* COS20S.
We also assume that

0<01<’’’ <Ol<-.
Under this assumption the matrix Y*XS* (cos0)-l belongs to Sp(m,l) i.e. Y*X can be
expressed as a product

Y*X= TcosOS, TSp(m,1), SSp(I).
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Define a and flSp(n,l) by

and

Then a M,/3 M" and

a= YT

fl ( XS* YTcos 0 )(sin O ) 1.

XS* a cos 0 +/3 sin 0

is an orthogonal decomposition of XS*. Extend

a (,...,a, -d,. ., -J)
to a basis for M, denoted by ti, such that

--(al’""" ,am, -Jl," -Jtm)

belongs to Sp(n,m). Similarly, extend/3 to a basis for M+/- such that/ Sp(n,n-m)
and consider the matrices A,B and C defined by

A In_21 0
sin 0 0 cos 0

and

0)0 A

LEMMA 3.10. Given XGSp(n,l) and YSp(n,m), let C be determined from X and
Y as above. Then them is a D Sp(n-l)X Sp(l) such that CD is any prescribed matrix

in Sp(n) containing X as the columns with numbers n-l+ 1,. .,n and 2n-l+ 1,...,2n.
Proof. Being a product of two elements in Sp(n), C also belongs to Sp(n). Denote

its columns by Cl,..., c2 and put

and

The mapping

C’--(Cl,’’’,Cn_l,Cn+l,’’’,C2n_ 1)

Ctt--(Cn_l+l, ",Cn,C2n_l+l," ",C2n).

P: c-,(c’, c")

maps Sp(n) into Sp(n,m-l)Sp(n,l) in such a way that if D--(D1,D2)Sp(n-I)
X Sp(l) then

P(CD ) ( C’D1, C"D2 ).

Thus, to prove the lemma we have to choose D and D2 such that C"D2 X and C’Dl is
any prescribed matrix in Sp(n,n-l), orthogonal to X. This is clearly possible since
C"=XS* spans L and C’ spans L+/-
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COROLLARY 3.11. For all u Sp(n ) there is a decomposition

u-k,,,exphk

where km Sp(n-m) Sp(m), ktSp(n- l) Sp(1) and h ibv,.
Proof. Given

put

X-- ( Un_l+ ," Un U2n--l+ ," U2n ),

where the order of R is n rn and

o)

0

The desired decomposition follows from Lemma 3.10 with

km-(n,-Jn), kl---O
and

The particular choice of Y implies that km Sp(n-m) Sp(m).
The derived decomposition shows that an intertwining function as well as any

function on Km\U/K is completely determined by its values on exp i3 ,. Furthermore,
this decomposition makes it possible to compute the invariant measure on gm\U/g in
terms of the critical angles.

THEOREM 3.12. The intertwiningfunctions are orthogonal with respect to the measure

1-I (cosOi)4(m-t)+3(sinOi)4(n-t-m)+3 I-[ (cos2Oi--cos2Oj)4.
i=1 <-i<j<-I

Proof. All details can be found in James [4], where the case SO(n) is treated. Since
the proof can be carried over to our case without problems, we only give a brief sketch.

Decompose uSp(n) according to Corollary 3.11 and keep the notation, from
Lemma 3.10. The invariant measure on U/K is

I-[cTdc
where c and c ranges over the columns of C’ and C" respectively. Denote the first n- 1
columns of C’ by bl,...,bn_ and the first columns of C" by al,...,at. Then the
remaining columns of C’ and C" are -Jb,... ,-Jbn_ and -Jgl,"" ,-Jgz respec-
tively. The measure written in terms of b and a becomes

II b]’da b da,bJda bJda,.
<_j<_n--!
l<_i<_l

Here

ai- cticosOi+ flisin Oi,
da ( a sin O + fli cos O ) dO + da cos O + dfli sin O
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and

bj= -ajsin0j.+flj.cos0j. if l<j<l,

bg=fl. if l+ <j<n-m,

bj:olj_n+m+ if n--m+ <_j<_n-1.

Multiplication according to the rules for differential forms yields

b]’daibdaj- otdotifl;dfli(cosE Oi-cosE Oj ) if i:=j<_l,

b]Jda,b;Jda- a’.Jda, fl.Jdfl(cos2 0-cosO ) if :j<_l,

b’da bda= 2(fl’dfl- a’da)cos0 sin0d0
b;Jda ( fl;Jdfli otJdot )cos 0i sin 0
bdai=fldflisinO if 1+ <j<_n-m,

bjJda,=BjJdflsinO if 1+ <j<_n-m,

b]’dai=ot_,+m+tdoticosO if n-m+ <j<n-1,

bjJdai:a’j_n+m+tJdaicosO if n-m+ <j<_n-1.

Here we have used the facts that

a*dg-a’Sdg-O

and that/* d/ and fi* dfi are skew Hermitian. Inserting into the expression for the
invariant measure we obtain the desired angular part.

4. The polynomials p4t’r. From now on weights and roots will be considered as
elements in Zt. In particular,

ai=(0,...,1,-1,0,...,0), i-1,...,1-1,

and

i-l,...,l.

We denote by r the square of the length of the "unit" vectors (1,..., 0)--. (0,. ., 1).

r-a,,a,).
As a total ordering of Z we use lexicographic ordering with respect to etl, ,ctt. This
will be denoted by < which should be carefully distinguished from the partial ordering
-< defined in [}2 by M-<N if M4 N and

k k

mi<_ , n fork-1,.-.,l.
i=l i=1

Here M=(ml,...,mt) and N--(nl,...,nt). For example (3,3,0)<(4, 1, 1) but (3,3,0)
<(4, 1, 1) is false. A polynomial pv(X) in variables Xl,...,xt is said to have degree N
and leading term

cuxU- cuxT, x’/,
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if

PN(X) CMXM.
M<N

If PN is a symmetric polynomial of degree N then

n >--n2>
For a>- 1,/3>- and ,_>- 1/2 put

W(X) Wa’fl’Y(X) i__IIl (l--x/) (l+x,). .(x xj

where f is the region

f: <xt<xt_ < _<Xl_< l.

Note that the integral of w over 2 is essentially Selberg’s integral.
D.rINITION 4.1. The polynomialspN=Pv’1’ are defined by
1)p0= 1,
2) PN is a symmetric polynomial with leading term xu,
3) fepTv’/’V(x)q(x)w’/’V(x)dx-O if q is a symmetric polynomial and degree

q<N.
THEOREM 4.2. For the values of a, and 7 given in Table a suitable normalization

of the polynomials pTv’1’ can be interpreted as intertwining functions (a- c), or as elemen-
tary spherical functions (a-h ). Moreover except for the cases a and h all such functions
are obtained as polynomials of this type.

TABLE
space a

a) Km\U/Kt, BD
b) Km\U/K, A III
c) Km\U/Kt, C II
d) Sp( l)/U( l)
e) S0(41)/U(21)
f) SO(41+ 2)/U(21+ 1)
g) Sp( l)
h) S0(21+ 1)

(n--m--l-- 1)/2
n-m--l

2(n-m-l)+
0
0
2
1/2
1/2

(m--l--I)/2
m--l

2(m--l)+
0
0
0
1/2
-1/2

0
1/2
3/2
0
3/2
3/2
1/2
1/2

Proof. We have seen in Theorem 3.6 that the intertwining functions are W-invariant
trigonometric polynomials

where

/1(’m- . c(,A)e-xh),
,A

nk/,, n, integers.
k=l

By induction over A it is easy to see that A’m can be written as an algebraic polynomial
of degree A/2 in the variables
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In each particular case, orthogonality relations hold for the trigonometric polynomials
with respect to the weight function

w’- II (sinO)2+(cosO)2t+ II (cos2O;-cos20j.)2+
i=1 i<j

defined in the region

t. OOlO2.. Ol_
Transformation of the variables shows that the algebraic polynomials fulfill Definition
4.1 except for the normalization condition. Hence they coincide with pTv,/’-

Consider now the differential operator corresponding to the Laplace-Beltrami
operator on a symmetric space.

THEOREM 4.3. Letfand g be polynomials. Then there holds

f,( z f)gw f f( )w

Proof. If we make the change of variables

X COS 0

the left-hand side becomes

where

i-1,...,1

fu,( D’f)grv’ dO,

Ow, OD’- r X - -ii=l

An application of the Gauss formula yields

f,,( gw’ ao-f,,y( o’g )w’ aO

--f dOl dOi-I
i=1

which is equal to zero if a,/3, ,>- 1/2 since w’ vanishes on 0’. For other values of
a, fl and , the theorem holds by analytic continuation.

COROLLARY 4.4. pv’#’v is an eigenfunction ofD’’/’v with eigenvalue -I2N+ 012 +1012,
where

p-(a+fl+ 1)(1,...,1)/(2V/ 1)(/- 1,...,1,0).

Proof. Put

II
i<j
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and write the operator D in the form

D-4r X (1-x)a.-+ [(1 +fl)(1-xi)-(1 +a)(1 +xi)]-x
i=1

+(2"1’+

It is clear that Dps is a symmetric polynomial and that

(DPN-- 4r X --ni(ni--1)--(l + fl)ni--(l +a)ni--(27+ l)ni(l--i ) xN

i=1

+ lower terms.

Moreover if M<N

f,( op )p wax f ( )w o

These conditions determine Dpv uniquely according to Definition 4.1.
Let pff’a(x) be the ordinary Jacobi polynomial of degree n, normalized such that

the leading term is x ".
THEOREM 4.5. For 7- 1/2 there holds

pv,fl,- 1/2(X) X PI’fl(X ) p’fl( X ),

where the sum ranges over the different permutations of n l,..., nt.
Proof. The right-hand side is a symmetric polynomial with leading term xv. All

other terms are of the form

x?,,

with mj_< ij. Then
k k k

E mj<- E t’j"<- E rtj,
j=l j=l j=l

where the last inequality is a consequence of the fact that n 1_>n2_>. _>nt>_0. This
implies that M-<N, hence also M<N. Orthogonality relations follow from the corre-
sponding ones for Jacobi polynomials by noting that for symmetric functions f there
holds

wdx Cf:,l<_ flwl dx
THEOREM 4.6. For ,-- 1/2 there holds

A’’(n + I- 1,n2+ 1-2,... ,nt)
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where

A(M)=A",#(m,, ,mr)-
p2,a(x,)

Proof. If ml>m2>... >mr>O, then A(M) is an antisymmetric polynomial of
degree M. Its leading term is xM. In particular

A(l-1,. .,O)-r-I-[ (xi-xj).
i<j

It follows that the quotient is a symmetric polynomial with leading term xx. In view of
the equality

Wa,fl,l/2 q.l.2Wa,fl, /2

the orthogonality relations are obtained as in Theorem 4.5.
As can be seen from the last two theorems a monomial %tx appears in p;a, -+ /2

with nonzero coefficient CM only if MN. This is also true for 3,-0 and ,-3/2. For
the proof we first need a lemma.

LnM 4.7. If 2/+ is an integer then the coefficients CM in the expansion

x ) E
M<_N

are rationalfunctions of a and .
Proof. We use induction over N. Suppose that the coefficients ofp are rational if

M<N and write

(SxN,pM)V
2
M<N

where

(f, g)v=fJ(x)g(x)w’*’#’V(x) dx
and Sxv denotes the symmetrization of x

l!.Sxv= xrv
TW

By the induction hothesis it is sufficient to prove the rationality for monoals

(x, 1)v
(x, 1)v

Since 2V+ is integral it is no restriction to assume that V- 1/2. Now

is easily computed in terms of F-functions and it is found to be rational.
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i.e.
COROLLARY 4.8. If7 --1/2, 0, 1/2 or 3/2 then CM can be nonzero only if M<N,

MN

Proof. For 3’=-+ 1/2 this is clear from the explicit expressions of PN given in
Theorems 4.5 and 4.6. Moreover according to the group-theoretical interpretation in
Theorem 4.2 the corollary also holds true for the values of a,/3 and 3’ listed there. Let 3’
be 3/2 or 0, choose/3 from the list and consider a coefficient CM which do not satisfy
MN. There are infinitely many values of a in the list for which CM=0. Being a
rational function CM has to vanish identically. Now keep a fixed. Then cM vanishes for
infinitely many values of/3. Hence CM 0 for all a and/3.

DEFINITION 4.9. Put N=(n,...,nt), q=ng+(3,+1for i= 1,...,1 and let
F denote the gamma-function. We then define c(N) c(N, l, a,/3, 3’) by

c(N) -6(N)

where

6(N)= I-[ r(q,+qj+a+#+ 1)r(q,-q)
<--i<j<--I r(qi+ qj+ a + fl + 3’ + 3/2) F(q,- qj+ 3’ + 1/2)

II 2-2q’F(2q+a+ fl+ 1)
l<_i<_l F(q,+a+/+ )r(q,+a+ 1)"

For the values of a, fl and 3’ corresponding to elementary spherical functions c(N)
is Harish-Chandra’s c-function evaluated at i(2N+ p) where

0=(23,+ 1)(/- 1,/-2,.-.,0)+(a+fl+ 1)(1,...,1).
In this case the usual normalization is

(1)
and

tp#’V(x ) c( N, l, or, fl, 3’ )2n’ +’"+n’pv’#’V(x)

(2) Iipv,t,vll2 (4t,v, /a,v)v=
(1, 1)v d(N,l,a,fl,3’)

where

d(N)-c(N)c(_N_p)
is the dimension of the representation with highest weight 2N. The connection be-
tween the c-function and the leading, term of tp u is proved in [2, p. 291] while the
formula for the dimension can be deduced recursively from a recurrence formula for
qN- See 11, Lemma 4.6].

THEOREM 4.10. If 3’ 1/2, 0, 1/2 or 3/2 the normalization (1) and (2) holds for all
a, fl>-l.

Proof. The case 3’-- 1/2 can be checked directly in view of Theorem 4.5. In the
remaining cases it is sufficient to prove the theorem for intertwining functions. Full
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generality is then obtained by analytic continuation with respect to a and/3 as in the
proof of Corollary 4.8. Thus we consider three triples (a,/3, ), (a’,/3,-/) and (a",/3", ,)
corresponding to the spaces Kt\U/K, gm\Ufgm and Km\UfK respectively. To treat
the three different values of , at the same time note that the parameters can be written

a ("/+ 1/2)(n- 21) +’-1/2,
fl= (-/- 1/2),
a’= (3,+ 1/2)(n-2m)+(’-1/2),
a" (,+ 1/2)(n-l-m)+(’-1/2),
fl" (’+ 1/2)(m-l)+(l- 1/2).

Let us first define

4,,’’’o’’’v [ c(N, 1, a,/3, "t’)c(N’, m, a’,/3, T)]’/22"’ + +,,,p’,O",v,
where

N’-(n,. ,nt,O,. ,O).

From the discussion preceding Theorem 3.6 we know that this is the correct normaliza-
tion of the intertwining function k’’’tv’’v. Its quadratic norm is the same as for the
elementary spherical function t,v.

Next we put

Then condition (2) is fulfilled and for the verification of (1) we have to show that

d(N,l,a,,_)_ c(N,l,a ,[).c(N’,m a’ fl [)-(c(N,l,a" /3",,))2

This can be done by lengthy but elementary calculations. Except for the normalization
d(0)-c(0)- 1 we have

d(N,l,a,, y) I fi(n-1)fi(m)
d(N,l,a",",’t) i= fi(n-m)fi(1)’

c(N’,m,a’,#,V)_ {I f(t)f(n-l)
-c-( -{,d -, ,= f (m )f( n m )

c(N,l, ot",,8",V)_ I fi(n-l)
c(N,l,a,,7[ -i=, fi(n-m)’

where

f(k)-r(n,+(v+ 1/2)(k-i+ 1)).
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5. Formulas. Let a, fl and V take such values that the normalization q is defined
(cf. Theorem 4.10).

THEOREM 5.1. In the following formulas changing one of the parameter values, the
number of terms is independent ofN.

and

where

Note that

Proof. To prove (1) and (2) consider the expansions

cP ’ v X A( N,M)fM+1’
MN

wl’0’ 1/21V l’fl’T-- X B(N,M)P’MN+lt/2

wI’O’- I/2(X)--l <I/<l (I -xi).

WI,0,-1/2(X )Wet’fl’7(X ) Wet+ ’fl’Y( X ).
In view of the orthogonality relations we have on one hand

f()fl’Y(X )(),r+ ,fl,y( X )Wet+ ,fl,’),( X ) dx-A(N,M)f1,%+ ,fl,’y( X )[2Wet+ ,,8,y( X ) dx.

On the other the left-hand side is equal to

f+w,(x )+x,+ ,,,(x )w,,o,-,/(x )w:,,,(x ) dx-(M,N)f z,,(x )I:w:,z,(x ) dx.

We conclude that A(N,M) is nonzero if and only if B(M,N) is nonzero, and this is
possible only if

M<N and N<M+lxt/2
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Writing M=N-e, this means that 0<e<//2, and the proof of (1) and (2) is com-
plete. Formulas (3)-(6) can be proved in the same way.

We now turn our attention to the group theoretical interpretation of q’v given in
Theorem 4.2, trying to obtain explicit formulas. As we have seen, only the cases
and ,/= 3/2 offer difficulties. Let us consider the case , 3/2. Formula (6) of Theorem
5.1 expresses {pt,3/2 in terms of fDtIfl’l/2 for which we have an explicit expression in
terms of Jacobi polynomials. Unfortunately formula (6) contains too many unknown
coefficients but nevertheless some valuable information can be obtained. For a--2n-
4/+ 1, fl-1 and ,/-3/2, p’V(x) is an elementary spherical function which can be
continued analytically with respect to N and x, to the noncompact analogue. A similar
extension of fDfl’l/2 involves Jacobi functions rather than Jacobi polynomials. Denote
the extension by

where

Then

and

p- p(a,,8, ,)- (2,+ 1)(1- 1,1-2,-.. ,0) + (a+fl+ 1)(1,..., 1).

)N-- -i(2N+o)

Csa- for all S W.

LEMMA 5.2. For all a>- 1, 91,3/2 can be continued analytically to a W-invariant

function ’’3/
Proof. By the methods in [11], including repeated application of the Laplace-

Beltrami operator, it can be shown that b3(N,e) in formula (6) is rational in N if
a-2n-4/+ 1. The natural extension of b3(N,e) to complex N defines a function
e(,e),

B(h,e)-b3((ih-p(, 1,3/2))/2, e).

This is of course also rational in a. Hence B(h,e) can be defined for general values of
a. Following again the methods of [11] we have for a-2n-4/+

(6’) q/. 2),1,3/2 ]h"--’2ie
0e28

Because of the W-invariance of Cx, B(,, e) must satisfy

B(SX,e)=B(,,s-le)

By passing to general values of a the sum in (6’) remains W-invariant. The proof of the
lemma is finished.

We are now prepared to compute some coefficients explicitly.
THEOREM 5.3. If

’=--+1/2 and a,/3>-l,

or

,/-0, /3--1/2 and a>
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or

,/=3/2,

the following explicit formulas hold.

where

and

(2’)

where

and

/3=1 and a>-I

(pfl’7 ] a( S-I(N+ 0/2) p/2)"’+ l’fl’7
"t’N-- Izt/4+ Slzt/4

1-I (xi-- 1)pv+ ’,/,v-- ] b( S-1(N+ p/Z) p/Z)"’’v"VN+t/4+St/4lil

b(A)=2-t c(A,l,a+ 1,fl,3,)
c( + #t/2,1, a, fl,’{ )

In both formulas, the sum ranges over all different S,,, S W.
Proof. Let a,/3 and 3’ be as in the assumption. If 3,=0 it suffices to prove the

formulas for a=(n-2/+ 1)/2. Full generality is then obtained by analytic continua-
tion with respect to a. Thus for these values of the parameters formula (1) of Theorem
5.1 extends to

where

k’’’Y- X A( I)+ l,fl,y
A+2ie-ilzt/2

o<e<tzt/2

A ( A, e) a,( ( iA- p( a, fl, / ))/2, e)
(cf. Lemma 5.2).

The W-invariance of qx implies that

(,)=(S,(S)),
where we have put

e( S ) lt/4 + S(e- It/4).
It follows that A(,, e) is nonzero only if

SEW,

for all S W

Select SO corresponding to the highest e(S). Then

and

ki#, k,. integers..( S ) ---- <_i<_l
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O So( e #l/4) <ll/4
or

#l/2 2e(So ) P,i.

Since 2e(SO ) is an integral linear combination of #l,’" ", #t, we conclude that 2e(SO ) -/1.
Thus A(h, e) is nonzero only if there is an element S in the Weyl group such that

moreover

Putting

A(., I)--A(S-!, (s-i)) -a(s-IX, 0).

= i(2N+ p( a, ,’t ))
in the formula again we get

ql,V- al( S-’(U+p/2)- #/2 0),’+ l,O,v
N--#t/4+St/4"

Here we recognize formula (1’) if we write a(h) instead of am(,0). Finally a(h) is
deterned by comparison of the leading terms.

The second formula, (2’), is obtained in an analogous way.
Remark 5.4. Formulas channg can be obtained by use of the relation

p,#,V(-x)- ( 1)n’+’"+n’p,a,V(X).
If we apply the same idea to the formulas changing y, (5) and (6), we obtain

"-- X a(S-l(N+o/2)-p/2, z
,S

and

2(]0]fl’’lt+l X b(S-l(N+p+/2)-p+/2,’)qi+’v+s,
’r,S

where z ranges over 0<’r< and S over all different Sz. In these formulas we have put

and

1).

Of course the proofs are valid only if both sides of the formulas have a W-invariant
analytic continuation. The coefficients a(,,r) and b(, z) are unknown except for

6. The ease I-2. The two-variable polynomials p;’V(x,y) were introduced by
Koornwinder in [7]. The further analysis developed in [10] and [9] depends on the
existence of certain raising and lowering differential operators.

"t ...or fl,y _a+ B+D-l-’n;k -k(n+y+ 1/2)pn_l,T-’
D,t,v,,,+ !,+ !,),-- (k+ a+ fl + 1)(n + a+ fl + V+ 3/2)P’:kFn-- l,k-
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’na,fl,+"-z",#,,a’#"-(n-k)(n+k+a+ fl+ lIFn_l,kFn,k

Ea,B,va,B,v+l+ v-, -(n-k+2r+l)(n+k++B+2r+2)p;’
These operators were used to calculate the quadratic norm and the value of p’’(1, 1)

that p,’’(x,y) contains no other monoals xy than tose forand also to prove
wNch (cf. Corollary 4.8)

(i,j)<(n,k),

i<_n and i+j<_n+k.

It turns out that the polynomials can be normalized according to (1) and (2) of
Theorem 4.10 for all values of a,/3, and y. Moreover

q:’+(1, 1)- 1.

THEOREM 6.1. Formulas (1’)-(2’) in Theorem 5.3 are valid for a>- 1, fl>- and
3, >_ 1/2. For example, formula (2’) reads

(x- 1)(y- l$-a+l’O’Y-b ,,a,/,y +/., ,,a,/,y +B ,,,.,a,#,V +/.,]n,k ln+ l,k+ u01n,k+ 10’Vn+ l,k vOOn,k

where

4(a+ 1)(a+3,+3/2)(n+k+a+,8+23,+3)
bll-- (2k-}- --}- 2)(n --i- k-i- q- 3,-1- 5/2)(2n+a+13+ 23,+ 3)’

4(a+ 1)(a +3,+ 3/2)(n-k)
bl-- (2k+a+fl+2)(n-k+3,+ 1/2)(2n+a+fl+23,+3)

4(a+ 1)(a +3,+ 3/2)(n-k+ 23,+ 1)
(2k+a++2)(n-k+3,+ 1/2)(2n +a+/3+23,+ 3)

4(a+ 1)(a+3,+ 3/2)(n+k+a+ fl+2)
boo= (2k+ a + fl + 2)( n + k+ a + fl+ 3, + 5/2)(2n + a + fl + 23,+ 3)"

Proof. The coefficients in formula (1) can be obtained by repeated application of
the operator Dr__. From these the remaining coefficients can be determined.

THEOREM 6.2. In the formula changing 3,,

the coefficients are

16(3,+ 1)(a+3,+3/2)(n+a++3,+5/2)(n+a+3,+5/2)
b2: (n+k+a+ fl +3,+ 5/2)(n- k +3,+ 3/2)(2n + a +/3+ 23, + 5)(2n + a +,8+ 2y + 4)’

32(a-/3)(a +/3)(3, +
b’= (2n + a +,8+ 23,+ 5)(2n + a +,8+ 23,+ 3)(2k + a +,8 + 2)(2k+ a +,8)

boo-
16(3,+ 1)(a+3,+3/2)(n+y+3/2)(n++3,+3/2)

(n-k+3,+ 3/2)(n +k+ a +/3+ 3, + 5/2)(2n + a +/3+ 23,+ 3)(2n + a +,8+ 23, + 4)
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16(3,+ 1)(a+3,+ 3/2)(k+a+ 1)(k+a+fl+ 1)
n + k+ tx + fl + 3/ + 5/2)( n k +’t + 3/2)(2k+ a + fl + 2)(2k + a + fl + 1)’

16(3,+ 1)(a+.d+ 3/Z)k(k+ fl)hi_l: (n+k+a+fl+/+ 5/2)(n-k+/+ 3/2)(2k+a+ fl)(2k+a+ fl+ 1).

Proof. Let ’/(x) be the Jacobi polynomial of degree n normalized such that
q’a(1)- 1. In view of Theorems 4.5 and 4.6 we have

and

--1/2 ( x y ) -1/2( p: /(x )p’/( y ) + p’/( x ) p: /( y ) )

- t,,/2( 2(a+ 1)
%:k xY)-(n-k+ 1)(n+k+a+fl+2)

</,(x),,t(y) ’/+k’ (x)%:(_,(y)

Using a formula for Jacobi polynomials

(x 1)p,t-AnCp_ll + BncP’l + CncP’fl

)2 a fl,l/2--(x-y %;k

we obtain

4Ca+ 1)
(n-k+ 1)(n+k+a+fl+2)

--1/2 _Bk ) fl --1/2[An+lqO-,k +(Bn+l g l’,k

’"n
-t- t"

+ l(pk,afl -1/2 --A ,a,fl,-l/2 t- ,.,a,fl, 1/2]
k’fn+ l,k+ "kTn+ l,k-

If we now insert the values for A,, B, and Cn

2(n+a+fl+ 1)(n +a+ 1)
(2n + a+ fl + 1)(2n + a + fl + 2)

B,,- -A,- C,
2n(n+fl)C,= (2n+a+fl+ l)(Zn+a+ fl)

a simple calculation shows that the theorem holds true for ,--1/2. By successive
application of the operator E+ to this formula the case 3’--1/2 +j, j integer, is
proved. Analytic continuation with respect to 3’ then yields the general case. Note that

)2 )2E,fl,7-l(x__y (x-y E’a’v

and

E’fl’Tt*’fl’7+ 8( ")t "- 1)( a + 3’ + 3/2) q0#f,Vk’’n ,k

COROLLARY 6.3. For /--1/2, a-- 2n-- 2m-- 3 and fl- 2m- 3, Theorem 6.2 provides
an explicit expression for the intertwiningfunctions on

Sp(n m ) Sp(m)\Sp(n )/Sp( n 2) Sp(2)

in terms of Jacobi polynomials.
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7. The case I-3. In three variables the computations concerning raising and
lowering operators are much more complicated than in two variables. However we have
the following result.

THEOREM 7.1. Let the operator Dr__ be defined by

D3’/r D2 Dlr )DZ -DID2D3 + (y+ 1/2) "--’D2D2+DID3-k-D2D3

1/2)2( D2D3qrDI. + D D
D2+

D D
D3 )’

where Di-O/Ox and 71"--(Xl--X2)(XI--X3)(X2--X3). Then for y--1/2, 0, 1/2 and
3/2

na+l,fl+ l,YDVna’O’V-rn,,n2,n (nl + 2Y+ 1)(n2+ Y+ 1/2)n3Fn-l,n2-l,n3 1"

Proof. Since the calculations are too long to write down here we just outline the
idea. First let us add a constant multiple of the identity to the Laplace operator and put

Dy,a,V- D,t,v- lpl:Id.
By Corollary 4.4 the eigenvalue of pv’/’ under D’t’r do not change when we replace N
by N-(1, 1, 1) and a,/3 by a + 1,/3 + simultaneously.

Next we transformD’t’v and Dr__ to the new variables

U --X -+- X2 + X3,

U2xlx2+xlx +X2X
U --XlX2X

And finally by direct calculation we find that

D+l,fl+l,yov__ D_D2v a,fl, v.
From all this we conclude that

(i) DV_pI’- MN_(I,I,I)CMP+ 1,/3+ l,y,
(ii) CN_(l,ll =(n +2/+ 1)(n2+’+ 1/2)n 3,

(iii) DV_Pv’’ is an eigenfunction of D+ ’a+’ with the correct eigenvalue.
Then Dpv’/’ is completely determined by Corollary 4.8 and the following lemma.

LEMMA 7.2. IfM-<N the eigenvalues ofpM andPN under D2 are different.
Proof. The inequality M-<N implies that (M,x)<_ (N, x) if x is a linear combina-

tion of/l,-.-,/t with nonnegative coefficients. For the eigenvalues -]2M+p]2 and
-12N+ pl2 we then have

[2M+ plz- (2M+p,2M+ p ) <_ (2N+p,2M+ p ) <_ (2N+ p,2N+ p ) -I2N+ pl
with equality only if M=N.

We also need the normalized version of Theorem 7.1.
COgOLLAgY 7.3.

where

"ta+ l,fl+ 1,yDVp’’t (N, oI,fl, yIVN_(I,I,I

,(N)- I-[
_<i__<3
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Moreover

(S(N+o/2)-O/2)=(N) for allS W.

By applying Dr__ to formula (1’), Theorem 5.3, we find that the coefficients are
obtained from the leading one by the substitution

N+S(N+o/2)-p/2

also for all fl> 1. This leads to
THEOREM 7.4. If 3 the expficit formulas in Theorem 5.3 are validfor all a and ft.
It is now natural to ask if there is an analogue of the operator E_,a too. Such an

operator could be used to derive explicit formulas changing 3’. The change from -/-- 1/2
to ,- 3/2 is of particular interest since it provides explicit expressions for the functions
in Theorem 4.2, Table 1, c), e) and f) in terms of Jacobi polynomials. Unfortunately no
such operator seems to exist. However the coefficients in the formula can be de-
termined as follows. Consider

rr2p,t,3/2_ btp/t.l/2 (cf. Remark 5.4)

where M--N+ 8+ Sz, z equals (2, 1,0), (2, 0, 0), (1, 1,0), (1,0, 0) or (0, 0, 0), S W and
=(2, 1,0). The W-invariance of the formula is clear from Theorem 7.4 so it is suffi-
cient to compute the coefficients corresponding to S id. For simplicity we also assume
that a--ft. Then it follows from the relation

pv,,’(--X)- ( 1)n’+n-+n3pv,a,3’(X )

that the only possible values of z are (2, 1,0) and (1,0, 0). The first value corresponds to
the leading term which is expressible in terms of c-functions. Thus there is just one
coefficient left to be determined, namely the one for =(1,0,0) and S--id. To do this
we use expansion with respect to the first column of the determinant in Theorem 4.6,

Pn,+2 ,Itn,3 X3p:’/(x)-(x-x)(x,-x) ’" (x- ’/(x’ )

x )P2+l(XllFn+l,n3
or,or ]ra,ot,l/2 (X2 X3 )).--Pn3 (Xl]Fn+l,nz+l

By use of this expression we see that if we put x3--x2--t in the formula and then
multiply both sides by (x- t), the left side will vanish while the right side can be
considered as a linear combination of Jacobi polynomials, p’(x), with coefficients
depending on t. Since the Jacobi polynomials are linearly independent the coefficients
must vanish for all t. In particular, for ’P,l+5(x) we get

1/2(btc(M,3,a,a, 1/2)p, t,t)-O,

where M=N+ 6+ e, and e take five different values

e=(1,-+2,0), (1,0, +-2), (1,0,0).



FORMULAS FOR SPHERICAL FUNCTIONS AND JACOBI POLYNOMIALS 829

Putting t- and solving for b++o,o,o we obtain
THEORE 7.5. In the case of three variables we have the following explicit formula

( cf. Remark 5.4):

" ,na,a,l/2rr2tP/"’3/2- E b(S-’(N+ p+/2)-#+/2, *
’r,S

where- or 1l/2 and S W runs over all different ST. Moreover

b(X 8)-2-3 c(h,3,a,a,3/2)
c(+2,3,a,a, 1/2)

and

b(h,/t/2)- Eb(S-’(h+p+/2)-p+/2,).

c((7+8)*,2,a,a, 1/2)
c((X+ + S)*,2,a,a, 1/2)"

Here

c(h+8+S,3,a,a, 1/2)
c(h+ +#/2, 3, a, a, 1/2)

or

and

(1’2’3 2’)*-(X X ).

8. Another rank two case. Consider a compact symmetric space of rank two for
which the restricted root system has Dynkin diagram 0-0 and multiplicity 2-/+ 1. Let
W denote the Weyl group, a and a2 the simple roots and moreover let/ and/2 be the
fundamental weights defined by (/i,/2 ) i2 ( a2, a2 ) (see Fig. 1).

ot

FIG.

Possible cases are SU(3)/S0(3) (3,-0), SU(3) (3,-1/2), SU(6)/Sp(3) (7-3/2) and
E IV (3’-7/2). The elementary spherical functions qo,g corresponding to the highest
weight n/ + k/2 is a trigonometric polynomial

fPn X CY .e S(ill +jl2)k z,j
SEW

(i,j)<(n,k)
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where (i,j) < (n, k) means that

( i/Xl +J2,/m ) ( n/l + k/2,/m ),
i.e.

2i+j<_2n+k and i+2j<_n+2k.

can also be written as an algebraic polynomial

Pn,k-- ai jzij,
(i,j)<(n,k)

where

z-5  ,0
The orthogonality relations transform to

fnp pjwr dzd [ 0 if(n,k)--(i,j),

if (n,k)va(i,j).

Here dn,k denotes the dimension of the representation with highest weight n/x + k/x2, w
is defined by

W Z22 -[- 4Z +4 18z+ 27,

and 2 is the region in the complex plane for which w_>0. Expressing d, in terms of
Harish-Chandra’s c-function as in 4 we get

(7+3/2)n+kn!k! (33+ 1/2)(33+ 1/2)(233+ 1)
(333 + 3/2) ,, + (2 33 + 1)n(233+ 1)(n+33+ 1/2)(k+33+ 1/2)(n+k+233+ 1)

The leading coefficient of pn, is

(33+ 1/2).(33+ 1/2),(233 + 1),,+.
a’k= i7"/2( 1)k(333+ 3/2),,+,

and the recurrence formula for elementary spherical functions derived in [1 1] takes the
form

where

q0nV,k b0,1qgnV,k+ "- b_ ,oqO_ 1,k -- bl,- lqnv+ 1,k-1,

(k+233+ 1)(n+k+333+3/2)
b’= (k+33+ 1/2)(n+k+233+ 1)

n(n+k+33+ l/2)
b-l’- (n+33+ 1/2)(n+k+233+ 1)’

k(n+233+ 1)
bl’-l--(k+33+ 1/2)(n +33+ 1/2)"
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In [7, parts III and IV] Koornwinder considered these polynomials for general 3’ > 5/6.
His polynomials, denoted by P,k, were normalized to have the leading coefficient equal
to one. Thus

.,(, e) p.,,(,,,e )
pnV, k(3, 3)

To show that the formulas for the quadratic norm, the leading coefficient and the
recurrence formula still remain valid for 3’>- 5/6, one can proceed as follows. First
the value of p,k(3, 3) is obtained with the aid of a generating function (see [8, p. 483])
and repeated application of a raising operator E (see below). Next the recurrence
formula is verified by explicit calculations of suitable monomials of pVn, k. Finally this
formula also yields a recurrence relation for the quadratic norm

iin,., I1=__ iin,ll - (n+k+7+3/2)(n+k+27+ 1)(k+7+ 1/2)(k+ 1)
(n+k+3"r+3/2)(n+k+2r+2)(k+"/+3/2)(k+2"+ 1)"

As indicated above there are lowering and raising operators EL and E_. They are
defined by

and

EL
3 3 3 3--++z +. +
OZ 3 Z2 Z2

Put also

e-w-,(e_ ),w,+’

Then

L_--w-v 0 wV+

E_,k--
2nk(n+k+’y+ 1/2)(n +27+ 1)(k+27+ 1)(n+k+3"[+3/2)

(6T + 5)(6, + 6)(63, + 7) ]gnY+-1,k-l,

E’,,a,+,-1 (6 +5)(63,+6)(63,+7)+,,,+,+Fn,k "
v v+,- (6"y + 5)(6+ 6)(6, + 7)L+%;,k 2

(n+,+3/2)(k+3,+3/2) ,,+2 (k+7+3/2)(n+k+27+3)+1,g

)(n+7+3/2)(n+k+27+3) %+2,+
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We can now prove
THEOREM 8.1. For 3’ > -5/6 there holds

y+l
fD+ i,k +j

where the only nonzero coefficients are

(n+k+3y+9/2).C
a2’2= (n +,+ 3/2)(k+ 3, + 3/2)(n +k+ 23’+ 3)(n+ k+2,+ 4)

(n+23,+3). C
aD’= (k+l+3/2)(n+/+3/2)(n+/+5/2)(n+k+27+3)’

(k+2,/+ 3). C
a’3= (n+y+ 3/2)(k+ 3, + 3/2)(k+ 3, + 5/2)(n +k+ 23,+ 3)’

n.C
a-’2= (n+l+ 1/2)(n+l+3/2)(k+y+3/2)(n+k+2,l+3)

k.C
a2’-l= (k+y+ 1/2)(k+y+3/2)(n++3/2)(n+k+2y+3)’

( n + k +’t + 3/2). C
a’= (k+ 3,+ 3/2)(n + 3, + 3/2)(n+k+ 23,+ 2)(n +k+ 2-/+ 3)’

(6 + 5)(63, + 6)(63, + 7).

3,+1Proof. Apply the operator L+ to z,;,.
y+l-- "y y+ l_L_ r+v,, k Z’+Zq;, k q;, k

Then use the formulas for v+zq;,,k and for tr ,+ As a special case of this formula we"+’’n,k
obtain for 3, 1/2 an explicit expression for the elementary spherical functions on
SU(6)/Sp(3) in terms of the characters on SU(3). For 3, 1/2 the formula expresses
the characters in terms of the functions

1/2-- S(nt +k2tPn. 2 e
SW

Finally, by repeated application of the formula the elementary spherical functions on
E IV (3, 7/2) are explicitly determined.
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A SEQUENCE OF PIECEWISE ORTHOGONAL POLYNOMIALS*

Y. Y. FENG" AND D. X. QI:

Abstract. In this paper we study the construction of an orthogonal sequence (U),,) of piecewise
polynomials of degree k which is complete in L2. Explicit expressions of (U)n) for k- 1,2, 3 are given.

We also study the sign-change properties of this sequence and consider the convergence of the corre-
sponding Fourier series. The results generalize those obtained earlier for Walsh system.

AMS-MOS subject classification (1980). Primary 41A15

Key words, polynomial, piecewise polynomial, Legendre polynomial, series expansion, orthonormal
function

1. Introduction. The study of orthogonal functions is very important. A number of
function sets are known which are found to be orthogonal and hence can be used for
series representation. The Fourier series, a system of sine and cosine functions, is the
basis for development in many of these areas.

Additionally certain polynomials can be made orthogonal. These orthogonal poly-
nomials form a series, n(x) (n--0, 1,2,... ), where n is the degree of the polynomial.
This class contains many special functions commonly encountered in practical applica-
tions, e.g. Chebyshev, Hermite, Laguerre, Jacobi, Legendre polynomials.

None of these have the essential simplicity of the Walsh and Haar functions, the
most important examples of nonsinusoidal functions, which form complete sets of
orthogonal functions for the Hilbert space L[0, 1]. Having this property, they provide
an effective tool in Fourier analysis. With the application of digital techniques and
semiconductor technology this kind of complete system of orthogonal functions has
been considered and applied [1 ]. This system may also have other advantages rendering
more directly it useful for some applications.

In 1910, Alfred Haar [6] proposed a set of orthogonal functions, taking essentially
only two values, such that the formal expansion of a given continuous function in the
new functions converges uniformly to the given function. The Walsh functions defined
in 1923 by J. L. Walsh [7] form a complete orthogonal set taking only the values +
and 1, and have been found to have many properties similar to the sinusoidal series.

From the point of view of approximation theory, it is important to construct a set
such that functions in this set cannot be only piecewise constant. The Schauder basis
was obtained by integration of the Haar function. Applying the Schmidt orthonormali-
zation procedure to the Schauder basis, Ciesielski (1968) introduced an orthonormal
uniformly bounded sequence of polygonals [4] which was a development of the Frank-
lin orthonormal set discovered in 1928 [5]. The functions in this set are implicit.

In this paper we study the construction of an orthogonal sequence (tr<) ofk,n!

piecewise polynomials of degree k which is complete in L2. Explicit expressions of
(tr<i)) for k- 1,2,3 are given.k,n

*Received by the editors September 1, 1981, and in revised form November 19, 1982. This research was
sponsored by the U.S. Army under contract DAAG29-80-C-0041.

tDepartment of Mathematics, China University of Science and Technology, Hofei, China, and Mathe-
matics Research Center, University of Wisconsin, Madison, Wisconsin 53706.

*Department of Mathematics, Jilin University, Changchun, China, and Mathematics Research Center,
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We also study the sign-change properties of this sequence and consider the conver-
gence of the corresponding Fourier series. The results generalize those obtained earlier
for Walsh systems.

2. An orthonormal sequence of piecewise linear functions. The sequence U, which
we will study in this section, consists of the following functions"

(2.1)

Uo(x)’- 1, U(x)’- V(1-2x), Ox 1,

1-6x, O_<x<1/2,
5-6x,

k- { U(’)(2x)’
+1 I)(X)

Un(e)(2_2x),

U,,(’)(2x),
U,,(+)(x)

U,,(,)(2_ 2x),

1/2<x_<l,

O<x<1/2,
1/2<x_<l,

k-1,2,3,...,2n-l,

At a point of discontinuity, let these functions be the average of the two one-sided
limits. The first eight of these functions are shown in Fig. 1.

-2

FIG.

Now we consider the orthogonality of the sequence U. We have the following
theorem.

THEOREM 2.1. The sequence offunctions {U0} is normal and orthogonal; i.e.,

(2.2) fo1Un(k)(x)U(mJ)(x)dx--in,mik,j
for n,m-O, 1,2,. -, k- 1,2,3,...,2"-l,j 1,2,3,.- .,2m-, with

1, =j,
8q-- O, =/=j.
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Proof. It is easy to prove this theorem by mathematical induction, we leave it as an
exercise for the reader.

We denote the collection of all piecewise polynomials of order k+ with partition
A,, by

lk+ 1,

where A is the uniform partition on 2"- intervals. It is obvious that

(2.3)

Let

dimPk+,a-- (k+ 1)2-l.

When k-- 1, we get

(2.4) M2n P2, A,,

since dimM2n=dimP2,a,=2" and M2nC_l2,4n. From (2.4) we obtain the following
theorem.

THEOREM 2.2. Iff is a piecewise linear function whose breakpoints can only appear at
q/p, where q is an integer and p is a power of two, then f can be exactly expressed by
finitely terms of the series Y,aiUi.

Before studying convergence properties we consider the number of sign changes of
the functions in the sequences U. First we define

S-(f )’- sup(n’:itl<t2<" <tn+l,f(ti)f(ti+l)<O}

to be the number of the sign changes offon [0, ]. It is easy to see that

S-(Uo)-O, S-(UI)-I, S-(U2’))-2, S-(U22))-3.
By the method of construction of the sequence U,

S- (/’/’(2k- l) k)
,.,,,+, ) 2S-(U )

and

thus

S- ( Vn2+k) ) 2S- ( Unk ) + 1;

S-(U’)(x))-2"-+k-1,
since this formula holds for n-2 and follows for the general case by induction. Hence,
each function U( has one more sign change than the preceding one. Therefore, it is
convenient to use the notation U0, Ul, U2, U3, instead of U(. When we study their
sign changes from now on, we will use both {U(} and (Us} freely. Obviously

Uk)- U2,-,+g_ for n-2,3,.--, k- 1,2,3,.. ",2n-l.

Thus we get the following theorem.
THEOgEM 2.3. S-(Um)-m,m-O, 1,2,3,.-.. That is S-(U(g)-2n- +k- for

n- 1,2, 3,-.-,k- 1,2, 3,..-,2n-t.
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Now we consider the convergence properties. The Fourier series of a given func-
tion F in terms of the functions U is

(2.5) F,-, ] a,U
i=0

with

(2.6)

Let

a, (F, Ui)-folF(x)U.(x)dx.
n

(2.7) P,,+l F’- X aiUi
i=0

be the nth partial sum of the series (2.5). Then p,+ F is the best L2-approximation to F
from M,+ span(U). Hence it is convergent to F if F is in L2, since the union of the
Mn’S is dense in L2. Thus we get the following theorem.

THEOREM 2.4. IfF.L2 [0, ], then

lira IIF-p.FIIz-O.

Next we will prove that P2,F uniformly approximates F C[0, 1]. It is well known
[2] that

IIF- P2. FIIoo (1 + IIP2.11)distoo(F, M2. )

and we know

since the least-squares approximation for M2,-P2,a, is local and C[0, 1] is in the
closure of O,0M2 Therefore we get the following theorem.

THEOREM 2.5. Let F C[0, 1], P2" be an L2-projector onto M2, on C[0, ]. Then

lim
n-- oo

However, not every continuous function can be expanded in terms of a sequence
U. We prove that there exists a continuous function whose expansion in terms of the
U’s does not converge at a point of the interval.

Suppose {i}= is a complete orthonormal system on [a, b]. For a function f, the
partial sumf of its formal Fourier series is defined by

with

fn(s)’-- fabK,,(S, )f( ) dt

n

X
i=1

In our case the kernel is

K(,,J)(x,y) Uo(x)Uo(Y)+ U(x)U(y)+ + U,,(J)(X)Un(J)(y).
We have the following theorem.
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THEOREM 2.6. There exists a continuous function f C[0, 1] whose expansion
n

X fo’f(x)Vi(x)dxV
i--1

in terms of (U } does not converge to f(x) uniformly.
Proof. According to the principle of uniform boundedness [9], from Theorem 2.5

forj-2n-I and x [0, 1], fdlkn)(x,Y)ldY is uniformly bounded for n. For generalj let

R?).Xn_ (x,y),

R’)(x,y) Vn(1)(x)Vn(1)(y)+ + Vn(J)(x)Vn(J)(y).

Therefore it is sufficient to prove that the integral

Cn(’(a) fo’ IR(a,y)l dy

is not uniformly bounded for all n,j.
Table shows the value of C((0) for small value of n and for each value of

k<_2n-l.

TABLE

n--2
n=3

n=4
n=5 21 21

We have the general formulas

(0) (0)
{Q’_n(2k)(0)- Cn(k)l (0)

2k+ 1)(0) 1/2 ( Cn(k)’ (0) -- g’(k+
._,n_

1) (0)) -- -34

Let k3"- 1, k.’- 2k._l +(-1)0. Then lim._Q.)(0) . So f)lR)(O,y)ldy is not
uniformly bounded, and the proof is complete.

3. An orthonormal sequence of piecewise polynomials of degree k. In this section
we study a general procedure for constructing a sequence of orthonormal polynomial
functions. We use the following notation:

Z’- (0,1,2,...),
On’- (1,3,5,...,2n- 1),
Ix]’- max(n" integer, n<x),

I,’- (1,2,..-,k),
En (0,2,4,...,2n).

( f,g)’- folf(x)g(x)dx.
Suppose that (U}/=0 is a sequence of orthonormal polynomials defined on [0, 1],

even or odd with respect to the point x-1/2 and the degree of U,. is i. First we give the
following theorem.
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THEOREM 3.1. There exist k+ polynomials Qk,i(X) (iIk+l) of exact degree k
such that

(3.1) dJQk’i(1/2)=O forj-k-i-l,k-i-3...,
dx

and with the property that

(3.2) (i)(x)’- { Ok’i(x)’
Wk,2 k+i(-11 Qk.,(1-x),

satisfies

(3.3)

(3.4)

IT(i)[ Xj,k,2,X), ) O, jIktO (0}, iIg+,,

( v i (x) Wk,2(xl)--ij, i,jIg+,

with

Proof. Let k- 2rn for rn Z and

k

Qg,i(x)’- a}i)xj
j=0

on [0,1/2]. The coefficients ao), a, ",a20m_l (iI2m+l) are defined by the following
equations"

(.(2,+,)2m,2 ,g" --0, jeOm,

(3.5) tr(2i+l) U20!2 )-0, jO iImU (0}2m,2

dJQ2m’2i+! --0, jEm_i_l,
dJ

x-i

with O0- , E_ ,
2m,, " -0, jE,

(3.6) ( ,i ,0, -0 jE (0} Iw2m ,2 w2m ,2

dJQ2m’2i -0 j Om_
dx

It is obvious that (3.5) and (3.6) have at least one solution U for given i lk+ I.
Indeed, the sequence U, U3,..., Um_ , Q,I, Q2m,3,"’,Q2m,2m+l is obtained by
orthogonalization of the sequence (x-)), (x-))3, ", (x_)em- , (x-)em,
(X ))m-2, ",(X--))2, on the interval (0,)) with respect to the constant weight
function.

It is easy to see that the degree d of Qk,i satisfies kdk-i+ 1. From [2] (de
Boor), we conclude

S-(rr(i+’))>k+i+k,2
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but from [2] we know

k>d>S-(Qk,i(O) Ekg(d)[o’)>Z(Ok, \ , ,i ,’(0, 1/2))df-a+(Ok,i(1/2) k,iD(d)(1/2))
>-m+[1/2i]+m-[1/2i]-k.

Hence all inequalities are equalities. It follows that Q2m,i has exact degree 2m. It is
easy to check U(2 satisfies (3.1), (3.3) and (3.4). Let

(3.7) M2k+ span( U0 U Utkl)2 "k,.rr+ }.
From (2.3) and (3.7), we know

M2(k+)--Pk+l,a,_

since dimM2+-dimPk+,a: and M2k+lC_Pk,a:. Therefore the number of poly-
nomials Qk, is no more than k+ 1. We have proved the theorem for k-2m. When k is
odd, the same kind of argument confirms the theorem.

After normalization, when k- 0, 1, the functions U(k (i Ik/ ) defined by Theo-
rem 3.1 are Walsh functions and piecewise linear functions (u2(l)(x), u(l(x) in Fig.
respectively); when k 2, 3, U2(, (i 13 ) and U3(, (i I4) are as follows"

U(, V(16x: Ox + )

U(-f-(30x- 14x+ 1),
U(3) 40x 16x + 1"

U(),2 f(-64x +66x2- 18x + 1),
U,. (2) ( 140x + 144x 2 24x + 1)3,2

U- (-224x + 156x-28x+ 1),
( 280x + 180x 30x + 13,2

The graphs of these functions are given in Fig. 2.
After getting U(ki ( Ik+ ), we define in general

(3.8) Uk(2t- ,)t { U I)"(2x )’
,n+l UI),,(2_ 2x),

O.<x<-
1/2<x<_l,

(3.9)
(t) 2x),

’k,n+l(X)’-- UI),,(2__ 2x),
O<X<1/2
1/2<x_<l,

We have the following theorem about the orthogonality of the sequence (Uk()).
THEOREM 3.2. The sequence offunctions {Uk(} is normal and orthogonal; i.e.

<7<i) /’(j)>--nmijk,n, k,m

with U(gtl+’):= Ut, IU{0); I, j I, where g (k + 1)2max("-2,)
(k + 1)2N(-,o.



SEQUENCE OF PIECEWISE ORTHOGONAL POLYNOMIALS 841

3

FIG. 2

A, m

Proof. The same kind of argument as in the proof of Theorem 2.1 confirms this
theorem.

It is easy to see that

U(j) 21kk,m + ,A,,

Let

Mk+l,2.-,’=span(Uo U, UI),, //((k+1)2"-2))
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It is obvious that

M2n-l(k+ 1) Pk+ I,A n,

Therefore we have the following theorem.
THEOREM 3.3. Iff is a piecewise polynomial of degree k with breakpoints only at q/p,

where q is integer andp is a power of two, then f can be exactly expressed by finite terms

of the series Y_. .a. .U,(j)
t,j t,j g,i

Let S+(a,...,a) denote the maximum number of sign changes in the sequence
ao, a,...,a obtainable by giving any zero element the value + or 1, and define

S-(ao,...,an):= the number of sign changes in the sequence ao, al,...,an,

where zeros are ignored.
Because {U/} (i E1k tO {0}) is orthogonal on [0, 1], it is well known that

Z(U/; [0, 1])-i,

with Z(f; [a, b]) denoting the number of zeros off on [a, b].
In order to study the sign changes of U (iI+) on [0, 1] we need the following

lemma.
LEMMa (de Boor [1]). If t-(ti)]’+ is nondecreasing in [a,b], with ti<ti+ all i,

and fLl[a,b is orthogonal to ,t on [a,b], then there exists /j__(i)],+l, strictly
increasing in a, b with < < +- (any equality holding iff ti+- ), In+ l, such
that f is also orthogonal to l,. Here k,t denotes the collection of splines of order k with
known sequence t.

In particular, if f is continuous, then it must vanish at the n points of some strictly
increasing sequence (r/i)]’ with ti<li<ti+ for all i.

It is easy to see that

$+,,a, M,+l+i-- span(U0, U1,’", U,i. ),
where A is the knot sequence (t2)+ 1)+i,

(3.10) f i’ j<_k+l,

tj’- k+ <j<k+i+ l,
j>_k+2+i.

Using Lemma 1, we get

(3 11) S-((i+l))-k+l+i iIkU (0}’k ,2

since

l[(i+l) S)--O, Sk+I,AVk,2

and tz(i+ 1)
,A+1)"Wk,2

We would like to study some further properties of the piecewise polynomials
{U}. First, from the Budan-Fourier theorem [8], we know that if P is a polynoal of
exact degree k, then

(3.12) Z(e; (a,b))S-(e(a),.. .,e)(a))-S+(e(b), .,e*(b)).
For convenience, suppose k- 2m. From (3.2), (3.11) we know

(3.13) z(e,.,; (0, k))-m+
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by (3.5), (3.6)

(3 14) S+(Qk,i(1/2) Q’,i(1/2)"" c(k)(1/2)) >m- [-]h:Sk,i

Because of (3.12), (3.13) and (3.14), we get

(k) 0

Therefore, from Descartes’ rule, we know that the coefficients of the polynomial
strictly alternate in sign.

A similar discussion shows that (3.15) holds when k is odd. Thus we have the
following lemma.

(t)_ Ik+LEMMA2. 1. S (U,2j k+l,l
2. The coefficients of the polynomial Qk+l strictly alternate in sign.
By the method of construction of the sequence t,k,n} (3.8), (3.9), we know

S- (11,(21-,.,k,n+]))--2S (U,(kl)n),
S-(’’t) )-2S-(Ut) )+ 1"k,n+l ,n

thus

S-(’(’))-(k+l)2"-=+l-1Wk,n

since this formula holds for n- 2, and follows for the general case by induction. Hence
each function U(t) has one more sign change than the preceding one. It is convenient tok,n
use the notation Uk o, Ug l,"" instead of Uktn when we study their sign changes. From
now on, we will use’both’(Ukn ) and (Uk,,} feely with Ug,,= for ik; obviously

(3 16) U’)-
,n k+1)2"-2+1-1 fornZ(0,1), 1I(k+1)2.-2.

THEORe 3.4. S-(Uk,m)-m, mZ. That is,

S-()-i, iIgU{O),

S-(U)-(k+l)2"-2+l-1, nZ(0, 1), /k+,)2.-2.

Now we begin to consider the convergence properties. The Fourier series of a given
function F in terms of the functions Uk, is

(3.17) F(x)-- iUk,i()
i=0

with

(3.18)
Let

, (F(x), Ug,i(x)>.

n-l

%F’- X a,U,,(x)
i=0

be the nth partial sum of the series (3.17).
Then ,F is the best L2-approximation to F from Mn’- span(Ug,;))-. Hence it is

convergent to F if F is in L2, since the union of the M,’s is dense in L2. We get the
following theorem.
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TI-I,OREM 3.5. IffL2[O, 1], then lim,ollF-FI[2- 0.
Next we will prove that 6-y(g+ l2,_,F uniformly approximatesF C[0, 1].
It is well known [2] that

and we know

since the least-square approximation for m(k+l)2n-,--lk+l,An is local and C[0, 1] is in
the closure of . M(k+ )2"-’. Therefore we have

TI-IEOmM 3.6. Let FC[0,1]. @(k+02"-’ be an Lz-projector onto M(k+)2.-, on
C[0, 1]. Then

lim [IF-k+ 1)2"-’ r[[ o 0.
/’/--*0(3

The same kind of argument as in the proof of Theorem 2.6 shows that the
following theorem holds.

TI-IEORE 3.7. There exists a continuous function f C[0, 1] whose expansion
n

i=0

in terms of (U,i) does not converge to f uniformly when n- o.
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TECHNIQUE FOR EVALUATING INDEFINITE INTEGRALS
INVOLVING PRODUCTS OF CERTAIN SPECIAL FUNCTIONS*

JEAN C. PIQUETTE:1: AND A. L. VAN BUREN

Abstract. A new technique is described for evaluating a general class of indefinite integrals involving
products of many of the special functions of physics such as Bessel functions, Legendre functions, Hermite
functions, etc. The technique is a generalization of the method used by Sonine to evaluate certain indefinite
integrals of Bessel functions. It involves replacing the integral to be evaluated by a coupled set of linear,
inhomogeneous differential equations. A particular solution of the set of differential equations is then
sufficient to express the result of integration. Several examples are given to illustrate the technique.

1. Introduction. We present a technique of integration involving a special but very
broad class of integrals. These are indefinite integrals of the general form

m

() I:fdxf(x),.l n)(x)’
where R)(x) is the th type of special function of order/ obeying the following set of
recurrence relations:

(2a)
(2b)

Here aa, ba, ca, and da are known functions corresponding to Ri). The symbol D
represents d/dx. The function f(x) and the product II R) are both assumed bounded
and continuous (or with at most a finite number of discontinuities) over an interval
[x, x2], insuring that the integral I exists in the same interval.

Recurrence relations (2) may be combined to show that the functions Ri) satisfy
the differential equation

aa-lda-i(3) D2R(i)+ ba_l

Ca da-l(da+caaa_l)]R(i)-O.+

Equation (3) is a special case of the Sturm-Liouville differential equation

(4)
where r(x) 0,

D[p(x)Dq(x)] + IS(x) + yr(x)] q(x)-0,

p(x)--exp dx
ha_, -ca-ca_ da

D
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C dl_ (d+ca._l)]S(x)-o(x) c-l-Dc-b-Dd- b_,

and (x) R(i)(x ).
If either (2a) or (2b) is a two-term recurrence relation (i.e., if b, or d, is equal to

zero for all ), then the above expressions are undefined and R(i) does not satisfy the
Sturm-Liouville differential equation. In this case R(o satisfies instead a first-order
differential equation and is in the form of an exponential. This may be readily seen by
letting d, 0 in (2b), in which case

R(i)(x)-exp[fdxc,].
On the other hand, if b=0, we obtain from (2a):

R(i)-a_lR(O_l,
which when combined with (2b) yields

(6)

An extensive search of the literature indicated that functions satisfying the recur-
rence relations (2) have not previously been named. For the purposes of this article we
shall refer to them as birecurrent functions. Most of the special functions of physics fall
into this category (including all Bessel functions, Legendre functions, Hermite func-
tions, etc.). We exclude the special cases given in (5) and (6) from this category,
preferring to call them exponential terms instead.

The integration technique presented in this article involves a generalization of the
method (described by Watson [1]) used by Sonine [2] to evaluate certain indefinite
integrals of Bessel functions. The integral to be evaluated in Sonine’s method is
replaced by a differential equation. A particular solution of the differential equation is
then sufficient to express the result of integration. In the present work we generalize the
method to include all functions obeying the relations of (2). In addition, we describe an
approach for obtaining and solving the appropriate differential equations.

2. The technique. We assume the integral of (1) may be expressed in the form

(7)
m

I- , 2 2 Ap,,p2,...,pm(X)1-IlR(i’
Pl =0 p2-’0 Pm=O i= Ii+Pi

where the 2 coefficients Ap,,p2,...,p.(,x ) are functions to be determined. For conveni-
ence, we will represent the multiple surnrnation and the coefficients in (7) by the
shorthand notations Yp} and Ap, respectively. In order to determine the functions Ap,
we differentiate (7), substitute for DI the integrand from (1), and obtain

(8)
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Due to the recurrence relations (2), it is always possible to express the first sum on
the right-hand side of (8) in the form

XAp X X X nqpX-IlR(i?+qi,
{p) ql.- 0 q2-- 0 qm=0 i=

or
m

(9) X X npqaq R(i)
.= P’i+Pi

(P) {q)

where the 22m coefficients npq---npl,p:,...,p ql,q2,...,qm(.X) are known functions resulting
from repeated applications of the relations of (2) and the regrouping of terms in the
form II .m

t: tli+Pi"
Using (9) we can rewrite (8) to obtain

(10)
m

--[1 Rf(x ) R(’?

_
DAp+ BpqAq izi+pi.i= (p} {q} i=

We can now obtain a coupled set of differential equations for the functions A, by
imposing the sufficient condition that the coefficients of like special functions on each
side of (10) be equal. Doing this, we obtain the following coupled set of linear
inhomogeneous differential equations of first order

(11) f(x)O,p-Dhp+ X BpqAq,
(q)

where i is a Kronecker delta defined equal to zero unless pl--P2 -Pm -0"
In solving the set (11) of 2 equations in the 2 unknown functions Ap, one

normally proceeds by differentiation and algebraic manipulation to uncouple a particu-
lar function from the remainder. This results in a differential equation of order 2m. A
particular solution of this uncoupled equation involves a particular choice of 2
constants. Since this is exactly the number of arbitrary constants that the original set
(11) involves, one must be careful not to introduce any further arbitrary constants. In
this case we obtain the remaining functions by expressing them in terms of derivatives
of the initial function that has been calculated, rather than in terms of integrals of it.
Regardless of the method used in obtaining a particular solution of (11), one must
avoid introducing more than 2 arbitrary constants. Otherwise, the solution so ob-
tained will neither satisfy (11) nor provide, via (7), a proper representation of the
integral of (1).

When the integrand of (1) contains more than one birecurrent function, it may be
desirable to move one (or possibly more) of the birecurrent functions out of the product
term and treat it as part of f(x). Each birecurrent function appearing in the product
term doubles the number of unknown coefficient functions A and hence doubles thep
number of coupled differential equations to be solved. Thus, we halve the number of
differential equations each time we move a birecurrent function out of the product term
and group it with f(x). However, each function so grouped will appear in the inhomo-
geneous term of the final set of differential equations. Conversely, none of the birecur-
rent functions grouped in the product term will appear explicitly in the final set of
differential equations.
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Any particular solution of (11) will give a set of functions Ap that can be used in
(7) to express the result of the integration. We can see this if we differentiate the
expression that results by substitution of this particular set into (7). The resulting (8) is
obviously satisfied since the A, are a particular solution. The fact that only a particular,
rather than a general, solution is required is a powerful aspect of the technique.

The coupled set (11) is a standard form of linear inhomogeneous differential
equations of first order that may be solved by well-known methods. A particular
solution of (11) is easier to obtain than one may suspect since each equation contains
exactly one term involving the derivative of a particular function Ap and the derivative
of each of the functions A appears in only one equation.

The technique described above is equally applicable, with slight modifications,
when one or more of the birecurrent functions in the product term of (1) is replaced by
an exponential term of the form of (5) or (6). Because the exponential terms satisfy
two-term recurrence relations, we do not have to include p-1 terms for them in (7).
This reduces the number of unknown coefficientsA and the resulting coupled differen-
tial equations by a factor of 2. Moving the exponential term from the product term into
f(x) does not change the number of differential equations to be solved.

3. An example. To illustrate the technique, we obtain the result to the following
well-known integral: I- fdxx sin #x. In this case, f(x ) x and R(x) sinx.

The simplest way to apply the technique to this problem is to consider sin/x as
the imaginary part of the exponential R(x)-exp(itx) and assume that I-
A(x)exp(i#x). Only one term, and hence only one unknown coefficient A(x), is
required in I in this case because differentiation of the exponential does not produce
new functions (i.e., recurrence relation (2b) reduces to a two-term equation relating
DRy, to R).

We shall use instead a somewhat more complicated approach that requires two
unknown coefficients in order to illustrate several important aspects of the technique.
This approach is based on the fact that the set of two functions sin/x and cos/x is
closed under differentiation so that it is convenient to choose R-sin/x and R+
cos/x. We now proceed to obtain the integral following a step-by-step procedure:

a. We assume I may be expressed in the form

(12) I=Ao(x ) sin Ixx +At(x ) cos Ixx.

b. Differentiation produces DI-txAo(x)coslx+[DAo(x)]sinlx-lAl(X)sinlxx
+ DA(x)] cos ixx.

c. Equating DI to the integrand x sin/xx and separately equating coefficients of
sin#x and cos/x, we obtain the following differential equations:

(13a) x-DAo- IxA
(13b) O- tAo+ DA1.

d. We now uncouple A0 and A by substituting into (13a) the expression for A0

obtained from (13b). This gives

(14) D2A + Ix2A Ixx

e. A particular solution of (14) is

() A,()- --.
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Substitution of (15) into (13b) yields
_1(16) Ao(x ) --.

f. Substitution of (15) and (16) into (12) gives the result

sin/x #x cos/xdxx sin/x
]12

In order to investigate the consequences of using a different particular solution
from the one chosen, we first obtain the general solution of (14). It is

(17) A(x)- C sin/x + C2 cos/x
-x

where C and C2 are arbitary constants. Substitution of (17) into (13b) yields

(18) Ao(x ) -ClCOSlX+CEsintxx

Substitution of these general solutions for Ao and A into (12) produces the following
expression for the desired integral

fdxx sin x sin/x -/x cos/x( 9 +G.

Equation (19) involves only a single arbitrary constant to which the indefinite
integral under consideration is entitled. Since the completely general solution to (14)
was used in obtaining (19), it is clear that any particular solution to (14) would have
sufficed, with only the constant C2 in (19) being affected by a different choice.

4. A more complicated integrand. Although the first example provides a succinct
illustration of the present integration technique, an integration-by-parts approach would
certainly have been more straightforward. We present a second example that is less
susceptible to standard techniques. This integral, which arose in a problem involving
the scattering of sound by sound, is

(20) I=fdrr’Z,(r) exp(ir),

where Z,(r) is an arbitrary Bessel function of one of the first three kinds of real
argument r, and the range of integration is restricted to r>0. For generality, both the
order v and the exponent # are chosen to be complex.

To begin the technique, we assume that I may be written as

(21) I=Ao(r)Z(r ) +Al(r)Zv+ l(r).
Differentiating (21), expressing the resulting Bessel function derivatives in terms of Z,
and Z+ by use of the appropriate recurrence relations, equating the result to the
integrand of (20), and imposing the sufficient condition that coefficients of like-order
Bessel functions be equal, we obtain the following coupled set of differential equations:

O-A-Dal+[V+l]Al’r
v_A(22) r"exp(ir)-DAo+
r 0+Am
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These equations may be uncoupled to yield

(23) D2A-DA+ l+!-v]r
A-rexp(ir)

We now define a function 0(r) such that

(24) A,(r)=ro(r).
Substitution into (23) yields

(25) r2D2p + rDp+ [r2- v2lp r+’ exp(ir).

One particular solution to (25) is an associated Bessel function as defined by Luke [3],
namely, p( r ) ’+ lH,,,( ir), so that

(26) Al(r)--i"+’rH,(-ir).
Use of the known properties of the associated Bessel functions results in

(27) Ao(r) -i’+lr
[(-,)(/x-,-1)H,_,+l(-ir)+(-ir)%xp(ir)]

2/+1

when the expression for A given by (26) is substituted into the first of (22). We thus
have

(28) fdrr"Z,(r)exp(ir)

=/+r{ [(/x--)(/x---1)H/_(-ir)+(-ir)%xp(ir)]l }Z(r)
+ +’rH,,,(- ir)Z,+,(r).

This result is identical to that obtained by Luke [4] using a specialized integration
technique developed by McLachlan and Meyers [5] for certain integrals involving
Bessel and Struve functions. Luke [3] provides formulas by which the associated Bessel
functions appearing in (28) may be evaluated.

The above example resulted in a differential equation that was recognizable.
However, the technique is still applicable even if no previously known solution to the
differential equation exists. We first try to obtain a particular solution to our inhomo-
geneous differential equation by using standard methods (see, e.g. [6]) such as the
method of Lagrange or the method by Cauchy. If none of these methods proves
satisfactory, we can always obtain a solution in the form of an infinite series. As an
example of this, we again return to (23) and assume that A may be expressed as

(29) Al=exp(ir ) Bmrm+t,
rn-- --where the coefficients Bm are constants to be determined. To simplify subsequent

calculations, we chose the form of the expansion to be compatible with the inhomoge-
neous term. If (29) is substituted into (23) and coefficients of like powers of r are
equated, the following recursion relation is obtained for the Bin:
(30) (m+l.t+v)(m+tx-v)Bm+ + i[2(m +/z)--1]Bm--Sm,
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We can obtain a particular solution to (30) and hence to (23) by setting Bm 0 for
m>l and solving for the nonzero coefficients Bm, m=l,0,-1,..., The resulting
descending power series representation for A can be expressed in terms of a hypergeo-
metric function as follows"

(31) Al_i+lr (_l)+(ir)exp(ir) 3Fl(1,--tx+v,--tx--v; 1/2--ix; 1/2ir)

In view of (26), it is not surprising that the quantity in brackets is identical to the
series representation of H,(-ir) given by Luke [3]. The solution (31) is not defined if
/- -1/2. It is also not defined if/ is an odd multiple of 1/2 unless both/--+ are positive
integers or zero. The solution is a terminating series if either/+ or/- is a positive
integer. The infinite series obtained otherwise is an asymptotic representation of A that
is valid for r c. Although this series is then divergent, it is useful nonetheless
provided it is truncated properly.

We can obtain a second particular solution for A by setting Bm- 0 for m< and
solving (30) for Bm, m= 2, 3,.... The hypergeometric representation of the resulting
ascending power series in r is

(32) Al--i’+lr{(--ir)’+12F2(l’lx+;tz-v+2’l+v+2;-2ir) }(#--v+ l)(/+v+ 1)

The quantity appearing in braces in (32) is the series representation of the associated
Bessel function h,(-ir) as defined by Luke [3]. This function is a second particular
solution to the differential equation satisfied by H,, and hence can be used in place of
H in the solution (28) to the original integral.

The solution (32) is a terminating series if/ is a positive odd multiple of -1/2 (other
than -1/2) and if both/-+v are not positive integers. It is not defined if either/+v or
#-v is a negative integer and/ is not a positive odd multiple of -1/2 (other than -1/2).

5. Additional illustrative examples. The two previous examples illustrate the power
and versatility of the current integration technique, but two objections may be raised:
The first example can be handled trivially, and the second example is one involving
products of Bessel functions and, hence, is amenable to the original approach proposed
by Sonine. The examples that follow will serve to illustrate the applicability of the
current technique to integrals that are not of the Bessel function type. Although some
of these may be solved by standard techniques, they nonetheless illustrate the broad
range of integrands that can successfully be handled via this technique (and to the
authors’ knowledge, several of these integrals have not been previously tabulated).

a. Some integrals involving Legendre functions. We now consider some examples of
integrals of the general form

(33) I=fdxP(x)f(x),
where P(x) is the Legendre function of order and f(x) has the same meaning as in
(1). We assume the integral I may be represented in the usual way as A(x)P(x)+
B(x)P+ l(X). Following the procedure outlined in 2, we obtain two coupled equations
for A and B which can be uncoupled to yield

(34) (1 --X 2

(x)- -x(x)+ (; i) ’(x),
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where

(35) (1-xU)B"(x)-2xB’(x)+v(v+ 1)B(x)= (v+ 1)f(x).

As a first example of an integral of the form (33), we consider the case where
f(x)= 1. A particular solution to (35) for this case is B(x)=(1/u). Equation (34) now
determines A(x) to be A(x)= -(x/u). Substitution of A and B into the representation
for I now produces

(36) faxe,( ) x
P,,+-P,,+ 1,v

v =/= O"

We next consider a more challenging integrand (i.e., one which cannot be handled by
direct manipulation of the recurrence relations for P,(x)). Let f(x) be ln(1-x). In
obtaining a particular solution to (35) we use the inhomogeneous term as a guide and
assume B(x)=K ln(1 -+x)+ K2, where K and K2 are undetermined constants. Direct
substitution into (35) gives K- 1/v and K2- 1/[v2(v+ 1)]. Equation (34) may next be
used to show that A(x)={-(x/v)ln(l+-x) +- 1/[(+ 1)]-x/v2). Substitution of A
and B into the representation for I results in

(3"/) fdxln(1 +--x)P(x)-[-Xln(1 +/-x)+/- x
v v(v+ 1) v2

+ ln(1---x)q
vu(v+ 1)

P,+(x), v=/=0, 1.

b. Some integrals involving Hermite functions. We next consider integrals of the
general form

(38) I=fdxH.(x)f(x),
where H,(x) is the Hermite function of order v, and once again f(x) has the same
meaning as was used in connection with (1). We assume the integral of (38) may be
represented as A(x)H(x)+B(x)H,_(x). (Note that H and H_ are used to repre-
sent the integral as opposed to H, and H+ . This difference is inconsequential. Any
two orders separated by one integral value will be adequate to implement the proce-
dure.) Omitting the details, we uncouple the resulting coupled set to obtain

S’(x)(39) A(x)- x B(x)v 2v

where

(40) 2vf(x) =-B"(x)-2xB’(x)-2(v+ 1)B(x).

As a first example of this general form, we let f(x)-e- (This is the usual
weighting function used in the orthogonality integral for H,(x).) If we assume a
particular solution of (40) of the form B(x)-Ke- (with K an undetermined constant),
direct substitution gives K= 1. Equation (39) gives A(x)-O so that

(41) e- H,(x) e- H,_l(X )dx x
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As a second example we let f(x)--x-’, where for the moment/ is an arbitrary
exponent. If we assume a particular solution of the form B(x)-Kx-I2, where K and
K2 are constants, direct substitution into (42) produces

(42) 2vx-’- -K,Kz(K2+ 1)x-(Ze,-+9-)+2K[Kz-(V+ 1)] x-g.

There are two sets of values for the constants KI,K2, and/, for which (44) is
satisfied: Kl=--2v/[(v+ 1)(v+2)], K2--I+ 1, /*--1’+3; and K=-v/(v+2), K2--

1,/,- 1. Using the first set of values, we obtain for v4 1, -2

(43)

We obtain from the second set of values

+ 2X2

(44) fdxxH(x)- 2(v+ 2)
vx (x) v=/= -2.Hv(x)-(I,+z)Hv-1

For a final example involving Hermite functions, we let f(x)= xe, where 3’ is a
constant initially assumed to be arbitrary.

A particular solution to (40) can be obtained with B(x)= Keivx, where K is an
unknown constant. Direct substitution shows that a solution exists for 7-2(+ 1)
and K-iv/2(v+ 1). Using the resulting solution for B in (39) to obtain A, we then
have

(45) fax x )

=ei2{,,+,)x[( --ix ) H(x) + iv
Hv_ l(X)]F 2(v+ 11

v4=- 1.

c. Some examples involving Laguerre functions. We now consider integrals of the
general form

(46) I=fdxf(x)L.(x),
where L,(x) is the Laguerre function of order v, and f(x) has the same meaning as in
(1). As usual, we represent I in the form A(x)L,(x)+B(x)L,_(x) and obtain the
following uncoupled equations

(47)

where

(48) vf(x)=xB"(x)+(x+ 1)B’(x)+(v+ 1)B(x).

As an example of this case we let f(x)= xe-(+)x. To obtain a particular solution
of (48) we assume B(x)= Ke-(+)’. Direct substitution gives K-- 1/(v+ 1). Using this
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value yields the integral

(49) f xe-(’+ ’)L,,( x )
e-("+ )x

(v+ 1) [--(1 +x)L,(x)+L_,(x)], v=/= -1.

As a final example, we let f(x)=x(1 +x)-"+3). A particular solution to (48) can
then be obtained assuming B(x)=K(1 +x)-"+), where again K is an unknown
constant. Direct substitution into (48) yields K- v/[(+ 1)(u + 2)] so that

(50)

fdxx(1 +x)-(+3)L(x)
(1 -I- x)-("+ l)

( x- v

(v+2) v+l +x L,,(x)+ v-+- L,,_(x) v=/= l, --2.

d. Some final results. The following is a tabulation of some additional results
obtained using the integration technique in this paper. For the sake of brevity the
derivations have been omitted.

(51)

xe- H,(x)H,(x)dx -_e_X_( (#+v+l)
2[i;-- 11H"( v-I+ H,,(x)H.

+{ V )H_ (x)H.(x)+[ 21v
/.--/1"-

where H is a Hermite function and/x- v 4=+_ 1.

(52) --PI/2(x)P-1/2(X),

(53)
/(/-t- 1) v(v-t- 1)

(v+l) f fdxe (x)x.- (v+l) -xev+l(X)

p,(1 -x2)x-1
(+1) P,,(x), v=/=- 1.
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HETEROCLINIC PHENOMENA IN THE ISOSCELES
THREE-BODY PROBLEM*

R. MOECKEL"
Abstract. When two of the three particles have equal masses, the three-dimensional three-body problem

has a subsystem consisting of motions for which the configuration of the particles is always an isosceles
triangle. This subsystem has only two degrees of freedom. Geometrical methods are used to construct an
invariant set containing a variety of periodic orbits which exhibit dose approaches to triple collision and wild
changes of configuration. Furthermore, orbits heteroclinic between these periodic orbits, as well as oscillation
and capture orbits are found. The whole invariant set is described using symbolic dynamics,

Introduction. The three-body problem in is a dynamical system with nine
degrees of freedom. By making use of the ten well-known constants of motion it can be
reduced to a problem with four degrees of freedom. In the special case where two of the
three masses are equal there is an invariant subset of the phase space consisting of
motions for which the positions and velocities of these two particles remain symmetric
about an axis in a. This subsystem, which is called the isosceles three-body problem,
can be reduced to only two degrees of freedom.

Two special cases of this problem have received considerable attention. The limit-
ing case obtained as the third mass tends to zero is known as Sitnikov’s problem [10],
[12]. In this case, orbits can be found which tend parabolically (limiting velocity zero)
to infinity in both time directions. Near such a homoclinic orbit lies an invariant set,
described by the methods of symbolic dynamics, containing among other things oscilla-
tion and capture orbits. The case of zero angular momentum has also been well studied
recently in connection with the problem of triple collision [2], [5], [6], [9], [11]. In this
case the motion takes place in a fixed plane. Orbits occur which both begin and end in
triple collision and near these homoclinic orbits one finds an invariant set whose orbits
pass repeatedly through a neighborhood of the singularity, approaching arbitrarily near
without actually colliding. These orbits are also constructed by means of symbolic
dynamics.

The goal of this paper is to study the case of small but nonzero angular momentum
as a perturbation of the zero angular momentum case. It is an important fact that in the
case of nonzero angular momentum, triple collision is impossible. However, there are
interesting invariant sets whose orbits repeatedly pass as close to collision as their
angular momenta allow.

The usual method of treating triple collision [7] is to first set the angular momen-
tum to zero and then introduce rescalings whose effect is to extend the vectorfield to a
limiting "collision manifold" which forms a boundary to the noncompact zero angular
momentum manifold. The orbits on this collision manifold are limits of orbits with zero
angular momentum which pass close to collision. A different limiting object is obtained
if we take limits of orbits in the phase space whose angular momenta tend to zero and
which are near triple collision. Of course the usual triple collision manifold is a subset
of this new manifold, but we find much more. We get not just a boundary for the zero
angular momentum space but rather a manifold of the same dimension as the zero
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angular momentum space itself. In Fig. 4 the surface represents the triple collision
manifold, the exterior represents the zero angular momentum manifold, and the inter-
ior represents the new part of the limiting set. Intuitively, the orbits inside describe the
behavior exhibited by small angular momentum orbits close to collision, but not
exhibited by zero angular momentum orbits close to collision.

The formulation of our main result (Proposition 4.4) involves the notion of a
connection graph (see for example (5.1)). We view the behavior of an orbit which
repeatedly approaches triple collision as being made up of a sequence of behaviors
close to collision, represented in the graph by upward pointing arrows, and behaviors
between successive close approaches, represented by downward pointing arrows. The
main result states that any possible sequence of behaviors that can be imagined actually
occurs for some orbit. To describe some of the implications of this we need to
understand what the possible behaviors close to collision and between close approaches
might be.

In the zero angular momentum case there are three special orbits with the property
that the triangle formed by the three bodies never changes shape. The three possible
shapes are collinear (along an axis perpendicular to the axis of symmetry) and equi-
lateral in either orientation. The orbits begin with a triple collision, expand to some
maximum size and then contract to another triple collision. If we add a small amount
of angular momentum the behavior between close approaches will be virtually the
same. When the particles are very close, however, their behavior is entirely different
than that of the zero angular momentum orbits; they will spin around the axis of
symmetry and avoid collision. The exact behavior during this close approach is not well
understood.

The special "homothetic" behaviors described above are represented by downward
arrows in the connection graph while each method of spinning around to avoid
collision is represented by an upward arrow. Other downward arrows represent the
following behavior between close approaches: the size of the triangle becomes ex-
tremely large with the middle particle travelling one direction along the axis of symme-
try and the outer particles travelling the other way while spinning, close together,
around the axis. The limit of this type of behavior is that the particles go away and
never return for another close approach.

With these possibilities in mind we can use Proposition 4.4 to construct orbits
which exhibit striking changes of shape. For example, if any sequence of the three
homothetic behaviors is specified, an orbit can be found which has infinitely many
close approaches to collision exhibiting the required sequence of shapes between ap-
proaches. The behavior is indistinguishable from the homothetic behavior except while
the particles are extremely close together. Furthermore we can find orbits which exhibit
such remarkable changes of configuration and then abruptly escape to infinity, or else
very nearly escape and then return to resume the sequence of close approaches. In
summary, the orbits near collision, those near infinity and the orbits heteroclinic
between them are combined in one symbolic dynamical description.

1. The isosceles three-body problem. The three-body problem in concerns the
motion of three point particles with masses rn, positions qk and momentap/; k= 1, 2, 3.
Suppose m-m2 -m. Then there is an invariant subset of the phase space consisting of
motions for which rn remains on the z-axis in 3, while m and rn 2 remain symmetric
with respect to this axis. If we require that the center of mass remains at the origin then
we obtain a dynamical system with three degrees of freedom; the positions and veloci-
ties of all three particles can be found once those of m are known.
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Let q-(x,y,z) and (l--(),p,). Then by symmetry q2-(-x,-y,z) and
(2 =(-,-p,). Since the center of mass remains at the origin we find 2mz +m3z --0
and 2m2-+-m323--0 where q3--(0,0,Z3) and (3=(0,0,,3). The kinetic energy T and
potential energy U are"

T= m(.2 +.p2) + m(1 + 2a)2 2,

[a(x2+y2 + 2 2 2-],U=.mm ) 1/2 4(x +y +(l+2a)2z ) I/2

where a-m/m is the mass ratio.
Let M be the 3 3 matrix diag(m, m, m(1 + 2a)) and define

(-M/ Y and -M/ p

These new variables satisfy Hamilton’s equations with Hamiltonian functions/-/((,)
Inl= U() where

U(l) -m3/2m3[a(,2-t- -I-4(Jz-I-Jz2-1-(1-t-2a) 3)
To study orbits near triple collision it is convenient to introduce new variables

/21 and to multiply the resulting equations by r3/2. The result is:

r’=(s.z)r,

(s.z)z

By definition, s is the "angular part" of the position coordinates and it satisfies Isl- 1.
Consequently we can introduce spherical coordinates using the formula s (s, s2, s ) =
(cos0 costp, sin 0 cos, sin (p). Now the vectors

U "S,

S__
u - ( sin 0 cos q, cos 0 cos, 0),

s
u --if-s_ ( cos 0 sin, sin 0 sin, cos)

form an orthogonal basis for 3. If we write Z-"DU I-W2U2 "-W3U (where v-z.u --S’Z,
etc.) and use (1.1) to find equations for the variables (r,O,q,v, w2,w3) we get (eventu-
ally):

O’=w2,
(p’=w3,

v’ v2 w32U(q)+w cos +
w vw2 + 2 tan qw2w

w U’(q ) vw w22 cos2 tan,
where U(tp)-1/2m3/2m3[otsecfp+4(1 q- 2a sin2tp)-l/2].
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In deriving these equations one must express V U(s) in the new basis. We have
VU(s).u= VU(s).s=-U(s), by homogeneity of U(s). Also VU(s).uz--VU(s ).
)s/OO OU/OO 0 and VU(s)- u OU/)q U’(q). The fact that the potential energy
is independent of 0 is related to the conservation of angular momentum. The equation
for w does not involve U and one can easily show that 0- r/Zw2 cos2 is a constant of
the motion. Using this fact, we can safely ignore the variables 0 and w2. We have the
following system with only two degrees of freedom:

r
q’-- W3,

v’- u()-V -k-w32+o2r sec2
2w U’( q ) vw3 Zr sec tan.

If we restrict attention to orbits of fixed energy h we find- v2 +w+ co2r

We consider only the case h < 0.
We will now make some familiar regularizing transformations to eliminate the

singularities at q=--+r/2. First replace the troublesome term o2r-lsec2q by 2rh+
2U(q0)-v2- w3. Then replace w by w--w cos q and multiply the resulting vectorfield
by cos q0. Using’ to denote differentiation with respect to this new parameter we find:

(1.2) r --/)r COS q,
’=W,

v’- U(q) cosq-- cosq+2rhcosq,

W’-- U’() cos2t -t)wcos

(2U( cp ) + 2rh -v2) sinqcosq

FIG. 1
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with energy relation

2(1.3) -(v2cos2t-w +02r )- U(tp) cos2q)-rhcos2q).

The vectorfield (1.2) is analytic on 4 since the functions U(p) cos q and U’(qg) cos2 q
are analytic for all . Figure shows the graphs of U(tp) and U(p) cosp.

2. The limiting variety. Equation (1.3) is a quadratic expression for r(,v,w) on
the manifold (h,) consisting of orbits with energy h and angular momentum (we
consider only h < 0):

(2.1) (21hi cosZq))r:+(vZcosg+wZ-2u(qg)cos:)r+o2-0.
This equation has positive, real roots provided =/=_+ r/2 and

i) 2U() COS2V2cosZ(]9-}-W2
and

ii) (v- cos2 + w2 2U(q) cos2 q)2_> 821hl cos2 .
Taken together, these imply"

(2.2) 2U(q0) cosZq)-vZcosZq)-w2>_8oZlh cos.

Inequality (2.2) should be viewed as defining the projection of 6")lL(h, o) on (q0, v, w)-
space. The manifold itself lies over its projection in two sheets provided strict inequality
holds. These sheets join over the set where equality holds.

Note that (2.2) implies U(q)costp_>2wZlhl Now U(q0) cosp-1/2mS/Z-+-O(cosq)).
Thus the projection of 6")]L(h, to) extends from -rr/2 to r/2 if and only if mS >-- 8t.oZ[h[.
For fixed rn and h this will always hold for sufficiently small angular momenta. Figure
2 shows cross sections of the projection in this case. The projection is homeomorphic to
a three-dimensional disc with two points removed and its boundary is a two-dimen-
sional sphere with two points removed. In view of the way 63L(h,0) lies over its
projection we see that it is a union of two copies of the three-disc with deleted points
joined together at the boundaries. A similar analysis for the case m< 8o1hl gives:

PROPOSITION 2.1. For m <8o21h1, 6(h, o) is compact and is homeomorphic to S 3.
For m>_8tolhl, 6"(h,o) is noncompact and is homeomorphic to S with two points
deleted.

In the limiting case o-0, (2.1) defines a reducible analytic variety instead of an
analytic manifold. It is a union of the analytic manifolds (r-0} and (21hlrcos-p+
V2 COS2 q9 + W2- 2U() cos2 -0}. The only points with r-0 which are limits of points
in (h, o) as w 0 are those satisfying (2.2) with 0:

(2.3) 2U(qg) cos2tp_>vZcos2 + w2.

The only points in the second limiting manifold which are limits of the -Y(h, to) are
those with r >_ 0. Define

’)IL+ {r>_0, v2cos2q+w2-2U(q)cos2- 2rhcos},
ILo- {r-0, 2U(qg) COS2V2COS20--W2},
%0-+ 0 {r- 0, 2U() cos2-v2 cos2 + w2},
=+Oo-

We will refer to as the limiting variety of the (h, w) as w + 0.
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a3]Lo is the limit as 00 of the projections of 3]L(h, w) together With the lines
{r= w=0, W= --+ ,r/2}. Referring to Fig. 2 one finds that )]Lo is a three-disc with four
deleted points. Its boundary, %0, is a two-sphere with four deleted points. Now
+ f) { r/2< <r/2} projects homeomorphically to a)L0 { r/2< <r/2} and
so is a three-disc with two deleted points. But a3L+ also contains the half-planes (r_>0,
w=0, = -+r/2). These fit together with the three-disc to produce a three-disc with
two deleted arcs whose endpoints are the four deleted points in the boundary %o.
Therefore e)L=)qL+ t_Jo is a three-sphere with two deleted points, just like the
manifolds a3lL(h, w). In both cases the deleted points are "at infinity", i.e., r-o o as we
approach them. Figure 3 shows in cross section the way )L(h, w) converges to 3IL.

3. The flow on the limiting variety. The goal of this section is to locate certain
invariant sets of the flow defined by restricting (1.2) to 3L and to find "transverse"
connections between these invariant sets. The question of how these features behave
under perturbation to the nonzero angular momentum manifolds will be considered in
4.

We begin with the invariant surface %0. We have remarked that this is the
so-called triple collision manifold of the w=0 isosceles problem. The flow on it has
been well studied and most of the results of this section are direct consequences of
previous work, mainly results in [2], [9], [11]. Many of the relevant features of this flow
are summarized in Fig. 4. The flow is gradient-like with respect to the v coordinate, i.e.,
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v is strictly increasing on all solutions other than restpoints. There are six restpoints
(, v, w) = (%, +/- v., 0), where % 0, / or

_
is one of the three critical points of U()

and v.- /2U(.). The restpoints are denoted by C, C*, E+, E_, the star indicat-
ing v vc.

The configuration -0 is the collinear one, while +, represents equilateral
configurations with z positive, negative. It is important to understand the local struc-
ture of these restpoints in the full four-dimensional domain of (1.2). To this end we
examine the variational equations at (r, v, , w) (0, v., %, 0):

v

w

-+v,. 0 0 0
2h v,. 0 0
0 0 0 sec(.)

_1-2hsin(,.) 2v,.sin(%) cos(%)U"(%) +-v,.

v

8w

The tangent space to eY0 at a restpoint is just the (Sq, w)-plane and the eigenvalues of
--! / 2the restriction to this plane of the variational matrix are +v.cos%-(6v, cos2.+

Ott(Dc)COS2Dc)l/2. Now Utt(O) is negative so the eigenvalues at C* have positive real
part while those at C have negative real part. A closer analysis of U"(0) shows that
these eigenvalues are real if and only if a_< . At the equilateral configuration U"(q+, _)
is positive so the restpoints E+,_ and E_,_ are all saddles when viewed in %o.
Evidently Fig. 4 depicts the flow for a>. Note also that the behavior of certain
branches of the stable and unstable manifolds of the saddles is forced by the gradient-like
structure.

The other two eigenvalues at the restpoints are +v.cos%. It is easy to check that
the +v.cos% eigenvector is tangent to 63]L+ while the -v.cos% eigenvector is tangent
to L0. Thus the restpoints E_,_ viewed in 6"-65Z+ U6")0 have two-dimensional
stable manifolds lying in 63]L+ and two-dimensional unstable manifolds lying in ’YL0
(Fig. 5). The dimensions are the same for E+,_ but this time the stable manifolds lie in
’)Eo and the unstable manifolds lie in 6+. The restpoint C* has a one-dimensional
stable manifold in 69+ and. a three-dimensional unstable manifold 6"0, while C has
three-dimensional stable manifold in 63E+ and one-dimensional unstable manifold in
o.

We write St(p) and Un(p) tO denote the stable and unstable manifolds of a
restpoint p. The dimensional considerations above open the possibility of a rich net-
work of heteroclinic connections among the equilateral restpoints. There may be trans-
verse intersections Un(E_,_)St(E+,_) in 690 and transverse intersections
Un(E+ ) N St(E* ) in + The collinear restpoints do not admit similar possibili-
ties and we will concentrate on the equilateral restpoints from now on.

Besides the four equilateral restpoints there are two more landmarks in the limiting
flow, namely the periodic orbits "at infinity". Equation (1.3) implies that as r o,
q0 _+ rr/2. An orbit is said to approach infinity parabolically if r- o and -0 (recall
that" denotes differentiation in the original timescale). In [8], McGehee shows that the
set of orbits tending parabolically to infinity as t- + o is a two-dimensional analytic
submanifold of + which can be viewed as the stable manifold of a (degenerately)
hyperbolic periodic orbit at infinity. Similarly the set of orbits tending to infinity
parabolically as -o form the unstable manifold of this orbit. We denote these
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FIG. 5

limiting periodic orbits by oo + or oo_ accordingly as q0= +r/2 or -rr/2. They should
be viewed as invariant sets in another boundary manifold to 63]L+. As the manifolds
St(o +, _) and Un(oo +, _) are all two-dimensional we can hope to include them in the
network of transverse heteroclinic connections.

Before describing the connecting orbits any further we introduce a notion of
transversality appropriate to analytic invariant manifolds of a flow. Let S and $2 be
analytic two-dimensional invariant submanifolds of a flow on a three-dimensional
manifold 63L. We will say that Sl and $2 have an odd-order crossing along an orbit
"y C S [")S2 if in every local section Z to the flow along ,/, the analytic curves S [’-)] and
S2Y have an odd-order crossing. Recall that two analytic curves in a plane Ol(t ) and
og(t) with o1(0)--o2(0)--p are said to have an odd-order crossing at p if the series
expansions agree up to but not including the terms of order 2n/ for some n. If S
and S2 are stable and unstable manifolds of some invariant sets of the flow we call 3’ a
transverse connecting orbit.

Whether or not connections exist between the invariant sets E+, E, +,_
depends on the mass ratio ct. We introduce the following device to keep track of these
connections. By the connection graph for mass ratio ct we will mean a directed graph
with six vertices, labeled for the six distinguished invariant sets, and one directed edge
for each transverse connecting orbit in the limiting flow tI). Let G(a) denote this
connection graph. The existence of connections can be inferred from what has been
learned recently about the 0--0 case. The first result concerns connections in 63L+.

PROPOSITION 3.1. For all a, G(a) contains the subgraph
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For all a>, G(a) contains the subgraph

E+ E_

(Here bold arrows represent a countable infinity of distinct transverse connecting orbits.)
Proof. All of the indicated connections occur in 31"6+. There is always a homothetic

orbit which begins and ends in triple collision and this appears as the vertical arrow
from E+ to E_. One checks easily that (r(t),q+, _,v(t),O) is a solution to (1.2) with
configurations remaining equilateral, where

r(t)- 1/2v2,. Ihl- sechZ( 1/2 v,.cosq,, t) and v(t)--v,.tanh(1/2 v,.cos,, t).

Clearly it connects (0, +, v,., 0) to (0, q+, -v,., 0) as required. It is
easily checked using variational equations that the intersection of St(E;,_) and
Un(E/, _) is transverse (even in the usual sense of the word).

We turn next to the connection from E+ to m +; the other connections in the top
graph are handled similarly. Consider Un(E/). We know that one orbit in Un(E/)
remains bounded for all time, namely the homothetic connecting orbit discussed above.
It will be enough to show that there is another orbit in Un(E+) which tends to infinity
hyperbolically (r , >e> 0) with q + rr/2, for any connected manifold of orbits
containing both bounded orbits and hyperbolic orbits must "cross" the manifold of
parabolic orbits. As both manifolds are analytic we will get an odd-order crossing of
Un(E/) and St(m+). Such a hyperbolic orbit in Un(E/) is easily found near the
branch of Un(E+) fqff6

0 which heads up the arm near =rr/2 (Fig. 4). Following this
branch we find orbits in Un(E+) with v arbitrarily large and r>0 but small. It is a
result of McGehee that such orbits tend to infinity hyperbolically and We can even
make the asymptotic value of t’ arbitrarily large [7].

The explanation of the lower graph which occurs for a> lies in the eigenvalues
at C and C*. We have remarked that these are not real if a > . Furthermore there are
connecting orbits in ’)g

0 from E+,_ to C and from C* to E._ (Fig. 4). Just as in the
equilateral case there is a homothetic (q---0) connection from C to C* in 6316+.
Consider a neighborhood of this orbit as it crosses the section v--0. Because of the
connection from E+ to C, Un(E+) passes near C and follows along the homothetic
connection. Because of the nonreal eigenvalues at C it meets the set v-0 in a spiral
about the point where the homothetic orbit hits the section (see Fig. 6; for more details
consult [3], [9]). The symmetry of the isosceles problem can be used to show that the
intersection of Un(E_) with {v--0} is obtained by inversion of Un(E/) through the
origin and that then St(E) and St(E*_) are obtained from these by reflection through
the axis. The result is a countable infinity of crossings of each of St(E_, _) by each of

Un(E+, _). Q.E.D.
We remark that among the infinitely many restpoint connections for a> there

are orbits which pass arbitrarily close to the collinear homothetic orbit.
The subgraphs of Proposition 3.1 contain no closed paths since connections from

starred restpoints to unstarred ones cannot occur in 7Ig+. The next result, however,
concerns connections in .6)1"6

0.
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FIG. 6

PROPOSITION 3.2. For all sufficiently small mass ratios (a< +e will do), G(a)
contains the subgraph

E+ E_

For sufficiently large mass ratios, the following subgraph occurs:

Proof. 651Lo is the region of (tp, v, w)-space inside -2"60. Viewed in ’560, E is a saddle
point, but in 63L0 there is an extra positive eigenvalue. We have remarked already that
the flow on ’560 is gradient-like with respect to v and in the interior we have v’ >0. So
Un(E) can be followed up to the section {v-0), where it forms an analytic curve
with endpoints in ’560 f3 (v = 0} (see Fig. 7). The location of these endpoints for various
values of a is one of the key questions addressed in the studies of isosceles triple
collision [2], [3], [9], [11]. Let p/ denote the endpoint obtained by following the "front"
branch of Un(E)N ’560 to the section and p_ denote the other one (Fig. 4). Figure 7
shows the case a (0, + e) for which it can be proved that p+ lies in the second
quadrant and p_ in the third [9]. Since St(E+) is obtained from Un(E) by reflection
through the -axis we get at least one odd-order crossing of Un(E_)(v-0) by
St(E/) fq { v 0 } (unless they are identical; this excludes at most a discrete set of mass
ratios).

As a oo one can prove that p+ and p_ approach the positive and negative -axes
respectively [11]. In this case the curve Un(E_)fq (v-0} necessarily crosses the w-axis
and as St(E_)f3 {v=0} is obtained by reflection in this axis we get at least one
odd-order crossing of these curves. Q.E.D.

We remark that Simo’s numerical work [11] indicates that the a-intervals implicit
in Proposition 3.2 overlap, i.e., between the a values where only one or the other
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subgraph occurs, both subgraphs occur. In particular his work implies both subgraphs
occur if a (three equal masses).

4. Perturbation off the limiting Ilow. Proposition 2.1 shows that the regularized
manifolds 63L(h, o:) are homeomorphic to S minus two points for all sufficiently small
to and the same is true for the limiting variety 631L. It is not difficult to realize these
manifolds as the images of a family h of embeddings of S minus two points into N4
defined for 0 (-e, e) and depending continuously on o in the compact-open topology
(here 63]L is the image of h0). Using this family of embeddings we can pull-back the flow
of vectorfield (1.2) to construct a family of flows (0) on a single copy of S minus
two points depending continuously on co in the compact-open topology on flows (of
course, (0)= ). All this just amounts to viewing the nonzero angular momentum case
as a perturbed flow on the limiting variety rather than as a restriction of a big flow on
N4 to nearby invariant manifolds. Both points of view are useful. Away from the
"corners", i.e., away from %0, we can even view the perturbed flow as depending
analytically on 0.

Rather than attempting a variant of the .usual smooth techniques for embedding
symbolic dynamics we adopt the methods of window theory developed by Easton [4].
Easton explores the relation between windows in a flow and symbolic dynamics in
great generality. In a three-dimensional space the following simple approach suffices.

Let I=[- 1, 1] and define a triple (B,b+ ,b_)=(II, (- 1, } I,I (- 1, 1)).
We define a positive path in B to be a continuous curve o:(I, (- 1, ))-o (B, b+) with
o(- 1) and o(1) in different components of b+. A negative path is defined in a similar
way. By a window in 63E we mean an embedding w: B 63]’6.

Consider two windows w0 and w and a flow #t on 63L. It may happen that there is
a flow-defined Poincar map taking a subset of w0(B) along orbits of to Wl(B). Let
T:B--,R + be continuous and define 10 to be the composition 10(fl)=
w{-1 T) Wo(fl) for flB. This will be defined on some compact domain DoCB
and map to some range R0 C B.

R=8,V=8

Pl/2

FIG. 7
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wo(b+) I
III
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I

FIG. 8

We will say that correctly aligns w0. with wl, if for some T as above, the following
conditions hold"

i) tI)0" D0 R0 is a homeomorphism.
ii) DioNb+ -RloNb_- .

iii) Every positive path in B contains a subpath in Dl0 mapping under lO to .a
positive path while every negative path in B contains a subpath in R0 mapping under

to a negative path.
These conditions are quite easy to verify in practice. Figure 8 shows two windows

being correctly aligned by a flow and indicates the flexibility of the definition.
Now suppose we have a bi-infinite sequence of windows w, j 7/, such that

correctly aligns wj. with w+ for allj. Let DNO be the domain of NN--1 (I)10 and
let Ro_N be the range of 0- (I) U_ l) U" Using induction, we find that DNO
is compact, disjoint from b+ and contains a negative path, while R0 -u is compact,
disjoint from b_ and contains a positive path. Consequently DNoCIRo_N is a non-
empty compact subset of the interior of B. It follows that (")N(DNoRo_N) is also a
nonempty compact subset of the interior of B. Back in we find at least one orbit
beginning in w0(B) which maps through all the windows in the appropriate order under
the Poincar6 maps.

One more definition will be needed. Let S C63L be a surface (usually a stable or
unstable manifold). We will say that a window w is plus-transverse to S if w(B) is
contained in the domain of a submanifold chart for S which takes an open ball in 63L to
R 3, S to R20 w(-lI) to 3__ and w(1 I) to 3+, where [3+,_-((.Xl,xz,X3)"
x3>0, <0}. In other words the components of w(b+) are on opposite sides of S. Define
minus-transversality in a similar way. This is also easy to check in practice.

The following lemma allows us to construct suitable windows near each of the
connecting orbits in the limiting flow.

LEMMA 4.1. Suppose analytic invariant surfaces Sl and S2 have an odd-order crossing
along an orbit {. Let Z be any local section to the flow along . Then there is a window w"

B C6- which is plus-transverse to S and minus-transverse to S2.

Proof. S A and S2 are analytic submanifolds of Z, i.e., nonsingular analytic
curves in Z. We will find CO coordinates for Z near , fq taking these curves to the
coordinate axes. Then the square I I in 2 is the appropriate window.

Choose analytic submanifold coordinates for S fqZ about 3,NZ. Calling these
coordinates (x,x2) we have S Z, represented by the x-axis and 3,Z by (0,0).
Assume that Sl E and S2E are not actually transverse since, in this case the
appropriate coordinate system can be found easily and it is even analytic. Thus S E
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appears as the zero set of a function f(xl,x2)-xk+l -+-x2g(Xl,X2) where k> and
g(Xl,X2) is an analytic function with g(0,0)v0. Then the variables (l,2)-
(x x2 g(x, x2 )) are analytic coordinates near (0, 0). The further transformation ( /1, ’02 )
=(k+ +2,2) is a local homeomorphism with inverse (1,2)-((r/l--2)1/2k+ 1,12)"
The composition (,l,rl2)=(f(xl,x2), x2g(xI,X2)) is our choice for the new coordi-
nates. Clearly $2 is represented locally by the r/z-axis and $2 q Z by the /l-axis as
desired. Q.E.D.

Consider a window wo near a connecting orbit which ends at one of the equilateral
restpoints and another window w near a connecting orbit which begins at the same
restpoint. Unfortunately the limiting flow does not determine a Poincar6 map since
wo(B ) is held up in a neighborhood of the restpoint. However the nearby manifold
E(h,0) does not contain the restpoint so the flows () are not delayed in the
corresponding neighborhood. We will show that these flows correctly align w0 with w.
This will require a somewhat closer analysis of the limiting process in a neighborhood
of a restpoint.

Equation (2.1) which defines L(h, 0 ) and ILcan be written as rf( r, v, q, w) o2,
---/,2wheref(r,v,q,w)=v2cos2q+w2-2U(q)cos2q-2rhcos2q. Let hi =rfand 2

f2. The Jacobian of the coordinate change (r,v, cp, w)(l,,z,qg, w) is --4(r2+
f2)lgcosZq0. We will use these coordinates only in a neighborhood of one of the
restpoints in 3L and there v cos2 qov0, but r 2 +f2=0 is exactly the equation for %o.
Nevertheless, the new variables provide a Co coordinate system when restricted to

(r_>0,f_<0} containing the manifolds of interest. These are analytic coordinates on the
complement of %o and, trivially, on %o itself. They are not globally analytic because
they flatten the "corner" at %0. In fact, the new equation for 6"JL is -0 and %0 is
given by 1-,2=0. (h,to) appears as

We will need only a few facts about the vectorfield (1.2) in the new coordinates.
First ,’-0 since l is _2. Since rf is constant we have r’f+rf’-O from which we
find f’ = -vf. Then we find ,- 2v eosq (r 2 +f2), SO near a restpoint 2 is monotone
on orbits in the complement of %o. Finally we note that the perturbed flows (to) are
the flows of vectorfields Co close to a vectorfield for if to is small. Before beginning
the proof of the main perturbation lemma we make one more improvement in the
coordinates. We can replace 2, q, to by ,2, 3, 4 so that in the limiting flow near an
equilateral restpoint (call it E) we have St(E) { 2 0, 0} and Un(E) (, 2 -"
0,4-0}. We still have %o-{,2-0}. Figure 9 will be helpful throughout the proof.
We choose a small ball D about E and suppose that the windows w0 and w have been
followed along their associated connecting orbits to OD (this involves choosing he
windows sufficiently small).

LEMMA 4.2. If Wo and w are sufficiently small windows in OD with wo plus-transverse
to St(E) and w minus-transverse to Un(E), then there is Ol>0 such that all the flows
d(to) with 0<ll<tOl correctly align wo with w via the Poincarb map across D.

Proof. There is a neighborhood of St(E)OD in OD which is transverse to the
vectorfield of . We assume that wo(B) was chosen small enough that when it is
followed forward to OD it lies in such a neighborhood. We make a similar assumption
about w(B) and a neighborhood of Un(E). If under (to), wo(B) leaves D through a
neighborhood of Un(D) which is transverse to the flow, then the time required to cross
D will be a continuous function on wo(B) and the Poincar6 map taking points of wo(B)
to the point where their (0) orbits leave D will be a homeomorphism. To verify
correct alignment we must choose an especially nice neighborhood of Un(E).

Since wo(B) is plus-transverse to St(E) the two components of wo(b+) lie on
opposite sides, of St(E). They leave D near the points of intersection of OD with the
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FIG. 9

3-axis. Choose half-discs of the form 0D {2<0, --24<) in which the vector-
field for points out of D. If wo(B) is a small enough window the orbits through w0(B)
which leave D under tI) will do so through these hall-discs. Furthermore the compo-
nents of wo(b+) will still leave D through the half-discs under the flows (0) for
sufficiently small.

Since w(b) is minus-transverse to Un(E), there is an e>0 such that the two
components of Wl(b_ ) lie in the sets {4>e) and (4< --g}. The open band 2’0,
Ihal<e in OD together with the half-discs constructed above form a neighborhood of
Un(E)OD, which we will call V. Choosing e smaller, if necessary, we may assume
that the vectorfield of tp points strictly out of D on V and that e</2. We will show
that for I1 sufficiently small, orbits of () which enter D through the window wo(B),
leave D through V. To see this notice that {2> -B/2, l4]<e} is positively invariant
under and also under (w) for Il sufficiently small. Next notice that for the flow
there is a time T such that if p wo(B), the orbit segment t(P), 0 _< t_.< T, either leaves
D through one of the half-discs or else enters the set 2> -B/2, ,41< e. This condition
persists (with the same T) for nearby all (w) since it merely asserts that the image
under r of the compact set wo(B) lies in the open set (2>-i5/2, l,4l<e}
(half-discs). Now we have seen that h>0 for the flows (w) with wv0 so every orbit
entering D through wo(B) does leave D eventually and the above considerations show
that such orbits must leave through V. Thus the Poincar6 map across D stretches wo(B)
through V taking the components of wo(b+) to the half-discs at opposite ends of V. The
way that V was chosen with respect to w(B) makes it easy to verify correct alignment.
First it is clear that the Poincar6 map is a homeomorphism and so is the map 0. Since
wo(b/) leaves D through the half-discs, b+ q domain(0) . Similarly b_

range(lO)= , since w(b_) lies in the complement of V. It is obvious that positive
arcs in wo(B) are stretched through V from one half-disc to the other. But such a curve
contains a subcurve connecting the components of w(b+) through w(B). Similarly any
negative path in w(B) must connect the regions {,4>e} and {X4< -e) by crossing V
and any such curve contains a subcurve connecting the images of the components of
wo(b_ ) through the image of w0(B). Q.E.D.

We will also need Poincar6 maps between windows w0 and w where w0 is plus-
transverse to St(oo+, _) and w is minus-transverse to Un(oo /, _). These are defined
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even for the limiting flow. Moreover we can get from w0 to w after going around the
periodic orbit an arbitrary number of times. Perhaps the easiest way to keep track of
the various possibilities is to introduce an extra window near the periodic orbit itself.

The next lemma is a window-theoretic version of results in [10], which the reader
should consult for a more careful treatment of infinity. We will use only a result of
McGehee [8] asserting the existence of a coordinate system with certain properties near
the orbits at infinity. Specifically, there are coordinates (x,x2,O), where Xl,X2 and
0 (mod 1), with the following properties:

i) An open subset of )L(h,) in L+ near infinity is mapped to the set of all
(x,x2,O), where a certain function of the form x +x2+ is positive (see Fig. 10; in
particular, the first "quadrant" is in the set).

ii) The circle x x2 -0 represents a fictitious periodic orbit at infinity (0’ near

x =x2=0).
iii) The parabolic manifolds St(o) and Un(o) are represented by the cylinders

x =0, x2>0 and x2 =0, x >0 respectively.
iv) The Poincar6 map of the first quadrant of the section 0-0 has the property

that x is strictly increased except on the xz-axis and x2 is strictly decreased except on
the x-axis. These properties may be summarized by calling the periodic orbit degener-
ately hyperbolic.

\
\
\

FIG. 10

Let Z be a neighborhood of (0, O) in the section 0=0. A window wo which is
plus-transverse to St() and is sufficiently small can be followed along orbits to Y as
can a window w minus-transverse to Un(o). Define a window w in E whose image is

(0Xle 0X2e), with w(b+) C (x =0 or e) and w(b_) c (X2--0 or e) (Fig. 10).
LEMMA 4.3. Let wo and w be windows in Z with wo plus-transverse to St() and w

minus-transverse to Un(). Let w be the "window at infinity". Then a sufficiently high
iterate of the Poincark map of Z correctly aligns wo with each ofw and w and correctly
aligns w with w1.

Proof. Choose 6<e such that the components of Wl(b_ ) lie in (x2>6) and
(x<0). Choose A such that w(B) lies in (0<x<A). Condition iv) shows that a
sufficiently high iterate of the Poincar6 map takes Wo(B) to (0<x2<6). Since w0 is
plus-transverse to St(), i.e., to the positive xE-axis, a high enough iterate will take one
component of wo(b+) to (x <0} and the other to (x>A). As in the proof of Lemma
4.2, this type of geometric condition implies correct alignment of w0 with each of w
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and w Taking a higher iterate if necessary we have w(B) mapping to
with one component of wo(b+) in {x =0} and the other in (x>A} and so w is
correctly aligned with wI. Q.E.D.

Before stating the main result we augment the connection graph by adding a
directed edge beginning and ending at vertex + and one beginning and ending at
vertex m_. Denote the augmented graph by ((a). The added vertices represent the
windows near the periodic orbits at infinity constructed in Lemma 4.3. We can associ-
ate a window to each of the other edges in d(a). Each edge represents an intersection
of a two-dimensional stable manifold and a two-dimensional unstable manifold. Using
Lemma 4.1 we can find arbitrarily small windows, transverse to the flow q, which are
minus-transverse to the unstable manifold involved and plus-transverse to the stable
manifold involved. We will choose them small enough that when they are followed
along the connecting orbit to the neighborhood of the restpoint or periodic orbit, the
appropriate lemma, 4.2 or 4.3, applies.

The limiting flow with its six distinguished invariant sets and connecting orbits
has, at this point, served its purpose, namely to indicate where to construct windows in
31L. As we have seen, there are no Poincar maps defined between these windows for
the limiting flow (the exception being windows along orbits to and from infinity). The
homeomorphism of (h,to) with 6)]L allows us to transfer the windows to
Four of the six invariant sets and the corresponding connecting orbits disappear when
we consider nonzero angular momenta but the windows remain and are correctly
aligned with one another by the flows (0) thanks to Lemmas 4.2 and 4.3.

Edges in ((a) represent windows in 6")IL. Two edges together with a vertex which is
the terminal vertex of one and the initial vertex of the other represent the existence, for
sufficiently small nonzero angular momenta, of a Poincar6 map which correctly aligns
the windows. This Poincar6 map is obtained by following orbits of (0) as they pass
through one window, and move along near a connecting orbit of q through a neighbor-
hood of one of the invariant sets of and near another connecting orbit of q to the
other window.

Recall that a path in a directed graph is a sequence of directed edges such that the
terminal vertex of the nth edge is the initial vertex of the (n+ 1)st. We will say that a
path P in t(a) is realized by (to) if the Poincar6 maps represented by pairs of
successive edges in P are defined for (0), i.e., 0 is sufficiently small that all of the
necessary Poincar6 maps are defined. As we have seen, the correct alignment of a
sequence of windows guarantees the existence of at least one orbit which crosses the
windows in the given order via the appropriate Poincar6 maps.

PROPOSITION 4.4. Let F be a finite subgraph of d(t). Then there is an 0(F)>0 such
that each of the flows (o) with 0<[0[<0(F) realizes every path in F.

Proof. It is only necessary to observe that since F is finite we can choose 0(F)>0
so that all of the Poincar6 maps represented by F are defined by (0) if 0<]01<0(F ).

5. Heteroelinic phenomena. Proposition 4.4 asserts the existence of a complicated
invariant set in the isosceles three-body problem for small nonzero angular momentum.
There is a correspondence between orbits of this invariant set and paths in a subgraph
F of the connection graph. The next proposition shows that cyclic paths in F are
especially significant. A cycle in a graph is just a path which begins and ends at the
same vertex. A cycle can be periodically extended to a bi-infinite path.

PROPOSITION 5.1. Let F be a finite subgraph of j(tx) and let O<[wl<w(F). Let C be
a cycle in F. The set I(C) of orbits of t(o) which realize C is a nonempty compact
isolated invariant set which carries a one-form [1 ].
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Proof. Let wo,..., w,, be the windows represented by the edges of C. By composing
the Poincar maps between these windows we obtain a Poincar map from a certain
domain D c w0(B) to w0(B). We know that I(C)fq w0(B) is a nonempty compact subset
of the interior of D. Now the Poincar map is obtained by following the orbits of
through points of wo(B) for a finite amount of time described by a continuous function
T:wo(B)--, +. So i(C)=(d()tp:t[O,T(p)],pI(C)two(B)) is also compact.

Recall that a compact invariant set is called isolated if it is the maximal invariant
set in some neighborhood of itself. To construct a neighborhood for I(C) consider
{()tP :pD, t[0, T(p)]}. Let 1/denote the interior of this.set. Clearly I(C)C V. If
pD and if the orbit of p remains in 1/for all time then the Poincar map of w0(B)
repeatedly returns p to the interior of D and therefore the orbit of p realizes C. So I(C)
is the maximal invariant set in 1/’.

Let I be an isolated invariant set and 1/" an isolating neighborhood for I. Let
a H’(I,’,) be a real cohomology class on 1/’. An orbit segment in 1," can be viewed as
a one-dimensional simplex and so a can be evaluated on it. We say that the invariant
set i carries a if there are constants A >0, T>0 such that any orbit segment which
remains in 1/" for t> T units of time satisfies a(o)>At. Invariant sets which carry
one-forms share certain properties with periodic orbits [1].

It is not difficult to find such a one-form in the neighborhood 1/" of I(C) con-
structed above. We can smoothly modify the time parametrization along orbits through
D so that the Poincar map of w0(B) becomes a time one map. Then to every point of
I," we can associate a time between zero and one. Define a one-form a as the integral of
this time function. Choosing the constant A to be a Lipschitz constant for the time
reparametrization, we see that I(C) carries a. Q.E.D.

Propositions 3.1 and 3.2 show that ((a) contains infinitely many distinct cycles
for all sufficiently large or sufficiently small mass ratios a. In fact one of the following
two subgraphs is present:

E+ E_

E+ E_

Or

E; E*

Each of these subgraphs contains a cycle involving only the restpoints which is linked
to the cycle at infinity. Infinitely many other cycles can be constructed which shuttle
between these two basic cycles.
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It is interesting to consider the qualitative behavior f orbits in I(C) when C is a
simple cycle. As an example, consider the cycle C in the top subgraph of (5.1) specified
by the sequence of vertices E+, E, E+, oo +, oo +, E, E+. An orbit realizing this
cycle behaves, initially, much like the homothetic connecting orbit; the configuration is
approximately equilateral as the size first expands then contracts. As the particles
approach they begin to behave more like the connecting orbit E -E+ known to exist
in 3lLo. This behavior may be quite complicated but it all occurs while the particles are
extremely close together. Following this relatively close encounter the third mass is
propelled far up the z-axis while the other two masses circulate about one another a
certain number of times. The particles again approach closely and emerge from the
second encounter near the equilateral homothetic orbit again.

It is possible that the isolated invariant set I(C) consists of a single hyperbolic
periodic orbit. While our methods cannot detect this, it is possible to show that I(C)
contains at least one periodic orbit. Let w0 be a window of C and consider the Poincar
map taking wo(B) around C and back to itself. Let 00 denote the induced map from a
subset of B to B. If (/3,/32) are coordinates on B,/3j.[- 1, 1], we can write 00(/31,82)
=(fi,fi2) and define A- ((/3,/32)"/J-/3} and A2---{(lI,J2)" ]J2--/2}. Since the
flow correctly aligns wo(B) with itself, every positive path in B contains a subpath
mapping under 0o to a positive path. Hence every positive path in B meets A I.
Similarly, every negative path meets A2. We will show that this forces A f3A2 and
so 0o has a fixed point and I(C) contains a periodic orbit.

The proof that ArqA2 0 is an exercise in algebraic topology. Consider the exact
cohomology sequence of the triple ( B, B \A b+)

/*
H ) --) Hi(B\A b+).--+HI(B,B",AI)-+ (B,b+ 1’

Now HI(B,b+) is generated by a single cohomology class, a l, with the property that
al(O)=-.+ if 0 is a positive path in B and zero if 0 is a one-chain with no positive
subpath. This shows thatj*(at) = 0 because there are no positive paths in B \A. Hence
i* is surjective and there is a cohomology class (_H(B,B\A) with
Similarly we can find 2 ff.H(B,B\A2) with i*2=a2 in Hl(B,b_). It follows that the
cup product &lU&2 is a nonzero cohomology class in H2(B,B\(AIfqA2)), which
would be impossible if A NA2 =

Let C and C2 be cycles in a subgraph F of ((a) and let P be a path in F which
"begins" with an infinite string of Cl’S and "ends" with an infinite string of C2’s. We
will show that any orbit realizing P is heteroclinic between I(Cl) and I(C2), i.e., the
limit set is contained in I(C) and the 0 limit set is contained in C2.

Consider the usual Poincar4 map from one of the windows wo(B) of C2 to itself.
I(C2)f3wo(B) is the intersection of the nested sequence of compact sets DNf3Rv,
where Du is the domain of the Nth iterate of the Poincar4 map and R is its range. An
orbit realizing P crosses wo(B) at a point p fqNDN. The Nth iterate of p is therefore a
point of DvfqRv. It follows that o(p) C ("IN(RNf’IDN)=I(C2). Similarly a(p)CI(Cl).

These heteroclinic orbits provide examples of solutions of the three-body problem
with various types of asymptotic behavior as t--,__+ 00. For example, the oscillation and
capture phenomena found in Sitnikov’s problem (a. o0, fairly large 0) occur for all
mass ratios for which ((a) contains one of the subgraphs (5.1), provided 0 is suffi-
ciently small. Indeed capture orbits realize paths heteroclinic between the cycle at
infinity and any bounded cycle. Oscillation orbits realize paths which contain long
repeating sequences of a cycle at infinity interspersed with bounded cycles.
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The new feature present in our work is the control over the bounded part of such
orbits. There are infinitely many bounded isolated invariant sets to which a capture
orbit may tend or near which an oscillatory orbit may pass.

For large mass ratios the variety of phenomena is remarkable. The right-hand
subgraph of (5.1) occurs and we can realize an arbitrarily large finite subgraph for
sufficiently small. Since some of the connecting orbits from E+,_ to E,_ are very
near the collinear homothetic orbit and since the equilateral homothetic orbits are
represented in the graph, we can construct bounded cycles which repeatedly behave like
each of these three .special orbits.

Acknowledgments. The author wishes to acknowledge helpful discussions with R.
McGehee.
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SCALING HAMILTONIAN SYSTEMS*

K. R. MEYERt

Abstract. This paper presents a detailed discussion of scaling techniques for Hamiltonian systems of
equations. These scaling techniques are used to introduce small parameters into various systems of equations
in order to simplify the proofs of the existence of periodic solutions. The discussion proceeds through a series
of increasingly more complex examples taken from celestial mechanics. In particular, simple proofs are given
for Lyapunov’s center theorem, the continuation theorem of Hadjidemetriou, and several theorems on
periodic solutions by the author.

1. Introduction. Perturbation analysts often argue over which general method is
best--the methods of averaging, Lie transformations, two-timing, Lyapunov-Schmidt,
etc., all have their strong advocates. However, no matter what perturbation technique is
used, an important, fundamental and often overlooked question is the correct selection
of the equations of the first approximation. In some cases it is so obvious what the first
approximation is that there really is no choice, but in other cases the choice can
drastically affect all subsequent analysis. In celestial mechanics the equations of the
first approximation are called the main problem, and I shall use this term since it
emphasizes the importance of these equations.

A historic example where the choice of the main problem had important conse-
quences is found in lunar theory. Until the works of Hill were completely understood,
researchers looking for a good approximate solution to the equations of celestial
mechanics which described the motion of the moon used as their main problem two
decoupled Kepler problems. The two Kepler problems were the equations of motion of
the earth and moon about their combined center of mass, and the equations of motion
describing the sun and the center of mass of the earth-moon system. Coupling terms
were neglected in the main problem. Various perturbation techniques were used, but
the approximate solutions failed to agree with the observational data over long periods
of time. In a series of papers [5], Hill redefined the main problem of lunar theory by
taking into account the fact that the motion of the moon is strongly affected by the sun.
Hill’s main problem took into account more terms, and as a result the perturbations
were smaller and the series converged better numerically. In fact, for many years lunar
ephemerides were computed from series developed by Brown, who used Hill’s main
problem. Even today searchers for more accurate lunar theories use Hill’s main prob-
lem.

In this survey paper, I want to discuss a general procedure for deciding the correct
definition of the main problem in various situations in celestial mechanics. The exam-
ples are taken from my own work and therefore consist mainly of problems of finding
periodic solutions in Hamiltonian formalism.

The method present is certainly not newmin fact it is so old that I have no idea of
when it originated. The method is also not obscuremin fact almost all perturbation
techniques are based either explicitly or implicitly on this method. The, method is
simply that of scaling variables. Since the problems discussed here are written in
Hamiltonian formalism, the scaling will be done so that the resulting equations are

*Received by the editors June 2, 1982, and in revised form June 23, 1983. This research was partially
supported by the National Science Foundation under grant MCS-80-01851.

Department of Mathematical Sciences, University of Cincinnati, Cincinnati, Ohio 45221.
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again Hamiltonian and so the scaling is symplectic (canonical). Therefore I call the
method symplectic scaling. There have been other discussions of scaling as a general
procedure in applied mathematics; see for example [16].

Scaling is often presented as a triviality. Sometimes an author starts his discussion
with a single statement like: "scale by x--, ex and y- ey" and then proceeds with page
upon page of detailed calculation. Usually there is no discussion of why the equations
were scaled nor whether this scaling is the best. in fact, I have seen many papers that
could be greatly simplified if the author had used a different scaling (say x- ex and
y-., e2y). The examples given below illustrate how to obtain the correct scaling for a
particular problem in celestial mechanics.

2. Review of transformation theory, i shall deal exclusively with autonomous
Hamiltonian systems. Even though this paper attempts to be reasonably self-contained,
I assume that the reader has some background in differential equations and Hamilto-
nian mechanics. The excellent introductory book by Pollard [13] should be more than
adequate. I shall not bog myself down with topological or smoothness questions, since
the results given below are local in nature. All functions and vector fields will be
assumed to be C on some open set in R2 or even defined on all of R 2. Also vectors
will be column vectors unless otherwise stated, but will be written as row vectors in the
text for typographical reasons.

If qb" R/--, g k and y (x) then i)q/Ox or Oy/Ox will denote the k Jacobian
matrix. Thus if H" R2--,R, xR2 then i)H/i)x is a row vector. Define XTH- XZH=
(iH/ix)r where the superscript T denotes the transpose.

An autonomous Hamiltonian system of n degrees of freedom in g is a system of
ordinary differential equations of the form

(2.1) 2=JvH(x)
where H" IR " [R , x ", "=d/dt and J is the 2n X 2n constant matrix

-1 0

where 0 and I are the n n zero and identity matrices. The independent variable will
be called time, the function/-/, the Hamiltonian and (2.1), the equations of motion. If
x (q,p) where q,p N" then the equations of motion take the classical form

(2.2) g/=-, p= q"

Thus there is a well-defined prescription for obtaining the equations of motion
from the Hamiltonian. This prescription is not invariant under all changes of variables.
That is, if one changes variables in both the equations of motion and the Hamiltonian,
then the new equations of motion may not be obtained from the new Hamiltonian by
the prescription given in (2.1). Those changes of variables which preserve this prescrip-
tion are known as sympleetie or canonical. There is a vast literature on the subject of
symplectic changes of variables, but fortunately only one basic fact will be needed for
the subsequent discussion. The texts by Pollard [13], Wintner [17] and Abraham and
Marsden [1] contain more details.

Consider the change of coordinates x-q(y) for (2.1). These equations become

(2.3) .,9=P-(y)JVxH(,(y))-P-l(y)J --x (,(y))
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where P(y) is the Jacobian O(y)/Ox. As noted above, these equations need not be in
Hamiltonian form; i.e., the right-hand side is not of the form J7eK(y) where K". However, if we assume that

(2.4) J=ITJTr

where # is a nonzero constant, then

0H} r-- T- IJ - =#JTr, -x =#J Ox Oy =JVy(#H((y))),

or

(2.5) .f,=J gryK( y )

where

(2.6) K(y)=#H((y)),

A change of variables x-(y) which satisfies (2.4) for all y and for some nonzero
constant # is called a symplectic transformation with multiplier #. What was just shown
is that these transformations preserve the Hamiltonian character of the equations and
in particular transform (2.1) to (2.5).

If # then the change of variables is simply called symplectic. Many elementary
texts consider only this case, but the added generality of having a # different from is
very important for scaling.

As an example, consider the problem of changing units in the N-body problem.
Let q,...,q be the position vectors with respect to a Newtonian frame of N point
masses moving in 3. Let Pl,’",Pv be the momentum vectors and m,...,m be
masses of these point masses. Then the Hamiltonian for the N-body problem is

N kmimj(2.7) H-
IIpII2

i=1 i <_i<j<_N Ilqi- qjll

where k is the universal gravitational constant. If x-(ql,...,q,p,...,p), then
x6s and the equations of motion for the N-body problem are (2.1).

Scaling and changing units are essentially the same thing. Let’s say for example
that the quantities in this problem are all measured in the CGS system. Then k 6.67
10 -8. If we wish to change the unit of length, then we set q= al, p-ap- where a is
the conversion factor (a- 100 cm/m if the new unit of length is meters). This change
of variables is symplectic with multiplier a-, and so the Hamiltonian becomes

N 2

(2.8) H= Ilffl____l k mimj

< a-S I1-11"2mi <i N

In this mixed system of units (MGS) the gravitational constant becomes k/a3= 6.67
10-4. In theoretical work it is convenient to use nonmetric units and to take a3= k so
that the gravitational constant is 1. We shall take k- in all subsequent discussions.

Since the bars over variables are not esthetic and are besides a lexicographical
nuisance, it will be convenient to drop them in all subsequent discussions. The opera-
tion of first changing variables by qi=oti, p-aff and then dropping the bars is
denoted by qaq,pap. It should be carefully noted that this notation implies a
change of variables and is only used to limit the proliferation of symbols.
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Sometimes it is necessary to change the independent variable also. If t=flr,
where/3 is a constant, then (2.1) becomes

(2.9) x’=JVxK(x)
where ’= d/d’r and K-fill. Thus scaling time is equivalent to multiplying the Hamilto-
nian by a factor. In the scaling notation fit and Hfill.

3. The noncritical case. Since the main application of scaling to be discussed in
this paper is to establish the existence of periodic solutions, I shall summarize some of
the known elementary results. Let q(t,,) be the solution of the Hamiltonian system

(3.1)
which satisfies q(0,,)= where , is a real parameter. Since (3.1) is autonomous, a
necessary and sufficient condition for a particular solution q,(t, 0,0) to be T-periodic
(T>0) is

(3.2) q(T, 0, ,0)-- 0

This is easily proved by observing that both q(t,0,0) and q(t+ T,60,o) are both
solutions of (3.1) and that (3.2) implies that both these solutions satisfy the same initial
condition. Thus the uniqueness theorem for ordinary differential equations assures that
the two solutions are identical.

The necessary and sufficient condition (3.2) is interesting since it shows that the
existence of periodic solutions of a differential equation is equivalent to solution of a
system of (nondifferential) equations. In theory, at least, only finite dimensional meth-
ods could be used to establish the existence of periodic solutions. This is certainly not
the case when we are trying to establish the existence of almost periodic solutions,
invariant manifolds, etc. For these problems infinite dimensional methods are essential.

One approach to solving (3.2) is the use of the implicit function theorem. If
(T, 0,0) satisfies (3.2) then the implicit function theorem would give nearby solutions,
provided the Jacobian matrix

Oq (T, o)_I(3.3) 0-
were nonsingular or equivalently that the Jacobian matrix

(3.4)

did not have the eigenvalue + 1. The eigenvalues of .(3.4) are so important in the study
of periodic solutions that they are named the characteristic multipliers (or simply
multipliers) of the periodic solution. Unfortunately, + is always a multiplier of a
periodic solution of an autonomous system. Even worse, since (3.2) admits H as a first
integral, the algebraic multiplicity of / as a multiplier is greater than or equal to 2. In
the class of nonautonomous periodic equations, the usual case is that a periodic
solution does not have the multiplier + 1, and so this is usually called the noncritical
case. In the class of autonomous equations, the usual case is that a periodic solution has
the characteristic multiplier + with multiplicity precisely + [7], and so for autono-
mous systems this is the noncritical case. In the case of autonomous Hamiltonian
systems, the usual case is that a periodic solution has the characteristic multiplier /
with algebraic multiplicity preciselyequal to 2, and so for such systems this is the usual
case 15].
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In each of the cases listed above we have defined a noncritical case for each choice
of our universe of discourse. The reason I call these the noncritical cases is that for each
of these definitions of the noncritical case there is a theorem which states that in the
noncritical case a small perturbation within the universe of discourse causes a slight
perturbation in the periodic solution. Moreover, each of these theorems admits an
elementary proof based on the implicit function theorem. The most satisfying discus-
sion of these theorems is contained in Poincar6 [14], but a clear, elementary discussion
in modern notation can be found in Deprit and Henrard [2].

In the autonomous Hamiltonian case the precise statement of the theorem alluded
to above is"

THEOREM 3.1. Let g’, k-O,l,.2,’",H:2ng be smooth and let
q(t,l,) be the solution of (3.1) so that q(0,,)--. Assume that (T,0,0), T>0,
satisfies

and

ii) (T, ,0)_i } -2n-2rank -Then the periodic solution q,( t, o,o) is smoothly embedded in a(k+ 2)-parameter family
ofperiodic solutions. That is, there are a neighborhood 0 ofo in R ’, a neighborhood P of
(0, O) in g -, and smooth maps ’" P 0 g and " P 0 g such that ’(0, O, o) T,
(0,0,0)-0, and q(t,(a, fl,,), ,) is a z(a, fl,,)-periodic solution of (3.1) where
(a, fl)P andS,

Note that even when the equation does not depend on a parameter (i.e. k-0), the
periodic solution is still embedded in a 2-parameter family of periodic solutions. These
two additional parameters can be chosen as the value of the integral H on the periodic
solution and the time from a well-chosen epoch along the periodic solution. In this case
these periodic solutions locally fill a cylinder in 2n; see [1, Fig. 8.2-1]. Again we refer
the reader to [2] for a simple clean proof of this theorem.

The remainder of this section is devoted to illustrating the method of symplectic
scaling as a tool for reducing a given system to one to which the above theorem applies.
Consider first the famous Lyapunov center theorem by glancing at the proofs given in
[4], [6], [8]. In this theorem we assume that the equation (3.1) has an equilibrium point,
say at x- 0, and then expand the right-hand side in a Taylor series to get

(3.5) Yc:Ax+f( x )
where f(0)-0, Of(O)/19x-O and A is a 2n2n constant matrix. The Hamiltonian
becomes

(3.6) H(x 1/2xrSx + K(x )
where S is the Hessian of H at x--0, A--JS, K and the first and second partials of K
vanish at x-0. By setting f-0 in (3.5) we obtain the linearization of the equations
about the equilibrium point--an obvious candidate for the main problem. We would
expect or at least .hope that the solutions of the linear system are nearly the same as the
solutions of the full equation when x is small, but how can we demonstrate this
connection? To obtain a measure of x being small, scale by x--, ex. This scaling is
symplectic of order e- and so (3.5) becomes

(3.7) Yc=Ax + O( e)
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and the Hamiltonian becomes

(3.8) H(x) = 1/2xrSx + O( e).
When e=0, (3.7) becomes linear and the general solution is q,(t, li, O)=(expAt)li.

In order to apply the theorem above, this system must have a periodic solution.
Therefore let the eigenvalues of A be ,,h2,-..,h2, and assume A +i0, A2 = -i0,
o>0. Let rl and be the corresponding eigenvectors so Art=ior and (expAt)rl=
(exp iot)rl. Thus Re(expAt)l (expAt)o is a T= 2r/0 periodic solution. The Jacobian
matrix (3.4) becomes in this case

(3.9) -- (T,,0,0) (exp 2rr A)
which has eigenvalues exp-+-2rri 1, exp(,_2rr/0),.- .,exp(,2,2rr/0 ). Thus for the
second condition of the theorem to hold it must be assumed that

0mod2rri fork-2,...,2n,

or

(3 11) X’ is not an integer for k 2,. ,2n
hi

If this condition applies, then (3.7) has a 3-parameter family of periodic solutions which
are of the form (expAt)o+ O(e). The original equation (3.5) has a two-parameter
family of periodic solutions of the form e(expAt)lio+ O(e2). It may seem that we have
proved that (3.5) has a 3-parameter family also, but this equation is independent of e,
and the theorem given above gives precisely a k + 2 manifold of periodic solutions
whose period is close to T. Thus one of the parameters is redundant. That proves
Lyapunov’s center theorem!

As a second example, consider the relationship between the full three-body prob-
lem and the restricted three-body problem. In the traditional derivation of the re-
stricted three-body problem, one is asked to consider the motion of an infinitesimally
small particle moving in the plane under the influence of the gravitational attraction of
two finite particles which revolve around each other on a circular orbit of the Kepler
problem. Although this description is picturesque, it hardly clarifies the relationship
between the restricted three-body problem and the full problem. Consider the planar
N-body problem where N 2 or 3 written in rotating coordinates [1 ]. The Hamiltonian
is

N

(3.12) Hu- IIyII2-2 xTi KYi 2
rnim

l<-i<j<-N Ilxi-x II

where m is the mass, x,. is the position and y is the momentum of the th particle in a
rotating coordinate system and K=(_ o ). In order to consider the case when one
particle is small, set m --ea where a is a positive number to be determined later and e

will be treated as a small parameter (we are not scaling at this point!). Making this
substitution in (3.12) with N-3 and rewriting yields

(3 13) n IIy3Ile z eami
2e"

xKy3- " Ilxi" x31i / nz,
i=1
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Here the terms involving the third particle have been removed, leaving the Hamiltonian
of the two-body problem as a remainder. Since e is a small parameter which already
measures the smallness of one mass, we should attempt to make e also measure the
deviation of the motion of the first two particles from a circular orbit. That is e, or a
power of e, should measure not only the smallness of m3, but also how close the first
two particles come to a circular orbit. To accomplish this we must prepare the Hamilto-
nian H2 so that one variable represents the deviation from a circular orbit. Actually
part of this preparation has already been done, since in rotating coordinates a circular
orbit appears as an equilibrium solutions. Let Z=(x,x2,y,y2), so H2 is a function of
the 8-vector Z, and let Z*=(a,a2,b,.b2) be a critical point of H2, so VH2(Z*)=0.
(Later we shall give explicit values for the a’s and b’s, but for now it is enough to know
that they exist.) By Taylor’s theorem

(3.14) m_( z)- z*) +1/2( z- Z*)S(z- z*) + 0(11z- z*ll
where S is the Hessian of H2 evaluated at Z*. Since constant terms in the Hamiltonian
drop out when the equations of motion are formed, we shall ignore H2(Z*) by setting it
to zero. If the motion of the first two particles is nearly circular, then Z-Z* should be
small, so this suggests the scaling

(3.15) Z- Z* eaU

where U is a new variable and/3 is a positive number to be determined. So far we have
implemented the assumptions that the third mass is small, that the deviation of the
motion of the first two particles from a circular orbit is small, and that the smallness
relationships is in the form of a power law. a and fl have not been given yet, and so the
precise relationship between the two small quantities is not yet established. This is the
point at which symplectic scaling gives some guidance on how to proceed. Note first
that (3.15) is a symplectic change of the U variables with multiplier e-2t; however,
(3,15) is not a symplectic change of variables on the whole space since x and Y3 have
not been changed yet. The scaling (3.15) implies x =a +O(et) and x2=a2+O(e)
where a and a2 are the constant vectors defined above, so x and x2 are order zero in e.
Since we are not interested in the case when x is close to al or a 2 (the collision
problem) nor that when x is large (the case of a comet), we shall take x as order zero
in e also. Thus for a change of variables on the whole phase space to be symplectic, it is
necessary that Y3 e2t Thus we complete (3.15) with

(3.16) x3 (, Y3 - eztrl.
Using (3.14), (3.15) and (3.16) in (3.13) yields

(3.17)

In order to make the first and third terms in (3.17)just as important as the second and
fourth, it is necessary to have a-2/3. Setting/3- 1, a 2 gives a small integer solution
of this relation. To summarize: if m = ex then

(3.18) X3"*, y3e2rl, Z-Z*--’eU
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is a symplectic change of variables which reduces (3.13) to

(319) H3-{ Ilr/ll2
2 -lrKrl- I1- -USU/O(e)"

i:1

The quantity in the braces above is the Hamiltonian of the restricted three-body
problem if we take m +m2-- 1, m =/, m2-- 1-/, a-- (1 -/,0) and a2:(-/,0). The
quadratic term in U is simply the Hamiltonian of the linearization of the equations of
motion of the two-body problem about the circular solution. For e 0 the Hamiltonian
H is a sum of these two Hamiltonians, and so the equations of motion decouple. If
=(t), =if(t) is any solution of the restricted problem, then :(t), r/=+(t), U----0
is a solution of the equations of motion defined by (3.18) with e--0. Thus for bounded
times, there are solutions of the full three-body problem of the form --(t)+ O(e),
rl=+(t)+O(e) and U=O(e).

Looking at (3.18) we see that since Y3 is the momentum of the third particle and
m --e2, the variable r/ is really the velocity of the third particle. Thus all the new
quantities have been given physical meaning, and the relationship between the small
quantities has been established.

The problem defined by the Hamiltonian (3.18) is still degenerate due to the fact
that the original three-body problem admits symmetries and integrals. Specifically, the
Hamiltonian H is invariant under the full group of Euclidean motions of the plane and
admits linear and angular momentum as integrals. Holding these integrals fixed and
then identifying configurations which differ by a Euclidean motion only leads to a
Hamiltonian on a reduced space. The details of this reduction are unimportant for the
present discussion and are classical. It is enough to say that after this reduction is done
the Hamiltonian (3.19) becomes

(3.20) n3-( Ilr/ll2 2
mi } (r2 R2

2
-rg*/-

II-aill + + } +O(e)
i--I

where r and R are scalar variables. See [9] for a complete discussion of this reduction.
Thus if -(t), /-(t) is a r-periodic solution of the restricted problem with char-
acteristic multipliers 1, 1, ?, ?- , then -(t), r/- (t), r-R- 0 is a r-periodic
solution of the three-body problem defined by (3.20) with e-0 with characteristic
multipliers 1, 1, h, h-, exp/ir.- Thus if 4:1 and r0 mod 2rr, this represents a
nondegenerate r-periodic solution of the three-body problem defined by (3.20) with

Now the classical perturbation theorem applies to yield the theorem of Hadjide-
metriou [3], namely, that any nondegenerate periodic solution of the restricted problem
whose period is not a multiple of 2r can be continued into the full three-body problem.

There is another restricted three-body problem, known as Hill’s lunar equations,
which is derived under slightly different assumptions. The traditional description [5] of
this equation is even more picturesque then the description of the restricted problem.
One is asked to consider the motion of an infinitesimal body (the moon) which is
attracted to a finite body (the earth) which is fixed at the origin of a rotating coordinate
system. The coordinate system rotates so that the positive x-axis points to an infinite
body (the sun) which is infinitely far away. The ratio of the two infinite quantities [sic]
is taken so that the gravitational attraction of the sun on the moon is finite.

Briefly, I shall indicate how Hill’s lunar equations can be derived from the
three-body problem; for details see [12]. In this problem two masses m and m2 (the
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earth and moon) are small relative to the mass of the third (the sun). Also the distance
between the earth and moon is small relative to the distance between their center of
mass and the sun. The first assumption is easy to implement: simply set ml-e6/.l,
m2--e6/,2 and m3=/3. (Here I have fixed the exponents since I already worked out
what they should be.) In order to implement the second assumption, we must choose
coordinates so that one variable represents the distance between the two bodies. A
classical set of symplectic cordinates known as Jacobi coordinates has one coordinate
which represents the distance between two of the bodies and so is the logical choice
here. The Jacobi position vectors are uo, the position of the center of mass of the triple;
Ul, the position of particle 2 relative to particle 1; and u2, the position of particle 3
relative to the center of mass of particles and 2. The variables v0, 1)1 and v2 are the
corresponding momenta where v0 is the total linear momentum of the system. Making
the initial scaling

(3.21 ) v -.o E61)
1’ 1)2 "-’) 861)2

as in the previous example and fixing the center of mass at the origin, u0-0, and
ignoring the total linear momentum v0 leads to the following Hamiltonian for the full
three-body problem:

(3.22) H3--H’+H"+O(e6),

H,_IIvII 2

2M--- u"JV e61a’ P’
Ilull

H,,_ [Iv2[[ 2 12 02
2M2 -uJ1)2

Ilu2-v0ull Iluo+’lull"

Here M, M2, v0, v are all positive constants defined in terms of the original classes.
The only property needed here is v0 + , 1.

The Hamiltonian H’ contains only u and v, the variables of the earth-moon pair,
whereas the Hamiltonian H" contains cross terms. Since u is to be taken as a small
quantity later, rewrite H" as

(3.23) H"=H* + H**,

n,_llv2112
2M2

uJv2-2(1+1)Ilu211

H**
2(0 --1 ) 12 01

Ilu211 Iiu2- V0Ull Ilu04- VlUl

Now H* contains only U2 and v2, the variables describing the motion of the earth-moon
pair about the sun. Since this motion is assumed to be nearly circular, we set Z-(u2, v2)
and Z* (a, b) as before so that

(3.24) /4*(z) =/-/,(z*) +1/2(z- z*)s(z- z*) +....

Now the full set of physical assumptions can be affected by the following scaling:

(3.25)

(3.26)
Ul -oI2Ul 1) --o 1:21)

Z- Zo--, eU.
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Scaling (3.25) says that the distance between the earth and the moon is small, and
scaling (3.26) says that the earth-moon system moves about the sun in a nearly circular
orbit. This scaling is symplectic with multiplier e- and greatly simplifies the problem.
The Hamiltonian H** is not completely ignorable, though, so it must be expanded in a
series of Legendre polynomials, the details of which are not appropriate here.

The end result is that the Hamiltonian of the full three-body problem becomes,
under these assumptions,

(3.27) H3-{ ll’0ll2 2)}2 - rJn-11- +(3  2-11 ll UrSU+( 2)

where and r/ are essentially u and v (the variables describing the motion of the
earth-moon system) and U measures the deviation from a circular orbit of the motion
of the earth-moon system around the sun. The quantity in the braces in (3.27) is the
Hamiltonian for Hill’s lunar equations, and the last expression in parenthesis comes
from H**. As with the restricted problem, it is easy to prove that any nondegenerate
periodic solution of Hill’s lunar equation whose period is not a multiple of 2r can be
continued into the full three-body problem. See [12] for a complete account of this
derivation, including the details of the expansion of H** in Legendre polynomials.

4. The critical eases. Scaling is particularly useful in the critical cases, since it is
usually not obvious which terms in the Taylor expansion of the Hamiltonian are
important for the perturbation analysis. The correct scaling not only defines the main
problem, but also orders all the terms according to the strength of their influence on the
problem at hand. Obviously, since the critical case is the complement of a nice case,
further subdivision is necessary. Also, there will always be a system which is so
degenerate that it does not fall into any of the previously defined subcases. This section
defines what I consider to be the first critical subcase for Hamiltonian systems. This
subcase is defined as all systems which can be analyzed by Lemma 4.1. The only new
tool necessary to prove this lemma is the variation of constants formula, and so the
proof is not much more difficult than the proof of Theorem 3.1.

The lemma deals with a Hamiltonian system of the form

(4.1) = VH(z,e)=Az+ef(z,e)
where zR2, eR, A is a 2n2n nonsingular matrix such that expAT=I for some
T>0, and f is a smooth function. Since expAT= I, all solutions of (4.1) when e=0 are
T-periodic and all their characteristic multipliers are + 1. Thus when e=0 the system
fails to satisfy the hypotheses of the perturbation theorem of the previous section. In
order to restrict the level of degeneracy of this system, some condition must be placed
on the higher order terms represented by f.

Let fl be a real parameter and define

(4.2) B( fl, ) flA+fore-’f( eA’, O) ds.

The function B (sometimes called the describing function) is defined entirely in terms
of the known quantities A and f and does not depend on the unknown solutions of
(4.1). The first critical subcase is defined by:

LEMMA 4.1. If there exist smooth functions (a), fl(a), where a is real and (a) ,
fl( a) , such that

i) B((a),(a))=O,
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0B 0B )ii) rank -0-if’ 0- ((a),’(a))-2n-1

for ]al_<a0, then there exists a smooth 2-parameter family of periodic solutions of (4.2),
denoted by q( t, a, e), such that

iii) q(t,a,e) is T(a,e) periodic for e small and

iv) (t, a, 0)= (expAt );(a),
v) r+ + ).

The details of the proof can be found in [11]. The essential step in the proof is a
simple calculation of the general solution of (4.2). Let k(t, ’0, e) be the solution of (4.1)
which satisfies k(0,’0,e)="o and seek the periodic solutions whose period is
From the variation of constants formula

+
so the problem of finding an initial condition leading to a periodic solution is just
solving

One simply applies the implicit function theorem to this system of 2n equations to
solve 2n- of the equations and then uses the integral H to show that the last equation
is also satisfied.

As the first example of how scaling can be used to reduce a problem to a system
where this lemma applies, consider the restricted three-body problem where the small
mass is far from the primaries. The Hamiltonian of the restricted three-body problem is

n_llll 2 2

(4.3) 2 il ’a il
where the notation is the same as in (3.19). The equations of motion are

2

(4.4) -K+u, il-K+ m’(ai-)
[[ai-!ll

In order to study this problem for large , scale by --, e-: and er/. This is a
symplectic scaling with multiplier e, so the Hamiltonian becomes

(4.5) H__lrKrl+e3{l,rll.2 }2 I111 + O(

and the equations of motion become

(4.6) =K+e3rl+O(eS),
To lowest order in e, these equations are linear and the general solution is (exp Kt)o,

(exp Kt)o. So if z (1, rl), A diag(K,K ), the system (4.6) is of the form (4.1) with
e3 replacing e. Since exp Kt is the rotation matrix by an angle for small e, the solutions
are nearly circular with periods near 2rr. Since rotating coordinates are being used, this
means that near infinity the infinitesimal body mainly feels the effect of the Coriolis
and centrifugal forces, and in a fixed frame it would be nearly at rest. The coefficient of
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the e3-term is the Hamiltonian of the Kepler problem where the central body has mass
(we have assumed that the sum of the masses of the primaries is 1). This can be

interpreted as meaning that the next most important force felt by the infinitesimal body
is the attraction of a fixed body at the center of. mass of the two primaries whose mass
is equal to the sum of the masses of the two primaries.

The function B in (4.2) is easy to compute. Setting ’-(, /), B-0 becomes

(4.7) /3K+2r/-0, /3Kr/-2rrll 0.

It is not difficult to analyze these equations and show that Lemma 4.1 applies. (The
details are found in [10].) The main conclusion of this analysis is that the restricted
three-body problem has two families of nearly circular orbits of large radius.

The last example illustrates the proper method of scaling when one encounters
nonelementary divisors in a matrix. The restricted three-body problem always has two
equilibrium points which are at the vertices of an equilateral triangle, one of whose
sides is the line segment joining the two primaries. The linearized equations about this
equilibrium point consist of two harmonic oscillators when the mass ratio is small, and
form a complex saddle when the mass ratio is near 1/2. There is one specific value of the
mass ratio where the linearized equation has two equal pairs of imaginary eigenvalues
and the Jordan canonical form for the coefficient matrix has off-diagonal elements.
When restricting to symplectic similarity transformations, the canonical form for the
linearized system is

0i 0 0

(4.8) 0 0i 0 0
0 0 -0i 0
0 0 -1 -oi

with certain reality conditions.
After some preparation the Hamiltonian is of the form

(4.9) H--io(ZlZ3--Pz2z4)+z2z3-+-(alzz+a2z(z3z4+a3z21z)-P
where the z’s are complex coordinates satisfying the reality conditions- -z4, 2- Z3"
The best scaling for this problem will push the off-diagonal terms in the matrix into the
higher order terms. Introducing a small parameter e and scaling by

(4.10) z eZl, Z2 eZz2, Z eZZ3, Z4 EZ4

accomplishes this task. The scaling in (4.10) is symplectic with multiplier e-3, and so
the Hamiltonian becomes

(4.11) H= i(zlZ -- z2g4) + (z,2z + a3zz +....

The equations of motion implied by (4.11) are in the form (4.1), and the function B
in (4.2) is easy to compute and analyze. The proper scaling in this problem has
simplified not only the zeroth order terms but the first order terms as well, and this
greatly simplifies the analysis. Applying the lemma to this problem establishes the
existence of two families of periodic solution which emanate from this equilibrium
point for the restricted three-body problem. The reader is referred to [11] where this
problem and a more interesting one are discussed in detail.

There are many other interesting problems where scaling can greatly ease the
analysis. The examples given here were chosen to illustrate a variety of different
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situations where scaling can help, without getting us too deeply involved in the techni-
cal aspects of the problem. The main point of this survey is to demonstrate how the
correct scaling is obtained when suddenly the equations are greatly simplified, and
suddenly (but after the fact) it is obvious why you should use that scaling.
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ASYMPTOTIC INTEGRABILITY AND PERIODIC
SOLUTIONS OF A HAMILTONIAN SYSTEM IN 1 2: 2-RESONANCE*

ELS VAN DER AAt AND FERDINAND VERHULSTt

Abstract. A Hamiltonian system in 2 2-resonance, normalized to degree three admits three integrals,
which represent three asymptotic integrals of the original system valid for all time. In a detuned system we
find in this way only two integrals. On analyzing the periodic solutions we find a’n infinite set, a global
bifurcation, which is expected to break up in higher order approximation. To demonstrate this phenomenon
we study an example for which we calculate the normal form to degree four, i.e. the second order asymptotic
approximation, which produces a break-up of the infinite set into four periodic solutions. In the last section
we demonstrate that these results carry through for Hamiltonian systems with n degrees of freedom in

2 2-resonance.

1. Introduction. Some remarkable properties of three degrees of freedom potential
problems have been discovered by Martinet, Magnenat and Verhulst (1981), results
subsequently generalized by van der Aa (1983) for Hamiltonian systems. In these
papers one studies a system in 1" 2" 2-resonance to find that the system is asymptoti-
cally integrable upon normalizing to degree three. Also one finds a global bifurcation
i.e. an infinite set of periodic solutions for each (small) value of the energy. The term
global bifurcation refers here to an iso-energetic family of periodic solutions as opposed
to the local bifurcation of isolated periodic solutions which represents the generic case.
In a different context global bifurcations are sometimes called vertical bifurcations.
Both the asymptotic integrability and the global bifurcation are nongeneric phenomena
which call for further investigation.

In 2 we present the general Hamiltonian in 1:2:2-resonance, normalized to
degree three. We derive three independent integrals of the normalized system, which are
asymptotic integrals of the original system valid for all time. The analysis is repeated in
3 for detuned systems (resonance ratios neighbouring 1:2:2). In this case we still
have two asymptotic integrals. We find that for detuned systems in general no quadratic
or cubic third integral can be found. In 4 we present the periodic orbits of the
normalized system at exact resonance together with the asymptotic behaviour of the
solutions with time. It is one of the advantages of combining normalization procedures
with the theory of asymptotic approximations to have rigorous estimates of validity of
the results. The various, methods involve long but straightforward calculations which
were carried out by hand.

The asymptotic integrals and the periodic solutions can be used to obtain a
geometric picture of the phase flow on the energy manifold; this geometric analysis will
not be carried out here. Such an analysis should contain all the possible bifurcations
and its construction is by no means a simple exercise.

To understand the global bifurcation phenomena in these systems we introduce a
particular potential problem, which is characteristic for what happens in general. We
take

H=H2 + e( OtlX2y + a2x2z + ot3xyz ).

*Received by the editors December 7, 1982, and in revised form June I, 1983.
*Mathematisch Instituut, Rijksuniversiteit Utrecht, 3508 TA Utrecht, the Netherlands.
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On normalizing to degree four, in other words, on calculating the second order asymp-
totic approximation we find that the infinite set of periodic solutions breaks up into
four isolated periodic solutions. This phenomenon is reminiscent of the critical inclina-
tion problem in celestial mechanics. In 6 we have a final surprise: the analysis of the
preceding sections carries through for n degrees of freedom Hamiltonian systems in
1:2:... :2-resonance. We present the n asymptotic integrals in this case and the
periodic solutions obtained from the system normalized to degree three. Note that a
survey of the asymptotic analysis of Hamiltonian systems has been given by Verhulst
(1983). In this survey paper one can also find a discussion of the asymptotic integrabil-
ity of three degrees of freedom systems as it is known at present.

2. Asymptotic integrals. A remarkable property of a Hamiltonian system in
2 2-resonance is that it is asymptotically integrable in the following sense. Suppose

the Hamiltonian H is written in Euclidean coordinates q(x,y,z) and corresponding
momenta P(Px,Py,Pz) while H can be expanded in homogeneous polynomials Hn,
n 2, 3,... as follows

with nondegenerate

(1)

H-H2+eH3 + e2H,+ e3H5 +

(4z2 +pz2).H2_. (x2 +px2) +. (4y2 +py2 )+
In the sequel we shall use various coordinate systems all of which are defined by
canonical transformations.

Normalization to order 3 leads to the Hamiltonian

The system corresponding with H is integrable, i.e. three independent integrals (in
involution) of the normalized system exist. For potential problems this result has been
presented by Martinet, Magnenat and Verhulst (1981); for general Hamiltonian sys-
tems the proof has been given by van der Aa (1983). As we shall extend this result to
systems with more than three degrees of freedom using the same method we summarize
the proof.

We have a general homogeneous polynomial of the third degree which thus
contains 56 terms. Almost each of these terms vanishes during the normalization
process. We find that the flow of the dynamical system is, in first approximation,
governed only by 12 different terms

(2) Ha_bx2y+b2x2py+b3xypx+b4xPxpy+bsyp2x + 2b6P;Py
2+ bTX2Z +b8x2P + bgxzp+bioxppz+ b zp+b2p;p.

On these terms we carry out the normalization process and H becomes

(3) I=Hz+ e[2a, {y(x2-p ) +xpxPy} + a2{ Py( p-x2 ) + 4xyp}
+2a3{z(x2-p2 )+xpxp } +a4{pz(p-x2)+4xzp}],
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where

al -- ( b, + 2b4- b, ),

(2b2 b3+Zb6)a2 --- l(b7+2b -b )a3-- 10 11

(2b8 b9+2bl. )a4-- -So, starting with a particular Hamiltonian system with an explicitly given cubic func-
tion H3, one can immediately write down the corresponding normalized Hamiltonian
by substitution of the parameter-values. We shall use expression (3) with parameters a,
a2, a3, a4 for further computations.

We have -)H/Opx, p--iH/i)x etc. and the normalized equations of motion
become

(4) + x -4e[a(2xy+ .2.,9) + a2(2y.2- x.,9) + a3(2xz + .22, ) + a4(2 z.2 x2)],
j) + 4y 4e[a (x2 .22 ) + 2a2 x.2],, + 4z-- --4e[a3(x2--.22) + 2a4x.2

Two independent integrals of this system can be found immediately: H and H2. H
corresponds, by transformation, with the exact integral H of the original system and we
have clearly

At the same time we note that

H-t=O(e2) for t>_0.

H-H2- O( e) for t_>0.

Instead of the independent integrals H and H2 of system (4) we may use H and H2;
these integrals are asymptotic integrals of the original system (before normalization),
valid for all time. It is possible to find a third independent integral of system (4).
Introduce the transformation

(5) u--ay--a2P+ a3z--a42.

Differentiating twice and using equations (4) we find

(6) 2 +x- -4e(2xu+ .2f), 2with a-a+ a22 +a+ a4//+4u- -4cot(x2-.22),
Equations (6) constitute a two degrees of freedom system which can be made Hamilto-
nian by putting Y,=a/2x.

For such systems in normal form two independent integrals exist: the Hamiltonian
H*(x,u, Yc, f) and a quadratic integral I, which plays the part of H2 for system (6).
Rewritten in the o__riginal coordinates it can be checked that H, H*, H2 and I are not
independent but H, H2 and I are. I reads

la(x2 2 1[ .)2(7) I=- +.2 )+--4 ay---aE+aaZ---a4z

+ (al)-k- 2aEY+ a32 -+- 2a4z)2].
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I is a third (asymptotic) integral of the original system which is conserved with error
O(e) for all time. The validity for all time is connected with the existence of invariant
manifolds, toil, in phase space around the periodic solutions. We shall discuss these
periodic solutions in 4.

The existence of a third asymptotic integral valid for all time is even more
surprising as we shall find that system (4) is structurally unstable in the sense that a
certain family of periodic solutions can be perturbed away by introducing higher order
terms, see 5.

3. Detuning (versal deformation) of the resonance. In general a system will never
be at exact resonance and it is natural to allow for small detuning of the frequencies.
For the left-hand sides of the equations of motion we put

3+x, y+4(1 +6,(e))y, g+4(1 +62(e))z,

where il(e), i2(e) O(e).
The normalization process leads to the Hamiltonian

/-/+/-/3

where H2 is given again by (1), while

(8) /a3-/ + 6,(e) a2(e) (4z2+p )4e (4y+P)+ 4e’

H3 has been defined in 2.
As in [}2, H2 and Ha3 are asymptotic integrals valid for all time. The third

independent asymptotic integral I (found in 2) is not valid for this system. In fact no
quadratic or cubic polynomial can be used as an additional independent integral, but of
course it is still possible that another algebraic integral exists. Only in the special case
that the linear vectorfield is detuned in the same way in the second and third degree of
freedom (i.e. 6- 6), we find that the system is again asymptotically integrable. This
case however may be rare in applications. The proof runs as follows.

Consider the system of second order differential equations

(9) . +x- -4e{a,(2xy+ Yc.P ) + az(2yYc- xp )
+ a3(2xz + Yc.) + a4(2z.Yc-x2)}

y+4(1 +i,)y- -4e{a,(x 2 2)+2a2x:t},
e+4(1 +az)z-

then we find, by differentiating I from (7)

/’= 4(a2+ a22 )yp-4z(a+ a,]2 )z2 + 8(- a2 )(a2a3- aa4 )yz

4i ( ala3 + a2a4 )y2-42(aa3 + a2a4 )zp.

And so, as expected, for 6, dt2 =/=0 1 is not an integral anymore.
The next step is to check the existence of an integral which can be expanded in a

finite series of polynomials. Such a calculation is easier to perform using complex
coordinates.
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We define

x--(x +y),
li(x -y,)P,---

then by normalization

(10) Hd---XlY "t-x2Y2+X3Y

where

y-(x2+Y2),
Pc- -- -Y2)

( + ),

P " --Y3

h,--(a,-ia2) and h2--/(a3 ia4 ).

Suppose there exists a quadratic asymptotic integral I; then I must satisfy the two
involution conditions

(11) (I,, H2)-0, { I,,/d3 )--0,
with H2 and Ha3 as defined above.

It is easy to verify that I must be of the following form in order to satisfy the first
condition

(12) I flxy +2x2Y2 "Jr" f13x3Y3 -[- f14x2Y3 -[- sY2X3
where fl,...,f15 are arbitrary constants.

Checking out the second condition produces

(I,,ld ) -xZyz(-2fl,h, + f12 h, + flhz) +YZ Xz(2fl, flz, fl4h-2 )
+ x2 y3( Zfl, h 2 + fl4 h + f13 h 2 ) +y2 x3(Zfl,2 fl,, f13 h-2 )

+

It is clear that a necessary condition to find an independent integral is 1--2--.
Putting the coefficients of the remaining four terms equal to zero produces equations
for fl,.. ",5 which we can solve. The integral (12) becomes

(13) I- -h2h2x2Y2- hlhlX3y d- hlh2X2Y + hlh2Y2X and

h means here complex conjugate of h; in Euclidean coordinates

(13a)
2I----(a+a)(4y2+.2)---(a2 +a)(4z2+2 )+-(aa3+a2a4)(4YZ+..9,)

+ (ata4- a2a3)(z.f,-y2).
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It is also possible to derive in this case (61--2) a third integral [ directly from the
equations of motion (9). Using the method described in 2, we put again u=ay-
l/2a2+a3z-1/2a4 and we find a detuned two degrees of freedom system. The
energy integral corresponding with this system reads

(14) l 2I=-(a2 +a+a23+a)(x2+y2)+ {4(I+8)u2+ )

or

(14a) i=-(a2 +a+a]+a2)(x2+:t2)

(+- 4(1+J) a,y---a2.+a3z--a4.

+ (a)+ 2a2(1 +8)Y+a3+2a4(1 +)Z)2].
Comparison of the integrals I and [ shows their dependence

We have seen that if a third independent integral exists for/J :#:2, it cannot start with
independent quadratic terms. So we try a cubic polynomial 12. From the first condition
{12, H2)-0 it .follows that 12 must have the same generators as H

(15) I2=haxY2+h4Yx2+hsxY3+h6Y?X3,

where h 3,"" ", h 6 must be chosen such that 12 satisfies the second condition {12, Ha3)- O.
We have

h 2 2(I2,Hd3} =’eh4y21x2- Ee 3x21Y2 +’eh6YX3-ehsxy3
+xy2 (hh4-h3+h2h6- h--2hs) +xyx2Y2(4h3- 4hlh4)
+x,yx3y3(42hs-4h2h6) +x,yY2Xa(4.h3 -4hh6 )
+XlYlX2y3(4! hS- 4h2h4 )"

The right-hand side can only vanish if-82--0.
An independent cubic third integral obviously does not exist either. Of course we

could continue with a quartic polynomial and so on but it is quite unpredictable if a
polynomial fits the conditions and if so, what degree will it have? If the question of a
polynomial integral would be answered in a negative way, there would still remain the
quest for an analytic integral and after that, maybe, nonanalytic integrals. These are
important open problems, probably requiring a different approach.

4. Periodic orbits. Apart from invariant manifolds, periodic solutions play a key
role in understanding the flow of a dynamical system. In discussing periodic orbits we
should keep in mind that we have in fact one-parameter families of periodic solutions
as periodic solutions are being discussed here for fixed values of the energy.
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As remarked in 2, H, given by equation (1), represents an integral of system (4)
and at the same time an O(e) approximation of the energy integral of the original
problem, the flow induced by H.

We shall briefly discuss the periodic solutions found by van der Aa (1983), where
we shall add the asymptotic approximations for the solutions as a function of time.
After that we study the global bifurcation arising in this resonance problem.

In the approximations of the solutions with time given in the sequel we have the
following estimate of asymptotic validity. Denoting the periodic solution associated
with the normalized system (4) by ?/ and the corresponding solution of the system
induced by H before normalization by q 3, we have q(t)- 7t(t)- O(e) on the
time-scale 1/e.

a. Normal modes. There are two normal modes, one in the y-direction and another
in the z-direction which are both unstable. As can be seen from system (4) these
solutions are harmonic. We may represent them as

(16a) (t)-(t)-0, f(t)-Esin((0) + 2t),

and

(16b) if(t) =)7(t)- 0, (t)-OE sin(%(0) + 2t).

The similarity between these orbits clearly corresponds with the symmetry in the
frequency-ratio.

b. Periodic orbits in general position. Two periodic solutions can be found with
x(t), y(t), z(t) not identically zero. We find the Euclidean coordinate q(x,y,z) as a
function of time

(17)

where

(17a) q02(0) krr + 2q0, (0)- a2,

%(0)= -krr+ 2q9,(0) a4,

k=0, 1.

At these orbits the integral H assumes its relative maximum and minimum value with
respect to H_. So H can be used as a Lyapunov function to prove the stability of these
periodic solutions.

For more details on the normal modes and the orbits in general position the reader
is referred to van der Aa (1983).

c. The global bifurcation. Inspection of system (4) reveals that we find a whole
family of periodic solutions in the subspace x=p=0. This is remarkable as this
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happens in the general 2" 2-Hamiltonian normalized till H whereas up till now this
phenomenon was only known in the case of more special Hamiltonians, where a small
cubic Hamiltonian perturbation destroys the phenomenon. We mention two important
examples. First the critical inclination problem; Cushman (1982) has shown that by
using higher order normalization there is a break-up of the family into two stable and
two unstable periodic solutions. The second example is also a two degrees of freedom
problem, the H6non-Heiles Hamiltonian. In this case the description of the global
bifurcation has been given by Verhulst (1979); again this family breaks up into four
periodic solutions as has been shown by Churchill, Kummer and Rod (1981).

In our case the family of periodic solutions is described by

(18)

.F(t)-OC, sin(2(O) --[- 2t),

(t)-2f22 sin(%(0) + 2t),

with C + C2-- E.
The stability analysis of these solutions produces two eigenvalues zero, and in

general one eigenvalue positive, one negative. So if the solutions exist, they are unsta-
ble. There is one exception with four eigenvalues zero; the coordinates are in this case

(19) if(t)-0,
-1)7(t) =-a3 { 2(a2 +a) E} l/2sin(2(0) + 2t),
-1

(t)-a,{2(a2 + a32) E } ’/2sin(%(0) + 2,).

Unlike the normal modes and the general position periodic solutions, we expect this
global bifurcation set to break up if we introduce higher-order, i.e. H terms. We shall
not carry out the normalization till Ha for the general Hamiltonian. Note that H
already contains 56 terms, H4 126 terms and though the calculation is straightforward,
the general result does not look very attractive. Instead we shall carry out the normali-
zation process in the next section for a particular potential problem. The break-up of
the global bifurcation will be demonstrated explicitly there and it is then easy to
perceive by inspection of the general Hamiltonian problem that the phenomena in this
particular potential problem are characteristic for what happens generally in higher
order.

5. A particular potential problem. Consider the Hamiltonian

2(20) H=-( p7 +p2y +p2z )+ U(x,y,z)

where U is a potential given by

(21) U(x,y,z)---(x2-k4y2+4z2)+e{Otlx2y+o2x2z-k-a3xYZ}.
This problem with a 0 was studied by Martinet, Magnenat and Verhulst (1981) with
normalization up till degree three. The results are then similar to those obtained in {}{}2



898 ELS VAN DER AA AND FERDINAND VERHULST

and 4. The motivation to introduce a in potential (21) is that terms which are not
discrete symmetric in x are to be normalized or averaged away in first order. A term
like the one introduced with coefficient a is then expected to show up in a higher order
calculation; as the existence of the global bifurcation is tied in with these symmetries in
x we expect the global bifurcation to break up in higher order. This idea turns out to be
correct. The equations of motion derived from Hamiltonian (20) are

(22) +x= --e{2aixy+ 2a2xz+ ot3YZ),
X2.+ OI3XZ}y+4y -e{a

e+4z- -e{ot2x2 + ot3xY )
The Hamiltonian (20) normalized to degree four reads

(23)

H- H2 +-[a (y(x2-p;2 )+xppy } + a2(z(x2-p2 ) +xpPz }

32
9 2)2--e2[ (a2+a2)(x2+p + (-a2+---a)(x2+p2)(4y2+p)
+ (-ot+-a3)(x2+p2x)(4z2+p2z)+--a(4y2+p2y)(4z2+p2z)

2 2 )2 )2 ]
This result was checked by performing the calculation both by Birkhoff normalization
and by higher order averaging; the result was checked again by numerical calculations
needed to construct the figures to be discussed later in this section. Note that a does
not occur in H3. We discuss again the periodic orbits for which various coordinate
systems are useful. Introduce action-angle coordinates by

x-2sinp, y--sin p2, z-3sinp

Px- /r cosp, Py- 2f2cos 02, Pz-23cosp3,

with r>0 and %S (i- 1,2, 3). becomes in these variables

(24) H-r, + 2r2 + 2r3 +er[a,f2sin(2pl-P2)+a2C-3sin(2p,-%)]
1 2 _alr,r3-4e2[---(a2+a)r+ (a2+Ta )r,r+ ( a+

and the equations of motion read

(25)
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i. - 3cos if2 + -g e2(aa2r, r2r3 /,)+a23r2r3sin2(/2 ,
,j, 4(al(4r2--r,)sin+4a2sin2}

9 z 2--e2 (a+a--a)r,+(a+a3)rz+(a-a3)r3
+ gala21 r3 (4r2 r )cos(2--i ) --g

2 4 {4a,sin.,+a2(4ra-r,)sin2 }

29--e (a+a--a)r,+(a- a+a3)r
+ g.. )cos(, ,) g

where 2 and -2 %..N es. The normal modes are exact solutions of the equations of
motion (22); putting x-2=y=-0 we find harmonic solutions for from +4-0
and an analogous result in the y-direction. These solutions correspond with the results
given in equations (16a), (16b). For the stability analysis we cannot use action-angle
coordinates in all degrees of freedom as for the actions the assumption >0 holds. We
shall check only the normal mode given by (16a) because of the symmet between the
second and third degree of freedom. Define

ql = X, q3

Pl =Px, P3=Pz/’
while using action-angle coordinates in the (r2, 2)-plane. The Haltonian H becomes

-1 e[2a,((q-p)sin +2q, ,cos:}(26) n-(q+p) +2r+ (q+p) +g : p

+:{q(q?-p)+ 2q, p,p }]
_! )8ez[(a+a)(q+p + a+a)r(q+p)

+(1 2

+ r(q]+p)+(q+p){qsin+pcos}

+la,((P-q)cos22+2q3P3sin22}l
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Defining ’=H-H2 and using the Lagrange-multipliers method we find that the
normal mode must satisfy

(27) d+gdH2-O, H2- E,

for q =p-q3--P3 -0" Calculating (27) using (26) shows that r2- 1/2E satisfies both
equations if we choose the multiplier/z equal to zero. The stability of this solution is
determined by the eigenvalue equation of the matrix d2 along the orbit; we find for
this matrix

(28)

ea/sin2

--1/42r2(

0 0

1
eal /’2 cOS22

-sin2
ea

(

0 0

o o

e2a32r240

(14-- 15 cos2:2)

0 0
e2aI" sin 2216

6e20t32 r sin 22

-----l20r
240

(14+ 15 cos 2P2

and the equation for the eigenvalues

producing

(29) 2_1 2

2-1 (1 5 )
22,3 4--- e 3E>0,

)4
29 e2a32E480

All eigenvalues are real, while 3 >0 so the normal mode is unstable. An analogous
result holds for the other normal mode r 1/2E, q =p- q2 =P2 -0.

To illustrate the instability of the flow near a normal mode we plot the actions as a
function of time for various initial conditions in Fig. 1; the energy is in all cases the
same.
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b. Periodic orbits in general position. Omitting the terms of O(e2), the periodic
orbits obtained from the critical points of equations (25) are given by

(30)

We" assume that correction-terms of order O(e) applied to (30) suffice to define a
stationary solution of (25). Suppose

(31)

and (.,.) define a periodic solution of (25). Then we have ,+22+23-0 as .
(j-- 1,2, 3) must satisfy the energy equation

(32) rl + 2r2 + 2r3 E.

Substitute (31) in (25) where we have put the left-hand sides equal to zero. We obtain

four independent equations in 2, 3, k and q2. After expanding these in a power series
in e, the equations become linear in these four variables and we can solve them

(33) - 22- 23,

+1@0222__1__ 17 19 42}
{17 5 19 513_ (3Ct2) lf33/2(CtlX + ct)-2sin __ctl6 +__ CtlCt242__ crier342 +__ CtlCt224- 1@022llx2ct32+-’1x-@5}.

The extreme values of Ha__+eH4 are again found for the orbits given by (30), (31) and
(33). We expand e/ + e2H4 around each periodic orbit while only keeping the quadratic
terms. For e small enough they form a definite function which thus acts like a Lyapunov
function.__As eft3+ e2/4 and/3 are asymptotic integrals of system (25), the derivative
(d/dt)(eH + e2H4) is of order O(e3). We conclude that both orbits are stable.
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50.0 1oo.o 15o.o 200.0 250.0 3DO.O 350.0

R r2

r

0.0 50.0 100.0
l,

150.0 200.0 250.0 300.0

FIG. 1. The actions rl, 2r and 2r as functions of time near the normal mode in the y-direction. In the
Hamiltonian (20) weput a 1, a2 -.5, ot -.7, e "-. 1. The iso-energetic initial conditions are

Fig. la x(0) =px(0) .001, p.v(O) =0, z(0) =pz(0) .001;
Fig. lb .1 0 .1;
Fig. lc .3 0 .3;
Fig. d .5 0 .5.
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[’-

r3

0.0 50.0 100.0 150.0 2130.0 250.0 300.0

5D.O 100.0 tSO.O 200.0 250.0 300.0 380.0

In all cases the initial value y(O) is calculated from the energo,-equation l/2(x2+p.2)+ I/2(4y2+p.) +
1/2(4z +pz2) E. The integration takes place from t=0-360 time units. Going from Figs. la-d the distance

from the normal mode increases which results in a shortening of the recurrence time of the exchange of energies

between the modes. The recurrence time is characterized by a time-scale of order /e periods, but this estimate

holds at a 0(1) distance of the normal modes.
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c. The global bifurcation. We shall see that the set of periodic solutions given by
(18) breaks up for a =/=0. We use action-angle coordinates in the second and third
degree of freedom. As rt equals zero we proceed to co-moving variables in the (q,p)-
plane

(34) [ql]__[ COSt sint pQ]P --sint cost

The normalized Hamiltonian becomes

(35) p2H=(Q2+ ) +2r2+2r

e[tlf((Q2 2)sin(tp2 2+ P 2t) + 2QPcos( 2t) )

+tx23 ((Q2_p2 )sin(3-2t) + 2QPcos(%- 2t)}]
e2 [ p2)2 2 p2+- -(a+a)(Q2+ + -a+ -a )r2(Q + )

Q2 p2

p2)cos(q2 q93 r3 cos )].
Define --2-2t and 2=3-2t then 1--11--2---2--3 is independent of time,

Consider the equations of motion

(36)
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?3 ea23 { (Q2 p2 )cos qz 2QP sin qz }

q_ _ge2 2 p2 or2ralaV_2r (O + )sin++ sin2- {(e-)in,+ecsl} ((e-)in+s}

8[, (-)(e+ )+ (

Putting the left-hand sides of (36) equal to zero while taking Q-P-O produces
the conditions on periodic solutions

(37) 2-f3--E, p-krr, k=0, 1,2,3.

So we have four periodic orbits with the same action variables which differ rr/2 in
phase each. Note that if we put a --0 in (36) the whole bifurcation-set is conserved.
The set is perturbed away if we take a @0 while four periodic orbits remain, given by
(37). System (4) is thus structurally unstable as was already suggested in {}2. We shall
now examine the stability type of the four remaining orbits. The periodic solutions
correspond with nondegenerate critical points of the vectorfield describing the flow in
the (Q,P,r2, /)-space. We perform linear stability analysis on these points: we translate
the critical point to the origin by a linear transformation of the form fi-u- where
u (Q, P, r_, k)r. Linearization of the differential equations for a produces

d- gt At+F( )

where lim,ull_ollF()11/1111-0 and

eb- .2Cea 2-eb+ e2c - ea

0 0

0 0

with

0 0

0 0

0

2q),,(+cos

a-a,V2cos --}- 0/2V3cos2
b R V2sin, + IT2V3sin 2,
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The eigenvalue equation becomes

b2 e42(2-- e2(a2--t- )-I- } { 2-I--6 e4{x?22 ( 1-C0S2-}- ) ) 0

and

e4otE 2 cos2+- <0,,2 256

e4 cos )-k0 ct32E}
We have -krrf2, k-O, 1,2,3 and we shall treat the four orbits separately; note that
we restrict ourselves to values of e in a neighborhood of zero.

k-- 1,3
If a2 + a22>0 then ,,4>0 so the orbits are unstable.
If a-a2-O, t3=/=0 all eigenvalues are purely imaginary and a linear stability

analysis is not enough to determine stability.
k=0
If et "" a2 5/:0 then h23,4>0 so the orbits are unstable.
If a +a2 =0, a v0 all eigenvalues are purely imaginary and the question of

stability is unresolved.
k=2
If et- o2 ::)/: 0 then ,4>0 SO the orbits are unstable.
If a-a2-O, a3v0 all eigenvalues are purely imaginary and the question of

stability is unresolved.
In Fig. 2 we plot the actions as a function of time starting with initial conditions in the
global bifurcation at X=px=O. We demonstrate the behaviour with time for solutions
based on the normalization till degree three (2) and on the complete Hamiltonian,
which agrees with the solutions based on normalization till degree four.

Figure 3 summarizes the periodic solutions found for the Hamiltonian (20) nor-
malized to degree three (Fig. 3a) and to degree four (Fig. 3b). We remark that Fig. 3a
also represents the general Hamiltonian normalized to degree 3; cf. (3).

6. The 1" 2" 2 2-resonance. Considering the fact that the 2" 2-resonance
system is asymptotically integrable (probably unique among genuine first order reso-
nance systems) and remembering the method used to prove it, the step to a more than
three degrees of freedom system is not a large one. Nevertheless it still is remarkable
that a property like asymptotic integrability can be extended to systems with arbitrary
many degrees of freedom. Let us look at the proof. We have a Hamiltonian H as
function of the Euclidean coordinate-vector _x and the corresponding
momentum-vector p. Suppose H can be expanded in homogeneous polynomials
H(n- 2, 3,... ) as follows (cf. {}2)

(38a) H-H2 +eH + e2H4 + e3H5 --with nondegenerate
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O0 O0 O0 O0 12 O0 15 O0 18 O0 21"010 24.00 27.00 30.00 33.00 O0

FIG. 2. The actions q, 2 r and 2 r as functions of time (0 <- <- 360) starting in the global bifurcation. In the
Hamiltonian (20) we put a 1, az -.5, a -.7, e= .1; the initial conditions are x(0)=px(0)=0, y(0)= 1,
z(0)=.9__, py(O)=pz(O)=O. The horizontal broken lines represent the periodic’ solution found for the system
H +eH (4); the other solutions are found by numerical integration of the equations corresponding with (20)
which agrees with normalization to degree 4 as has been carried out in 5.

(38b) HE
j-

Here
_
n is the frequency-vector and the linear vectorfield indicates n harmonic

oscillators with frequencies %., j- 1,2,...,n while to- 1, 2-% =n-2. Nor-
malization to order 3 leads to

(39a)
where

(39b) if3- 2 [2aEj-3(xj(xZ-Pf)+x,p,Pj} +a2j-.(Pj(Pf-xZ )+4x,xP,}]
j=2

The coefficients a are composed in the same way as the coefficients a...a4 in
Hamiltonian (3).

We derive the equations of motion by the Hamilton equations

OH= 0pj. P 0xj.
j n.

The normalized system of second order differential equations becomes
n

(40) g, +x,- --4e ] [a2j_3{2x,xj+.2,.2j} +a2j_2{2.2ixj--x,Rj}],
j=2
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r3
HH

EH

HH

(b)

FIG. 3. Energy simplices for the general Hamiltonian with three degrees offreedom near a nondegenerate
equilibrium point in 2:2-resonance. Fig. 3a is based on the Hamiltonian normalized to degree 3 given by (20).
Fig. 3b is based on the normalization to degree 4. The periodic solutions are indicated by a dot and are located in
the plane r + 2r + 2r =constant. Stabi6ty has been indicated by characterizing the eigenvalues by letters: E
(purely imaginary), H (one positive, one negative), 0 (zero eigenvalues). So the occurrence of at least one letter
H implies instability; there are only 4 eigenvalues as the energy is fixed and one of the angles ztn be eliminated as
explained in 2.

+/-’j+4xj- -4e{a2j_3(x2-yc2 )+2a2j_2x,Y}, j-2,...,n.

This system already has two independent integrals H and H. We shall now compute
n 2 other independent integrals for system (40). Define for k-- 3, 4,-.., n the variable

uk -2a2k_2x2 + a2k_3.22 h- 2a2x,-a.2k;

then

//+4u=0.
So for each k-3, 4,-..,n we have a harmonic 2-oscillator in one degree of freedom.
Ts gives us n-2 independent quadratic asymptotic integrals Ik, k= 3,4,. .,n given
by

.2).(41) I-(4u+uk
These integrals are also independent of H and H, thus system (40) is integrable and
the Hamiltonian (38a, b) is asymptotically integrable.

Note that all n integrals are valid for all time with an error of order e (cf. 2).
We can also derive the periodic orbits as have been found in 4. We have

a. Normal modes. We can derive n- normal modes directly from (40). If we put
x--0 we find for each j-2,...,n: j+4xj-O while we have xg-g-0 for
k 2,.-., n and kj. The normal mode energy is given by

--1 (4x + :j2) E2
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rl 4

27 !00 30. O0 33.O0 O0 2q O0

1)

FIG. 4. The actions r=, ,r as functions of time (0--<t--<360) for a system with five degrees offreedom in
2"2" 2"2-resonance.

H= H2-e x + .6x + .8X4 ql_ 1.2Xs)X2.
The solutions were obtained by numerical integration with initial conditions in the neighbourhood of the unstable
normal mode in the x2-direction; see 6. The picture represents the 5-dimensional analogue of Fig. 1; as initial
conditions we have. except that x2(0) 1, .2(0) 0.

where E defines the total energy of the system. The stability, analysis runs along the
same lines as in 2 and 4, cf. Fig. 4.

b. Periodic orbits in general position. As the calculations are easier to perform in
action-angle coordinates we put

and corresponding parameters

a2j-3 2j- cs tx2j- 2

a2j_ 2 O2j_ sin 42j-2,

Substitution in (39) produces for H
n

(42)

Define

t- 2 oj+ 4er, 20t2j-3fjjCOS(2q)l--q)j--Ot2j-2)"
j=l j=2

j 2q) j Ot2j_ 2
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then the Hamilton equations lead to a system of 2n- differential equations
n

(43) i’-8er, {a2j_3jsinj },
j=2- 4ezj_3r,jsin., j=2,...,n

@.--8e X (Ot2k-3fkCOSk}--2eOt2j-3rlrjT-l/2cosj,
k=2

Periodic orbits are found by putting the left-hand sides of (43) equal to zero. So we
have

(44) sin.= 0, j-2,... ,n.

For the actions , j- 1,-..,n we suppose an analogous relation as in three degrees of
freedom systems

n

rt--4 .
j=2

The conditions .=0 forj= 2,. .,n produce n- equations for the actions

.1/2 .1/2(45) {Ol2k-3rjl/2coslk--Ol2j 3"k COSt#j) --0 forj=2,.., nk
k=2

The solutions of (45) are given by

-i
a2k_(46) --E j=2,""" ,n

k=2 IX2J-3

cos.cos

where the energy E is given by

and thus

n

j=!

2(47) r -’E.

Vj, k= 2,. ,n

So we have two periodic orbits defined by (44), (46) and (47); for one orbit cos ffj-
(j= 2,...,n) while the second orbit is found for cosff= (j= 2,...,n). The actions
are the same for both orbits. Substitution of the solutions in (42) shows that on these
orbits H3 achieves its relative extreme values with respect to H2.

c. The global bifurcations. If we look again at system (40) we see that if we put
x = =0 we have

.j+4xj=O forj=2,. .,n,
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and thus

l(4x]+:y2)--C.=constant forj:2 n

Here the onstants C. are arbitrary, but they must satisfy
n

j=2

So we have again found an infinite set of periodic solutions for each value of the
energy. In general these global bifurcations will be perturbed away by admitting higher
order terms as in the ase of the 2: 2-resonance.

We finally remark that in the ase of more than three degrees of freedom, this list
of short-periodic orbits may be incomplete. For instance, normalizing up till H4, one
may find orbits of the 2:2: :2 subsystem.
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SOME PROPERTIES OF
SECOND ORDER LINEAR DIFFERENTIAL EQUATIONS
AND PERTURBATIONS THAT PRESERVE THEM*

G. . BUTLER AND V. SREE HARI RAO

Abstract. We consider perturbations of linear second order ordinary differential equations that preserve
certain properties of solutions. In particular, under the assumption that all solutions of the basic equation lie
in a certain function space, we find conditions on forced perturbations that maintain the property that at
most one solution is nonoscillatory. Under the assumption that all solutions of the basic equation are
bounded and lie in a certain Lp space, we characterize those L linear perturbations that preserve this
property. Results of Atkinson, Grimmer and Patula (Ann. Math. Purh Appl., 126 (1980), pp. 296-323), and
Patula and Wong (Math. Ann., 197 (1972), pp. 9-28) are extended.

1. Introduction. The second order linear equation we shall consider is

(1.1) (r( t)x’( t))’ + q( t)x( t)--O,

and the types of perturbation we are interested are of the form

(1.2)
(1.3)

(r(t)y’(t))’ + q(t)y(t)=f(t),
(r(t)z’(t))’ + ( q(t) + ql(t))z(t)-O.

Here, r, q, ql, f are real-valued, continuous functions on [0, o) with r(t)>0; in
fact all of our results could be obtained under local integrability conditions.

For both types of perturbed equation, our objective is to identify conditions on the
perturbation that allow some property of the original equation (1.1) to be preserved. In
[4], Grimmer and Patula obtained conditions on the forcing function f that guaranteed
that (1.2) possesses at most one nonoscillatory solution. These results were extended in
[1], where conditions were also given for (1.2) to possess a set of nonoscillatory
solutions of dimension at most one. In these two papers, the standing hypotheses for
the homogeneous equation (1.1) were that all solutions of (1.1) be bounded or (1.1) be
in the limit-circle case (all solutions are in L2[ 0, o)). Both these hypotheses ensure
(under suitable hypotheses on r) that (1.1) is oscillatory, hence the results of [1 ], [4] may
be interpreted as conditions on the perturbation that preserve the property of having at
most one nonoscillatory solution. We shall henceforth refer to this property by saying
that the corresponding equation is essentially oscillatory.

In 2 under the general hypothesis that all solutions of (1.1) belong to some
prescribed function space, we shall find conditions for (1.2) to be essentially oscillatory.
In this way, we obtain generalizations of [4, Thms. and 2] and [1, Thm. 5]. The
distances between successive zeros of solutions of (1.1) play an important role in our
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discussions in 2, and we pursue this from another point of view in 3, where we give a
negative answer to a question raised by Patula in [8].

In 4, we consider linear perturbations of (1.1) of the form (1.3). Here we are
motivated by [2] and [10] where the object was to extend Weyl’s alternative theorem
[11]. In [2] this approach was used to establish conditions on linear perturbations that
preserved the limit-point, limit-circle classification of (1.1). We shall assume that
solutions of (1.1) lie in some function space, and ask the question what linear perturba-
tions preserve this property. Our results extend those of [10].

The special case of (1.1) for which r(t)=--1 is of particular interest and we shall
designate it by

x"(t)+q(t)x(t)-O.

Similarly, we designate the equations

(1.2)’
(1.3)’

y"(t) + q(t)y(t) :f(t),
z"(t) +(q(t)+ q,(t))z(t)--0.

2. Essential oscillation. If (1.1) is oscillatory, the possibilities for (1.2) are"

(i) all solutions oscillate;
(ii) exactly one solution is nonoscillatory;
(iii) there is a one-dimensional set of nonoscillatory solutions;
(iv) there is a two-dimensional set of nonoscillatory solutions.
Essential oscillation of (1.2) means that (i) or (ii) occurs. When (ii) occurs, we

might regard the unique nonoscillatory solution Y0 of (1.2) as a perturbation of the zero
solution of (1.1). All other solutions of (1.2) "dominate" Y0 to the extent that they
oscillate not only about Y0 but also about zero.

Even rapidly decaying forcing functions fmay result in the existence of a nonoscil-
latory solution; for example y" +y- e-t has the unique nonoscillatory solution y-1/2e-t.

The first thing we need to do is to establish a relation between the property that all
solutions of (1.1) belong to some particular function space, and oscillation. The follow-
ing lemma is well known (see [5] for the case r(t)- 1).

LEMMA 2.1. Equation (1.1) is oscillatory if and only if all nontrivial (i.e., not
identically zero) solutions x satisfy

1/rx2fLl[to, O) forall to>-O.

For a given function r, we shall denote the set of continuous functions x that
satisfy 1/rxfL[to, o) for all t0_>0 by X[r], where any function that vanishes on
some nondegenerate subinterval of 0, ) for all t0_>0 is automatically in X[r]. It is
easily verified that X[r] is a real vector space. Under appropriate conditions on r, the
classical function spaces are vector subspaces of X[r] (not topological subspaces; there
is no suggestion of a topology for X[r]).

THEOREM 2.1. Let 0<p_<o and suppose that r-P/(P+2)LI[O, oG) (ifp:z, sup-
pose that r- Lt[ O, o)). Assume that all solutions of(1.1) are in LP[ O, o). Then (1.1) is
oscillatory.

Proof. We have to show that LP[O, o)CX[r]. Let xLP[O, ). We have
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,o r ,o r

by HOlder’s inequality. By hypothesis, the left-hand side of (2.1) approaches + 0o as
t--, 0o, and ftlx(s)’ds< 0o. It follows that l/(rx2)L[O,

COROLLARY 2.1. If all solutions of (1.1)’ are in LP[O, 0o), where 0<p_<0o, then
(1.1)’ is oscillatory.

Remarks. 2.1. We note that the values of p between 0 and are included in
Theorem as well as the more usually considered values <p< 0o. The case p= was
given in [6] and the casep-2 was obtained in [9].

To obtain conditions for essential oscillation of (1.2) we shall exploit [1, Thm. 1],
which we state here as:

LEMMA 2.2. Let x, x2 be linearly independent solutwns of (1.1). Let (tXnj,flnj) be a
sequence ofpairs ofsuccessive zeros ofxj, with anj--* 0o as n --, 0o, such that

(2.2) fa’if(s)xy(s)ds--,O as n-, 0o, j= 1,2.

Then (1.2) is essentially oscillatory.
As a very simple consequence we have the following result:
THEOREM 2.2. Let B C X[r] be any Banach function space consisting of locally

Lebesgue integrable functions. Let B be the set of locally integrable functions ffor which
ff(t)x(t) dt exists (conditionally) as a finite-valued integral for all x B. Suppose that
all solutions of (1.1) are in B. Then (1.2) is essentially oscillatory for allf

Proof. Immediate from the definition of X[r] and Lemmas 2.1 and 2.2.
COROLLARY 2.2. Let all solutions of (1.1)’ belong to L’[0, 0o) (l_<p_<0o) and

suppose thatfLF[ O, oo), where l/p+ lip’= 1. Then (1.2)’ is essentially oscillatory.
The cases p= 2, p = 0o were obtained in [4]. To obtain more refined criteria for

essential oscillation, we require information about the distances between successive
zeros of solutions of (1.1). This is the content of our next result.

THEOREM 2.3. Let 0<p<0o and suppose that r-’/’+2$L[O, 0o). In addithTn,
assume that r L[ O, 0o) for some tx with 0<a< 0o, and that all solutions of (1.1) are in
LP[O, 0o). Then if {tn} is the increasing sequence of zeros of any solution of (1.1), the
sequence of successive distances between zeros (tn+-tn} is in the sequence space k,
where k=(2a+p+ap)/max(p,2a). (Ifp=0o, a<0o, then k= +a; ifp< 0o, a=0o,
then k +p/2; ifp = a= 0o, then k= 0o.)

Proof. Assume first that both p and a are finite. Let x be a nontrivial solution of
(1.1) whose zero sequence is {t}. If x2 is a solution of (1.1) such that the Wronskian
W(x,x2)-r(xx’2-x2x) 1, it is a well-known result (e.g. [6]) that

(2.3) ft,,+, dt

t,, r( x2 +x )
:’"

Let h,/,/x’, v, v’ satisfy 0<,,/,/’_<, h/x’ 1,

(2.4) 1 + 1 1 + 1 -1

’ v v’
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Using (2.3), two applications of HOlder’s inequality give

(2.5) tn+ tn-- ( +’(r(xl+x))"Xdt) ( xl+ )< f,tn
’/’

ft.+,(r( x))’Xdt
’/

tn tn

ll.’ t"+’r,(,-l)dt t,+ x+x) I)dt
tn tn

If we choose #= +ap/(2a+p),l,= + 2a/p, so that #’ = +2/p+ 1/a,i,’= +p/2a,
raising both sides of (2.5) to the power i,’ =(2a +p+ ap)/2a, we obtain

(2.6) ’,.:at(t.+ tn)kl<--’trpi2 tn+ tn+!

tn tn

where k =(2a +p+ ap)/2a. A well-known inequality gives

(x, + )"/:’-< + li")
where

2t’-2, p>2,c- 1, 0<p<2.

By hypothesis, (ft,,+, radt).ol2a..,O as n--, o if a< oo and is bounded as n--, ifdl

a=. It follows from (2.6) that {t,+l-t,} 1,. Raising (2.5) to the power k=#,=
(2a+p+ap)/p shows, in a similar fashion, that {t,+-t,}l’. Defining k to be
min(k,k), now yields the result. For p or a or both , the argument is essentially
the same with due regard being given to the interpretation of indeterminate expressions
occurring in the preceding calculations and to the use of the appropriate forms of
HiSlder’s inequality.

COROLLARY 2.3. If all solutions of (1.1)’ are in L’[ O, ), where 0<p<, then the
sequences of successive distances between zeros of solutions are in +t’/. Thus for
0<p<, the distances between successive zeros tend to zero.

Remark. For p = 2, this result was obtained in [9]. For p = , this result is not true,
but it does hold under the stronger assumption that all solutions of (1.1) approach zero
asymptotically.

Now we present the main result of this section, which is a generalization of [1,
Thin. 5].

THEOREM 2.4. Let l<p<oo and 1/p+ 1/p’=l. Suppose that r-’l’+ZqL[O,o)
and rL[O, o) for some a with 0<a_<oo. Let k=(2a+p+ap)/max(p,2a), and
define to be pk/((p-1)(k-1)). Assume that all solutions of (1.1) are in L’[0, oo).
Then for anyfsatisfying

(2.7) fo’ifiP’dt = O(tX(logt)l/(P-i)) as t-, oo,
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(1.2) is essentially oscillatory. Ifp oo, the above conclusion holds if (2.7) is replaced by

(2.8) fotlfldt-o(t).
Proof. Following the proof [1, Thm. 5] it is enough to show that if xi is any

solution of (1.1) with zeros (t,}, then

Now,

(2.10) St2n]fXlidS(St2nifiP’ds)llP’(st2nlxliPds)llPtn tn tn

As shown in [1 ], we may choose an infinite sequence of values of n for which

(2.11) S’2"lxllPdt<(lognloglogn) -I
tn

By Theorem 2.3, if 1/k+ 1/k’= 1, we have

2n-- ( 2n-- ) Ilk

(2.12) [t2n--to[ <- E [tin+l--tin[ < E [tm+l--tm[
k

(2n) 1/’
m=0 m=0

<_An l/k’ for some constant A.

From (2.7) and (2.10)-(2.12), we have an infinite sequence of values of n and a constant
C for which

S’Zlf , lat <_ n )l I(p-l)p’. (log n )-I/p (log log n )-l/p-
tn

Cn(loglogn ) l/p,

since X =p’k’. This yields (2.9) as desired. If p= o and f satisfies (2.8), then xi(t) and
(t+ t} are bounded, and so

and again we have (2.9). This completes the proof of the theorem.
Regardless of the value of a in the above theorem, X will be at least one, so we

have:
COROLLARY 2.4. Let <_p< o and r-p/(p+2) LI[ 0, o). Suppose that rL[ O, )

for some a with 0< a <_ o0, and that all solutions of (1. l) are in LP[ O, ). Then for any f
in L[0, o), where 1/p+l/s<_l (i.e., s>_p’), (1.2) will be essentially oscillatory. If
p o, the same conclusion holds forf in L O, oo), where <_ s< o.

In particular, Corollary 2.4 applies to (1.1)’ and (1.2)’: if all solutions of (1.1)’ are
in LP[0, ot:) (l_<p<o) and fL[0, o) for some s>_p’, then (1.2)’ is essentially
oscillatory (with the appropriate modification whenp- o).
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We cannot, in general, allow s when p ; a simple example is the equation
y"+y= 1. With the stronger assumption that all solutions of (1.1) approach zero
asymptotically, bounded forcing functions f will result in essential oscillation of (1.2).
This is immediate from the remark following Corollary 2.3.

3. On a question concerning distances between zeros of solutions. We have seen
that if all solutions of (1.1)’ are in Lp 0, ), 0<p<, then the successive distances
between zeros of solutions tend to zero. In the opposite direction, Patula [8] has shown
that if the positive part q+ of q is in LP[O, ), _<p< , the successive distances
between zeros of solutions of (1.1)’ tend to infinity. He raised the question of whether
this is true for 0<p< 1. The following example gives a negative answer.

Define q(t) to be 42n2a on [n-n-t,n+n-t], n-l,2,..., and to be zero
elsewhere. Here, ct and/3 are positive integers to be chosen later.

Consider the solution x, of 1.1)’ that satisfies Xn(n ) 1, x’(n ) O.
On n n-t, n + n-t ], we have

x( ) + 4r2n2x,( ) --O,

and so x,(t)-cos(2r2nt). Now X’n(n+n-a) -2rnsin(2rn-t) and x,’(t)--0 on
(n+n-/,n+ 1-(n+ 1)-a). Hence on this interval we have x,(t)-cos(2rn-/)
2rn’(t+n-/-n)sin(2rn’-/). So x,(n + 1/2 n-/) cos 2rn-/-rn’ sin(2rn-/). If
0<ct</3, sin(2crn-a)-2rrn-t for large n, and so sin(2rrn"-t)>rrn-t for n>_n o,
say. For n>_n o, we have

_a) ,/r2x, n+ - -n < 1- n2a-B<O

for n sufficiently large, provided that 2a>fl. Similarly, for n>_n say, we have

x, n--+n <0.

Thus xn has two zeros in the interval (n-1/2, n + 1/2), if n>_n 1. By the Sturm comparison
theorem, every solution of (1.1)’ contains at least one zero in (n-1/2,n + 1/2), forn->n 1,

and so (1.1)’ is oscillatory, and for any solution with zeros (tk}, we have tk/-tg<2
for k sufficiently large.

Now f(q+)P dt- Yn= 12n2P-/< o provided that 2pa fl< 1.
Thus we obtain a negative answer to Patula’s question if we choose positive

integers ct,/3 such that a<fl, 2a>fl, 2pa<fl-1, i.e., with 2 <a<(fl-1)/2p, which
we can always do since 0<p< 1.

4. Linear perturbations and extensions of Weyl’s theorem. Weyl [11] showed that
if q L[0, ), then (1.3)’ has the same limit-point, limit-circle type as (1.1)’. In
attempting to extend this result to L linear perturbations, Patula and Wong [10]
showed that if all solutions of (1.1)’ are in L2[0, )L[0,) and q is in L[0, ),
__<k_< , then all solutions of (1.3)’ are in L:[0, ) q L[0, ).

Their conjecture that the boundedness assumption on solutions of (1.1)’ might be
dropped was eventually disproved by Kwong [7].

In this section, we shall generalize the above result be assuming that all solutions
of (1.1)’ lie in LP[0,)fqL[0,) for some p, l<p<. In fact the coefficient
function r(t) plays no role here; our results apply equally well to (1.1) and (1.3).
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THEOREM 4.1. Let <._p<_o, and suppose all solutions of (1.1)’ are in LP[ 0,
L[ 0, ). Let ql L*[ 0, o), where

l<_k<_o ifl<_p<_2 l<_k<_ p---p-- if2<p<.
p-2

Then all solutions of(1.3) are in LP[ 0, o)(q L[ 0, oo). Moreover, for each value ofp, the
range ofpossible values of k is sharp.

Proof. Our argument follows along the lines of [10, Thm. 5.1 ]. As with the proof of
that theorem, our starting point is that solutions of (1.3)’ are given by

(4.1) z( ) ClXl( ) "+" C2X2( )

fo fo (s)q2(s)z(s)dx’(s)q(s)z(s)ds+xl(t) x2+x(t) x

where xl, x2 are solutions of (1.1)’ whose Wronskian is equal to one.
Let 1/p + 1/p’ 1/k+ 1/k’ 1. We have three cases to consider:
Case (a). l<_k<_p’. Then k’>__p. Since xi_LP[O,o)f’lL[O,o), we have x

Lk’[0, o) and so xiqiL[O,o), i=1,2. From (4.1), since xiL[O,), there are
constants M, M2 such that

(4.2)

where q L[ 0, o).

[Zl(t )l M + M2fot(lxl(s )q(s )l + [x2( s )ql( s )1 )Iz(s )lds,

[z( ) <_ M, +

Applying Gronwall’s inequality to (4.2), we obtain

[z(t)[<-Mexp(fotlq(s)lds).
It follows that zL[0, oo). Since xL[0, o), xgqL[O,o), referring back to
(4.1), we see that z LP[ 0, oo).

Case (b). <p<_2<p’ <k. Let At-- {s [0, t]: Iq(s)l_< ), Bt =[0, t]-A. Then

(4.3) fAt[XiqlZ[ds<_(fAt[Z,Pds)l/P(fAt[Xiql[P’ )

[p
lip’

for some constant M3, since xL[0, oo) and p<_p’. Now
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where M4 is a bound for x and x2, and since k>p’, we have

(4.4) fzltlx,qlzlds<_M4(Sotizlpds)ll, f.,iqll <-M5 (SotizlPds
for some M5, since qi Lk[ 0, ). From (4.3) and (4.4), we have

(4.5) So’l,q,,la<_M6(fo’l,l’) ’1, i= 1,2

for some constant M6.

Raising (4.1) to the pth power, using (4.5) and the standard inequality (a+b)<_
2p-l(aP+bp) for a,b>_O, we have

)I’-< (I, (,)1" + )i’ + I=(,)lPSotlzl"as + IM6x,( )ll)f’lzlpas }"0

=qJ(t)+w(t) I1

where q>, w ELi[ 0, oo). Again Gronwall’s lemma yields z
Case (c). <p’< 2<p, p’ <k<_p/p- 2. For this case, we use HOlder’s inequality to

obtain

Ix,q, lP’as <- Ix;l"

<_ Ixl
p

Iql

since k<pp’/(p-p’)--p/(p- 2). Now we can proceed as in case (b). The resolution of
cases (a), (b), (c) proves the first assertion of the theorem.

To show that the result is sharp, we show that for all pairs (p,k) not covered by
the statement of the theorem, there exist an equation (1.1)’ all of whose solutions are in
LP[0, ) and a function q Lk[0,) such that (1.3)’ has a solution which is not in
Le 0, oo). For convenience, we work on the interval 1, o).

We require the following lemma which may be proved by straightforward compu-
tation:

LEMMA 4.1. For nonnegative constants a, , , define

I(a, ,,/)(t)- ftr-(sinra)vdr.
Then for any M>0 and any a, fl, ,[ with O<_a, fl, y<-M, there exist constants c =cl(M ),
c2 c2(M), co Co(a, fl, "t), such that

c2tl---Co(4.6) Clt-v co <_I(a,fl "t,)(t)<

cl logt-co <-I(tl,fl, 1)(t)<-CElOgt-co.
As a consequence of the above lemma, we note that t-(sintn) Lm[ 1, oo) if and

only if m> 1/a.
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Now letp>2, k>p/(p-2), and let C=C1(3) as defined by Lemma 4.1.
We may choose a> 1/p but sufficiently close to it that

1,/a
0<-<p< k>

a a-c l/a-2 1-2a

Now x=t-"sin(t+2) and x=t-cos(t+2) are readily shown to be solutions of
x"+qx=O, where q=(1 +2a)2t4a--a(a+ 1)t-2. By choice of a, all solutions of (1.1)’
with q as above are in Le[1, ) CL[1, z).

A simple calculation shows that

Xo(t)- exp r- l(sin z’ +2’)2dr .t-sintl+2

solves the equation

x"+(q+q)x=O,

where q is given by

q(t) --4(1 +a)t-’+Zsin(t+Z)cos(t1+2)

+(1 +2a)t-Z(sintl+z)Z-t-Z(sint’+2)4.
Since k> 1/(1-2a), we have q ELk[l, ). However, Lemma 4.1 shows that

Ix0(t) >_e-Cot"-lsin( t’ + 2,)1
for some constant co

If c_>a, xo is clearly not in Le[ 1, o); if c<a, then xo is not in LP[ 1, ) because
p<l/(-c).

This completes the proof of the theorem.
Remark. Bellman [2] has also given an extension of Weyl’s theorem. In the context

of Theorem 4.1, he obtained the cases _<p_< 2, k .
5. Concluding remarks. Conditions for all solutions to be in L’[ 0, ) are numer-

ous for the case p--2. For general p, examples may easily be found, for instance, by
employing [3, Thm. 13, p. 120]. We do not know whether Theorem 2.4 or Corollary 2.4
is sharp.

We have concentrated on the case where solutions of (1.1) are in one of the
classical Banach spaces LP[ O, cx:), but results may be obtained under the more general
assumption that solutions are in some function space B C X[r], provided that one can
obtain information about the distances between zeros of solutions. Although we have
not attempted to do so in this paper, it seems likely that some analogue of Theorem 2.3
can be given if B is a weighted Zp space.
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COMPARISON THEOREMS FOR DISFOCALITY AND
DISCONJUGACY OF DIFFERENTIAL EQUATIONS*

URI ELIAS

Abstract. Pairs of ordinary differential equations are compared with respect to disfocality and discon-
jugacy.

1. Introduction. We consider two-term ordinary differential equations of the type

(1) y(")+p(x)y-O,
where p(x) has a fixed sign. Much of the work about oscillation and disconjugacy of
(1) is done by using the concept of (k, n k)-disfocality: (1) is called (k, n k)-disfocal
on an interval I if for every a,bI, a<b, no solution of (1), except the trivial one,
satisfies

(2) y(i)(a)=O, i=0,... ,k-l,

y(J)(b)=O, j=k, ,n- 1.

Similarly, (1) is (k, n k)-disconjugate if only the trivial solution satisfies

(3) yi)(a):O, i:0,... ,k-l,

y<J)(b)=O, j--0,... ,n-k- 1.

The above concepts are applicable to the study of (1) thanks to some of the following
properties. First, if p_>0 (_<0) and n- k is even (odd) then (1) is (k, n- k)-disfocal and
(k, n- k)-disconjugate on every interval. Thus it is sufficient to consider the values of k
such that

(4) (1)"-kp_<0.

Next, there are simple relations between disfocality and disconjugacy. (k,n-k)-
disfocality implies (k, n k)-disconjugacy on every interval and eventual (k, n k)-
disfocality (that is disfocality on some ray (c, o)) is equivalent to eventual (k,n-k)-
disconjugacy. Finally, (k, n k)-disfocality is elegantly characterized: If (- 1)-p _< 0,
then (1) is (k, n- k)-disfocal on I if and only if there exists a solution y of (1) such that

(5)k y(i)>0, i-0,... ,k-l,

( 1)-ky(J) > 0, j- k,..., n

on I. References to these known facts and others may be found in [7], [2].
In [5], Jones proved that if (1) is eventually (k,n-k)-disfocal and k<_(n+ 1)/2,

then it is also eventually (k-2, n-k+ 2)-disfocal. In fact, Jones formulated his results
in terms of eventual disconjugacy; however, his proof is more natural in the framework
of disfocality. By this ordering theorem he reduced substantially the number of possible
oscillation types of (1). In the course of his proof, Jones also compared disfocality types
of equations of different orders. His proofs are based on the characterization of

*Received by the editors June 28, 1982, and in revised form May 31, 1983.
Department of Mathematics, Technion, Haifa 32000 Israel.
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disfocality by a solution which satisfies (5) and inequalities of Kiguradze which such
solution satisfies.

This note, motivated by Jones’ results, is aimed to compare pairs of differential
equations with respect to various types of disfocality and disconjugacy. Our compari-
son theorems are based on Green’s functions inequalities.

2. Disfocality. Green’s function g,_g(x,t) of the operator d/dx and the
boundary conditions (2) is explicitly known:

(6) g,,-k(X,t)--

n-I
n--l--"(x--a (a--t) ’/i!(n-i-1)!,

k-1

X (x--a)i(a--t)n-l-i/i!(n-i- 1)!,
i--I

a<_x<t<_b,

a<_t<_x<__b.

Note that gg,,-k is independent of b and it is defined practically for a<x, t< o. Also

(7) (--1)"-kgi,)n_g>O, i-O,"" ,k- l,

(-1)"-igi,)._k>---O, i-k, ,n-1

on (a,b) (with equality for i>__k, t<_x). For i>_k, (7) is immediate since gi)n_k(X,t)’-
-(x-t)"-i-I/(n-i 1)! for x<t and ,")_=-0, for x>t. Integration of ,_ from
a to x yields (7) for i_<k- 1.

THEOREM 1. If k> then

n-kl!(n--l--1)! (-1) gk,n-k(X, t) / (--1) "-tgt,, x,t)(
.’ ), "-).(8) k’(n-k-1)’ (x--a)k(t--a)"-k-’ (x--a (t--a

< (l--1)l(n--/)!
-(k-1)!(n-k)!

the quotient bounded in (8) increases with x and decreases with and equalities are
attained in (8) when x- a and x respectively.

Proof. We rewrite the quotient in (8) as a product

(t--a)gk
(x--a)gk-,,-k+ (t--a)gk-l’"-’k+l’]’’’[ (t--a)gl+l,n-t-1]-(x-a)g._.,_.+

and show that each factor increases. Note that if u/v is continuous and not monotone,
then there exists a linear combination of u and v with two zeros. In our case, if
g,_/(x-a)g_,_+ is not monotone, there exists a linear combination h(x)=
(x--a)gk_l,n_k+l+ cgk, n_ k with two zeros in (0, o). Since h has a zero of multiplicity
k at x=a, we obtain by Rolle’s theorem that h changes its sign twice in (a, ). But
according to (6), h is a polynomial of degree k-1 on (t, o) and h(k)--=0 there.
Thus, the two changes of sign of h(’) must be located in (a,t). But h((x)

(h-l) + (k) =--(x--t)n-i-l/(tl--i 1)!(x--a)g(k_),._k+l+kgk_,n_k+l Cgk,._ k and as g(,)-k
for i>_k and x<t, it is immediately seen that h(k) does not have two zeros in (a,t).
Similarly, none of h() has two distinct zeros. This contradiction confirms the monotony
of the first factor. By (6), --(t--a)gk, n_k/(X--a)gk_,n_k+ attains at x=a the value
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(k- 1)!(n-k)/k!(n-k- 1)!=(n/k)- and it tends to (n/(k- 1))- as x o;
hence it increases. This argument applied to each of the k-1 factors proves that the
quotient in (8) increases on a, o). The bounds are obtained by taking x a and x o
respectively. The monotony with respect to is proved similarly.

It is possible to prove the inequalities in (8) by replacing gk, n-k for x< and x>
by the corresponding polynomials and direct manipulation.

THEOREM 2. Let ( 1)n-gp <_ 0 and suppose (1) is ( k, n k )-disfocal on a, b ]. If <_ k
then

(9) -, n- n-1) )p(x)y_ 0Y(n)+(-’) (( kl)/(
is (1, n l)-disfocal on a, b ], and if >_ k then

(10) y(n)+(--1)k-t (k,n-I)/(7--)) p(x)y=O

is ( l, n )-disfocal there.
Proof. It is known that if (1) is (k, n k)-disfocal on a, b and ( 1)"-gp _< 0, then

the unique solution of (1) which satisfies

(ll)k-I y(’)(a) =0,
y(k-)(a)=l,
y)(b) =0,

is positive and even satisfies (5) on (a, b). Equations (1) and (11) are equivalent to the
integral equation

) k 1/ --fbgk, n- k(12) y(x)-(x-a (k-1)!+ (x t)[-p(t)]y(t)dt

Put u(x)=y(x)/[(x--a)k-/(k 1)!]. Dividing (12) by (x--a)k-/(k 1)! we get

(13)

1)"-k((t a)/(x a))-’ )n--k--Igk,._k(X t)][( p(t)]u(t)dt

and the integrand is positive by (4) and (7). If k_>l, then by (8) we have

(14)
n-  -lt,
fa[( 1)"-’((t a)/(x a))’-’ (x,,)][(1) "-k-’g,.n-, p(t)]u(t)at.

Now, it is known that if inequality (14) has a positive solution u, then the correspond-
ing integral equation

(15) v-- +v,
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where denotes the integral operator on the right-hand side of (14), has a solution v
such that 0_< v(x)_< u(x). This may be verified by defining iterations v0 u, v +
vi_ . We multiply now (15) by (x--a)l-l/(l--1)! and put 9(x)-v(x)(x-a)l-l/
(l- 1)! to obtain

k-I n- n-l))(x)-(x-a)t-’/(’-1)’+(-1) (( kl)/(
bgl. n_l(X, t)[--p(t)] y(t) dt,

which is equivalent to (9) and the boundary conditions (11)/_ 1. By (11)l_ we see that
the solution )7 of (9) is not only positive but also satisfies (5)z on (a,b), hence (9) is
(l,n-l)-disfocal on (a,b). It is disfocal on [a,b] since )7 satisfies (11)1_ and conse-
quently no solution can satisfy the (l,n-/)-focal point boundary value conditions at a
and b.

To treat the case l>_k, we exchange the roles of and k in (8) and use analogously
the right-hand side of the inequality so obtained. Another approach is to note that
(k,n-k)-disfocality of (1) is equivalent to (n-k,k)-disfocality of its adjoint and

The results of Jones [5] follow if ("- )/("- ) (or (z)/(Ty)) is not smaller than
and we neglect it in the proof of Theorem 2 and in (9), (10). Thus, the (k,n-k)-
disfocality of (1), where (- 1)"-p0, implies also its (l,n-l) disfocality when

k
or lk, n < n

k

that is for l= 1,2,...,k- 1, n-k+ 1,...,n- or l= 1,2,...,n-k- 1, k+ 1,... n- 1.
This can be written as II-n/2l>lk-n/21 when we do not exclude the values of such
that lk (mod2) (for which (1,n-l)-disfocality of (1) is trivial and is not a conse-
quence of Theorem 2).

Following Jones we summarize:
THEOREM 3. If (1) is (k, n k)-disfocal on a, b 1, 1)-kp O, then (1) is also

(l,n-l)-disfocal on [a,b] where II-n/2l>lk-n/21 and lk (mod2). The equation
y( n) __py 0 is (l, n l)-disfocal when I1- n/2l> Ik n/2l and k (mod 2).

The methods of Theorems and 2 may be adopted to compare disfocality of
equations of different order. Compare with [5, Thms. 1-4].

THEOREM 4. a) Ifk< n<m then

(16) m-n )m-n(m k- 1)V/(n-k-1)!_<(1) (t a gk,n_k(X,t)/gk,m_k(X t)

<--(m-k)!/(n-k)!,

the quotient bounded in (16) increases with x and equalities are obtained when x-a and
x- o, respectively.

b) Let (- 1)n-kp_<0 and suppose (1) is (k,n-k)-disfocal on [a,b]. If m>_n then

(17) y(m)-k-(--1)m-n((m-k-1)!/(n-k- 1)!)(x--a)n-mp(x)y--O
is ( k, m k)-disfocal on a, b and if k< rn < n then

(18) y(m)+(_ 1)m-n((m_k)!/(n_k)!)(x_a)n-mp(x)y_ 0

is ( k, rn k )-disfocal there.
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In order to prove (16) we show that h(x)-gk, n_-cg,n__ has not two zeros in
(a, ). Next, by (16), the integral equation (12) implies

y(x)>_(x-a)g-1/(k 1)!+ (-1)m-n((m-k- 1)!/(n-k- 1)!)

and (17) follows. Note that gk, m_(x,t)(t--a) has no singularity at t-a even if
n<m.

By composing Theorems 2 and 4 the following results are obtained.
THEOREM 5. Let (--1)n-kp_<0 and suppose y(n)+py--O is (k,n-k)-disfocal on

a, b]. Then the equation

(19) y(m)+( 1)(m-t)+(n-k)Ak,t(X a)n-mp(x)y--O

is (l, rn 1)-disfocal on a, b where

(20)

l!(m-l-1)!
k!(n-k-1)!
(n-k)(l-1)!(m-l)!
(m-k)(k-1)!(n-k)!
(l-1)!(m-l)!
(k-1)!(m-k)!
(m-1)l!(m-l-1)!
(n-l)k!(n-k-1)!

if m>_n, k>__l,

if m>_n, k<_l,

if m<_n, k<_l,

ifm<_n,k>_l.

To prove this for m_> n we pass from the given (k, n k)- to a (k, m k)- and
finally to a (1,m-l)-disfocal equation. For the case m<_n we follow the scheme
(k,n-k)(l,n-l)(1,m-l).

3. Disconjugacy. Now we turn to disconjugacy and (k, n k)-disconjugacy.
Green’s function G,,_(x,t) of the operator dn/dx and the boundary conditions (3) is
obtained from g, _k when we replace (x-a) and (t-a) by (x-a)(b-t)/(b-a) and
(b- x)(t- a)/(b- a), respectively [7]. Consequently, we see from (8) that the quotient

H(x,t)- n-k(x-alg-’(b-xl"-g(t-a (b-t)

(- I)"-:G,.._,(x t)
(x-a)t-l(b-x)n-t(t-a)’-i(b-t)n-t

where k>l, increases with x and is bounded by l!(n-1-1)!/k!(n-k-1)!
and (l- 1)!(n-l)!/(k- 1)!(n-k)!. Indeed, if we denote the quotient in (8) by h(x,t)
then H(x,t)--h(a+(x-a)(b-t)/(b-a), a+(b-x)(t-a)/(b-a)) and H=h.
(b-t)/(b-a)-h.(t-a)/(b-a)>O since h>O and h<O. Similarly, by (16),

(m-k- 1)!/(n-k- 1)!(-1)m-"((b-x)(a-t)/(b-a))m-"

Gk, n-k( X, )/Gk, m-k( X, t)

<_(m-k)!/(n-k)!
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when m>_n. Also the integral equation

)k-I n- n faby(x)-(x-a (b-x) k/(b--a) -k(k--1)!+ Gk,n_k(x,t)[--p(t)]y(t)dt

is equivalent to (1) and the boundary value conditions

yi)(a)--0, i--0, ,k-2,
yk- )(a) 1,

y)(b) 0, j-0,... ,n-k-1

and (1) is (k, n k)-disconjugate on a, b] iff this y is positive on (a, b). Repeating the
proof of Theorem 2 with u(x)=y(x)/[(x-a)k-(b-x)n-/(b-a)n-g(k 1)!], we
obtain

THEOREM 6. Theorems 2 and 3 remain valid if the term disfocality is replaced
everywhere by disconjugacy. Theorem 5 remains valid if the term disfocality is replaced by
disconjugacy and the factor (x a)n-" in (19) is replaced by ((x a )( b x)/(b a ))n- m.

Recall that while eventual (k, n k)-disfocality and eventual (k, n k)-
disconjugacy are equivalent, disfocality on [a,b] implies disconjugacy there but is not
implied by it. Therefore the last results are not direct consequences of Theorems 2 and
3.

Since (k, n k)-disconjugacy (disfocality) on [a, b] is equivalent to the absence of
(k,n-k)-type conjugate (focal) point g,n_k(a)(g,,_k(a)) on [a,b], we can restate
Theorems 3 and 6 as

THEORE 6’. If ll-- n/2l>lk- n/21, /=- k(mod 2) then

a< rl,, n-k( a ) <_ l,, n-,(a) <_

a< g.n-,(a)<-t,n-t(a)<-- o.
Various works deal with relations between disconjugacy (nonoscillation) of (1) on

[a, oo) and that of various second order equations. For example, see [3], [6], [4]. In
Theorem 6 of [2] we proved that if (1) is eventually disconjugate and n>m, then
yn)+((m-1)!/(n-1)!)p(x)(x-a)n-my=O is eventually disconjugate, too. (In fact
(m-1)!/(n-1)! is replaced by the smaller constant m!/n! but the bigger constant is
immediately available without any change in the proof). Now we improve this result
and extend it.

THEOREM 7. Let (1) be disconjugate on a, b ]. If rn < n, then the two equations

(21) y(m)+/- [n/2][m/2]![(m+ 1)/2]!
(n-[m/2])[n/2]![(n+ 1)/2]! (x-a)(b-x)) n-m

b-a
p(x)y-O

are disconjugate on [a,b] and if m>n, then the equations

(22) y(m) +/- ( )-m[(n--1)/2][m/2]![(m-1)/2]! (x-a)(b-x) n

p(x)y-O
(m--[(n-1)/2])[n/2]![(n-1)/2] b-a

are disconjugate. (Here denotes the integer part function).
Analogous results hold when we replace a, b by a, o0) and (x a)(b x)/(b a)

by xma.
Proof. An equation of type (1) is disconjugate when it is (i, n- i)-disconjugate for

every i, <_i<_n- 1, such that (- 1)n-ip_<0. In order to prove that this is the case, it is
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sufficient, by Theorems 3 and 6, to show that it is (i,n-i)-disconjugate either for
i-[n/2] or for [n/2] + 1, according to the parity of n and the signature of p. Indeed,
one of these values of has the required parity and for it li-n/21 is minimal. In our
case we have to show that (21) (or (22)) is (l,m-l)-disconjugate either for 1--[m/2] or
for l--[m/2]+ 1. But there are many possibilities to deduce this from the disconjugacy
of (1). According to Theorems 6 and 3, (k, n k)-disconjugacy of (1), when _< k _< n 1,
(- 1)n-kp_<0, implies (l,m-/)-disconjugacy of

(23) y(m)+(_ 1)m-l+n-kAklP(X)((x_a)(b_x)/(b_a))n-my-o
where Akt is given in (20). Thus, we are in possession of several values of k by each of
which we can deduce (l, m-/)-disconjugacy of an ruth order equation. Since we did not
assume what is the sign of p(x) and the parity of n, we have to check two values of k of
different parities and select from the two so-obtained ruth order equations the one with
the smaller coefficient Akt. Since will be either m/2] or m/2] + 1, it is easily seen that
the best choice of a. pair of values of k is [(n-1)/2], [(n + 1)/2]. First let m<n. If
m_<n- 2,then l<_[m/2]+ _<[(n- 1)/2]_<k and by (20), Akt-(m-l)!l!/(n-l)k!(n
k- 1)! is smaller for k-[(n+ 1)/2]. Among the two candidates for l, Akt is smaller
for l-[m/2] and its value is

[m/2]![(m+ 1)/2]!Cmn (n-[m/2])[(n+ l)]![n/2-1]!

(use [n/2]+[(n+ 1)/2]=n). This proves that both equations in (21) are disconjugate if
m<_n-2. If m-n-1, the result is still valid since by direct calculation we get an
equation in which the numerical coefficient is even larger than that in (21).

When m> n, we select among k [(n 1)/2], [(n + 1)/2] the first one and from
l=[m/2], [m/2] + we choose the second to obtain (22). For n--2, only the + sign
and (1, 1)-disconjugacy are acceptable.

Let Cm, be defined by the numerical coefficient in (21) or (22), according as m< n
or m> n. Theorem 7 may be stated also as follows:

THEOREM 7’. In order that yn)+py=O be disconjugate on a, ), it is necessary that
both y(m)_+_ Cm,(X__a),--mp(x)y=O be disconjugate on [a, ) and sufficient that one of
ym)+C-m(X--a)"-mp(x)y=O be disconjugate on the interval (for m--2 take only +
sign).

Theorem 7 improves known results for n_>4 but is worse than those for n= 3,
m 2. Obviously the numerical constants in Theorem 7 are not the best possible. To
estimate how good these constants are, we may compare the constants in the necessary
and the sufficient conditions of Theorem 7’. For n > m, for example,

Cm, [(m-1)/2](m-[m/2l)(m-[(m-1)/2])
Cn-m [(n+ 1)/2](n-[m/2])(n-[(m-1)/2])

and the distance between this ratio and give an idea how far are our results from the
optimum.

When the sign of p and the parities of m and n are known, we can obviously get
specific results which are better than the last theorem.

We can compare by similar methodyn+py=0 andy-py=O. If n is odd, these
equations are adjoint and they are disconjugate together. However when n is even we
obtain a nontrivial result. Following the proof of Theorem 7 we take in (23) l- n/2 and
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k=n/2+ if (- 1)n/2-p<0 and l=n/2+ 1, k=n/2 if (- 1)n/2p>0. We obtain
THEOREM 8. Let y(2r)+py=O be disconjugate. If (-1)rp-<0, then y(2r).-py=O is

disconjugate too. If ( 1)rp > O, then y(Zr) ((r- 1)/( r+ 1))py 0 is disconjugate there.
For 2r=4 this result is far from being strict: We know that y(4)+Ax-4y=O is

disconjugate on (0, o) for 0_<A _< while y4).-Ax-4y=O is disconjugate for 0_<A _<

9/16.
4. Estimates of solutions.
THEOREM 9. Suppose ( 1)-kp <_ 0 and (1) is (k, n k)-disfocal on a, b and let

yk_ (x,b) be the unique solution of (1) which satisfies the boundary conditions (11)_ . If
I1- n/2l>lk- n/21 and (- 1)"-tp(x ) <_ O, then the corresponding solution Yt- (x, b) of (1),
(11)_ satisfies (5)t and

(24) 0<
Y’-l(X’b) <_ Yk-l(X’b)
),-,/(x-a (l 1)’ (x-a l/(k-1)!

1)p_ dp yt_,(x,b) k+p-1
(25) xP (x-a)’-l/(l-1)’

l+p- )- ( tXP (x--a)g-1/(k 1)!

on[a,b].
In fact, we have already proved (24). In the proof of Theorem 2 it was seen that

u(x)=y(x)/[(x-a)g-/(k 1)!] and v(x)=fi(x)/[(x-a)t-l/(l 1)!] satisfy O<_v(x)
<_u(x). If II-n/21>lk-n/21 and we replace in the proof of Theorem 2 (n- )/(n ) (or
(,- 11)/( ’_-11)) by the smaller number 1, we obtain (24) for the solutions yk_l, Yt- of (1).

To prove (25), we need an extension of Theorem 1.
THEOREM 10. a) For q--0,... ,l, p--0,..., n- 1-- we have

(26) (- 1)(p-q)+
0p (- 1) gt, ,-t(x, t)

where i+ max(i, 0 }.
b) Ifk> 1, then for q-O,... ,1, p-O, ,n-1- 1, the ratios

(27) (-1)p-q)+ Oxp -’

(_ 1)(p_q)+ 0P (--1) gt, n_t(x,t)
OxP X ’i-l---i;-- -- i-n--l’-q-1increase from (,+ q)+)/( q)+) to ( )/(t+ ) as x varies from a ton--I n--I n--I

l+(p-- k+ (p-q)+- (p-q)+-
X

Once we know Theorem 10, it is easy to prove (25). Recall that u=yk_(x,b)/
[(x--a)k-l/(k 1)!] satisfies (13) and v:yt_/[(x-a)-/(l 1)!] satisfies a similar
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integral equation. Differentiation of (13) yields

(28) u(P)(x)=fabOP ( (-- 1)"-g }xp (t-a)"-’ g, n_:_ {(_(x--a)k-’(t a) n-k
p(t))u(t)dt.

Equation (25) follows immediately if we apply Theorem 10(b) with q-1 and the
inequality u_> v> 0 to (28).

Proof of Theorem 10. In [1, Thm. 1] it is shown that if for some j, k, j>_k>_O, a
function y fulfills

(29) y(a),..., y(/- l)(a)_>0, (-1)J-ky(;(x)>_O on [a, o),
then

(30) -->0 on [a,( 1)J-k(y/(x a)*)(j-’)

Equation (26) is a particular case of (30) with k=l-q, j=l-q+p and y(x)=
(- 1)n-t+P-(P-q)+gl, n_l(x,t ). Indeed, (29) holds since y(a)= --y(t-q-1)(a)--O and
(- 1)J-’y()- ( 1)n-l-(p-q)+gIl,+nP-q) is positive by (7), either if p-q>_O or p-q<O.
Here we used l<q, l+p-q<n- 1. Consequently, by (30),

0<_(-1)i-*(y/(x-a)*)(i-*) --(--1)P(( 1) n-l+p-(p-q)+ gl, n_l,/(x--a)l-q)(p)

(-- 1)(P-q)+ 0 p )l-q
)Xp ((--1)n-lgl, n_l/(X--a )

and (26) is proved.
The proof of part (b) makes use of the identity

=x y.

This equality between two differential operators of orderj may be verified, for example,
by applying both sides to the functions x, < <.

We return now to the monotony of (27). If

(32) OP OP )k-q+lOxP(gk,n-k/(X--a)k-q)/xP(gk-l,n-k+l/(X--a )
is not monotone, then there is a linear combination

0 p 0 p )k-q
OXp ( gk-l,n-k+l/(X--a)k-q+l) + CxP ( gk,n-k/(X--a )

with two zeros in (a, ). When we multiply this combination by (x-a)p-q+k, (p-q
+ k>_p>_O), we see that the function

(x--a)P-q+k ( --- )P(x--a)-(k-q)((x--a)gk_l,n_k+l +Cgk,n_k)

has two zeros in (a, o) and at least (p-q+ k)+ (q-p)+ zeros, hence not less than k
zeros, at x a. Consequently, its (k q)th derivative, (q__< 1< k),

-X (x--a)p-q+* - (x--a) -(*-q)h(x),
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changes its sign at least twice in (a,o). But according to (31) this means that
(x-a)P(d/dx)k-q+Ph(x) changes its sign twice in (a, o) while we have seen in the
proof of Theorem that h(x)-(x-a)gk_,n_k+ +cgk, n_ and its derivatives cannot
have such zero distribution in (a, ). This proves the monotony of (32), and in turn
establishes Theorem 11.
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ASYMPTOTIC INTEGRATION OF LINEAR DIFFERENTIAL
EQUATIONS SUBJECT TO MILD INTEGRAL CONDITIONS*

WILLIAM F. TRENCH"
Abstract. Sufficient conditions are given for a linear differential equation of order n to have a solution

which behaves asymptotically like a given polynomial of degree < n. The integral smallness conditions on the
coefficient and forcing functions are stated largely in terms of ordinary (rather than absolute) convergence,
and the manner in which the solution behaves like the given polynomial is specified precisely.

!. Introduction and main theorem. We study the behavior as o of solutions of
the scalar equation

(1) x)+P,(t)x-’)+ +Pn(t)x=f(t), > 0(n---> 2),
where P,...,P,, f, and x may be complex-valued. We regard (1) as a perturbation of
the equation

(2) y<")-0,

and give conditions which imply that (1) has a solution x0 which behaves for large like
a given polynomial p of degree < n. Although this problem has already received much
attention, we believe that our results are of interest because we specify bounds on the
differences x(or)--p(r) (O<_r<_n--1) more precisely than is usually the case, and our
integral smallness conditions on PI,...,P,, andf are stated largely in terms of improper
integrals which may converge conditionally rather than absolutely, as is usually re-
quired.

The main theorem is stated and proved in 2. Section 3 contains corollaries and
examples. Section 4 is an appendix which contains the proof of a lemma used in 2.

2. The main theorem. Throughout this section, p is a given polynomial of degree
< n. For convenience below, we rewrite (1) as

(3) x(") +Mx=f
where

n

Mx- PkX(n-k),
k-l

and introduce the new unknown

(4) h-x-p.

Since p’)-0, it is obvious that x is a solution of (3) (and therefore of (1)) if and only if
h is a solution of

(5) h(’- -Mh-g,

where
n

(6) g- --f+Mp- -f+ E PkP(’-k)
k:l

*Received by the editors August 11, 1982, and in revised form February 10, 1983.
Department of Mathematical Sciences, Drexel University, Philadelphia, Pennsylvania 19104.
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Thus, g may be regarded as a measure of the extent to which p, a solution of the
unperturbed equation (2), fails to be a solution of the perturbed equation (1).

The following is our main theorem.
THEOREM 1. Let P,’",Pn and f be continuous on (0, ), and let g be as defined in

(6), where p is a given polynomial of degree <n. Suppose the integral f tn-m-g(t)dt
converges, and

(7) sn--m- lg( s ) Ks- O((/)),

where m is an integer_in (0, 1,. -,n- ) and q is continuous, positive, and nonin__creasing
on [T, ) for some T>_O. Also, if mvO, suppose tvq(t) is nondecreasing on [T, z) for
some 7< 1. Assume also that

(8) IP,(t)ldt<

and that, the integrals f Pk( )dt (2 <_ k <- n converge and satisfy

(9) Pk(s)ds--o(t-k+l), 2<_k<_n.

Finally, suppose also that

(10) s’-2q(s) Pk(,)d, ds-o((t)), 2<-k<-n.

Then (1) has a solution xo such that

(11) x(or)( --p(r)( ) + O( dp( )tm-r), O<_r<_n--1.

Moreover, if (7) holds with "O" replaced by "o", then so does (11).
Remark. Under the stated assumptions on q it is clear that if lim/ q(t)> 0, then

it may as well be assumed that q= 1. In this case, of course, (7) holds with "O"
replaced by "o," and therefore so does (11).

By way of motivation, we first outline the proof of Theorem 1.
From the remarks preceding the statement of Theorem 1, x0 is a solution of (1)

which satisfies (11) if and only if

Xo=p+ho

(see (4)), where h0 is a solution of (5) such that

(12) h(or)(t)-O((t)tm-r), O<_r<_n-1.

We will show that (5) has a solution with these properties by exhibiting h 0 as the fixed
point of a contraction mapping on the Banach space H(to) of functions h in
C,-l)[ to ) such that

(13)
with norm

(14)

h(r)(t)-O((t)tm-r), O<_r<_n-1,

(
"-’

I}hll= sup q,(t))-’,
t>--to r-0
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The contraction mapping will be obtained by converting (5) to an integral equation
whose form is dictated by the integrability conditions that we have imposed. To
guarantee that the mapping which we define in fact has the contraction property, we
must assume that o is sufficiently large, and the fixed point (function) h o is at first
defined only on [to, o). However, this presents no difficulty, since our assumptions
clearly guarantee the continuability of any solution of (5) over (0, o).

With g as in (6), let

(15) G(t)_ft(t-s)-’(-’-i-ji g(s)ds if m-0,

or

f,
m-- )n--m--I(16) G(t)=

to (m-l)!
dX

(n-m-l)!
g(s)ds ifm-1,...,n-1,

and notice that our integrability condition on g implies that the improper integral in
(15) or (16) converges, by Dirichlet’s theorem for improper integrals.

Now define the transformation L by

(17) (Lh)(t)-ft (t-s)n-’
(- J’ji (Mh)(s)ds if m=0,

or by

(18) (Lh)(t)--ft(t-A)m-’ go (X--S)n-m-1

(m--1)!
dX

(n-m-1)! (Mh)(s)ds if m-1,.--,n-1.

We will show that the mapping -defined by

(19) ffh- G+Lh

maps H(to) into itself, and is a contraction mapping if o is sufficiently large. It will
then follow that has a fixed point (function) h o in H(to) such that

(20) ffho-h o

If m-0, then (15), (17), (19), and (20) imply that h o satisfies the integral equation

(21) ho(t) (t-s

(n- 1)! [Mh(s)+g(s)] ds.

If m-1,...,n-1, then (16), (18), (19), and (20) imply that h 0 satisfies the integral
equation

{22) ho(t)=f,t(t-’)m-’
to (m-1)!

(X_s)"-’
dX

(n-m-1)! [Mh(s)+g(s)] ds.

In either case, routine differentiation shows that h 0 satisfies (5). Since hoH(to), it
automatically satisfies (12).

From these observations it should be clear that the proof reduces to showing that
the mapping -is a contraction mapping of H(to) into itself if o is sufficiently large,
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and that (12) can be replaced by

(23) hor)(t)=o(dp(t)tm-r), O<_r<_n-1,

if (7) holds with "O" replaced by "o." The following lemma is crucial for this proof.
LEMMA 1. Let q, m, and 3[ be as in Theorem 1, and suppose w C[ to, oo) for some

to>_. Suppose also that foo tn-m- lw( ) dt converges, and

(24) S n-m- IW(S ) ds O(( )),

and define

(25) p(t)=sup
-_>t

Then the function v defined by

(26) V(t)=ft(t--s)
n-I

ifm--O

or by

(27) v(t)=f (t--x)m-l
to (m-1)! fh (k--S)n-m-1dX (-__’2S 1)! w( s ) ds ifm- l,2,. .,n-1,

is in C(n)[ o, ), and it satisfies the inequalities

(28) (t) 1-< o( to )q(t)tm-r
( n rn 1)! 1-Ijm__-]( j--)’ )’

p(t)q(t)
(29) Ivm)( )l<- ( n-- m-- 1)!’

O<_r<m--1,

and

(30) 2O( )q( )t"-
(n-r-l)!

m+ <_r<_n-- 1.

Moreover, if
(31) lim O(t)-O,

t---, m

then

(32) v(r)(t)--o((t)tm-r), O<_r<_n 1.

We leave the proof of this lemma for the appendix ([}4). Since the lemma would be
essentially trivial under the stronger assumption that foo t-m-llw(t)ldt<o, it is im-
portant to observe that we are not assuming this. Notice that the lemma implies that
the function v defined by (26) or (27) is in H(t0).

Proof of Theorem 1. First notice that, because of (7), Lemma with w=g implies
that G, as defined by (15) or (16), is in H(to) for any to>0. The next step, then, is to
show that Lh (see (17) or (18)) is defined and in H(t0) whenever h H(to). We start by
showing that the improper integral in (17) or (18) converges if h H(to). To this end,
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we first consider the integral

(33) S(t;h)= sn-m-l(Mh)(s) dS- 2 sn-m-lek(S)h(n-k)(s)ds"
k--=l

We will show that the integrals in this sum converge, and estimate them. In the
following, let s_> t_> 0.

From (14),

Sn-m-’Pl(s)h(’- )(s)[--< [[h[I IP,(s)lq(s).

Therefore, (8) and the monotonicity of imply that the first integral on the right of (33)
converges, and that

(34) s"-m-p(s)h("-l(s)ds -<llhllq,(t) [el(S)lds.

If 2<_k<n, then integration by parts yields

(35) sn-m-pk(s)h(n-l)(s)ds-tn-m-lh(n-k)(t ) P(2t)d)t

"[- [sn-m-lh(n-k)(s)]’ ek(k)dk ds.

To justify this, observe that

lim --h("-l( P(X ) dX-O,

because of (9) and (13), and the integral on the right of (35) converges absolutely
because of the convergence of the integral in (10) and the inequality

(36)
which follows from (14) and straightforward manipulation.

This proves that J(t; h) converges. Moreover, from (10), (14), (34), (35), and (36),

IJ(t; h )l<_llhll,l,( )o( ),(37)
where

k-1

+(n-m)(,(t))- s-,(s) .(X) dX ds.
j=2

Now we can apply Lemma with w-Mh and v- Lb. (Compare (26) and (27) with (17)
and (18).) Then (25) becomes

p(t) sup (( r))-llJ( r; h )1,

wNch, with (37), implies that

(38) o(t)llhll supo(,)-o(1).
rt
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Now (28), (29), and (30) with w-Mh and v-Lh imply that LhH(to) and

Ilthll<_gllhll sup o(),
"r>t

where K is a universal constant.
Since G is also in H(to), the transformation -defined in (19) also maps H(to) into

itself. Moreover, if h l, h 2 H(to), then

I[Shl-6Sh2ll=[]t(h-h2)ll<_gllhl-h2ll sup o().
y-->t

Therefore, is a contraction mapping if o is so large that

sup o()< l/K,
z_>to

which we now assume. (Recall that o(t)-o(1).) Consequently, -has a fixed point
(function) h 0 which satisfies

(39) ho-G+Lho,

which can also be written out as (21) if m-0, or as (22) if m- 1,. .,n- 1. Since (38)
implies (31), Lemma with w-Mho and v Lh o implies that

)(r)( )tin-r), O 1.(40) (Lh o t) o((t r n-

Moreover, if we can replace "0" by "o" in (7), then Lemma implies that

(41) a(r)(t)--O((t)tm-r), O<_r<n--1.

But (39), (40), and (41) imply (23); that is, in this case we can replace "O" by "o" in
(11). This completes the proof of Theorem 1.

3. Corollaries and examples. There are applications of Theorem in which (8) is
the only integral smallness condition on functions appearing in (1) which requires
absolute convergence. The following corollary illustrates this.

COROLLARY 1. Theorem remains valid if (10) is replaced by

(42) ft (S)s ds-O(q(t)).

Proof. If (42) holds, then (9) implies (10).
The following corollary is of interest if (42) does not hold.
COROLLARY 2. Theorem remains valid if (1 O) is replaced by

(43) s ’-2 P,(,)d, as<m, 2<_k<_n.

Proof. Since q is nonincreasing, (43) implies (10).
COROLLARY 3. Theorem remains valid if (1 O) is replaced by

(44) t-’lP(t)ldt<, 2<_k<_n.

Proof. We will show that (44) implies (43). If (44) holds, then the function

Q(t)=f[e(s)lds
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is defined on (0, ), and

(45)
Integration by parts yields

Qk(t)--o(t-’+l).

s-t2sk-ZQk( s ) ds-- k iQ(s )
tl k-1 tl

From (44) and (45), we can let 2 o here and conclude that

s )

Therefore, (43) holds, since

To see that (43) is weaker than (44), notice that the function

Pk(t)=t-+l/2sint
satisfies (43), but not (44).

Example 1. Hartman 1, p. 315] has shown that if Pl,’" ",P C(0, ), and

(46) t-’+lP(t)ldt<, <_k<_n,

for some a >0, then the homogeneous equation

(47) X")+Pl(t)xt"-l)+ +P,(t)x=O
has a fundamental system Xo,X,’",Xn_ such that

tv-r[1 +o(t-)]/(v--r)!, O<r<_v,
(48) xr)(t)-- o(t"-r-), v+ <_r<_n-- 1.

The author [2] showed that this conclusion remains valid with (46) replaced by the
assumption that

f t le (t)ldt<
and the integrals

tk-+P,(t)dt, 2<_k<_n,

converge, perhaps conditionally. The same conclusion can be obtained under the still
weaker assumptions that

f le,(t)ldt< 
and

(49) Pk(s)ds-o(t-’+’-’), <_k<_n.
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To see this, let v be any integer in {0,1,...,n-I} and let p(t)-tu/p!. Then the
function g in (6) becomes

and (49) implies that

n lu-n+k
g(t)- Pk(t)(t,_n+k),,k=n_,

’g( s as- o( )),

with m=max(0,u-[a]} and dp(t)=tu-m-. Since (49) implies (43), Corollary 2 implies
that (47) has a solution x, which satisfies (48).

Corollary 2 also implies that if (49) holds only with "O" (rather than "o") on the
right, then the stated conclusion also holds with "O" rather than "o" on the right of
(48).

Example 2. Consider the equation

(o) y() + It--u+ q(t)sin t] y- -n+ lb (t)COS t,

where u is an integer in (0, 1,. .,n- 1) and q is positive and continuously differentia-
ble on (0, o), q/< 0, and lim t---, o (t) 0. Here P1 Pn- 0 and

(51) P,(s) ds- O(t-n-u+ l(t))- o(t-n+ 1),

which implies (8) and (9), and the function g defined by (6) is

g(t)--t-n+’q(t)[t-p(t)sint--cost],

so

(52) fts"- ’g(s) ds- O(q(t))

(and the convergence is conditional if fo q(t)dt-), provided p is a polynomial of
degree _<u. This implies (7) with m-0. Therefore, Theorem implies that if p is any
polynomial of degree < ,, then (50) has a solution x0 such that

provided

(53)

x(or)( --p(r)( ) + O( dp( )t-r), O_r<_n- 1,

f, s ) o( )),

since this implies (10), because of (51) and (52). However, (53) obviously holds for any
nonincreasing function q if ,>0. If ,-0 it holds, for example, if

q(t)- (1 +logt)
with ct > 1.

Example 3. Consider the equation

(54) y(") + It sin(e t)] y-O,
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where a is an arbitrary real number. By substituting s-log u it is easy to verify that

fts sin( e" ) ds- O(te-’ ),

where the convergence is conditional if a_>- 1. Therefore, (54) satisfies (8), (9), and
(43). For this equation the function g in (6) is

g( ) tp )sin( et ),
so if p is a polynomial of degree v <n- 1, then

ftsn- lg(s ) ds- O( n+a+v- ’e-t ),

which implies (7) with m-0 and

ck( ) t,++- e-t"
Therefore, Corollary 2 implies that (54) has a solution x0 such that

x(or)(t)--p(r)(t)+o(tn+a+-r-le-t), O<_r<_n--1.

Example 4. Corollary implies that the equation

t- /2 sin tY")+[t-"+/2sint]y-
(n-l)!

+t-/21gtcst

has a solution x0 such that

x(or)(t)--[1 +O(t-l/21ogt)]tn-’-’/(n--r 1)!, O<_r<_n 1.

To see this, observe that here Pl --P,--0 and

ftP,(s ) ds- O( t-"+ /2 ),

so (8) and (9) hold. Withp(t)-t"-/(n 1)!, the function g in (6) is

g( ) /2 log cos t,

so

ftg(s ) ds O(t-1/2 log t),

(with conditional convergence), which verifies (7) with m n- and

q(t)=t-l/Zlogt.

Since this q satisfies (42), Corollary implies the conclusion.

4. Appendix. Proof of Lemma 1.
Proof. From Dirichlet’s theorem, the convergence of the integral in (24) implies

that the improper integral in (26) or (27) converges. Therefore, v is well-defined on
[to, ) by (26) or (27), and

(55) l)(r)(t)--ft (t-S)n-r-1
(n-r-1)! w(s)ds, m<r<n-1.
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With

(56) Q(t)= sn-m-lw(s)ds,

(55) can be rewritten as

(57) v(r)(t)- (n-r-1)! -1
If m<_r<n-2, integrating (57) by parts yields

(58)

But

(59) d

sm-rat(S)ds,

v(r( )
n r-- 1)! Q(s ) - -----| S m-r

n--r--I

<--t m-r’7" 1--
s

n--r--1

m <_r<_n -1.

+(r--m)sm-r-1

if s_> and r_> m. Since

(60) IQ(s)l<_p(t)q,(t) if s>_t

(see (25) and (56)), (58) implies (30) for rn + <_r<_n-2. If r= n- 1, integrating (57) by
parts yields

(61) v("-(t)-tm-n+Q(t)+(m-n+ 1) sm-"Q(s)ds.

If m<n- 1, this and (60) imply (30) with r--n- 1. Setting r--m in (58) and (59) and
invoking (60) yields (29) if m<n-1. If m--n-1, then (60) and (61) imply (29). If
O<_r<_m- 1, then we can differentiate (27) and substitute (55) with r-- m into the result
to obtain

v(r)(t)_ft(t--)
m-r-1

v(m)()dX O<r<m-1
to (m--r--1)!

Therefore, from (29),

(62)

[v(r(t)l< ftl m--r--1

--(n--m--1)!(m--r--1)! (t-X) p(,)(,)dX, O<_r<_m-1.

Since p is nonincreasing and rq(t) is nondecreasing, this implies that

P(t)q(t)t fti([/9(r)(t)[--< (n--m-- 1)!(m--r--1)! t-)m-r-l-’/d" O<_r<_m 1.

Replacing o by zero and integrating repeatedly by parts now yields (28). (Here we need
the assumption that ,< 1.)

From (29) and (30), (31) implies (32) for m<_r<_n-1, if O<_r<_m-1, then (62)
and the monotonicity properties of p and q imply that

(63) [v(r)( )l <- tm-r- +v( ) ft(n-m--1)i(m--r--1)! P(A)X-Vd" O<_r<_m 1.
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But

to

<_ ftp( ),_v d,+ p( l)

if > 0. This and (63) imply that

li--- t-’+(,l,(t))-lv(t)[<_ t(t)
t--,o (m-r-1)!(n-m-1)!(1-’)

Since this holds for all t>_to, (31) implies (32) for O<_r<_m-1. This completes the
proof of Lemma 1.
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AN EXISTENCE THEOREM FOR A BOUNDARY VALUE
PROBLEM RELATED TO THAT OF FALKNER AND SKAN*

BRUNO GABUTTI"
Abstract. We consider z’"+ zz"+ Z’2- =0 together with the initial conditions z(0)-z’(0) =0, z"(0)= k

for any given kR. We establish the existence of a value/<0 such that z’(o) 1. It is shown that if k</
then z’ becomes unbounded, while if k>/ then limt_.z’(t)=l and z(t)=t+k+O(t-) as tends to
infinity.

(1)

1. Introduction and main results. In boundary layer theory the equation

f’" + xff" + fl(1-f’E ) + .rf" O

is called the "equation of similar profiles" [11, p. 245]. The appropriate boundary
conditions for this equation are [11, p. 246]

(2) f(0) =f’(0)=0,
(3) f’(o) 1.

This boundary value problem, which arises in Falkner-Skan approximate treatment of
the laminar boundary layer in fluid dynamics, has been studied by several authors in
the last forty years. Theorems of existence and uniqueness [3], [4], [5], [6], [13], [15] and
asymptotic behavior of the solutions [8] were established twenty years ago. A resum of
the main results is given in [7, Chapt. 14, Part III]. For the physical significance of
(1)-(3) we refer to [12].

The above-mentioned results consider solutions of the boundary value problem
(1)-(3) together with the additional restriction

(4) 0<f’< 1.

This assumption, which was originally suggested by physical considerations, has been
recently discussed.

Rigorous results about the solutions of (1)-(3), which do not take into account (4)
have been established in recent years by Hastings [10] and Troy [14].

From a purely mathematical point of view the results that we are now going to
prove can be connected to the similar ones of Hastings (see [10, Thm. 2]).

THEOREM A. Suppose f is a solution of (1) with a 1, "/=0 such that f(O)=f’(0)- 0.
Then fsatisfies (3) if either of the following conditions is satisfied:

(i) fl< 0, f"(0) 0;
(ii) l_<fl<0,f"(0)>k,(fl), where

k,()=inf{kliff"(O)=k, then for some Tk>O, f’(Tk)=O }.
Hastings also gives the conditions for which such a solution satisfies f’(t)> for

some value of t.
Actually we can show that, at least in the case a 1, /3--- 1, 3,=0, the value

k,(- 1) can be characterized as the solution of another boundary value problem related

*Received by the editors November 30, 1982, and in revised from April 1, 1983.
tInstituto di Calcoli Numeric,_’, Universita’ degli Studi di Torino, Italy.
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to (1) and stated by (5)-(7) of Theorem 1. Indeed, from Theorem A and from Theorem
2 below it follows immediately that k.(-1)--y"(0), where y(t) denotes the unique
solution of (5)-(7).

THEOREM 1. The problem

(5) y"’ +yy" +y’2--1=O,
(6) y(0)--y’(0) =0,
(7) y’()=-

has a unique solution; that is, there exists one and only one function y(t) satisfying the
differential equation (5) on (0, ) and the boundary data (6), (7). This solution also
satisfies

(8) <y(t)<0, t(0, ),
(9) -1 <y’(t) <0, t(0, ),
(10) y"(t) <0, t [0, o).

Furthermore

2-<y"(0)< 1.(11)

The boundary value problem (5)-(7) seems to be of some interest in boundary
layer theory. In [11, p. 251] it is stated that methods similar to those of Iglisch [4], [5]
show the existence and uniqueness of solutions of the equation of similar profiles, with
a--- 1, /3>0, -{ arbitrary, subject to the boundary conditions (2), (3).and the addi-
tional condition (4).

Now, by setting y(t)=-f(t) the boundary value problem (5)-(7) reduces to that
associated with the equation of similar profiles (1) with a-- 1, /3 1, ,-- 0 and
boundary conditions (2), (3). As a matter of fact the proof of uniqueness does not
require the hypothesis y’(t)> (see Lemma 3 below) and arguments similar to those
used in the proof [10, Thm. 2], show that the assumption y’(t)< 0 can also be dispensed
with.

In the present paper the investigation of the problem (5)-(7) is mainly pursued
because of its mathematical interest in view of the study of (12) below. This is also an
example of an equation of similar profiles which arises by specifying a--1, /3=- 1,, 0 in (1). Indeed we consider the following initial value problem:

(12)
(13)

Z’" -- ZZ" + Z’2- =0,

z(O)=z’(O) =o, z"(o)

where k is an arbitrary real number.
The unique solution y(t) of (5)-(7) plays an important role in the study of the

behavior of the solutions of (12)-(13).
In fact we shall see that this solution separates the unbounded derivative solutions

of (12)-(13) from solutions which satisfy

(14) lim z’(t) 1.
t--,
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More precisely we canprove"
TI-IEOREM 2. Let k=y"(0)<0 where y( is the unique solution of (5)-(7). Then:
(i) When k<t, the unique solution of (12)-(13) is defined only in a finite interval

0, te), re>0; moreover z, z’, z" are unboundedfor t--, e.
(ii) When k(fc, 0), the unique solution of (12)-(13) has bounded derivatives z’(t) on

[0, ). The slope z’ first decreases and has a relative minimum, after which it increases

and has a relative maximum for some value of where z’( ) > 1. (Hence z’ has one zero in

(0,t).) After this z’ decreases monotonically and satisfies (14). See Fig,. where the
solution z corresponds, to k- 0.5.

(iii) When k>_O, the unique solution of (12)-(13) has bounded derivative on [0, ).
The slope z’ is increasing up to a maximum point z’(t*)> 1; then it decreases monotoni-
cally and satisfies (14). In Fig. we report z for k 0.5.
Furthermore, in cases (ii) and (iii) we have

(15)
k 2

z(t)-t+k- 1+T t-+o(t-).

FIG. 1. The points to, tl, 3, refer to the proof of Theorem 2.

Remark 1. The boundary value problem (12)-(14) is a special case of (1)-(3).
This suggests the existence of possible results, analogous to those of Theorems

and 2, for the problem (1)-(3) with a and some/3<0; however we do not consider
this more general situation. Notice also that in the case a= 1,/3-- 1, =0, (1) can be
integrated twice to yield a first order Riccati type equation (see (21) below). Some of
the arguments of this paper make use of the integrated form, so that it is not clear that
the detailed behavior in case (ii) above can be generalized to other values of/3. in the
affirmative case it should be interesting to know if the results established by Iglisch and
Kemnitz in [6] can be obtained without the additional condition (4). In fact (12) is one
of the class of equations considered in [6], where the existence and uniqueness of
solutions of (1) with a 1,/3< 0 subject to (2)-(4) is rigorously treated. Note also that
the proof of Theorem 2 does not depend on condition (4).

From the physical point of view the solutions which appear most interesting seem
to be those established by part (ii) of Theorem 2. In this case we have z"(0)<0,
z’(m)= and the solutions of (12)-(13) are called solutions with "reversed flow" (see
[10l).
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All solutions of (12), (13) shown in parts (ii) and (iii) of Theorem 2 satisfy (14) and
exhibit so-called "overshoot"; i.e., the derivative of the solution is greater than for
some >0. The physical significance of these solutions is controversial. For a discussion
about this see [14]. Here we remark that from a mathematical point of view our result is
in agreement with that established by Stewartson in [13]. He proves that if f is any
solution of (1) with a= 1, ,=0, satisfying (2), (3), and if/3</30= -0.1988, then there
exist values of >0 for which f’ shows "overshoot".

Remark 2. Parts (ii) and (iii) of Theorem show the existence of infinite solutions
of (1)-(3), with a-1, /3--1, ,-0; each solution being characterized by f"(0)>/,
/<0. Therefore, at least for/3- 1, the boundary conditions (2)-(3) are insufficient to
specify an unique solution of (1) with a and 3’ = 0. This was evidenced by numerical
experiments discussed in [9].

It is also interesting to compare the result stated in Theorem 2 with that of Troy
[14]. By using previous results of H_astings [10], Troy first claims that there are values of
/<0, /<0, such that if f"(O)-k and fl-/ then there are solutions of (1)-(3) with
a- 1, , 0, such that

(16) -l<f’<l on(O,),

1-f’,dot-l-2exp --dlt
for some d and d0>0.

Troy then states the following theorem.
THEOREM B. There is a decreasing sequence (flj),j i of negative numbers such that

for each j N, if fl flj then the solution of (1)-(2) with tx 1, / 0 andf’(O) l satisfies
the boundary condition (16) as t-o, where do, d are replaced by some 6j, pj, jt.
Furthermore for each jt them are exactly j distinct positive values of for which

We recall also (see [7, p. 534]) that if fl< 0 and if some solutions of (1) with ct 1,
7- 0 exist, then these solutions satisfy either (16) or

(17) -f’d2t2#

as t--, c, where d2>O is a constant.
Therefore, if we denote by fl the solution of (1)-(3) with ct 1,/3=/31, ,=0, from

Theorem B and Theorem 2 it follows that fl’ has the same qualitative behavior as all
solutions z’ of (12)-(13), with k (/, 0), and that f and z have different behavior as

o. As a consequence of these observations we conjecture the existence of solutions
of (1)-(3), with a= 1,/3< 1, 3,=0, such that the curve g=f’(t) intersects the line g=
more than once and such that f’(t) tends to algebraically.

From the point of view of applications, the solutions found by Troy are more
important since the approach, as t- , of their derivatives to is exponential. How-
ever our results can be used to complete the mathematical description of the model of
Falkner and Skan.

2. Proofs. Before proving any theorems we consider a brief remark about the
regularity of solutions of (1), (2). We observe that the usual class of classical solutions
of (1), (2) is C3(0,t,)f") C2[ O,t,), t, >0, but in some proofs we explicitly use solutions
with higher order derivatives. Without essential restrictions we can assume that any
solution of (1), (2) can be extended to the class C[ 0,t.) for some t. >0. This can be
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readily seen by rewriting (1) in system form (as an example see (23) for the case
/3 1) and by using standard results of the theory of ordinary differential equations.
See, for instance, [2, Thm. 8.1].

We prove Theorems and 2 by using several lemmas.
LEMMA 1. The boundary value problem (5)-(7) has at least one solution which

satisfies (8)-(10).
Proof. The proof is similar to that of Hartman [7, Thm. 6.1, p. 521]. As a

preliminary to proving existence, let us observe that if a solution y(t) of (4), (6) exists
then it must satisfy the inequalities

(18) l_<y’(t) <0, t[O, ),
(19) y"(t)<_O, t[0, ).

These are weaker forms of (9), (10), which will be proved later.
It is straightforward to verify that (18) holds. Indeed, any relative extremum of y’

on (0, ), say at 0, is a relative maximum if [y’(t0)]> and a relative minimum if
[y’(to)]2< 1. This follows directly from (5). Hence if y’(t)<- for some then using
(7) we find that the absolute minimum of y’ on [0, z] is simultaneously a relative
maximum of y’, a contradiction. This establishes the left-hand side of (18).

Similarly if y’(t) is positive at some point but y’(t)> for all then we obtain the
contradiction that the (positive) absolute maximum of y’ on [0, o] is, by (5), simulta-
neously a relative minimum. But if y’(t0)-- 0 for some to> 0 then y’(t) is strictly
positive for some t. If y"(to)vO this follows from the mean value theorem, while if
y"(to) --0 it follows from a two term Taylor expansion ofy about o and the fact that in
this case y’"(t0)= by (5). We may assume, without loss of generality, that y"(t0)>0.
Hence (in order to avoid the above contradiction stemming from y’(t)> for all t) the
curve Y--y’(t) must intersect the line Y--- 1. We now show that the intersection cannot
occur at two different points. In order to verify this assertion we integrate (5) twice
taking into account the initial condition (6)

(20) y" t-yy’ + k,
2 y2

-kt,(21) Y’=2 2

where k=y"(0). Suppose, for the purpose of obtaining a contradiction, that there exists
a t >to such that y’(t)= 1. Without loss of generality, y"(t)<_O. From (20) it follows
that k+to>_O and k-y(t)+t<_O; since t>t0>0, we have y(t)>_k+t>_O. By
evaluating (21) at t--t and using the last inequality, we get <_-k2/2, which is a
contradiction. This completes the proof of (18). Inequality (19) follows immediately.
Equation (5) and initial conditions (6) imply y’"(0)--1; by assuming k_>0 we have
y’(t)>_O on an interval 0<t<t for some >0, but this violates (18).

A basic lemma which is required for our existence proof is the following (see [7, p.
520]; for the definition of egress, ingress and strict egress point see [7, p. 37] or [1]).

LEMMA 2. Let u, f be d-dimensional vectors andf(t, u) be continuous on an open (t, u)
set F such that solutions of initial value problems associated with

(22) u’=f(t,u)

are unique. Let F0 be an open subset of F with the properties that all egress points from F0
are strict egress points and that the set F of egress points is not connected. Let F denote
the set of ingress points of F0 and let S be a connected subset of F0 U F U F such that
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SN(FoUFi) contains two points (t,u) and (/2,U2), for which solutions us(t ) passing
through (ts, us)for j= 1,2 leave Fo with increasing at points of different (connected)
components of Fe. Then there exists at least one point (to, Uo) in S N(Fo U Fi)such that the
solution Uo(t) of (22) determined by Uo(to)--uo remains in Fo on its (open) right maximal
interval of existence.

In order to apply Lemma 2 we rewrite (5) in system form. Let u =y, Uz--y’,
u =y"’, then u =y’"- 1-u-uu3. The system equivalent to (5) is

(23) u-u2, u2 u3, u 1-UlU u
We choose F= {(t,u,u2,u3)lt, u,uz,u i). Inequalities (18), (19) suggest that

ro= ((t,Ul,U2,U3)lt,u, -,- <u2<0, u3 <0).
To determine the ingress and egress points, it is convenient to define the following
boundary sets associated with F0:

’= {(t,Ul,U2,U3)lt,u [,u2--0, u3<0 }
I’2- ((t,u,u2,u3)lt,u ,- <u2<0, u3-0},
i" {(t,u,u2,u3)lt,u ,u2-- -1,u3<0},
F4= ((t,u,,u2,u3)lt,u, ,u2=-l,u3=-0),
’5-" ((t,Ul,U2,U3)lt,Ul R,U2=0, U3--0)"

The points in F- F are ingress points, since in F u- u < 0.
The set of egress points is Fe=F2 U F3. If (t, Ul,U2,U3) is in F3, then u-u3<0 and,

hence, is a strict egress point. For (t,U,U2,U3) in I"2 we have -1 <u2<0 and u3-0;
from (23) it follows that u >0, so F2 consists of strict egress points.

The set F4 is composed of solutions of Ul-x + c (c- constant); therefore, points in
F4 are neither egress nor ingress points.

For points (t, Ul,U2,U3) in F5, u;-1, hence the solution (Ul,U2,U3) through
(to, u0, 0, 0), o, uo N is not in F0 since u u 0 implies that u 2 > 0 for small It tol.

The character of F4 shows that F is not connected.
Let k be a fixed number satisfying -<k<0; define the set S-{(t, u l, u 2, u3)lt

0, u 0, u2 0, u k}; S is a connected subset of Fo W F W Fi.

The point (0, 0, 0,kl), where k is negative and small, is a strict ingress point of Fo
so, by continuity of the initial data, the solution of (23) with u(0)-u2(0)-0, u3(0)-k
leaves Fo through the component F2.

On the other hand, it will be shown that if k2<0 is large enough, the solution of
(13) with initial data u(0)-0, u2(0)-0, u3(0)-k2 leaves Fo through F3. To verify this,
we integrate the third equation of (23)

u3- t-UlU2-k- k2.

Since <u2_<0, so that -t<u <0 and u, u2_>0, we have

u3<-t+k2.

Hence, if k2 is sufficiently large and the solution of (23) through (0,0, 0,k2) lies in
Fo on an interval 0,t*) for some t*>0, then u3(t ) is less than a given negative constant
on [0, t*] and such a solution leaves F0 through a point in F3.

By applying Lemma 2, we obtain the existence of a point (0, 0, 0,) in S f-I(F0 tO F)
such that the solution (fil,fi2,fi3) of (23) with fi(0)-2(0)-0,/3-k remains in Fo on
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its right maximal interval of existence. By the structure of Fo, this fight maximal
interval of existence is necessarily 0, 0).

The solution (fil,fi2,fi3) is in F0 for t(0, o). This implies that the limit
limt_fi2(t ) exists and equals 1.

Suppose, for the purpose of obtaining a contradiction, that lim/_fi2(t)--fi2()>
1. Because of the structure of F2 and the third equation of (23), we have

lim fi; lim fi, fi3 lim ( fi 2 fi () >O.
t-- O l--- Or3 t-- Or3

Let T be sufficiently large so that -ftl(t)ft3(t)-ft2(t)+ l_>(1-fi())/2 for
t> T; thus a>(1 a2)/2>0, t> T. A quadrature gives

When tends to infinity in the above inequality we obtain the contradiction
lim/_fi2(t)- which proves that fi2(o)- 1.

This completes the proof of the existence of a solution of the boundary value
problem (5)-(7) and proves (9)-(10). After integrating (9) inequality (7) follows im-
mediately, completing the proof of Lemma 2.

LEMMA 3. The boundary value problem (5)-(7) has an unique solution which satisfies
(8)-(0).

Proof. First we observe that any solution of (5)-(7) satisfies (8)-(10). Suppose now
that there are two solutions (t), 2(t). If y 4Lv2 then we may assume, without loss of
generality, that y(t)>(t) on (0,t0) (for, if y(t)=--y(t) on [0,t,) for some t, >0, we
merely introduce a new independent variable rl-t-t,) and y(to)=yz(to) where 0<t0
<. Then (6) implies that y(t) >y2(t ).

The function r(t), defined by r(t)=y(t)-y2(t), has the property that r’ is positive
on (0, to) vanishes at 0 and o and therefore has a relative maximum at some point t in
(0, to). At t-t we have r’(tl)>0, r"(t)-O and r’"(t)<_O. However (5) leads to

r’"( t, ) r( t, ) y’( t, ) r’( t, ) y( t, ) +y( tl )]
By (9)-(10) and the fact that r(t)>0 on (0,t0), the right-hand side is positive whereas
the left-hand side is nonpositive. This contradiction implies that y(t)-=y(t). This
completes the proof of Lemma 3.

LEMMA 4. The value /=y"(0), which characterizes the unique solution y(t) of
(5)-(7), satisfies

(24) ----2 </_< 1.

Proof. The proof of the lower bound given by (24) is based on the following
property of the solution y(t)

(25) lim y"(t)-0.
t---- or3

In the proof of Lemma 2 we showed that the solution y(t), [0, ), cannot get out of
Fo through the boundary F. We now prove that the solution y(t) leaves Fo through the
component F4. In order to see this we assert that y(t) cannot leave Fo through F3.

Indeed, if limt_y"(t)>O then y’ would be unbounded and thus would violate (9).
This proves (25).
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We now return to the proof of the lower bound of/ by observing that inequalities
(8), (10) implyyy" >_0 for t(0, ); hence

(26) y’"< (y’)2

Using (10) we can introduce v=y’<0 as a new independent variable and then w= v’ as
a new dependent variable. Then (26) becomes

dw
W--<: --V2

By integrating this we find that

<2v3--2v(27) w:(O)--w2(v)_3
Next we observe that w(v( ))=y"( ); hence from (25) we have limt_w(v(t))=O. By
using this and limt_.v(t)= limt_.y’(t)= in (27) the left-hand side of (24) follows.

The upper bound can be obtained by using the further property of the solution
y(t) that

(28) y’"(t) >0, t[0,).
To prove (28) suppose, for the purpose of obtaining a contradiction, that y’"(to) 0 for
some to>0. Differentiating (5) twice we obtain

yV)+yy,,, + 3y’y" --0,

ytV) + 4y’y"’ + 3(y")2 +yy(V)- 0.

From (9), (10) it follows that yV)(to) = 3y’(t0)y’’(t0)< 0; therefore y"’(t0) remains
negative in a right neighborhood of to. Also y’"(t) is a nonincreasing function of for
t_>0. Indeed, a possible t>to, where ytIV)(t)=0 because yV)(t)=-4y’(t)y’"(t)-
3[y"(t)]2<O, would be a relative maximum for y"’. Thus limt_.y’"(t)=y’"()<O
which implies y"(t) unbounded; this contradicts (25) and proves (28).

Now, the function 1/2y,2_yy,, has as its derivative -yy"’ and consequently is an
increasing function of t. Hence y,2 >2yy" for t>0. It follows that w(v)= v’ satisfies the
differential inequality

An integration gives

dw 3v2

w2(O)-w2(v)>_v3-2v,

which for yields an upper bound for/ and finishes the lemma.
Lemma 4 completes the proof of Theorem 1.
Remark 3. A numerical approach to the computation of / shows that /=

1.08637
Proofof Theorem 2 (i). We first show that

(29) z"(t)<y"(t), z’(t)<y’(t), z(t)<y(t)

for t in the maximal interval of existence of z. From the assumptions of Theorem 2 we
know that the function z satisfies inequality (29) on an interval [0, to) for some to>0.
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By subtracting (5) from (12), we get

An integration leads to

z"-y"-k-I+z( y’-z’) +y’( y-z).

Suppose, z"(to)=y"(to). From (8), (9) it follows that at t=to the right-hand side is
negative while the left-hand side is zero. This contradiction shows that (29) holds on the
maximal interval of existence of z.

It is now asserted that every solution z of (12)-(13) exists only in a finite interval
of for any given k</. We suppose that the maximal interval of existence of z is
0, o). If z’() then we have violated the uniqueness of the solution y(t)
(Theorem 1). Therefore from (29) it follows that z’(o)< 1.

Inequalities (8)-(10), (29) and equation (12) imply that limt_z’"(t)<O and so it
follows that z’, z" are unbounded for . Also because of (12), (29) z’" tends to
infinity for t--, o. The unboundness of z’" implies that there exists a point t such that
z’"(t)<0 for t>tl. Thus

z(t,)<o, z’(t,)<o, z"(t,)<o
and

(30)
A differentiation of (12) gives

z"’(t)<0 for t>_t.

Z(IV) ZZ 3z’z".

From (29)-(30) it follows that, for t>--tl, the right-hand side of (31) is a nonincreasing
function of t. In fact, we have, for instance, that the derivative with respect to z of the
right-hand side of (31) is -z"’>0, etc.

Moreover, (31) has the elementary solution

2

where E is an arbitrary constant. We can choose te> t so large that

2 2 2_>z(t,), _>z’(t,), _>z"(t,).t-te t-te t-te

Then, from known results on differential inequalities (see for instance [7, Chapt.
III, Exercise 4.1 ]), follows

2 >_z(t) for all t>_t.(32)
t-te

Consequently the function z(t) cannot be defined for all positive values of t, since
the left-hand side of (32) tends to.-o when t re-0.

Finally if z’ and z" were bounded for tE then z would also be bounded, whereas
we have seen that this is impossible. This completes the proof of Theorem 2(i).
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Proof of Theorem 2(ii). We start by showing that, under the present hypotheses, the
maximal interval of existence of z(t) is 0, o). This follows from the inequality

(33) y(t)<z(t)<-, t(O, o),

where y(t) is the unique solution of (5)-(7).
The right-hand inequality of (33) is easily proved by integrating (12) twice and

using (13); we have

(34) z" k zz’ + t,
12_12(35) z’- kt+ - -z

whence z’ < t2/2.
By a further integration we get the upper bound of (33). To prove the lower bound

we put r(t) z(t) -y(t).
Suppose, for the purpose of obtaining a contradiction, that there exists a point

t*>0 such that y(t*)- z( t*), where t* is the smallest value of which enjoys this
property. Then k>/ and (13) implies that r(O)-r(t*)-O and r(t)>0 for t(O,t*). By
Rolle’s mean value theorem, there is a point tM, 0<tt<t*, where r’(tt)-O and,
necessarily, r"(tt) -< 0. From the differential equations we obtain

(36) r" k-l- ry’- zr’.

Thus

(37) r"(tt)-k-l-y’(tt)r(tt ).

Since k>/ and by (9) it follows that the right-hand side of (37) is positive while the
left-hand side is nonpositive. This contradiction shows that t* does not exist and
completes the proof of (33).

We now assert that z" necessarily has a zero. The condition z"(t)< 0 for all >0 is
incompatible with the uniqueness requirement of y. From (13), if z"(t)<O for all

(0, ) we would have

(38) z’(t)<0, z(t)<0 fort(0, o).
By subtracting (21) with k-/ from (35), we get z’-y’-(k-l)t+(y2-z2)/2. By
(33), (38), it follows that z’(t)>y’(t) for t(0, o). By using this and (38), (33), (8), (9)
in (36), we obtain y"(t)<z"(t)<O for t[0, o). The last inequalities and (25) yield
limt_z"(t)-O; thus limt.oz’"(t)-O. Therefore (12) is satisfied only if limt_,z’(t)

1, but this violates the uniqueness of y. This contradiction shows that z" must have
a zero; suppose that z"(to)-O. Without loss of generality, we may assume that o is the
first zero.

The function z" satisfies the conditions

(39) z"(t)<0, -l<y’(t)<z’(t)<O,
y(t)<z(t)<O for t(O, to).

Then (12) shows that z’"(t0)>0, and z’ has a relative minimum in to; its derivative has
the property that z"(t)>0 for in some right neighborhood of 0.

It will be shown, now, that z" is positive for all t> o such that z’ remains less than
1. Suppose that z"(t,) 0 for some t, > 0, then it follows that z’"(t,) -< 0. This inequal-
ity contradicts the inequality z"’(t,)- 1-z’(t*)>0 and shows that z" is positive.
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We now assert that z" has a zero. Suppose that z’(t) <0 for all > 0. By integrating
(12) from 0, the zero of z", to t>to, we obtain

(40) z"( t ) -z( )z’( ) + z( o )z’( o) + t- o

from which, by using (39) and (8) we get

z"(t)>--[z’(to)+ 1] t--t0,

where 0<z’(t0)+ < 1. By letting approach infinity, we get limt_z"(t)=o and
consequently z’>0 for large t. This contradiction shows that there is a t>to, call it t,
such that z’(t ) 0.

By putting t= in (40) it follows that

(41) z"(t,) >0.
This implies z’ >0 in a fight neighborhood of t.

It is now asserted that z(t) has a zero. Integrating (12) from t to t, <t, leads to
the equation

(42) z"(t)=z"(t,)-z(t)z’(t)+t-t,.
By using (41) it follows that z">_c for t>t and some constant c >0, as long as z(t) is
negative and z’(t) is positive. The inequality z">_c, t>_t, implies that z’(t) remains
positive and that z(t) is eventually positive. This contradiction shows that z(t) has a
zero, say t=t_. At t--t2 we have z(t)=0, z"(t2)>0 and z’(t2)>0. The last inequality
is derived from integrating (42) from t to 2.

We now show that there is a point, say t3>t, such that z’(t3)= 1. In order to see
this suppose, for the purpose of obtaining a contradiction, that z’(t)< for all t>_t.. By
the argument which we used in the proof of Lemma it follows that 0<z’(t)_< for
t[t2, o). An integration gives O<z(t)<_(t-t2); thus z2(t)<_(t-t2)2. On the other
hand if we integrate (12) twice in [tz,t ], we get

Therefore, we infer that

z’( ) >_z’( tz) + Z"( t)(t- t2 ).
Recalling that z’(t), z"(t2)>0, this implies limt_oz’(t)=o which contradicts the
assumption that z’(t)< for t[ t2, o) and proves the existence of 3.

Clearly z"(t3)_>0. We can show that z"(t3)>0. If this is not so, it follows that the
solution z(t) satisfies: z"(t3)=0, z’(t3)= 1, z(t3)= z3, where z is a constant. However,
by uniqueness of the initial value problem, the function q(t)= t-t3 + z3 is the only
solution of (12) that passes through (t3,z3) with slope and zero second derivative.
This contradiction shows that z"(t3)>0 and that z’(t)> in some right neighborhood
of 3.

An argument similar to that used in the proof of Lemma shows that the solution
z’(t) definitely remains over the line z’-I for t>t3. Setting t4:max(tE,t3) yields
Z(t)> t-- 4 for t> 4. Thus

(43) 2(l)>t-t4, z’(t)>l, z"(t)>0, t>t4.

Depending on whether t3>t2 or t3<t2, the last inequality follows from z"(t3)>0 or
(42), respectively.
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It is now asserted that z"(t) has another zero. It is convenient to consider the cases
where z’ is bounded and z’ is unbounded separately.

Suppose first that z"(t)>0 for t>ta and that z’ is bounded. By considering (12)
and (43) we see that there exists a constant c2>0 such that

(44) Z’" <__ --C2, t> 4.

The assumption that z’ is bounded implies that limt_z"’(t)=O. The use of this in
(44) leads to a contradiction. In this instance we see that z" has a zero.

Next we show that z"(t)>0 for t>t4, and z’ unbounded are contradictory state-
ments. By using these and the first two inequalities of (43) in (12) it follows that

(45) lim z’"(t)= lim (-zz"+ 1--2’2)--< lim (1--z’2)
to t--, oo

This contradicts z"(t)>0, for t>t4 and shows that z"(t) must have another zero,
say ts, such that t5 > t4.

At t= 5, z’"(ts)<0; thus t is a relative maximum for z’.
After 5 the function z’ cannot have a relative minimum. This is a consequence of

the property that z’ cannot have relative minimum over the line z’= (see proof of
Lemma 1). Thus, for t> ts, z’ is monotonically decreasing and satisfies

(46) <z’(t)<z’(ts) if t(t5, c).

We finally show that of necessity

(47) lim z’( ) 1.
too

Indeed, from the fact that

lim z’(t)=z’(c)=a> l,

it follows that

(48)
so that, using (35)

Hence

z(t)-at+o(t)

2 2 2z’(t)-kt+-t (1-a)+o(t ).

z(t) k ot2

_
2

2 2 (1-a )

and since the left-hand side tends to zero, we have a -+- 1. This and (46) establishes (47)
and completes the proof of the lemma.

Proof of Theorem 2(iii). If k=0, then the initial value problem (12)-(13) is a
particular case of that considered by Hastings; see Theorem A(i).

If k>0 then we have z(t)>0, 0<z’(t)< 1, z"(t)>0 in some right neighborhood of
t-0. Therefore, apart from an irrelevant change of independent variables, we recover
the same conditions of the solutions of (12)-(13) with k(k,O). There we found in a
right neighborhood of the point 2 the first zero of these solutions; see proof of
Theorem 2(ii). Thus the same procedure considered above, for t> 2, can be used. We
omit the details.
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Proof of (15). From (47)-(48) we have

(49) z(t)-t+o(t), z’(t)- +o(1)
as tends to infinity. Therefore from (35) it follows that

z [t2+2kt-2+o(1)] 1/2 as t-.

Consequently by well-known rules we obtain

Thus

Hence, setting

it follows (using (49)) that

and (35) becomes

lim [z(t)-t]-- lim 2kt,-2+(1)
t-’ t+[t2+2kt_2+o(1)] /2

z(t)-t+k+o(1).

z(t)-t+k+s(t),

s(t)-o(1), s’(t)--o(1)

k2s2+2s(t+k)+2 1+- +s’-O.

By solving this equation for s and by using (50), we get

k2+2+o(1)
S--

t+ k+ [t2+ 2kt- 2 + o(1)] /2

and by familiar rules we find

whence

limts-- 1+ -t---* O0

k2
s-- 1+-- t-+o(t-l).

Returning to the variable z we obtain (15). This completes the proof of Theorem 2.
Remark 4. By iterating the procedure used in the proof (15), the expansion (15)

can be improved. For instance, it is true that

z(t)-t+k- 1+- t-’+k 1+-- +o(t ) astoo,

Remark 5. An expansion analogous to (15) can be obtained for the solution y(t) of
the problem (5)-(7). We have

y(t)--t-k- 1- t-+o(t-l),

as t oo. This can be also improved as (15) was in Remark 4.
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REGULARIZING TRANSFORMATIONS FOR CERTAIN SINGULAR
STURM-LIOUVILLE BOUNDARY VALUE PROBLEMS*

HANS G. KAPER"1", MAN KAM KWONG"1":1: AND ANTON ZETTL"1":I:

Abstract. It is shown that certain singular Sturm-Liouville boundary value problems can be transformed
into regular problems by a simple transformation of the dependent variable.

(1)

1. Introduction. We consider the Sturm-Liouville differential expression

d d-p( ) -d- + q( )

on (a, b), where <a<b<. We assume throughout this article that the coeffi-
cients p and q are real-valued and measurable on (a,b), and that they satisfy the
minimal conditions

(2) p-l,q.Loc(a,b),

where p- l(t) (p(t))- a.e. on (a, b). Furthermore, we assume that p is positive on
(a,b),

(3) p(t)>0 a.e. on (a,b).

A function )7 is said to be a solution of the equation ’y-0 if (i))7 is absolutely
continuous on (a, b), (ii)p)7’ is equal a.e. to an absolutely continuous function (which,
with a slight abuse of notation, we denote by the symbol p)7’), and (iii) the identity
-(p)7’)’(t) + q(t)(t)-O holds a.e. on (a,b).

From the theory of differential equations it is known that, given any point o (a, b)
and any pair of real numbers (c0,cl), there exists a unique solution )7 of ’y-0, such
that f(to)-Co and (pf’)(to)-C. Hence, the set of solutions of the equation -y-0
forms a two-dimensional linear vector space. The Wronskian of two solutions )71 and )72
is defined by the expression ( p)7)(t))72(t)- (py)(t))Tl(t) and a variation-of-parameters
formula holds. For details, see for example Naimark [1, 5.2].

The right endpoint b is said to be a regular endpoint for the differential expression
z if p-l and q are integrable in a left neighborhood of b,

(4) p-’,qU_Ll(c,b)
Similarly, the left endpoint a is regular if

(5) p-’,qL’(a,c)

for some c G (a, b).

for some c (a, b).

If both a and b are regular endpoints, the differential expression r is said to be regular;
otherwise, it is called singular. Note that, for " to be regular, p- and q need not be
bounded on (a, b).
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Research of the U. S. Department of Energy under contract W-31-109-Eng-83.
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*Permanent address: Department of Mathematical Sciences, Northern Illinois University, DeKalb,
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All solutions )7 of a regular Sturm-Liouville equation ,y=0 are continuous on
[a,b], and the same property holds for the function pfi.. Hence, boundary value
problems can be posed for such equations. More generally, the study of eigenvalue
problems for operators associated with regular Sturm-Liouville differential expressions
is meaningful. A central question in such a study, which is important in many applica-
tions, concerns the characterization of those boundary conditions that give rise to
selfadjoint realizations of the differential expression. Other interesting and important
questions concern the oscillatory properties of the eigenfunctions. For example, when
p(t)>0 a.e. on (a,b), then the classical oscillation theory, including the Sturm compari-
son theorem, remains valid when p and q satisfy only the minimal conditions (2); see
Everitt, Kwong and Zettl [2].

The study of equations involving singular Sturm-Liouville expressions is consider-
ably more difficult, as their solutions exhibit singularities near the endpoints. Weyl [3]
has developed a theory for the construction of selfadjoint realizations of singular
differential expressions. The theory is based on a distinction between singularities of
limit-circle type and those of limit-point type. The characterizations are, however, not
concrete and therefore difficult to apply. Also, the oscillatory properties of the eigen-
functions are much harder to establish in the singular case.

In this article we show that an important class of singular problems involving
singularities of both limit-circle and limit-point type can be reduced to regular prob-
lems by a transformation of the dependent variable. Thus, many of their properties can
be deduced simply from the theory for regular problems. We give various illustrative
examples.

2. The case of one singular endpoint. We first consider Sturm-Liouville differen-
tial expressions z which are regular at one endpoint only. Suppose that the coefficients
p and q satisfy the regularity condition (4), in addition to the minimal conditions (2),
and the positivity condition (3). Suppose, furthermore, that p is such that

(6) p- ’( ) dt-

Then b is a regular endpoint for z, but a is not, so z is singular.
Let the function q be defined by the expression

(7) q(t)-l+ p (s)ds, t(a,b),

and let the functions P and Q in turn be defined by the expressions

(8) P(t)=p(t)q2(t), O(t)-q(t)q2(t), t(a,b).

The functions P and Q define a Sturm-Liouville differential expression T on (a, b),

d d(9) T= -d-i P( ) -+ O( ).

THEOREM 1. Let be the differential expression (1), and let T be the expression
derivedfrom it according to the transformation (7), (8). Assume that the coefficients p and
q of r are such that (4) and (6) hold, but that the coefficients e and Q of T satisfy the
conditions

(10) P-,QL(a,b).
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Then is singular, but T is regular on ( a, b). The function y is a solution of the singular
equation ’y-O if and only if the function Y defined by

(11) (t) -fi(t) t(a b)q(t)

is a solution of the regular equation TY= O. Moreover, if lim/ a.f( ) exists and is finite,
then lim a Y(t ) 0, and vice versa.

Proof. The regularity of T is clear from (10). The first part of the theorem is
verified by a direct computation. As lim/+(t)- , Y(t) must vanish as $ a whenever
)7(t) tends to a finite limit. Conversely, if Y(t) tends to zero as $ a, then we have, for
any t(a,b),

fi(t)-q(t)(t)-(t)fat’(s)ds=rk(t)fatP’(s)(-)’(s)ds.
The function PY’ is continuous on [a, b]. Hence,

y(t)-eF’(a) q,( t)fat( er’(s)- eF’(a))(q,-’ )’(s)ds.

Because both q and (q-)’ are positive on (a, b), the expression in the right member is
estimated by

q,(t)f’lP’(s)-P’(a)l(q,-)’(s)ds.
Given e, we can choose sufficiently small that IPY’(s) PY’(a)l< e for all s a, ], so

ly( t)-P’(a)l<eq(t)t( q,- )’(s) ds=e.

Thus, lim/ )7(t) exists and is finite.
The condition (10) of the theorem is met, for example, if the coefficient q of is

bounded near a, and if the coefficientp is such that

p-(s)ds dt<

i.e., if the left endpoint a is a limit-circle type singularity of
A similar construction can be set up for the transformation of singular differential

expressions z which are regular at the left endpoint a, but singular at the right endpoint
b. With the definitions

(7’) q(t)- +fatp-(s)ds, t(a,b),

(8’) P(t)=p(t)2(t), Q(t)=q(t)2(t), t(a,b),
one obtains a differential expression T, as before. If the coefficients p and q of z are
such that (5) and (6) hold and, in addition, (10) is satisfied, then z is singular, but T is
regular on (a, b). This is the case, for example, if q is bounded near b and if p is such
that

p-(s)ds dt<



960 HANS G. KAPER, MAN KAM KWONG AND ANTON ZETTL

i.e., if the right endpoint b is a limit-circle type singularity of ’. An analogue of
Theorem applies.

The existence of regularizing transformations can be exploited in the spectral
analysis of singular differential operators and in the investigation of the oscillatory
properties of eigenfunctions of such operators. (Note that the function q, is strictly
positive on (a, b), so )7 and Y have the same oscillatory behavior.)

Example 1. The differential equation

dt dY-- -d-[+(sint)y(t)-O, t(0, 1),

is regular when a< 1, but singular when a_> 1. The singularity at 0 is of limit-circle type
if -< a <-, and of limit-point type if a_>-. The conditions of Theorem are satisfied
for all a [ 1,2). If a 1, the transformed equation is

d )2 dy )2(sint)y(t) O.--t(1-1nt-d--+ (1 In

If a(1,2) it is convenient to multiply the original equation by (a-1)- before
applying the transformation. One thus obtains the transformed equation

dtd 2
_d.[ + -2-’)(sin )y( ) 0.

The transformed equations are indeed regular on (0, 1).
Example 2. The above procedure can be applied to the study of the eigenvalue

problem for the Latzko equation:

dt (1 7) --[dy-AtTy(t) on (0, 1),

y(0) =0, limy(t) exists and is finite.
t’!

Here p(t)= 1-t7, q(t)= --,t 7. The differential expression is regular at 0, but not at 1.
The singularity at is of limit-circle type; the boundary condition at the right endpoint
defines a selfadjoint realization of the differential expression. (The proof of the last
statement is analogous to the proof of the corresponding result for the Legendre
differential equation; see, for example, Akhiezer and Glazmann [4, App. 2].)

Defining in accordance with (7’),

(t)- +fot(1-s7)-’ds, t(0, 1),

and using q to define a new dependent variable z,

z(t)=y(t)/q(t),

we find that z solves the eigenvalue problem

a 7 az 7 ,2(dt
(1-t)q2(t) -d-i-At t)z(t)

z(0) =0,

The latter eigenvalue problem is regular on (0, 1).

t(a,b),

on (0, 1),
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3. The case of two singular endpoints. Transforming expressions with two singular
endpoints into regular expressions is somewhat more involved. Our procedure is based
on a reduction to the previous case.

Suppose that the coefficients p and q satisfy, in addition to the minimal conditions
(2) and the positivity condition (3), the conditions

(14) p-l(t)dt-- , p-l(t)dt-- , for some c(a,b).

Then neither a nor b is a regular endpoint for the differential expression , so is
singular.

Let e>0 be chosen such that c+e<b, and let the function k be defined by the
expressions

(15-1) 6(t)-- + p-’(s)ds, t(a,c],

)
(15-3) 6(t)=6(c+e), t(c+e,b].

(This definition is such that Pk’ is a continuous piecewise linear function on (a,b).)
Clearly, k and Pk’ are absolutely continuous on compact subintervals of (a,b). Also,
by decreasing e if necessary, we can achieve the inequality 6(t)>0 a.e. on (a, b). To see
this, we observe that k satisfies the integral equation

/( ) -t-Sctp- l( s )( p/’)( s ) ds

on (>c+]. Bausel;’(t)l_<l for all t, w rtainiy hav IS<’p-()(p’)(s)dsl_<
S<!P- (s ) ds, so in particular for ( c, c + e ],

c+e
l(t) 1-- p-l(s)ds.

By taking e sufficiently small, we can certainly make the integral less than 1/2, say.
Let the functions/ and be defined by the expressions

(16-1) p(t)=p(t)2(t), t(a,b),
(16-2) O(t)-q(t)p2(t)-(t)(pp’)’(t), t(a,b).
We use these functions/ and to define a new differential expression / on (a, b),

d^ d(17) " -p( ) -+ O( )

The functions/ and satisfy the conditions (2) and (3). Assume that, in addition,

(18) -’,OL’(a,c) for somec(a,b).
Then a is a regular endpoint of ; b is still a singular endpoint.

The differential expressions / fits into the framework of the previous section. We
define a function ,
(19) gJ(t)- +Sat-l(s)ds, t.(a,b),
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the functions P and Q,

(20) P(t)=O(t)ck2(t), Q(t)=(t)q2(t), t(a,b),
and the differential expression T,

d d(21) T= -d- P( ) -d- + Q( ).

THO 2. Let be the differential expression (1), and let T be the differential
expression derived from it according to the transformations (15), (16) and (19), (20).
Assume that the coefficients p and q of are such that (14) holds, but that coefficients P
and Q of T satisfy the conditions

(22) P-’,QL’(a,b).
Then is singular, but T is regular on (a,b). If.9 is a solution of the singular equation
zy O, which satisfies the boundary conditions

limy(t) and limy(t) exist and are finite,
tSa ttb

then Y, defined by

(23) (t)=f(t)/ck(t)(t), t(a,b),
is a solution of the regular equation TY= O, which satisfies the boundary conditions

lim Y(t) 0, lim Y(t) 0,
+a t’tb

and vice versa.
Proof. The theorem is a direct consequence of the construction of the differential

expression T, and Theorem and its analogue.
The condition (22) of the theorem is met, for example, if the coefficient q of r is

bounded on (a, b) and if the coefficientp is such that

(24) p ’(s)ds dt<oo, p (s)ds dt<

for some c (a, b), i.e., if both endpoints are limit-circle type singularities of
Theorem 2 is applicable, for example, to the Legendre differential expression on

(-1,1).
Example 3. The Legendre differential expression defines a singular eigenvalue

problem on (- 1, 1),

d dY-,w(t)y(t) on (-1 1),(25-1) -(1- )
where wL( 1, 1) and w(t)>0 a.e. on (-1, 1). Both endpoints are singular. The
equation, supplemented by the boundary conditions

(25-2) lim y(t) and limy(t) exist and are finite,
t$-I tTl

is equivalent to a regular boundary value problem on (- 1, 1) with Dirichlet boundary
conditions. Hence, the boundary value problem (25) admits an infinite number of
eigenvalues, which can be arranged in ascending order, o<h<z<’", with hn o,
and to each eigenvalue ,, corresponds a unique (up to a multiplicative constant)
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eigenfunction y, which has exactly n zeros in (- 1, 1). If w(t) for all ( 1, 1), the
eigenfunctions are multiples of the Legendre polynomials.

Acknowledgment. The authors wish to thank the referee, whose comments led to a
generalization of the original version of Theorem 1.
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THE ANALYTIC CAUCHY PROBLEM FOR FOURTH ORDER
ELLIPTIC EQUATIONS IN TWO INDEPENDENT VARIABLES*

ROBERT F. MILLARf

Abstract. An explicit representation in terms of the Riemann function is derived for the solution to the
analytic Cauchy problem for a class of fourth order elliptic equations in two independent variables. Two
particular cases are considered. For the biharmonic equation, results of an elementary form are obtained and
compatibility conditions on the Cauchy data are found that guarantee regularity of the solution throughout a
given domain. Representations in terms of axial data are found for solutions to the generalized axially
symmetric biharmonic equation and to the iterated generalized axially symmetric Helmholtz equation. In
principle, the derivation can be extended to higher order elliptic equations in two independent variables.

1. Introduction. In a recent paper [1], a representation was obtained for the con-
tinuation of the solution to a boundary value problem for an analytic elliptic equation
of second order in two independent variables. This result also provides the solution to
the Cauchy problem on an analytic arc. The intent of the present paper is to extend
these considerations to elliptic equations of higher order in the plane. In doing so, it
turns out to be more natural to start with the Cauchy problem, rather than with a
boundary value problem.

We shall consider an equation of the form

(1.1) L"[u]=0,
in which Ln[u] := L(L"-l[u]), n=2,3,4,. ., L :- L, and

(1.2) L[ u Au-+- aUx-+- buy-+- cu;
here A denotes the two-dimensional Laplacian operator and a, b, and c are analytic
functions of the real variables x and y. Almost all of our attention will be directed to
the case n--2, although in principle larger values of n and even more general equations
of order 2n could be treated in the same manner.

For n-2, we give a representation, in terms of the Riemann function, for the
solution to an analytic Cauchy problem for (1.1) on an analytic arc. In particular cases,
explicit results may be found. We obtain a simple representation for the solution to the
Cauchy problem for the biharmonic equation

(1.3) A-u=0.

This is used to discuss analytic properties of the solution in a domain intersected by an
arc bearing the data. We also derive a Poisson-like representation, in terms of analytic
axial values, for a solution to the generalized axially symmetric biharmonic equation in
which n 2 and

(1.4) L[u]--Au+ ---f- Uy,

From this we obtain the corresponding representation for solutions to the iterated
generalized axially symmetric Helmholtz equation (L+ k2)2 u] 0.

*Received by the editors December 7, 1982. This work was supported by the Natural Sciences and
Engineering Research Council Canada under grant A 8808.

Department of Mathematics, University of Alberta, Edmonton, Alberta, Canada T6G 2G1.
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In previous work, Colton [2] has considered the analytic Cauchy problem for
certain fourth order elliptic equations in the plane. In [2], the highest order terms also
appear as A2u, but lower order terms differ from those in L2[u]. The complex Riemann
function plays a major role in both Colton’s and the present work. Here, however, the
representation is explicit whereas in [2] the problem requires the solution of a system of
Volterra integral equations. Work of a related nature, though more from the point of
view of reflection across an analytic boundary, has been performed by Lewy [3] for
second order equations and by Garabedian [4] for equations of second and fourth
orders. For elliptic equations in which the highest-order terms appear as A u, Yu [5], [6]
has studied the reflection of solutions across a segment of the real axis. Hill [7] has
considered the analytic Cauchy problem for systems of first order equations. For some
additional references to earlier work, see [2], [6].

In the following section, from th. Green’s identity and a fundamental solution, we
derive the representation (2.12) for the solution to the Cauchy problem and we observe
how this also gives the continuation across an analytic boundary of the solution to a
boundary value problem. The main result is summarized in the Representation Theo-
rem. Explicit results for the biharmonic equation are obtained in 3, and for the
generalized axially symmetric biharmonic equation in 4. Some concluding remarks are
made in the final section.

2. Derivation of representation. Let C: -j(s), /(s) (where s ranges over some
real interval and ’(s)2+/’(s)2v0) denote an analytic arc in the , ,1-plane, and
consider an analytic Cauchy problem on C for L[u]-0. Here L[u] is given by (1.2)
and the parameter s does not necessarily denote arc length. Suppose that N is some
closed neighborhood of an interior point of C. According to the theorems of Cauchy-
Kowalewski [8, pp. 39-56] and Holmgren [8, pp. 237-239], there exists a unique
solution to L[u]-0 in N that assumes the given analytic Cauchy data on C, and is an
analytic function of x and y for (x,y)N. We let z’- x+iy, z* x-iy be indepen-
dent complex variables. An overbar will denote a conjugate domain, curve, or number;
in particular z*N if and only if * N. Later, we shall require that the solution
u(1/2(z+z*),-1/2i(z-z*)) be an_analytic function of the two independent complex
variables z, z* for (z,z*)NN. This will certainly be true if N is sufficiently small,
provided that it is a fundamental domain of the differential equation in the sense of
Vekua [9, p. 8]. By this is meant that a(1/2(z + z*), -1/2i(z-z*)) is analytic for (z,z*)N
N; and similarly for b and c.
A normal vector to C is given by ,’- (r/’(s),-’(s)). Now the arc C separates N

into two subsets D and D’. We shall denote by D that part of N for which , is an
outward normal on C. The subarc of C that forms a portion of OD will be denoted by
C’, and C" will refer to the remaining part of OD; thus N-D tO C’t.J D’. It is assumed
that OD is oriented in the counterclockwise sense and, without loss in generality, that
C" is smooth; then OD is smooth except, perhaps, at the intersections of C’ and C". We
suppose that C’ and C" intersect at an angle in (0,rr ], and we extend 6(s), /(s)
continuously so that OD is given by -(s), /-r/(s) on some s-interval; (s) and
are piecewise smooth on OD, and are analytic on C’.

The function u is an analytic solution to (1.1) in D tO C’. Thus, if v is any function
that is C2 in Dt.J C’, we may apply Green’s identity to L[u] and v to give

fD(vL"[ U]- L"-’[ulL*[ v1)dldl- fooM(v,L"-l[ u])ds.
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Here L* is the adjoint of L:

L*[v]:= Av-(av)t-(bv)n+cv.
For M we may take

M[ v, w vOw/O,- wOv/O,+ vw( arl’( s ) bl’( s )),
in which iw/), :-- ,-Vw=rl’(s)w-t’(s)%. (It should be noted that this is the usual
normal derivative only when , is a unit vector; that is, when s denotes arc length.)

Green’s identities for Ln-m[u] and L*’n[v] (m= 1,2,-..,n) may be written down
in turn. Addition of these results leads to

n

fD(1)Zn[u]-uZ*n[l)])dd’o 2 M(Z*m-l[l)],zn-m[u]) dS.
m=l D

(See Vekua [9, p. 182] for an analogous treatment for a different equation.)
For the case n 2, to which further attention is confined, we find that

(2.1) fo(vL[ul-uL*[v])dldrl

D -L[ul-L[ul +vL[ul(arl’(s)-bl’(s))

Ou 0 }+L*[vl-uL*[vl+uZ*[vl(an’(sl-b’(s)) as.

It should be noted that the integral on the right in (2.1) is zero if L*2[v]=0 throughout
D.

We shall use (2.1) to obtain an expression for u at a point (x,y)D; from this a
representation for the solution to the Cauchy problem on C’ will be derived. In [1] we
started with the solution to a boundary value problem in a domain D with an analytic
boundary, and we found a representation for the continuation of the solution across the
boundary. Here the same ideas are used, except that the solution in D arises from the
Cauchy problem by virtue of the Cauchy-Kowalewski theorem.

It is known (see, for example, [10, Chapter III]) that L.2 has a fundamental
solution with singularity at (x,y) that is of the form

(2.2) S(,; x,y)=-A(,; x,y)logr+B(,; x,y).

Here r:= [(-x)2+(-y)2] 1/2 and A, the emann function, is normalized so that
L*2[S]=8(r). This is the normalization used by John [10, p. 43], Vekua [9, p. 183], and
by Weinacht [11]; it differs by a factor of 2 from the normalization adopted in [1].
The functions A and B are real analytic in their four arguments if r is sufficiently small.

On choosing v S in (2.1), we find that

(2.3)
0 OS

L*
Ou L*f s z[u]-Z[u] + Is] -u Is]

+(SL[ul+uL*[Sl)(an’(s)-b’(s))) ds, (x,y)eD.

Here, and subsequently unless the contrary is indicated, integration is over OD. The
right-hand side of (2.3) is zero for (x,y)D’.
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At this stage, it is useful to introduce the following notation:

(2.4)
(2.5)

z x + iy, z* x- iy,

’-- +ir, * --irl,

Z(s)’- (s)+irl(s), Z(s)’- (s)-irl(s).

Then, under the transformations (2.4) and (2.5),

u(x,y)--,U(z,z*),

and

A(,rl; x,y)R(,*; z,z*).

For certain similar equations, Vekua [9, Chapter V] has shown that the solution
and the Riemann function are analytic functions of their arguments, when " and z vary
in a fundamental domain of the equation and ’*, z* vary in the conjugate domain.
Here we shall assume that the neighborhood N is sufficiently small that U(z,z*) is
analyt_ic for (z,z*)NN and that R(’, ’*; z,z*) is analytic for (’, ’*, z,z*)NN
N N; this is certainly possible, since N is assumed to be a fundamental domain of the
equation.

On employing (2.2), (2.3) becomes

(2.6) z,z*)logrds

+ G(s; z,z*)-logrds + H(s; z,z*)ds,

with

(2.7)

(2.8)
and

rf b’)L[u] L[u] ,F(s; z,z*)’- A --L[ul+(a

{19u ) O
L,+L*[A]-+(arf-bl’)u-u- [A]

G(s; z,z*)’- -AL[u]-uL*[A],

oB o__LH(s; z,z*)’- L[u]- -B o, [u]-(a’-b’)BL[u]

{On rf ) -aA)r/r+(2A-bA)r/r-L*[B]}+ --+(a -bf’)u {(2A

-u-ff-u ( (2A-aA)r/r+ (ZAn- bA)r/r- L*[ B }

It is the intention to use (2.6) to continue U analytically across C’ C’. On doing
so, we shall obtain a different representation for U which, moreover, is valid for
(z,z*)NN.

After some algebraic manipulations, it is found that H may be written as

H-H, + H2 +H,
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in which

OKn (s; u-if,- )Ou + iuK--ff-+(arl’-bl’)u K Z(s)-z [Z(s)_z]2’

and

K’- -(a+ ib)A -(At+ iAn).

The function H2 is obtained by replacing K, Z(s), Z’(s) and z in H by K*, Z(s), Z’(s)
and z*, and changing the sign of the last term of H; here K* is found from K by
replacing in the above expression by -i. The function H3 comprises the terms in H
that depend on B. Evidently H may be singular for Z(s)-z, H2 may be singular for
Z(s) z*, and H3 is analytic.

Let us consider fH(s; z,z*)ds. The apparent pole of second order at Z(s)-z may
be reduced to one of first order by an integration by parts. The integrated terms vanish
and we are led to a new integrand, H, say, with what seems to be a first order pole at
Z(s)-z. A rather tedious examination shows that H is not singular when Z(s)-z;
this makes use of the fact that the Riemann function contains the factor r (see, for
example, [10, Chap. III]). Analogous conclusions may be drawn with respect to fH2(s;
z,z*)ds. Consequently, if z crosses C’ and z* crosses C’, the continuation of the third
integral in (2.6) is the integral itself.

On the other hand, the integrands of the first two integrals in (2.6) are singular for
z C’ or z* C’. The continuation of these integrals may be effected in the manner
described in [1 ]. We define

(2.9) (t; z,z*)’-fotF(s; z,z*)ds.

Then (0; z,z*)-O-(l; z,z*), where 0D is described as s runs from 0 to 1; the
second equality follows on setting v-A in (2.1), since L*2[A]-0 in D. After an
integration by parts the first integral in (2.6) becomes

(s; z,z*)-slogrds.

After simplification, it is found that

(2.10) f[(s; z,z*)+iG(s; z,z*)]Z’(s)/Ads

if2 [@(s; z,z*)-iG(s; z,z*)]’(s)/A*ds

+ fH(s; z,z*)as,

wherein A’-- Z(s)-z, A* Z(s)-z*, and aLgA +argA*--0 when O<_s<l and z*-L
Denote the solutions to Z(s)-" and Z(s)-’* (’0D, ’*0/ff, O<_s<_l), by

s- S(’) and s- S(’*), respectively. Then S(’) is holomorphic and sing_le-valued for " in
a neighborhood of C’, the analytic portion of 0D; and similarly for S(’*) with respect
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to C’. Consequently, (2.10)becomes

(2.11) d[(I)(S(’); z,z*)+iG(S(); z,z*)] ’-zU(z,z*)--- o

z, z,z,)l

+ fH(s; z,z*)a, (z,z*) z)z),

in which OD and OD are oriented in the counterclockwise sense.
If z crosses C’ and z* crosses C’, then

U(z,z,)-g[(g(z,); z,z,)-,(S(z); z,z,)]
+[(g(z,); z,z,)+(S(z); z,z,)] +, (z,z*)D’D’.

Here I denotes the right-hand side of (2.11). By reversing the transformations that led
to (2.11), it is seen that I is equal to the right-hand side of (2.3) and is therefore zero.

On employing (2.7), (2.8), and (2.9), we find

(2.12) U(z,z*)--r{R(S(z); z,z*)L[ul+u(S(z))L*[R])

-r{R(g(z*); z,z*)L[ul+u(ff(z*))L*[R] }

+rifs(z*) R(s; z,z*) -L[u]+(al’-b’)L[u]
"S(z)

_L[u OR (s" z,z*)

+L*[R] -u + ( an’- b’)u u-v L*[ R ds.

In the integral, the arguments (s; z,z*) of R and its derivatives are an abbreviation for
(Z(s),Z(s); z,z*). The argument ((s),r/(s)) of .u and its derivatives will be abbrevia-
ted to s. In the remaining terms of (2.12), the argument s of R and u is evaluated at
S(z) or at S(z*), as the case may be. Thus (2.12) expresses U(z,z*) in terms of data on
Cr"

The right-hand side of (2.12) is analytic for (z,z*) in a neighborhood of C’ C’.
Thus, although derived for (z,z*)D’D’, (2.12) is valid throughout NN and
provides the solution to the analytic Cauchy problem on C’. Moreover, since C’ is any
sufficiently small subarc of C, (2.12) gives the solution to the analytic Cauchy problem
on C.

From the mode of derivation, based on the Cauchy-Kowalewski theorem, one
may conclude that (2.12) automatically satisfies L2[u]-0, and that it will reproduce the
data when z*- and z approaches C; these points may also be verified directly from
(2.12). Again, from (2.12) it is clear that appropriate Cauchy data are the values of u,
Ou/Ou, L[u] and OL[u]/O,, which may be prescribed as arbitrary analytic functions on
C. In contrast to an earlier result [2], the representation (2.12) exhibits the solution
explicitly in terms of the Riemann function and the Cauchy data.
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We summarize these results in a theorem.
REPRESENTATION THEOREM. Let C denote an analytic arc in the x, y-plane, and

suppose that analytic data u, Ou/Ov, L[u] and (O/Ov)L[u], are prescribed on C. Then the
solution to the analytic Cauchy problem for L2[u]-0 on C is given by (2.12).

In the particular case for which C is an arc of the -axis, we have (s)-s, r/(s)- 0,
O/Ov- -0/01, Z(s)-s-Z(s), S(z)-z, S(z*)-z*, and (2.12) becomes

This may be regarded as a natural generalization of Henrici’s result [12, 5.3] for
second order equations.

If u happens to be the solution to an analytic boundary value problem in a domain
D, the boundary of which contains the analytic arc C, then (2.12) provides a represen-
tation for the continuation of u across C. In the earlier work [1], the boundary value
problem was taken as the starting point; it is clear from the present work that the
Cauchy-Kowalewski theorem provides a more natural point of departure.

The expression (2.12) is the analogue of one found in [1] for the equation L[u]-0.
There a connection with results of Lewy [3] and Garabedian [4] was pointed out. It is
apparent that (2.12) could be found by suitably extending their analyses. Moreover,
since (2.12) in effect must be the result of summing the series arising in the. Cauchy-
Kowalewski theorem, a connection is likely to exist with the results of Hill [7].

Knowledge of a domain of analyticity of R and of the Cauchy data enables one to
determine a corresponding domain of analyticity of U. Such results have been obtained
by Henrici [12] for second order equations and by Colton [2] for a class of fourth order
equations. Since the equations considered in the present work are of_the type_studied by
Vekua [9, Chapter V], R will be analytic for (,*,z,z*)DDDD if D is a
fundamental domain. Thus, results similar to those in [2] could be easily obtained. We
prefer, however, to describe some related results for the biharmonic equation. This is
done in the following section.

3. The biharmonic equation. For the biharmonic equation (1.3), a normalized
fundamental solution is given by John [10, p. 44], or by Vekua [9, p. 183, (36.6)] with a
change of sign"

So, by (2.2),

and

S(, r/; x,y) (8r)- r 2 logr+B(, rl ;x,y)

A(ti rl, x,y) -(8r) ’[(j-x +(r/-y)2],
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Since L=A, a straight forward calculation together with (2.12) yields the following
representation for the solution to the Cauchy problem"

(3.1) U(z. [,(S(z))+ u(g(z.))]
1
8 "S(z)

iAu Ou
+i(Z(s)-z)((s)-z*)---u +4i-u ds.

This result seems to be new.
In the particular case for which C is an arc of the -axis, we find that

(3.2) U(z,*) -- [u(z, O) + u(z*, 0)]

+ -d f 2yAu+ (s-- x +y -+4--- ds,

where, in the integrand, u and its derivatives are evaluated at (s,0). Other equivalent
forms for U may be obtained in this case through integration by parts of terms that
involve u.

These results may be applicable to problems of two-dimensional elasticity theory.
They could be used to generate complete sets of solutions to the biharmonic equation,
analogous to those described by Vekua [9, Chapter II], or to obtain alternative repre-
sentations for known solutions to the biharmonic equation. But, rather than proceed
along these lines, we shall show how (3.1) may be used to obtain regularity results for u
in a domain D intersected by an analytic arc C. (The function u is regular in D if
uC4(D).)

It will be assumed that u(x,y) is real, and that D is simply connected; this latter
condition may be relaxed in some of the following. Then from (3.1) it is not difficult to
show that

(3.3) u(x,y) Re f(z)+ g(z)];
heref and g are analytic in a neighborhood of C, and

(3.4) f(z)’- ds,

(3.5) loS(Z) [g(z).- Au

OAu Ou]+i(Z(s)-z)Z(s)"---u +4i-u ds.

Without loss in generality, the lower limits of the integrals have been taken to be
zero. The choice of another real value of s that corresponds to a point on C will change
f and g by linear functions in z and leave u(x,y) unaltered.

It is known that any solution to the biharmonic equation, regular in a simply-con-
nected domain D, may be written in the form (3.3), with f and g analytic in D; see, for
example [9, (35.22)]. Thus it is not surprising that (3.1) can be put in this form.
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Let us now suppose that f and g can be continued analytically throughout D. For u
to be regular in D, it is not necessary that each of the Cauchy data u, Ou/Ov, Au, and
OAu/Ov (evaluated at s--S(z)) be analytic throughout D; but certain combinations of
the data must be analytic. To obtain these conditions in their most simple form, we
differentiate (3.4) and (3.5) twice with respect to z. It is found that

d Au(S(z))+ aAu 1A(u_iun),f"( z ) --- -z iS’( z )---g ( S( z ))-in which the latter expression is evaluated at ((S(z)),,l(S(z))). In terms of U, this
becomes

(3.6) f"( z ) 2Uzzz. ( z, T(z )),

where T(z)" Z(S(z)), and the corresponding result for g" is

(3.7) g"( z )- 2Uz( z, T( z )) 2T( z ) Uz,,.( z, T( z )).

All quantities in (3.6) and (3.7) can be found from the Cauchy data on C. It is
evident that u is regular in D if the fight-hand sides of (3.6) and (3.7) can be continued
analytically throughout D.

The converse of this result is also true. If u is a regular biharmonic_ function in a
simply-connected domain D then, in a neighborhood NN of C C, the representa-
tion (3.1) is valid. From this follows (3.3), with f" and g" given by (3.6) and (3.7).
Moreover, it is known that there exist functions F and G, analytic in D, such that
u(x,y)-Re[F(z)+G(z)]. Then, for zN, F"(z)=f"(z) and G"(z)- g"(z ); thus F
and G differ from f and g at most by linear functions of z. Hence f and g can be
continued throughout D and the result follows.

The foregoing discussion is summarized in the following theorem.
THEOREM. Let D be a simply-connected domain in the x, y-plane that is intersected by

an analytic arc C. Consider a Cauchy problem for the biharmonic equation with real
analytic data on C. Then the solution exists and is a regular biharmonic function in D if
and only if the functions f" and g" of (3.6) and (3.7), obtainable from the Cauchy data,
can be continued analytically throughout D.

Expressions for f and g that are equivalent to (3.4) and (3.5), but which exhibit
more clearly the dependence on the analytic combinations of Cauchy data can be
obtained by integration of (3.6) and (3.7):

s ff( z ) 2 Uzz,( t, T( )) dt+- (z- Z(0))Au(0),
(o)

(o) (o)

+ Z-z,(o)Z(O) [ u’(O) +, (o)- u(o)] + u(O).

It is observed that the theorem does not require that the data individually be
analytic in D, nor that D be conformally symmetric in the sense of Henrici [12, Def.
5.1]. But to prove that each of the data can be continued an__alytically i_nto D, given that
u is regular biharmonic in D, it is necessary to show that Z(S(z))D when zD and
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this requires that D be conformally symmetric with respect to C. Here s-- S(z) will play
the role of the conformal transformation that maps C into an interval of the real axis
and D into a domain that is symmetric with respect to the real axis.

If u is the solution to a boundary value problem in a domain D with boundary C
on which analytic boundary conditions are prescribed, then the functions f and g must
be analytic in D. This shows that in general it is not appropriate to prescribe Au and
OAu/Ov on C, since the analyticity requirement on f may not be met. No inconsistency
necessarily follows on this account if other pairs of data are specified.

Let us consider a simple example to illustrate the theorem. Suppose that u is a
fundamental solution for the biharmonic equation, with singularity at (0, -h), h >0:

(3.8) u(x,y)-r21ogr 2,

in which r2"- x2+(y+h). Corresponding to (3.8), we have

U( z, z*) ( z + ih )( z* -ih )log[(z + ih )( z* -ih )].

For C we shall take y-0, so z*-z and Z(S(z))--z. It is evident that the Cauchy data
are singular at z- ih and z- -ih. But

ih
Uzz*(z’Z)-z+i-----’ Uzz(Z’Z)-zUzz*(Z’Z)- z+ih’

and these are analytic except at z- -ih, that is, at x--0, y-- -h. Consequently u(x,y)
is regular except at (0,- h).

Remark. Analogous but more simple results obtain for solutions to the Laplace
equation. From (7.2) of [1 ], we have

(3.9) u(x,y)-Reh(z),

where

h(z)’- u(S(z))+ifoS(Z)Ou
It is apparent that a necessary and sufficient condition for u to be regular (that is,

C2) in a simply-connected domain D intersected by an analytic arc C is that [u’(S(z))
+ iOu/O,(S(z))]S’(z) be analytic in D. This expression may be written more simply as
2U(z, T(z)), and (3.9) as

u(x,y) u(0) + 2 Re U( t, T(t)) dt.
(o)

If u happens to be the solution to a boundary value problem in D, then h is
precisely the function obtained when the integral equation satisfied by u and Ou/O, on
C is continued analytically into the complex domain; see [1, (6.2)]. It is likely, that a
similar correspondence exists in the biharmonic case.

4. The generalized axially symmetric biharmonic equation. As a second applica-
tion, we shall consider the generalized axially symmetric biharmonic equation

(4.1) L2[u]-0,
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in which

(2)(4.2) L[u]’-Au+ Uy, a>0,

and we shall see how corresponding results for solutions to (L+k2)2[u]--O are easily
obtained.

Specific examples of (4.1) arise in three-dimensional elasticity problems in which
case y denotes a radial variable. In particular, when a solution to such a problem is
expressed in terms of Fourier components with respect to an angular variable 0
(0_<0_<2,r), the coefficients of sinn0 and cosn0 (n=0, 1,2,...) are of the form
y"U(x,y) where U is a solution to (4.1) for a-n+1/2.

In this section, we shall specialize (2.12) in accordance with (4.2) and we shall
obtain specific and rather simple results when C is an arc of y=0 on which the
differential equation is singular but the solution is analytic.

To find the Riemann function, we use Weinacht’s [11] integral representation for a
fundamental solution. By taking k= 2a, n= 2, s= 2 in (3.1) and (3.5) of [11], we find
that

(4.3) S(, /; x,y)-

with

)2 2O"2 (--X + +yE--2rlycosO.

This representation is valid for a >0, av 1. The excluded value (a= 1) is one of the
exceptional set { 1,0, 1, -2, } for which a solution to (4.1) that is analytic on y=0
is not necessarily an even function of y. We shall consider only even solutions and
arguments of analytic continuation will be used later to extend our results to a= 1.
Since S satisfies (4.1) as a function of x and y, it is easy to verify that it satisfies
L*2[S]--0 in and

By elementary changes of variable in (4.3), S may be expressed in terms of the
hypergeometric function F:

(4.4) S(j, r/; x,y)-

wherein

22a-41/2a(1P(ct))2 ( 4r/y )r(a-1)qE-EF(Ea)F a-1,a; 2a; -)2 )2q2.= (j--x +(r/+y

Then, on using an expansion [13, p. 559, 15.3.11] for F, the coefficient A of log(l/r) in
(4.4) is found to be

A(l,’O; x,y)--
7rq2a

F a, et + 2;

In what follows, we shall consider only the case in which C becomes, in the limit,
an arc of the -axis. Here (s)-s, rt(s)-(>0), O/Or- -/, Z(s)-s+ irl, Z(s)-s
-irl, S()--irl, S(’*)-’* +irl, a-O, b-2a/,l. It is also convenient to employ the
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function A rather than R. Thus, (2.12) becomes

(4.5)

In the integrand, the arguments of A and its derivatives are (s,r/; x,y); the arguments
of u and its derivatives are (s, rl).

We require knowledge of the behavior of both u and A, and of certain derivatives,
as rt $ 0. To this end, we note first that a solution u(, /) that is analytic in a neighbor-
hood of ,/-0 is necessarily an even function of r/if a v 1,0, 1, -2, . One may see
this by using power series arguments similar to those of Henrici [14] or Hyman [15]. We
shall restrict our attention to analytic solutions th.at are even in ft. Thus we expect that
the representation for U will involve only the axial values u(, 0) and unn(, 0).

The axial behavior of the Riemann function is more complex. According to [13, p.
559, 15.3.6], one may write

(4.6) A(,I; x,y)-- r - F a,a+l; 24;

2-2"-’F(24 1)Y’-zr2rlF 2-a, 1-" 2-24" -r(a)r(1 +a)q:-:.

for a>0, avp/2 (p- 1,2,3,... ). Analytic continuation arguments will be used later
to extend our results to these excluded values of a.

By employing (4.6) and series expansions of the hypergeometric functions for
small values of 4rly/q, we find, as r/$0, that

(4.7) A(s,rl; x,y)O,
2-2’- F(2a)(4.8) An-(2a/rl)A r(a)r(a+l)

y

(4.9) (L*[A])(z-i,l,rl; x,y)O,

(4.10)

(4.11)

in which

-s +y2
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Because of the factor r 2 in (4.6), the limits (4.7), (4.8), and (4.11) are uniform on
the integration path. In evaluating some of these limits, it is necessary to assume that
is sufficiently large; but the final results will be true for all a >0.

On letting ,/$ 0 in (4.5), and inserting the results (4.7)-(4.11), we find that

(4.12) U(z,z*)=-i r(,+}) y,-2. L[u](s,O) +u(s O)p2"-2
-,,, (4a)

ds.

Here

L[u](s,O)-u(s,O)+(1 +:Zo)u,,(s,O),
since u,/rl --, u,, as rl $ 0. Thus U is determined by axial values of u and

Although derived under the assumptions that a is sufficiently large and o=/=p/2
(p 1,2, 3,.-. ), the validity of (4.12) can be extended to all a >0 by analytic continua-
tion arguments.

The substitution s x + iy cos 0 leads to

F(a+1/2) {u(x+iycosO,O)sin2,,_,OdO(4.13)

+-4-d (L[u])(x+iycsO’O)sin"/OdO"

These results are believed to be new. They are analogous to Weinstein’s results [16] in
generalized axially symmetric potential theory.

It is evident that U(z,z*) is even in y and is analytic on the axis y-0. Moreover,
by direct calculation it may be verified that L2[U]-0, and that U and Unn reduce
correctly to u and unn as y $ 0. Thus, the previous somewhat formal analysis is justified.

Each of the integrals in (4.13) is a generalized axially symmetric potential function.
More specifically, u is written as u-v +yv2, v and v2 being solutions to the second
order equation L[v]-0 for values a and a+ 1, respectively, of the parameter. This
form of the decomposition of a solution to L2[u]=0 was given originally by Payne [17].
From (4.13), it is evident that v2----0 if L[u]-0.

This decomposition suggests the form of the corresponding representation for
solutions to the equation

(4.14) (L+k2)2[w]-O.
A comparison with Henrici’s representation [14] for a solution to the generalized axially
symmetric Helmholtz equation in terms of axial values indicates that 0

2 in (4.12)
should be replaced by O’2’k-"F(a + 1)J,,(ko), and similarly for O2’-. Then, on replac-
ing u by w and L[u] by (L+k2)[w], we obtain the following representation for
W(z,z*):

(4.15)

W(z z*)- -ik-’2-2 ,_oy

fx+iY{(L+kZ)[wl(s,O)oJ,(kp)+2kw(s,O)o’-’J_,(ko)} ds.
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Direct calculation shows that this is a solution to (4.14) that is analytic on y 0, even in
y, and such that W and Wnn reproduce the values w(x, 0) and w,,(x, 0) as y $0. The
analogue of (4.13) is

(4.16)

r( w(x+iycosO 0)sin2’-10
r(1/2) 2 J_(IcysinO)dO

+y(L+k)[wl(x+iycosO 0)sin,+0 kysinO J(kysinO)dO

Here the first integral is a solution to the second-order equation (L+ ka)[w]=0; the
second integral is a solution to the same equation with replaced therein by + 1.. Celg rears. Although it has been applied only to an equation of the
form L[u]=0, the method developed here is rather more general. It is only necessary
that the equation possess a fundamental solution of the form (2.2) near the point in
question. The existence of such a fundamental solution has been demonstrated; see, for
example, [10, Chapter III]. Thus, at least in principle, a representation analogous to
(2.12) for a general analytic elliptic equation of order 2n in two independent variables
could be constructed.

Some explicit results concerning regularity, of solutions to the biharmonic equation
have been obtained. It is expected that similar results could be obtained in the general
case. Each of the representations of biharmonic functions is of interest in itself, and
may find application in elasticity theory. In particular, the representation (4.12) (or
(4.13)) is analogous to the Poisson representation for solutions to the generalized axially
symmetric potential equation; see, for example [16, (33)]. Therefore, it may be useful in
solving axially symmetric boundary value problems for the biharmonic equation in the
same way that the Poisson representation has been employed by Heins [18] to solve
axially symmetric boundary value problems for the Laplace equation. For related work,
see 19] and [201.

Finally, we observe that some results for a real, hyperbolic equation can be
obtained from the present work. Under the transformationy iy, i, the Cauchy
problem on 0 for the elliptic equation goes into the Cauchy problem on 0 for the
hyperbolic equation. It is easily verified that this substitution in (3.2) yields the follow-
ing representation for the solution to Cauchy’s problem for Uxxxx-2Uxx+u=O
ony=0:

u(x,y)- [u(x +y, O) + u(x-y, 0)]

8 _y

Here the (real) arguments of u and its derivatives in the integrand are (s, 0). Similarly,
the solution to L2[u]-0, where L[u]’-Uxx--Uyy--(2a/y)Uy, and for which uy and
U.vyy are zero on y 0, follows from (4.13):

F(a+) (

44 (L u (x y cos O O)sin2 + O de
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NUMERICAL COMPUTATIONS
OF THE SPECTRA OF THE LAPLACIAN ON

7-DIMENSIONALHOMOGENEOUS MANIFOLDS SU(3)/T(k,I)*
HAIME URAKAWA

Abstract. The spectra of the Laplacian of a few compact Riemannian manifolds without boundary, e.g.,
flat tori, lens spaces and Riemannian symmetric spaces have been determined. In general, it is difficult to
determine the spectra of the Laplacian of Riemannian manifolds. In this paper we compute numerically the
spectra of 7-dimensional nonsymmetric Pdemannian manifolds SU(3)/T( k, I), using unitary representation
theory.

1. Introduction. Let (M,g) be an n-dimensional compact giemannian manifold
without boundary. Let A be the Laplacian of (M,g) acting on the space C(M) of
complex valued C functions on M, that is,

k=l

where the g;j are the components of g with respect to a local coordinate (x,. .,x,,),
(gY) is the inverse matrix of (go) and F. is Christoffel’s symbol. Then the spectrum
Spec (M, g) of A consists of

0:hO<hl_<k2<_k3<_ ---> +o.

Problem. Given a Riemannian manifold (M, g), calculate its spectrum Spec(M, g).
This task seems to be impossible, in general, for nonhomogeneous Riemannian

manifolds and difficult even for nonsymmetric homogeneous giemannian manifolds.
For a few Riemannian manifolds, e.g., flat tori, lens spaces and symmetric spaces,
spectra have been calculated (cf. [2], [3], [5] and [7]).

In this paper, we state the results of an experiment in the computation of the
spectra of some 7-dimensional giemannian manifolds SU(3)/T(k, 1) which were treated
by S. Aloft and N. R. Wallach [1].

2. Preliminaries. In this section, we present some results on the spectra for normal
homogeneous Riemannian manifolds following [6], [7].

Let G be a compact connected Lie group and let K be a closed subgroup of G. A
Riemannian manifold (G/K,g) is called normal homogeneous if g is canonically in-
duced from a bi-invariant metric on G. That is, let (., .) be an Ad(G)-invariant inner
product on the Lie algebra of G. Let rrt be the orthogonal complement to the
subalgebra f of K in relative to (.,.), so that f + rrt and Ad(K)m m. The tangent
space To(G/K ) of G/K at the origin o= {K} can be identified with the subspace rrt by
rrt XXo To(G/K), where Xof d/dtf(exp tX. o )l/_o for a C function f on G/K.
An inner product go on To(G/K ) defined by go(Xo, Yo)=(X, Y), X, Ym, can be
uniquely extended to a G-invariant Riemannian metric g on M.

The spectrum Spec(G/K,g) of the Laplacian for a normal homogeneous Rie-
mannian manifold can be obtained as follows. Let be a maximal abelian subalgebra
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of . Since the weight of a finite unitary representation of G relative to has its value in
purely imaginary numbers on , we consider the weight as an element of v/- t*, where
t* denotes the real dual space of t. From the Ad(G)-invariant inner product (., .) on t,
a positive definite inner product on (- t* is defined in the usual way and denoted by
the same symbol (.,.). Fixing a lexicographic order > on 1 t*, let P be the set of all
positive roots of the complexification c of t relative to t. We denote by 6 half the sum
of all elements in P:-1/2,ael, a. Let F(G)-(Ht; expH-e} and I-{Xx/’- t*;
A(H)/-1 2rrT/ for all HF(G)}. An element in I is called a G-integral form. The
elements of

D(G)= (2I; (,,a)>0 for all aP)
are called dominant G-integral forms. Then there exists a natural bijection from D(G)
onto the set (R)(G) of all nonequivalent finite dimensional irreducible unitary represen-
tation of G which map a dominant G-integral form h D(G) to an irreducible unitary
representation (Vx, rrx) having highest weight ?. For , D(G), put d(?) the dimension
of the representation Vx. d(A) is given by

d(X)- II

A representation (Vx, rrx) in 63(G) is called spherical relative to K if there exists a
nonzero vector v Vx such that ,rx(k)v v for all k K. Put

m() =dim{v Vx; ,rx(k)v=v for all kK).

Let (R)(G,K) be the set of all spherical representations in (R)(G) relative to K and
D(G,K)= (? D(G); (Vx,rx)(R)(G,K)}. Then we have the following:

PROPOSITION 1. The spectrum Spec(G/K, g) of the Laplacian on (G/K, g) is given
as follows:

eigenvalues: 4rr2(+ 21, h), , D(G,K),
multiplicity: m(
Proof. See [7], for example.

3. A computation ol the spectrum ot SU(3)/T(k,I). We consider the following
7-dimensional homogeneous space SU(3)/T(k,I) admitting positively curved Rie-

mannian metrics, which was discovered by S. Aloff and N. R. Wallach [1].
We preserve the notation used in 2. Let G= SU(3) and u(3) the Lie algebra

of SU(3). Take as K,

T(k,l)- (diag[e2"ikO,e2’ritO,e-2’i(k+’)l;0),

Ikl+l/lv0 (k,l.), i=vt- 1. Here diag[x,y,z] denotes a 33 diagonal matrix whose
diagonal entries are x,y and z. Consider the coset manifold M(k,1)=SU(3)/T(k,l),
which is simply connected and H4(M(k,1), 7/)- 7//r 71 with r-kZ+lZ+kl, provided
k, l are relatively prime. We assume that k, are relatively prime in the following. The
Lie algebra t(k,/) of T(k,1) is included in a maximal abelian subalgebra t of SU(3)
given by

t-- (2,ridiag[x,,x2,x3]; Xj(j--1,2, 3), X -+" X2 "+- X3 0)
We give an Ad(G)-invariant inner product (.,.) on fi by

( X, Y) Trace(XY), X, Y .
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Let g be the SU(3)-invariant Riemannian metric on SU(3)/T( k,1) induced from this
inner product (-, .).

We will compute the spectrum of the Laplacian of (SU(3)/T(k,1),g) making use
of Proposition 1. For this, we denote by xj.t* (j- 1,2,3) the linear mapping

2 wi diag[ X l, X2, X ]1-- Xj.

Put X..- /- xj(- t* (j- 1,2,3). We fix an order > on f--i t* in such a way that

Xl >;kz>0>X 3. Then the set D(SU(3)) of all dominant integral forms on SU(3) relative
to is given by

D(SU(3))- (-m,, +m22; m,>-m2>-O, mj7/(j-1,2)}.

On the other hand, the elements H,jt (j- 1,2,3) such that xj(H)-(Hxj,H) for all
H are given as follows:

H),,-i(6w )-1 diag[ 2, 1, 1],

Hx3 i(6w ) -’ diag[ 1, 1,2 ].

Hx2- i(6r )-’ diag[- 1,2, 1] and

Then the inner product (.,.) on v- t* is given by

(,i,,j)-(gx H,)--{ 6-17/’-2
i’ __12-1qr-2

(i=j),
i=/=j ).

The set P of all positive roots of ,q c relative to is

P- {;ki-;kj; -<i<j-<3},

so we have

8=l--3--2,lq--)k 2.

Therefore we have

4wz(x + 26,X )- 4r2(( m, + 4))k -}-(m 2 + 2)X2, m,X, + m2X2)
_2- m+ m22- mm2+ 3m,

for h=m?! +m22 D(SU(3)). Moreover we have

(2) d(X)- H (x;-xj,x+8)
,<_i<j<_3 (xi-xj,8) -(rn, -m2+ 1)(m, +2)(m2+ 1)

for X =mix + m2, 2 D(SU(3)).
Now we will compute

m(X),
m(X)-

O,
XD(SU(3),T(k,I)),
XD(SU(3),T(k,I)),

by the same method as in [4].
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LEMMA 1. For 2t--m2t-+-m2,2D(SU(3)), the character Xx of the representation
Vx, rx is decomposed into the followingform on T(k, 1)"

x(diag[ e2;*, e2i’, e-2ri(k+t)O])
m + m p--q--

p--m2+ q=0 r=0

e2ri( k( ml + m2+ 2- 2p-q+ r)+ l(1-p+ q+ 2r))O

where i--
Proof. Due to Weyl’s character formula, the character Xx of (Vx, %) is given by

- [I ( e( xi-x xi-xj
2 )-e( 2 )), and

<_i<j<--3

e(plx,) e(p,x2)
e(p2x,) e(P2x2)

e(p,x3)
e(p2x3)

on exp(t). Here

where we denote P m + 2, P2 m + and e(x) e 2ix. Moreover we have

a+-e((pl +p2)x,)
e(pl(X2--Xl) e(
e(p2(x2--xi)) e(p2(x3-x,))

=e((p,+pz)x,)
0 0

e(p,(x2--Xl))- e(p,(x,--Xl))-
e(P2(x2--x,))- e(P2(X3--x))-

Xp’ Y"’-=e((p, +p2)x,)
Xp2_ yp2-1

m + m

=e((p, +P2)X,)(X-1)(Y-1) , (xPYq-xqYp)
p=0 q=0

where X--e 2rri(x2-x’) Y-e 2ri(x3-x) Here we have

nz + m

p=O q=O

n,z] + m

p--m2+l q=O

nz + m p--q--

p--m2+l q=0 r=0

xq+ryp- --r.
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Substituting m m2-0 we have

-e(3x,)(X-1)(Y-1)(X- Y)-X-1y-I(x 1)(Y-1)(X- Y).
Therefore we have

xx-e((m, +m2+3)Xl)

m+l rn p--q--I

p=ma+l q=O r=O

ml+l m p--q--I

p--m?+l q=O r--O

xq+r+ 1yp--r

e((m, +mz+2-2p-q+r)x +(1-p+q+2r)x2).

Substituting x- kO, x 2 lO, we have the desired formula. Q.E.D.
For every m 7/, the following homomorphism X,,, of the 1-dimensional group

T(k,l) into the multiplicative group {zC; Izl- } is well-defined:

Xm" T(k, 1) diag[ e 2rikO 2rilO,e e -2ri(k+l)O ]_ e 2rimO

Hence Xm(m 7/) are characters of T(k, 1). In fact, we have

diag[ e2ik e 2ritO e-2i(k+/)] -identity ,, 0 7/

since k, are relatively prime.
Therefore, due to Lemma 1, we have
PROPOSITION 2. Let (Vx,ra) be an irreducible unitary representation of SU(3) with

the highest weight h=mlh +m2,2 D(SU(3)). Then, as a representation of T(k,1), Va
is decomposed into T( k, l)-irreducible submodules as follows:

m + m p--q--

p-m?+l q=O r--O
ml + mz+2-2p-2q+ r) + l(1-p+ q+ 2r)

where Vm (m 7/) is the 1-dimensional irreducible T(k, 1)-submodule of V with the
character X m"

Because of Proposition 2, the number m()) is the one of the solutions (p, q, r) of
the equation

(3) k(m, +mz+2--2p-q+r)+l(1-p+q+2r)-O

satisfying the conditions

(4) m2+ <_p<_ml + 1, O<q<m2, O<_r<_p-q 1,

for every k,1 (relatively prime) and m>m2>O (m,m27/). To compute m(), we
arrange (3) and (4).

Put

n 1-m-m2>O, n2-m2>0, p’--p-n2- 1.

Then the ranges in which p’, q and r vary are given by

(6) O<_p’<_n, O<_q<_n2, O<_r<_p’+(n2-q).
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The equation which p’, q and r satisfy is given by

(7) kn-lnz-(2k+l)p’+(-k+l)q+(k+Zl)r=O.

Put Z +- 0, 2,... For every k,l and (nl,n2)7/+ X_ + we denote by S/’’z the
1, ?12

number of the solutions (p’, q, r) of (7) satisfying condition (6). If there are no solutions
of (6) and (7), put S/’’/ -0.Thus we have the following:

I, tl

THEOREM 1. Let us preserve the above conditions. Then the spectrum of the Laplacian
of the Riemannian manifold (SU(3)/T(k,I),g) is given as follows:

eigenvalues: -(m+m-mm2+3ml),
multiplicity: d()m(,),

where

d(,)- 1/2(m-m2+ l)(m +2)(m2+ l),

are the number of the solutions of (6) and (7), n m m 2 and n 2 m 2. Here m and m 2

vary over all the integers subject to the condition m>m2 >0.

4. Numerical computations. M. Kasugawa wrote a program to compute the num-
bers S’’z making use of a Yokokawa-Hewlett Packard computer YHP 9825 A. In the
tables below, we express S’’z by the number whose position is (n , n 2) (see Fig. 1)ii1,112

FIG. 1.

Remarks. Observing the tables of S’’z (Tables 1-7) it seems that" (I)111,112

Spec(SU(3)/T(k,l))=Spec(SU(3)/T(k’,l’)) implies that SU(3)/T( k, I) is isometric to
SU(3)/T(k’,I’), and (II) for every large number m, there exist (k,l) and (k’,l’) such
that

(i) SU(3)/T( k,1) is not homeomorphic to SU(3)/T(k’, l’),
(ii) for j<_m, the jth eigenvalues of SU(3)/T(k, 1) and SU(3)/T(k’,I’) coincide

with each other, but
(iii) Spec(SU(3)/T( k, l), g )=/= Spec(SU(3)/T( k’, l’), g ).

Acknowledgment. We express our hearty gratitude to Mr. Masa’atsu Kasugawa
who wrote a program for the YHP 9825 A computer, which computes the number of
solutions of certain equations.
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n2 20
19
18

17

16

15

14

13

12

11
10

9

8

7

6

5

4
3
2

0

TABLE
CASEk=7,1 13.

0 0 3 0 0 8 0 0 15 0 0 22 0 0 29 0 0 35 0 0 41
0 2 0 0 6 0 0 12 0 0 19 0 0 26 0 0 32 0 0 38 0

0 0 4 0 0 9 0 0 16 0 0 23 0 0 29 0 0 35 0 0

0 0 3 0 0 7 0 0 13 0 0 20 0 0 26 0 0 32 0 0 35

0 2 0 0 5 0 0 10 0 0 17 0 0 23 0 0 29 0 0 32 0

0 0 4 0 0 8 0 0 14 0 0 20 0 0 26 0 0 29 0 0

0 0 3 0 0 6 0 0 11 0 0 17 0 0 23 0 0 26 0 0 29

0 2 0 0 5 0 0 9 0 0 14 0 0 20 0 0 23 0 0 26 0

0 0 4 0 0 7 0 0 11 0 0 17 0 0 20 0 0 23 0 0

0 0 3 0 0 6 0 0 9 0 0 14 0 0 17 0 0 20 0 0 22

0 2 0 0 5 0 0 8 0 0 11 0 0 14 0 0 17 0 0 19 0

0 0 4 0 0 7 0 0 10 0 0 11 0 0 14 0 0 16 0 0

0 0 3 0 0 6 0 0 9 0 0 9 0 0 11 0 0 13 0 0 15

0 2 0 0 5 0 0 8 0 0 8 0 0 9 0 0 10 0 0 12 0

0 0 4 0 0 7 0 0 7 0 0 7 0 0 8 0 0 9 0 0

0 0 3 0 0 6 0 0 6 0 0 6 0 0 6 0 0 7 0 0 8

0 2 0 0 5 0 0 5 0 0 5 0 0 5 0 0 5 0 0 6 0
0 0 4 0 0 4 0 0 4 0 0 4 0 0 4 0 0 4 0 0

0 0 3 0 0 3 0 0 3 0 0 3 0 0 3 0 0 3 0 0 3
0 2 0 0 2 0 0 2 0 0 2 0 0 2 0 0 2 0 0 2 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 n

n 20
19
18

17

16

15

14

13

12

11
10

9

8

7

6

5
4
3
2

0

TABLE 2
CASEk=4,1 19.

0 0 3 0 0 8 0 0 12 0 0 17 0 0 23 0 0 29 0 0 35
0 2 0 0 6 0 0 10 0 0 14 0 0 20 0 0 26 0 0 32 0

0 0 4 0 0 8 0 0 12 0 0 17 0 0 23 0 0 29 0 0

0 0 3 0 0 6 0 0 10 0 0 14 0 0 20 0 0 26 0 0 29

0 2 0 0 5 0 0 8 0 0 12 0 0 17 0 0 23 0 0 26 0

0 0 4 0 0 7 0 0 10 0 0 14 0 0 20 0 0 23 0 0

0 0 3 0 0 6 0 0 9 0 0 12 0 0 17 0 0 20 0 0 23

0 2 0 0 5 0 0 8 0 0 11 0 0 14 0 0 17 0 0 20 0

0 0 4 0 0 7 0 0 10 0 0 13 0 0 14 0 0 17 0 0

0 0 3 0 0 6 0 0 9 0 0 12 0 0 12 0 0 14 0 0 17

0 2 0 0 5 0 0 8 0 0 11 0 0 11 0 0 12 0 0 14 0

0 0 4 0 0 7 0 0 10 0 0 10 0 0 10 0 0 12 0 0

0 0 3 0 0 6 0 0 9 0 0 9 0 0 9 0 0 10 0 0 12

0 2 0 0 5 0 0 8 0 0 8 0 0 8 0 0 8 0 0 10 0

0 0 400 7 0 0 7 0 0 7 0 0 7 0 0 8 0 0

0 0 3 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 8

0 2 0 0 5 0 0 5 0 0 5 0 0 5 0 0 5 0 0 6 0
0 0 4 0 0 4 0 0 4 0 0 4 0 0 4 0 0 4 0 0

00 3 00 3 00 3 0 0 3 0 0 3 0 0 3 0 0 3
0 2 0 0 2 0 0 2 0 0 2 0 0 2 0 0 2 0 0 2 0
00 00 0 0 0 0 0 0 0 0 0 0

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 n
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n 20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2

0

TABLE 3
CASEk-3,1= 19.

0 0 3 0 2 6 0 3 9 0 4 12 2 5 15 4 6 18 6 7 21
0 2 0 5 0 2 8 0 3 11 4 14 3 5 17 5 6 20 7

0 0 4 0 7 0 2 10 0 3 13 2 4 16 4 5 19 6 6
0 0 3 0 0 6 0 9 0 2 12 3 15 3 4 18 5 5 18
0 2 0 0 5 0 0 8 0 11 0 2 14 2 3 17 4 4 17 6

0 0 4 0 0 7 0 0 10 0 13 2 16 3 3 16 5 4
0 0 3 0 0 6 0 0 9 0 0 12 0 15 2 2 15 4 3 15
0 2 0 0 5 0 0 8 0 0 11 0 0 14 14 3 2 14 5

0 0 4 0 0 7 0 0 10 0 0 13 0 0 13 2 13 4 2
0 0 3 0 0 6 0 0 9 0 0 12 0 0 12 0 12 3 12
0 2 0 0 5 0 0 8 0 0 11 0 0 11 0 0 11 2 0 11 4

0 0 4 0 0 7 0 0 10 0 0 10 0 0 10 0 10 3 0
0 0 3 0 0 6 0 0 9 0 0 9 0 0 9 0 0 9 2 0 9
0 2 0 0 5 0 0 8 0 0 8 0 0 8 0 0 8 0 8 3

0 0 4 0 0 7 0 0 7 0 0 7 0 0 7 0 0 7 2 0
0 0 3 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 6
0 2 0 0 5 0 0 5 0 0 5 0 0 5 0 0 5 0 0 5 2

0 0 4 0 0 4 0 0 4 0 0 4 0 0 4 0 0 4 0
0 0 3 0 0 3 0 0 3 0 0 3 0 0 3 0 0 3 0 0 3
0 2 0 0 2 0 0 2 0 0 2 0 0 2 0 0 2 0 0 2 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 19 19 20 n

n2 10
9
8
7
6
5
4
3
2

0

TABLE 4
CASEk-2, =3.

2 4 5 5 8 9 11 12 13 17
2 3 4 6 7 8 10 11 14 13
2 3 4 5 6 8 9 11 11 12
2 2 3 5 6 7 8 9 10 11

2 4 4 5 7 7 8 8 9
0 3 2 3 6 5 6 6 7 8
0 2 2 5 3 4 5 5 6 5

0 4 2 2 4 3 4 4 5
0 0 3 2 2 3 4
0 2 0 0 2 2 2 2 2

0 0 0 0

0 2 3 4 5 6 7 8 9 10 n

n2 10
9
8
7
6
5
4
3
2

0

TABLE 5
CASE k 2, l=5.

0 5 0 0 13 0 0 22 0 0 31
2 0 0 9 0 0 17 0 0 26 0
0 0 6 0 0 13 0 0 21 0 0
0 3 0 0 10 0 0 16 0 0 22

0 0 7 0 0 13 0 0 17 0
0 0 4 0 0 10 0 0 13 0 0
0 2 0 0 7 0 0 10 0 0 13

0 0 4 0 0 7 0 0 9 0
0 0 3 0 0 4 0 0 6 0 0
0 2 0 0 2 0 0 3 0 0 5

0 0 0 0 0 0 2 0

0 2 3 4 5 6 7 8 9 10 n
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n2 10
9
8
7
6
5
4
3
2

0

TABLE 6
CASE k- 2, 7.

0 2 2 5 4 3 8 5 5 l!
0 4 3 2 7 4 4 10 5

0 0 3 2 6 3 3 9 4 5
0 2 0 5 2 2 8 3 4 8

0 0 4 7 2 3 7
0 0 3 0 0 6 2 6 2 4
0 2 0 0 5 0 5 3 5

0 0 4 0 0 4 0 2 4
0 0 3 0 0 3 0 3 0 2
0 2 0 0 2 0 0 2 0 2

0 0 0 0 0 0 0

0 2 3 4 5 6 7 8 9 l0

/7 10
9
8
7
6
5
4
3
2

0

TABLE 7
CASE k-2, 1= 9.

0 2 0 2 5 3 8 3 4 11
0 4 0 2 7 2 3 l0 4

0 0 3 0 6 2 9 3 3
0 2 0 0 5 0 8 2 2 8

0 0 4 0 0 7 7 3
0 0 3 0 0 6 0 0 6 2
0 2 0 0 5 0 0 5 0 5

0 0 4 0 0 4 0 0 4 2
0 0 3 0 0 3 0 0 3 0
0 2 0 0 2 0 0 2 0 0 2

0 0 0 0 0 0 0

0 2 3 4 5 6 7 8 9 l0
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A LOCAL UNCERTAINTY PRINCIPLE*

JOHN J. BENEDETTO

Abstract. A stationary phase argument is used to characterize the components required to estimate the
difference between two Fourier transforms f and , where the support of f is compact (the Theorem). This
characterization allows effective local approximation to by f in various norms (the Proposition and the
Example). The Heisenberg uncertainty principle asserts poor global approximation; hence, the Theorem,
Proposition, and Example demonstrate the compatibility of the uncertainty principle and local determinacy.

Introduction. The Heisenberg uncertainty principle has several mathematical for-
mulations, each of which is a specific theorem, e.g., Fefferman and Phong [4] or
Landau, Pollak, and Slepian [6] and Fuchs [5]. Occasionally these theorems are decreed
best possible, although one should interpret such optimality in terms of the mathemati-
cal model which exhibits uncertainty, e.g., the canonical transformations of [4] or the L2

estimates of [5], [6].
We shall prove that the uncertainty principle, which is valid globally for various

models, can be transgressed locally. This is done by means of a pointwise estimate
proved in 2 and the implementation of this estimate in 3 for various special cases.
Quantitatively, we are given a time interval [-T, T], a spectral function V, and a
frequency 0. In 2 we shall characterize the ingredients required to estimate ]IF]- V] in
a neighborhood of 0, where F is the Fourier transform of a function f supported by
[- T, T]. Then, in 3, we shall adapt these ingredients for specific points 0 to construct
Fourier pairs fF such that [[F[- V] is small in an 0-neighborhood and where f is
supported by [- T, T].

The reason for proving the local results of 2 and 3 is because of the traditional
role played by the uncertainty principle in spectrum estimation problems and the
limitations attributed to it in this role. We shall describe the spectrum estimation
problem in 4 as well as indicating the usefulness of our results to deal with it.
Specifically, we shall construct local pointwise approximations to given steeply decay-
ing functions, thereby allowing effective estimation of power spectra having two close
peaks.

1. Notation and definitions. Nt and will denote the real line, the former indicat-
ing the time axis and the latter indicating the frequency axis. If f is defined on , then
its Fourier transform ](0)-F(o)is the spectral function F(o)-f_f(t)e-i’dt de-
fined on . The pairing off and F is designated byfF. The support of a function F is
suppF and its supremum norm over , resp., over UC_, is IIFII, resp., IIFllv. The L2

norm o_f F is IIFll2-((1/2r)flF(o)12do)/2-(flf(t)ldt)1/2. Also, if UC_, then IU],
resp., U, is the Lebesgue measure, resp., complement, of U.

For fixed numbers a, F>O we take as the prototype of a steeply decaying function
the de la Vall6e-Poussin kernel

V(o)_ 2r ( 3r )1/2-d- 3F+a XF+a/2*Xa/2(o))’

where X denotes the characteristic function of [-a,a] and denotes convolution
defined as F, G(o)-(1/2r)fF(o-y)G(y)dT. V is a trapezoid function supported by

*Received by the editors February 26, 1982, and in revised form November l, 1982.
Department of Mathematics, University of Maryland, College Park, Maryland 20742.
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[-(F+a),F + a] and constant on [-F,F]; it plays an important role in the study of
absolutely convergent Fourier transforms, e.g., Benedetto [1]. An easy calculation
shows that IJVll2-1, V(0)= (3r/(3F + a))1/2, and

v( 2__ 3r )1/2 sin( F + a/2)t sin( at/2)
r 3F+a 2

where 3= V. The value of F plays a role in signal processing, e.g., Benedetto [2; 3] and
4; and we shall consider small constant values of a to deal with functions having steep
decay or, equivalently, small sidelobes.

2. A local uncertainty theorem. Let T be a fixed positive quantity. In the following
result w denotes an infinitely differentiable increasing bijection w: for which w:
I-T, T] [-(F + a),F + a] is also a bijection; and r denotes an absolutely continuous
function which is supported by [-T, T], positive on (-T, T), and which satisfies the
norm condition [[rl[ 2 =[[PI[2 1.

THEOREM. Given a, F, the corresponding de la Valle-Poussin kernel V, and fixed
quantities T>0 and og. For each w: g and each symmetric interval Uo, about to,,
where to, is defined by the condition w( to,)= o, there is a nonnegative function r, indepen-
dent of Uo,, such that

(1) [[F(0)[-V(o)[<_lUo,[(4r(to,)+ sup ]r(t)-r(to,)[)
tU

+ 19211 rll u2 + r( to, )C( Uo,, w),
min ]w(t--+l U]/2) w(,)l

where f(t)= r(t)ei(t), 0 is any primitive of w, and C(UO,, w) is the Cornu spiral error term

(2) 2ri 1/2 -- eiw’(t’)(t-t’)2/2 dt
v

(3)

Proof. i. For any w: l we define r_>0 on the interval [- T, T] by the formula

Since w: [-T, T]-[-(F+a),F+a] is a bijection, we see that r is positive on (-T, T)
and that if we set r 0 off [- T, T], then

Differentiation of (3) with respect to yields

(4) r(t)- ----w’(t) V(w(t))

for each t(- T, T); and, by the definitions of V and w, we see that if we define r on R
by (4), then it is an absolutely continuous function on supported by [- T, T].

If 0 and 0 + c are two primitives of w, then f(t) r(t) exp iO(t) and ft.(t)
r(t) exp i(O(t)+c) have the property that IFI-IF.I on . Also, by the definition of w
we see that to, (-T, T) if 0 (-(F+ a),F + a) and to,<- T if 0<-(F+ a).
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ii. For 0 N we let U be an arbitrary open symmetric interval about t. Also, we
set qg(t)-O(t)-to. Then we have q/(t)-w(t,o)-o-O. Consequently, if we expand
about t, we obtain

q( O(t toa + O"(t )( t- t )e/2 + R( t, oa ).
R is the remainder term ( (3)(-)ftO3)(u)(t-u) du-()O u,)(t-t)3, some ut between
and t; and limt_tR(t,w)/(t-t,)3-w"(to)/3!.

We write F(0) as

F( o ) f r( )eiO’)-") d, +fu r( )e i’O’)-’) dt

f r( r( t,o ))ei’t)-") dt

+ ft;60r(t)ei(t)-too)ei("(t)(t-t)2/2) dt

+ fur(t)ei’)-")dt.
iii. It is well known that

e i’’’: dt- /eir/4/c,

Thus for c- w’(to)/2 weobtain

f 2rri(6) e i’’’)t2/2 dt-
1/2

since eir/4-V/-[ and w’-O". Note that because of the /.2 in (6) we cannot write
f_r ei" du as a real quantity in terms of the cosine.

iv. Equations (4) and (6) and the penultimate term on the right-hand side of (5)
suggest adding and subtracting

r(t)eiO,)_,) 2ri 1/2

to F. Also, (4) and the triangle inequality yield

)1/2Iv
(7) IIg(, )l- w,2, t)

2rri 1/2
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(8)

Combining (5) and (7) we obtain

[F(0)]- V(o)l<_2]V,olr(t,o

+ U,ol sup
U,o

e iO’’(t)(t-t’)2/2 dl+r(t)
w (,)

+ fu_r(t)ei((’)-’)dt].
v. Our result (1) will follow once we estimate the "stationary phase" term lug in

(8). Since supp r[- T, T], the integral lug is really the integral ft-T, TUS; and the set
[- T, T] U is either a bounded interval or a disjoint union of two bounded intervals.
Any such interval [a,b] has the properties that [a,b][-T, T] and [a,b]

Since r0 is a function of bounded variation, we shall invoke the mean value
theorem for integrals to estimate lug in (8). Of course, the integrand is complex and the
mean value theorem is only valid for real functions. We circumvent this issue by writing
the complex integrand in trigonometric form, and, hence, the integral,

hr( )e((t)-") dt,

can be written as a sum of 12 integrals of the form

(9) f,."e dt,

where each integral is multiplied by some value of r or r/2.
We use van der Corput’s lemma to estimate the integral (9). The result asserts that

(lO)
s

e() dt <_-,

where Iq0’l>o on [c,d]. In fact, we obtain (10) by means of the mean value theorem for
Riemann-Stieltjes integrals, the fact that q’ is monotonic, and the following calcula-
tion"

deig( t) l, d(ei(’))
4 4

The monotonicity is required to employ the mean value theorem and it is a conse-
quence of the fact that q)’(t)=w(t)-o is strictly increasing. The factors, 4, are a
consequence of the fact that the mean value theorem is only valid for real functions.

If _> + Ul/2, then q( 0’( o _> 0’( t,o + Uol/2) ,0 w( t,o + U,ol/2) w( ).
Similarly, if < U,ol/2, then q0( 0’( 0 _< w( t,o Uol/2) w( ). Thus, we have
Iq)’(t)l>_min+._lw(to+lU,ol/2)-w(to)l for t(ZUo. Taking O to be this minimum and
combining (10) and the twelve terms of (9), we obtain

19211rll uz-
min Iw(t,o--+ u,ol/2)- w(t,o)l-,
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This inequality combines with (8) to give (1). The factor 192 can be lowered.
Q.E.D.

3. Consequences of the Theorem.
PROPOSITION. Given a, F, the corresponding de la Vallke-Poussin kernel V, and

constants T, e> O. For any o $[-(F+ a), F + a] there is a neighborhood W,o of oo and an
absolutely continuous function f supported by [- T, T] such that IIFII_-IIVII2- and

(11)

Proof. By continuity it is sufficient to prove (11) for , o.

Take < -(F + a) and note that for any w we shall have t< T. We shall choose
w to be linear on (-,- T]. Also, r(t) vanishes by the construction of r from w in
the Theorem. Consequently, the Theorem yields the estimate

(12) V(w)l<_[U, sup r(t)+

For positive L less than and (T/(F-+- O))2/3 we define

w( )
L3/2

+ .L3/2 ( r + a) t<_-T.

L will be chosen so small that

(13) -2--- (o+r+a)L’/4< e--
2’

L /2

-16 <.w+F+a

As we shall see, (13) will have the effect of making the right hand side of (12) less than
E.

The length IU, of U,o is defined as

u l-- -2(,o+
and so, since t,, defined by w(to)= w, is the center of U, we have t, increasing to T
as L shrinks. For the sake of a mental picture, keep in mind that 1/L3/2--[-(+ ’ +a)]/[-2(o + F + a)L3/2]. Also, we have chosen the slope 1/L3/2 instead of 1/L (resp.,
1/L2) in order to keep the second term (resp., the first term) on the right hand of (12)
small; of course, the first term vanishes in the 1/L case.

The slope of the increasing diagonal of the (+ T, -+-(F+a)) box is (F+a)/T, and
thus w can be defined on I-T, T] so that w’ <_max(1/L3/Z,(F + a)/T) there. Further,
since t-L3/Z(w+F+a)=-T (by the definition of w) and L<I, we obtain
(- T, T)- . Consequently, we can choose w’<_(F+a)/T on the interval t,-L(o+
F+a), ). Of course, w’= 1/L3/2 on parts of U and we originally chose L small
enough so that 1/L3/Z>(F + a)/T.

With these definitions of w and U,, which both depend on L, we evaluate the right
hand side of (12). To do this we first define r as in the Theorem to vanish off [- T, T]
and by the formula r(t)- w’(t)/(2r) V(w(t)) for t[- T, T]. Thus, we have

sup r(t)<( 3rr )1/2(1tu, 2r(3F+a) L3/2

1/2 1/2

L3/4
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and

)
1/2

[jr[Iv2<
3r

2(3r+)
1-’ + a ) 1/2

< (r) 1/2

T

Substituting these estimates into (12), using the definitions of w and lUll, and setting
f(t)--r(t)e(, where is a primitive of w, we obtain

32/3/2TL3/2

and so (11) follows by means of (13). Q.E.D.
Example.
a. A construction similar to the Proposition can be made to estimate V(0) for

o [-(F +.a), F + a] by means of functions f,-,F for which suppfC_ [- T, T]. However,
when we deal with the neighborhoods used in the Proposition, the parameter F must be
chosen large enough to ensure that r(t,o)C(U,o,w) is small. Quantitatively this comes
down to a choice of F for which 1/V-<e; and such bounds are inadequate since the
height of Vis of the order 1//-. Thus, any effective estimation of Von [-(F+ a), F + a]
must render r(t,o)C(U,o, w) small independently of taking too large. To this end we
give the following calculation in part b, and use this calculation in part c to provide an
analogue of the Proposition for the case [-(F+ a), F + a].

b. Since f eict2 dt (1/c)(v/- + iv//2 ), c > 0, we have f0 cos(ct)2 dt
(1/2c)7ff-/2 Also cos(ct)2-0 at each t,-(1/c)/r(Zn+ 1)/2, n-0, 1,.... As such we
approximate the area beneath or above cos(ct)2 by +-(1/2c)[(r(2n+3)/2
-(r(2n+l)/2], respectively. Designating this "triangulation" of COS(Ct)2 by
cos A(ct)2, we compute

cos(ct):dt-

where s=/]--(--T)+(C3--v/-)-(v/-3-)+-... For each N we make the
estimate

(14) (1/,’)/(4N-- i)r/2 cos A(ct )2dt- "c

_12c n=N [((4n+l --ff4n--1)--(v/4n+3--4n+l)]cv/-
by the mean-value theorem. Thus, we essentially have that C(U,o, w) is of order 1/(c/-)
when lUll is of order /c recalling that c is of order w’(t,o)

c. In order to implement (14) for estimates of the form (11) in the case w
(-(F+ a),F + a), we proceed as follows. For a given e and 0 we choose N and w so
that 1/v/- <e, w(0)-0 and w’N in a neighborhood of 0. In particular, because of
(14) and the definition of r(t,o) we can expect r(t,o)C(U,o,w) to be less than e if

lUciaN(-)/. The remaining terms of (1) can be minimized by more careful treatment
of the remainder R in (8) and by a proper choice of a, respectively.
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Remark.
a. The terms of the bound (1) in the Theorem correspond to the techniques used in

the proof: stationary phase, Fresnel integrals, and Vakman’s construction of sophisti-
cated signals, e.g., Vakman [7, [}31]. Vakman’s construction.plays a role in our Proposi-
tion and relates time and frequency in a fundamental way just as the Wigner transform
and the method of Fefferman and Phong [4] do.

b. The technique in the Proposition, of constructing custom-made bijections w,
and the pointwise estimation in the Theorem and the Proposition can be adapted to
other situations where different norms might be required, cf., the last part of the
Example. For instance, the deconvolution method of [2] sometimes requires that esti-
mators F be flat as well as small in certain neighborhoods. In fact, our results provide
one illustration of a general phenomenon" the uncertainty principle, or poor global
approximation, does not preclude good local approximation for many norms.

4. The spectrum estimation problem. The spectrum estimation problem is to clarify
and quantify the statement: find periodicities in a signal x recorded over the time
interval [- T, T].

We assume the following mathematical model, cf. [2].
Assumptions. 1. The signal x is actually defined on the product space [- T, T] P,

where P is a probability space and x is the restriction to [- T, T] P of some stationary
stochastic process y.

2. The expectation E/of the periodogram

fx(t,a)f(t)e-"’dt]
is known, where suppfc_[- T, T].

3. The power spectrum S of x is uniquely determined. This assumption is a
theorem in case we make the experimentally reasonable hypothesis that the power
spectrum Sy of every stationary extension y of x is compactly supported [2, III].

Remark. a. Assumption 3 is not universally accepted. In fact, the maximum
entropy method of spectrum estimation is essentially opposite the point of view that S
is uniquely determined. In maximum entropy the power spectrum is modeled to
maximize a certain entropy integral.

b. Besides maximum entropy there are also classical windowing methods of spec-
trum estimation. For example, the Bartlett-Tukey method produces an asymptotically
unbiased estimator E by choosing the data windowf as an approximate identity.

Our method of spectrum estimation, which is conceptually different than maxi-
mum entropy and classical windowing, depends on the Theorem. The discrete part of
the measure S reflects periodicities in x, and our task is to formulate an estimate of S
in terms of the incomplete data domain [- T, T] P.

Method. a. By Assumption 2 and Assumption 3, we have Ef= S. F- where S is
uniquely determined,fF, and suppfc_ [- T, T].

b. If we estimate E/by S (HF2), where H is the Heaviside function, and sample
S. (HF) at frequency intervals c, and, finally, deconvolve by means of (HF) , then
we are motivated to define the f-estimator,

S- F(0)2
:o

a,6,., E
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where

ao-1, an-l-
F( 2 o amF((n-rn)c

The fundamental theoretical source of error between S/and S arises from consider-
ing HF’- instead of F. In this regard and considering the results of 2 and 3, note
that [F’()l is always bounded by T3/2[[/I[ when suppfc_[-T, T]. On the other
hand, the Theorem allows us to construct F so that HF is as close as possible to F’- in
specified regions. Thus, if two close peaks in S can be resolved, this algorithm should
do it.

Acknowledgment. I would like to thank the referees for several valuable sugges-
tions.
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DENSE SETS AND FAR FIELD PATTERNS
IN ACOUSTIC WAVE PROPAGATION*

DAVID COLTON" AND ANDREAS KIRSCH

Abstract. We consider the Dirichlet, Neumann, and transmission boundary value problems correspond-
ing to the scattering of an entire, time harmonic acoustic wave by a bounded obstacle in the plane. We first
construct sets of solutions to these problems such that the restrictions of these solutions to the boundary i)f

of the scattering obstacle are dense in L2(0). These results are then used to determine when the class of far
field patterns corresponding to each of these scattering problems is dense or not dense in L2[0, 2r ].

1. Introduction. A basic problem in inverse scattering theory for acoustic waves is
the classification of far field patterns corresponding to the scattering of a time harmonic
incident wave by a bounded, connected obstacle. It is easily verifiable that the class of
functions that can be far field patterns is a subset of the class of entire functions [3]. It
has also been established that this subset can be further characterized by using the
theory of entire functions of exponential type and the corresponding properties of the
indicator diagram of such functions [1], [7], [10]. However these results make no use of
the boundary conditions satisfied by the total field on the boundary of the scattering
obstacle and hence such results can only be characterized as "necessary" rather than
"sufficient" conditions for a function to be a far fidd pattern. In an initial attempt to
remedy this defect, Colton [2] has examined the class of far field patterns correspond-
ing to entire incident fields subject to an impedance boundary condition on a bounded,
connected obstacle in the plane and has shown that this class is dense in L2[0,2r].
Strangely enough, however, it was shown that such a result is not true in general for the
Dirichlet and Neumann problems. In particular it was shown that for the unit disk
subject to a Dirichlet or Neumann boundary condition the class of far field patterns is
not dense in L2[0,2r] if the square of the wave number is an eigenvalue of the
corresponding interior problem. We use the word "strange" to describe this phenome-
non since from physical considerations the behavior of solutions to the interior problem
should have nothing to do with the exterior scattering problem, and indeed such
considerations have played an important motivating effect on much of the recent work
on integral equation methods in scattering theory (cf. [3]). The purpose of this paper is
to further examine this phenomena and in particular to answer the following questions:

(1) Is the fact that the far field patterns of the Dirichlet and Neumann problems
are not dense at interior eigenvalues true for domains other than the unit disk?

(2) Is the fact that the far field patterns of the impedance boundary value problem
are dense true for the transmission boundary value problem (for which the impedance
boundary value problem is an approximation)?

The answer to the first question is that the far field patterns for the Dirichlet and
Neumann boundary value problems are not dense at the square of an interior eigen-
value if and only if one of the corresponding eigenfunctions is an entire function of a
certain type. We then use this result to exhibit a domain for which, in contrast to the
case of the unit disk, the far field patterns corresponding to Dirichlet boundary
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Germany.
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conditions are dense at an interior eigenvalue. The answer to the second question is that
the far field patterns corresponding to the transmission boundary value problem are
also not dense if the exterior and interior wave number are related in an appropriate
manner, and we shall give sufficient conditions for this to be the case. These results are
based on first determining dense sets of solutions in L2(O) and L2(O)XL2(0)
where Of is the boundary of the scattering obstacle and then using these results to
examine the far field patterns of the boundary value problems under consideration.

Although all of our analysis is done in the plane 2, our results can easily be
generalized to R" for an arbitrary integer n. Furthermore, although we shall assume
that the boundary of the scattering obstacle is in class C2, all of our results for the
Dirichlet problem remain valid for domains whose boundaries have corners but no
cusps. This can be established by using the ideas of Ruland [9] at appropriate points in
the proofs of our theorems.

2. Dense sets in L() and L(t]) L(t]). Let be a bounded, connected
domain in the plane containing the origin with C2 boundary Of having unit outward
normal v, e=2\, and u (the "incident wave") an entire solution of the Helmholtz
equation

(2.1) A2u+k2u=O,
where k>0 denotes the wave number. In this paper we shall be considering the
following Dirichlet, Neumann, and transmission boundary value problems associated
with solutions of (2.1) defined in exterior domains.

Dirichlet problem. Determine a solution u-u+u of (2.1) in e such that u
C2(e)Of(e),
(2.2) u=0 on 0i2,

and u (the "scattered wave") satisfies the Sommerfeld radiation condition

(2.3) limrl/2( Ou- c, ---- iku --0

uniformly with respect to 0 where (r, O) denote polar coordinates.
Neumann problem. Determine a solution u=u+ u of (2.1) in e such that u

C2(e)("lfl(’e)
u(2.4) O-=O on 0f,

and u satisfies the Sommerfeld radiation condition.
Transmission problem. Determine a solution Ue--U+U of (2.1) in e and a

solution u of

(2.5) A2u+u=0
in such that Ue.CZ(e)C(e), u_cZ(f)cl(O),
(2.6a) eUe-- IiUi--O

(2.6b) )Ue )Ui
Ov Ov O,

and u satisfies the Sommerfeld radiation condition, where/,e, and/ are positive
constants.
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The existence and uniqueness of solutions to the above boundary value problems
is well known [3]. Our aim in this section is to determine sets of solutions to (2.1) and
(2.5) such that the restriction to the boundary of these solutions form dense sets in
L20f) or L2(0f) L2(Of). We begin by defining the following sets"

H(k, fl)= {u’u C2(fl) C(), u satisfies (2.1) and (2.3) in fe},
A(k, g 2) = (u’u(x)- fo2g(O)egX’YdO, x2,p-(cos0, sin 0), gL2[0, 2r]},
H2(k, 0f]) = ((u, u/Ov) uH(k,e), xO},

A2i,#(k,a)= ((11,i u, eOU/Op) u (.A( k, a 2), x

To(k,fe) {u u=u +u,u A(k, 2), u" H(k,e), u=0 on

Ts(k,f])=(u’u-ui+u,uiA(k,g2), uSH(k,f]e), Ou/O’-O on 0}.
We can now state and prove our first theorem.

TI-mORE 1. (a) OTo(k,f)/O,[a is dense in L2(0f).
(b) T(k,fe)la is dense in L2(0f).
Proof. We first consider part (a). Let g L2(0f]) be such that

(2.7) f0 g" Ou ds-O
for every u To(k, e). The result will follow if we can show that this implies that g is
identically zero. Let u be an arbitrary dement of Tn(k,f). Then from Green’s formula
we have

(2.8) 2u(x)-2ui(x)-fau’l(x Y) Ou(Y’)’ds(y)ov
for x fe where

(2.9) "t( x,Y )-Ho( klx yl )

with Ho denoting a Hankel function of the first kind of order zero and u A(k, ll2).
(2.8) implies that

(2 10) faa(x,y ) Ou(y) ds(y)_Eui(x)

and

Ou(x)
_

l" Ou(y)11) 0 Joe O 0g(x)r(x’y)ds(y)-2(2 xO.0’

We now define the operators S, D and D* mapping L2(0) into itself by

(2.12) Sq(x)’- fouq(y)’t(x,y)ds(y ),

Dq(x)’- uq,(y) O,(y)V(x,y)ds(y),
D*(x)’- u(y) 0,(x)’r(x’y)ds(y)’

xO,

xOf.
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Note that from potential theoretic arguments it can be easily verified that I + D* + iS is
invertible (cf. [3]) and D* is the adjoint of D with respect to the pairing

(2.13) (,)"- fonqqds.
From (2.10), (2.11), we now have that

(2.14) (I+D* +iS)0u(x------) 2 iu(x)

and hence

(2.15) Ou(x)-2(I+D*+iS)-( Oui(x) )Ov Or + iui x O[2.

We can now conclude from (2.7) and (2.15) that

(2.16) (0u) ( D* iS)(Ou’+ ))0- g, -2 g,(l+ + - iu

=2 (I+D+iS) ’g,--v+iu’

But u can be an arbitrary element of A(k, 2) and from the Jacobi-Anger expansion

(2.17) eircse-- , iJ(r)ei"

where J, denotes a Bessel function of order n, we can conclude that J,(kr)cosn0 and
J(kr)sinn# are elements of A(k,2). Hence, from the results of [2], we can conclude
that (I +D+iS)-t,=0 and hence g=0. The proof of part (a) is now complete.

We now consider part (b) of the theorem. Let uU_TN(k,e). Then, from Green’s
formula, we have that

(2.18) 2u(x)-2ui(x)+ uu(y) Ov(y) (x’y)ds(y)’ X(.."]e,

and hence

fa(2.19) u(x)- u(y) 0v(Y) /(x’y)ds(y)-2ui(x)’

and

(2.20) Ov u
u(y) ov(y) /(x’y)ds(y)-2

Oui(x)

We now define the operator D, on the Sobolev space H(0t]) by

(2.21) D,,(x)’--v a(Y) ov(Y)/(x’y)ds(y)’ xOt]
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and note that (2.19), (2.20) imply that

( Oui(x) + iui(x))(2.22) (D+iD-il)u(x)--2 Ov xOf.

From the results of Kirsch [6] we have that the operator B :-D+ D-il is an
isomorphism from H(8) onto L2(8f) and hence we can write

(2.23) u(x)--2B-’( 3ui(x)Ov +iui(x))"
Now suppose gtL2(0) is such that (g,u)=0 for every u TN(k,e). Then

(2.24) O-- (,,u)----2((B-1)*,, Oui + iu

for every u A(k, Nt 2) where * denotes the adjoint with respect to the pairing given by
(2.13). We can now conclude, as in part (a), that g=0 and this completes the proof of
part (b) of the theorem.

Note. The proofs of [2, Thms. and 2] are incomplete. In these theorems we
should begin by assuming only that gL2(OD) and then use the results of Kersten [5]
to show that g--Kg where K has a weakly singular kernel. Then since K has a
continuous kernel for n sufficiently large, we can conclude that g C(3D).

We now establish a result for the transmission problem that is analogous to
Theorem for the Dirichlet and Neumann problems. To this end we consider the
product space L2(O)L2(Of) equipped with the inner product

(2.25) (g,, g2) foIIpl ds-[-fo22 d8

where gl-" (tl, 2), g2-- (tl, t2)"
THEOREM 2. (a) H2(k, 0t2)+A2,,e(X, 0t2) is dense in L2(0f) L2(0a).
(b) n2(k, Oa) N A2Ii,Ie(9 0)-- ((09 0)}o
Proof. We first prove part (a). Since 6in(r,0):= Hn(kr)sinnO and k2,(r,0):=

H,(kr)cosnO, where H, denotes a Hankel function of the first kind of order n, are both
in H(k, 2e), it suffices to show that the relations

(2.26a) f{glinJf-f} ds-O,

(2.26b) faa {l g" , + lef--v } ds O

i=1,2, n=0,1,2,--., for f,gL2(0) and yl.(r,O):=Jn(xr)sinnO, "g2n(r,O):--
J.(xr)cosnO, imply that f and g are identically zero (note that we have previously
shown that 3’. and ’2. are in A(x,2)). To show this we follow the arguments of
Colton and Kress [4]. From the addition formula

(2.27) Ho(klx-l)-Ho(kr)Jo(kq) + 2 X H(krx)Jn(kr)csn(O-8),
n=l
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where r<r and (r, 0), (r, 0) are the polar coordinates of x and respectively, we can
conclude from (2.26) that the functions w and v defined by

(2.28a) w(x)=faa{g(Y)/e(x’Y)+f(Y)OVe(x’Y)}ds(y)’P(y)

(2.28b) v(x)=fa f(y) }ds(y)e OvCY)

are identically zero in and e respectively, where the subscript on the fundamental
solution 3’ denotes its dependency on the wave number. We note that w is a solution of
(2.1) in R 2\ Of] and v is a solution of (2.5) in R -\ Of. From the continuity properties of
single and double layer potentials [5], [8] we have that

(w) --2g,(2.29) w+-Zf,
+

where the plus subscript denotes the limit as x tends to Of from f and

(2.30) v_ --2P,ef --21g,

where the minus subscript denotes the limit as x tends to Of from f. By considering
appropriate linear combinations of w_, v/ and (Ow/OP)_, (Ov/O,)+ we can conclude
that f,g C(D) (cf. the note following the proof of Theorem 1). Hence if we define
u -iw, then

(2.31) eU+ --il)_ --0,
Ou Ov

i.e. u defined in ’e and v defined in f satisfy homogeneous transmission boundary
conditions and hence are both identically zero in ’e and f, respectively [3]. We can
now conclude from either (2.29) or (2.30) that f and g are both zero. This completes the
proof of part (a) of the theorem.

To prove part (b), assume (q,, q) is in H2(k, 0f]) fq A,,,e(, 0). Then there exist a
function uHZ(k, 0) and a function 19 A(x, 2) such that t--U--il) and 4,-Ou/OP
--#eOV/OP on 0. That is u and IeV satisfy homogeneous transmission boundary
conditions and hence are both identically zero in fe and f respectively, i.e. (q,) (0, 0).
The proof of the theorem is now complete.

Note. We have actually proved Theorem 2 for the more general case when, in the
definitions of H2(k, Of) and 2A,,(x,), we replace n(k,e) by span (ln,2n,n)
and A(r, g) by span (3q,, ’2,, n J} respectively.

We note that the proof of Theorem 2 provides a method for approximating the
solution of the transmission boundary value problem by means of a complete family of
solutions. In particular, if u is the scattered wave in f we represent u as a finite linear
combination of the functions k, and k2, u as a finite linear combination of the
functions 3’, and 3’2,, and consider the corresponding boundary data in the sets
I.teH2(k,O) and -A2,,,,(x, Of) respectively. The unknown coefficients can now be
found by determining a best approximation to the boundary data with respect to the
norm induced by the inner product defined by (2.25).
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3. Far field patterns. We now wish to use the results of the previous section to
investigate the far field patterns corresponding to the Dirichlet, Neumann, and trans-
mission boundary value problems. We first define more precisely what we mean by the
far field pattern for these problems. From Green’s formula we have that for x e
(3.1) u(x)-ui(x)+ a av(y)’f(x’Y) 0----7 ,y y

(U--U in the case of the transmission boundary value problem) and hence from the
asymptotic behavior of Hankel’s function we see from (2.9) and (3.1) that

where

kr+rr/4)( 2 ) 1/2
u’( x ) -- ei( (1)F(O;k)+O r--

(3.3) F(O;k)=fo {u(y) 0 -i,.z Ou(Y) e-iLc.,}ds(y ). Or(y)
e 0-----7--

2=(cosO,sinO).

The function F is known as the far field pattern corresponding to the scattered wave of
the boundary value problem under consideration. Our aim in this section is to de-
termine under what conditions the set of far field patterns corresponding to entire
incident waves is (or is not) dense in L2[0,2rr] where by "entire incident wave" we
mean a solution of the Helmholtz equation defined in all of g 2. As pointed out in the
Introduction for the impedance boundary value problem this set is dense in L2[0,2rr]
for any positive value of the wave number [2]. The following examples show that this is
not true for the Dirichlet and transmission problems. (The example for the Dirichlet
problem can easily be modified to cover the case of the Neumann problem--cf. [2].)

Example 1. Consider the Dirichlet problem when 2 is the unit disk.-Then since u
is an entire solution of the Helmholtz equation we can expand u in the form

(3.4) u(r,O) J,(kr)[a, cosnO+bnsinnO ],
n=0

where the series (3.4) is uniformly convergent on any compact subset of . Then for
r_> we can expand u in the uniformly convergent series

oo J,C k )
a, cos n O + b, sin nO(3.5) uS(r,O) E n,(kr)nn(k )n--0

From (3.5) and the asymptotic behavior of Hankel’s function we see that the far field
pattern of u is given by

(3.6) F(O;k)-4i (-i)J(k)
n=0 H(k) [acosnO+bsinnO].

If k is an eigenvalue of the interior Dirichlet problem then J(ko)-O for some integer
n 0, and hence in this case F(O; ko) is orthogonal to cosn00 and sinn00 for all incident
fields u. Hence the class of far field patterns for such values of k is not dense in
L[0, 2rr].
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Example 2. Consider the transmission problem when t2 is the unit disk. Then u
can again be expanded in the form (3.4) and sinceuC2(2) CI() we can expand u
in the form

(3.7) u,(r,O)- X Jn(xr)[cncosnO+dnsinnO],
n=0

where the series is convergent in and uniformly convergent on compact subsets of f.
Suppose k and x are related in such a manner that Jo(k)=Jo(X)-0 for some integer
n 0, i.e. k and x are distinct zeros of the Bessel functions Jo(r). Then representing the
scattered wave in the form

(3.8) uS(r,O) X Hn(kr)[fcosnO+gnsinnO],
n--0

we see from the transmission boundary conditions that the unknown coefficients c and
f satisfy the algebraic system

(3.9) I efnnn( k ) liCnJn( x ) IeanJn( k ),
kfH(k ) cJ,(r ) kaJ,(k ),

with a similar system being satisfied by d and g,. If n-no, we can immediately see
that fo-0 (and go-0). Hence, as in Example 1, we can conclude that in this case the
far field pattern is orthogonal to cos n00 and sin no0 for all incident fields u and hence
the class of far field patterns for such values of k and is not dense in L2[0, 2rr].

We shall now establish necessary and sufficient conditions for the far field patterns
of the Dirichlet and Neumann problems to be dense in L2[0, 2,r] for arbitrary.domains
and sufficient conditions for the far field patterns of the transmission problem not to
be dense. To this end we first define the following mappings:

(1) G’A(k,I 2)- L2[0,2r] by g- Gu where u(x)- f(’g(O)ekX’dO, fi--
(cos O, sin O), x 2;

(2) FD:A(k,IE)LE[O, 2rr] by F(O;k)=Fou where Fis the far field pattern of u
for u u + u TD(k, fe);

(3) Fv :A(k,l2)-LE[O,2rr] by F(O;k)=Fsu where Fis the far field pattern of u
for u=ui+uS _Ts(k,fe);

(4) FT:A(k,2)- L2[0, 2r] by F(O;k)=Fru where F is the far field pattern of u
for Ue=u+ u the solution of the transmission problem.

Let

Eo(k, ft ) (u "u C2(f])fq C(),u is a solution of (2.1) in and u-0 on

E(,a)- u .uc(a)cc’(),uis a solution of (2.1)in a and ---=0 on oa

and denote the closure of a set XCL-[O, 2r] by .
THEOREM 3. (a) LEtO,2rl-G(Eo(k,a)A(k,lE))(gFo(A(k,l2)),
(b) L2[O,Er]-G(E(k,n)A(k, a2))*F(A(k,n2)),

and the sums are orthogonal.
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Proof. We shall only prove part (a) since the proof of part (b) is essentially the
same. We first establish orthogonality. Let u--uiq-uSTl(k,e) and vEo(k,f)
A(k, R 2 ). By Green’s formula we have

(3 10) 2uS(x) fauy(x,y ) iu(y) ds( )

and hence

(3.11) u(y)Vou’( ) -[ e-ik’Y ds( y )

where g (cos O, sin 0). Therefore

(3.12) fo2Gv(O)Foui(O.k)dtl__fa )u(y) fo:u Ov g(O)e-ik’YdOds(y)

fa au(y)
a a, v(y) ds(y)

Now let g L2[0, 2r] be such that

(3.13)

for every u A(k, R2). Then from (3.12) we see that

(3.14) fau Ou(y)o, v(y)ds(y)-O

for every u To(k, e) where

(3.15) v(y)- ofug(o)eg’ydO’ yR2.

From Theorem we can now conclude that v=0 on 0, i.e. vEo(k,f)OA(k, R2).
Since, from the Jacobi-Anger expansion (2.17), it follows that the operator G is

invertible, we see from Theorem 3 that a necessary and sufficient condition for the far
field patterns of the Dirichlet or Neumann problems to be dense in L2[0,2r] is that
Eo(k,f])f-)A(k,2)=(O} or EN(k,f)NA(k,g-)=(O}, i.e. the eigenfunctions are not
elements of the set A(k, R2). We now use this fact to exhibit a domain for which, in
contrast to Example .1, the far field patterns of the Dirichlet problem are dense in
L[0,2rr] at an eigenvalue. (In this connection see the last paragraph of the Introduc-
tion.)

Example 3. Let a and fl, a<fl, be the first (real) zeros of the Neumann function
Y(r) and let

(3.16) f- ((r,O)"

Then k- is an eigenvalue of the interior Dirichlet problem with eigenfunction

(3.17) u(r,tl)- Y(r)sinO.
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We shall show that Eo(1,f)NA(1,2)={O}. Let vEo(1,f)NA(1,R2). Then v has
the expansion

(3.18) v(r,O)= X anJn(r) einO

where the series is uniformly convergent on compact subsets of 2. Since v(r, 0)-0 for
r=a,,O<O<r, we have a,J,(a)=a,J,()=O for all integers n. But the first zero a
of Y(r) is less than any positive zero of J,(r) for all n and hence a,=0 for all integers
n, i.e. v=0.

We shall now conclude this paper by giving a sufficient condition for the far field
patterns of the transmission problem to be not dense in L2[0, 2$r].

THEOREM 4. The far fieM patterns of the transmission boundary value problem
corresponding to u A(k, 2) are not dense in L2[0, 2’tr] if there exists a uA(k,2), u
not identically zero, such that

( OU/O ) 0).

Proof. From (3.3) we see that

(3.19) Frui(O. k)_ fa {Ue(Y ) 0 _ik.y__ OUe(Y) )Or(y) e Ov e-ik’Y ds(y),

where :=(cosO, sinO), Ue--u +u. Let gL2[O, 2,r] be such that

(3.20) f0E"g(0)Fru’(0; k) dO=O
for every u A(k, R2). We want to show that there exists a g that is not identically
zero such that (3.20) is valid. To this end we note that (3.20) is equivalent to

(3.21)

fo [
Or(Y)

_ik.YdO OUe(Y) ik’yO-- Ue(Y ) j02rg(0)-- g(O)e- dO ds(y)

and from the transmission boundary conditions (2.6) we see that (3.21) is equivalent to

(3.22) o_ fo (lu(y) OU(y) Ou(y) u(y) } ds(y)OP e 0"------
where

(3.23) u(y)- fo2g(O)eik’YdO.
By hypotheses there exists a gLE[0,2r], g not identically zero, such that

( OU/O).-]-A2]i,td,e( 0’)

where u has the representaion (3.23). From Theorem 2, in particular the remarks made
after the proof of this theorem, we see that for this g, (3.22) and hence (3.20) is valid for
all u A(k, ll{2). Hence the far field patterns are not dense in L2[0, 2’tr].

The reader can easily verify that in the case of Example 2 we can choose u to be

(3.24) u(r,O)-Jno(kr)cosnoO.
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CONVERGENCE OF FOURIER SERIES AT A DISCONTINUITY*

RAY REDHEFFER

Abstract. A new proof of convergence of Fourier series, due to Chernoff, is extended so that it applies at
points of discontinuity. The argument leading to this extension is very short and leads to an interesting
formula for the limit of certain asymmetric partial sums.

Introduction. Many, and perhaps most, of the functions one wants to expand in
Fourier series have discontinuities; square waves and sawtooth waves are only two of
the more obvious examples. The importance of allowing discontinuities is underlined
by the fact that in Fourier analysis a function is considered to be continuous only if its
periodic extension is continuous. This requires f(0)=f(2r), a hypothesis which is often
artificial and irrelevant. Another context in which discontinuities are important is in the
summation of series. Some of the most interesting applications to series depend on the
fact that the Fourier series for f converges to [f(c+)+f(c-)]/2 at points of simple
discontinuity.

The purpose of this note is to deduce convergence at a discontinuity by means of a
remarkable result that has been recently obtained by Chernoff [1]. Cutting through a
tradition of about 150 years, Chernoff obtains pointwise convergence of Fourier series
by a very brief argument which makes no use of the Dirichlet theory. The only fact
from the traditional approach which is used is the Riemann-Lebesgue lemma, to the
effect that the Fourier coefficients of an integrable function tend to zero. For the
piecewise smooth functions common in applications this is trivial; just integrate by
parts.

By a familiar formula involving the Dirichlet kernel D,,(x), Chernoff extends his
result to allow discontinuities. The chief novelty is that, instead of the evaluation

2n ei(2n+ l)x_
Dn(X) =e-inx 2 eikx=e-inx

k=0 eix-

which reduces to sin(n+1/2x)/sin1/2x, he uses only the obvious fact that D(x) is even.
Although it is of interest that one can avoid summation of a geometric series, the
simplification here is perhaps not quite as dramatic as it is in the case of continuity; if
one has the Dirichlet formula for partial sums together with

D (x) sin nx cos -x+ cos nx sin -xand the Riemann-Lebesgue lemma, deduction of both Theorems and 2 is no harder
than Chernoff’s proof of Theorem 1.

In this paper the convergence at a discontinuity is deduced directly from the first
theorem of [1], without intervention of any part of the Dirichlet theory. As a dividend,
we obtain a necessary and sufficient condition for convergence of the asymmetric
partial sums, and a formula for the limit, which seem not to have been noted hereto-
fore. The result is stated in Theorem 3.

*Received by the editors January 14, 1983, and in revised form May 23, 1983. This work was supported
in part by the University of Karlsruhe under the auspices of the Deutsche Forschungsgemeinschaft.

*Department of Mathematics, University of California, Los Angeles, California 90024.
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Throughout the sequel it is assumed that fhas period 2r and belongs to L(-r, r),
where L(a, b) denotes the class of functions integrable in the sense of Lebesgue on the
interval [a, b].

The theorem of Chernoff. With the notation

f ikxf(k)- f(x)e- dx,
n

Sm,n(x)-- E ?()eikx

Chernoff’s result is as follows:
THEOREM 1. Let r be a complex number such that the function

/(x)- f(x)-r
X--C

belongs to L(c-i,c+i) for some >0. Then Sm,,(c) r when m,n o.
As pointed out in [1], this gives convergence at if f’(c) exists, or if the right and

left hand derivatives exist at c, or if f satisfies a Lipschitz condition at c. But the
hypothesis of Theorem is never satisfied at a simple discontinuity.

Discontinuous functions. We shall establish the following:
THEOREM 2. Suppose there exist complex numbersp and q such that the functions

q(x)- f(x)-p, O(x)- f(x)-q
XC X

belong to L(c-,c) and to L(c,c+6), respectively, where >0. Then Sn, n(c)(p+ q)/2
as n-o .

For proof let us assume, without loss of generality, that c-0. Define a function h
by h(x)=p on [-rr,0) and h(x)--q on (0,r]. The function h(x)-(p+q)/2 is odd;
hence the symmetric partial sums of the Fourier series for h(x)-(p + q)/2 involve sine
terms only and reduce to 0 when x- 0. This shows that

(1) E l(k)e’kC- P+q (n> c-0)

In other words, the conclusion of Theorem 2 holds for h, and indeed, in a particularly
strong form. Since f-h satisfies the hypothesis of Theorem with c=r--0, the equa-
tion f-- ( f- h) + h together with Theorem and (1) gives Sn, ,(0) 0 + ( p + q)/2 as
n o. This completes the proof.

Discussion. As pointed out in [1 ], replacing c by 0 simplifies the calculations but is
not essential. In the present setting, if no translation is made to give c-0, one requires
a function h such that h(c-)=p, h(c+)--q, and such that the Fourier series for h is
easily seen to converge to (p+ q)/2 at c. Interestingly enough, the obvious choice
h(x)=p on [-rr, c), h(x)=q on (c,r] is not suitable. Proof that Sn,(c)(p+q)/2
for this function is almost as hard as development of the entire Dirichlet theory!

For c (-r, r) one should, instead, choose h(x) to have the values
p+q p+q
2 P’ q’ 2

on the intervals [-r,c-8), (c-,c), (c,c+i), and (c+i,r] respectively. Here i is a
positive number so small that the interval (c-6,c+) is interior to (-r, r). By a short
calculation

l(O) p + q l(k )eikc-2 2rk(P-q)(1-cskS)’
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and hence

(2) l( k )eikc-- p + q
2

n_>l.

Theorem 2 follows as before, but without the preliminary transformation to make c 0.
Equation (2) can be checked by this transformation, however. Namely, extend

h(x) to have period 2r, and note that h(x-c)-(p+q)/2 is odd. This gives (2) by
inspection.

Asymmetric partial sums. As pointed out in [1], at a simple discontinuity the
symmetric partial sums S,,.,,(c) cannot be replaced by the asymmetric sums Sm.(c)
used in Theorem 1. The above proof of Theorem 2 allows us to determine the precise
degree of asymmetry that is permitted. Let us notice first that if two functionsf and
satisfy the hypothesis of Theorem 2, with the same p, q, c, then their difference

f=f-f2 satisfies the hypothesis of Theorem with r=0. This shows that, if any
particular sequence of partial sums Sm, ,,(c) for fl converges, as m, n--, , then the same
sequence will converge for f2, and indeed, to the same value. In other words, the
allowable sequences do not depend on the function being considered.

It follows that the sequences giving convergence are the same as for the particular
function h used in the proof of Theorem 2. Thus we are led to consider the sum

Sm n( C ) P + ( p q )
r ’ kl cosk6)k

--m

where i-r if c--0 and the function leading to (1) is used instead. (Here the on the
sum means that the term for k--0 is omitted.) Let n>m, as can be assumed without
loss of generality. Since the summand is an odd function of k, the sum reduces to

m+ k k

The series with general term (cosk6)/k converges by Abel’s test (or it is an alternating
series if c= 0, --r, as can be attained by translation). Thus we see that

n
E-log +o(1), (m,no).

This gives the following:
THEOREM 3. Under the hypothesis of Theorem 2, with p =/= q, the asymmetric partial

sums Sin, ,( c) converge to a finite limit as m, n o if, and only if, m, n o in such a way
that n/m has a finite nonzero limit. If the latter limit is a, then

limSm ,(c)- P+q + (p-q)i
loga.2 2r

We get the expected value (p+q)/2 if, and only if, n/m--, as m,n..
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ASYMPTOTIC FORMULAS FOR
ZERO-BALANCED HYPERGEOMETRIC SERIES*

RONALD J. EVANS AND DENNIS STANTON

Abstract. A hypergeometric series is called s-balanced if the sum of denominator parameters minus the
sum of numerator parameters is s. A nonterminating s-balanced hypergeometric series converges at x-- if s
is positive. An asymptotic formula for the partial sums of a zero-balanced F2(I) is given. A corollary is the
behavior of a zero-balanced F2(x) as x approaches 1. Some q-analogues are also given.

1. Introduction. For 0< q< 1, define

k-!

(1.1) (a)-jl-Io (1 qJa ),

In the limiting case q= 1, define

(1.2)

Let

(1.3)

( a )oo =j__o (1-- qJa ).

where (x) denotes the derivative of (x)o with respect to x.
The following two theorems will be proved in 3 and 4.
THORIM 1. If abc de and Icl< 1, then, in the notation of (1.1),

(1.4) (dqk)(eqk)(qk+’)-- l-------.--Lq
k:0 (aqk)(bqk)oo(cqk)oo l--qk+’

where

(1.5)

also, as m

(1.6)

o
Ck

Lq-2,(q)-X(a)-X(b)+ (d/c)k(e/c)k
k:, (a)k(b)k(1-qk)

m-I (a)k(b) (C)k (al (b) (c) {m-I }k .oo .... +Lq +O(qm),
k=0 (d)(e)(q)k (d oo(e)oo(q)o j= qj+

where the implied constant depends on a, b, c, d, e, q but not on m.
THnOtnM 2. Ifa+b+c-d+e and Re(c)>0, then, in the notation of (1.2),

(1.7) r(a+k)r(b+k)r(c+k) 1._L
:o r(d+k)r(e+k)r(l +k) +1

*Received by the editors February 8, 1983. This research was supported by the National Science
Foundation under grants MCS8101860 and MCS8102237.

Department of Mathematics, University of California, San Diego, La Jolla, California, 92093.
*School of Mathematics, University of Minnesota, Minneapolis, Minnesota 55455.
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where

F’(b) (d-c)k(e-c)k
(a)k(b)kk

where 1 is Euler’s constant; also, as rn o,

(1.9)
m-!

X (a)k(b)k(C)k_ r(d)r(e) (
k:0 (d)k(e)kk! r(a)r(b)r(c) (logm+L+),} +O

where the implied constant depends on a, b, c, d, e but not on m.
Theorem 2 gives an asymptotic formula as mo for the mth partial sums of a

zero-balanced hypergeometric series 3F2(abctl)"d It would be interesting if such a result
could be extended to 4 F3 series. The special case c-e of (1.9) gives the following known
asymptotic formula [4, p. 109, (34)] for partial sums of a zero-balanced hypergeometric
series 2 F(aI):

m-l(a)(b) r(d) {logm-, }+O( )(1.10) -- F’(a) F’(b)
k=0 (d kk!-r(a)r(b) r(a) r(b)

This paper was motivated by the desire to prove the following theorem, stated (in
less precise form) without proof by Ramanujan [6, Entry 24, Cor. 2], [2, Entry 24, Cor.
2]. We are grateful to Bruce Bemdt for bringing Ramanujan’s result to our attention.

THEOREM 3. If a + b+ c= d+ e and Re(c)>0, then as u- with 0<u< 1,

(1 11) r(a)r(b)r(c) ( a,b,cF(d)F(e) 3F2 d,e
u ) log(1 -u) +L/ O((1 u)log(1 -u)),

where L is defined in (1.8).
In 5, we will deduce Theorem 3 from Theorem 2. It is a mystery to us how

Ramanujan found the constant term L in the asymptotic expansion (1.11). Because of
the inductive nature of our proofs, this paper unfortunately sheds little light on how
Ramanujan might have made this remarkable discovery.

Finally, we mention the q-analogue of Theorem 3. If abc-de and Icl< 1, then as
ul

(q)(d)(e) (a,,cl) O((1 u
(a)(b)(c) 32 d,e

u -gq(u)+Lq+ )gq(U)),

uk+/(1 qk+where gq(U)--Xk:0 ), Lq is defined by (1.5), and 3t2 is defined at the
beginning of 2.

2. Preliminary lemmas. We will use the following notation for q-hypergeometric
series:

a,b,c3(2 d, e

Partial sums will be denoted by

a,b,c32 d,e

z)-- (a)k(b)k(C)kZ
k:0 (d)k(e)k(q)k

(a)k(b)k(C)kZk
k:0 (d)k(e)k(q)k
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LEMMA 4. If Re(C)>0, S D+E A B C, and Re(S) > 0, then

(A,B, C1) F(D)F(E)F(S) (D-C,E-C,S(2.1) 3F2 D,e 3F2 A+S,B+S

LnMMA 5./f0<q< 1, ICl 1, and[DE/ABC]< 1, then

(2.2)

A,B,C
ABC (D)o ( E )o(DE/ABC)o 3*2 DE/AC, DE/BC

Lemma 4 is proved in [1, p. 14]. Lemma 5 is a q-analogue of Lemma 4 whose proof
is completely analogous to the proof for Lemma 4; where Gauss’s theorem was in-
voked, one uses instead the q-analogue of Gauss’s theorem given in [1, p. 68, (3)].

LEMMA 6. If0<q< and D andA are bounded, then, as k o,

(Dq)=l+O(q).(2.3) (Aq)

Proof. This follows easily from the q-binomial theorem [1, p. 66, (4)], namely

(2.4) X (a)Jzg= (az)o Izl< 1.
j=o (q)J

LEMMA 7. If d and a are bounded, then as z with Re(z)> 0,

(2.5) r(a+z) =za_d(
__
O(z_ 1)).r(d+z)

Proof. This follows from [4, p. 33, (11)].
LEMMA 8. Fix e>0 and fix a complex number E. Let Re(z)_>e and let k be a

variable positive integer. Then there exists N>0 such that

(2.6) 1+ -1-O --where N and the implied constant are independent ofz and k.
Proof. Let F- Re(E). If F_> 0, then

so it suffices to consider the case F_>0. Let N--F+ 1. First suppose that k<_[Z1. Then

Thus

1+ _<(l+lzl)F-O(z -0 ---o -o
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and (2.6) follows. Finally suppose that k >lzl. Then since F>_0,

1+ -1 <
m-’l

m
m=l

LEMMA 9. Fix real D,Dq {0, 1, -2, -3,... }. Let k be a variablepositive integer.
Let Re(z) >_ O. Then in the notation of (1.2),

(2.7) (D- z ) k O( e2,rlzV, ),

where the implied constant is independent of z and k.

Proof. For some constant N>0 independent of z and k,

Thus

(D--Z)k D+j--z
D+j j=o

k-I

l-D+j <<(l+lzl)
.=

D+j>--l

1
Z

D+j

(D-z), k-!

<<(1 +lzl) II
j=O

D+j>_

Z Z

D+j 2) 1/2

k-l(<<(1 +lzl) u H 1+
j=O

O+j>!
D+j ) <<(1 +lzl) H 1+ Iz12 ’/:

m--| "
=( + Izl)U( e*l--e-"lzl2rlzl

1/2

<< ( + zl) Ne’l/2 << e 2,zl/3

3. Proof of Theorem 1. We begin by proving (1.6) in the case c-q. Let 0<t<
and let m be a large integer. By the hypothesis abq-abc-de,

(3.1) 32 d, et
--S1--$2,

m--I

where

(3.2) S-3q2( a’b’q[et

and

(3.3) (a)m(b)m(q)mtm
S2= -(’d:(et)m(q)m 3t2

q’bqm
dqm etqm
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Apply Lemma 5 with A, B, C, D, E equal to a, b, q, d, et, respectively, to obtain

(3.4) (at)oo(bt)oo(q)oo ( d/q,et/q,tS, = 7(-d )oo ( et )oo ( )o 32 at, bt

Apply Lemma 5 with A, B, C, D, E equal to q, bqm, aqm, dam, etqm, respectively, to ob-
tain

(3.5) $2=
(a)oo(qt)oo(b)m(btq")ootm ( d/a,et/a,t( d )oo ( et )oo ( )oo 32 qt, btqm

Thus, by (3.1), (3.4), and (3.5),

(3.6)

where

( a’b’qlt) =R(t)+R2(t)-Ra(t ),32 d, et m-1

(3.7) R,(t)- (at)oo(bt)oo(q)oo
(d)oo(et)oo(t)oo

( a )oo ( qt )oo ( b )m( btqm )otm

(at)oo(bt)oo(q)oo (d/q)k(et/q)k(t)kq(3.8) R2(t)--’ (d)oo(et)oo(t)oo t,= (at)g(bt)k(q)k

and

(3.9) Ra(t )- (a)(qt)(b)m(btqm)tm(d)oo(et)oo(t)o k=l

(d/a)(et/a)(t)(aqm)
(qt)g(btqm)g(q)k

Taking the limit as t--, in (3.6), we obtain

(3.10) 3eP2( a’b’q 1)d,e m--I

where

=R+R2-R3,

(3.11) R,= limR,( ).

Now,

(3.12)

Since

R,-lim {(at)(bt)(q)-(a) (b) (btqm)ootm}t- (e)oo’(d)’oo(1-t) (qt)o o rn

_(a)oo(b)oo
-(d)oo(e)oo {’(q)-’(a)+’(bqm)-X(b)+m}

(3.13) ,(x)- X -xqJ
j--o -xq’
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we have

(3.14)
m--I

X(bq")-X(b)+m- X
j=0 1-bqj

X __1+ -q:+
j--0 -qj+l j-’0 --qJ+!

-bqJ }-bqj

X 1+ X -qJ+
j=o 1-q+ 1-j=o qJ+

m-1

j--O 1--qJ+

-bq
j=o bqj

----------+,(q)-,(b)+O(qm).

+O(qm)

By (3.12) and (3.14),

(a)o(b) { m--I

(3.15) R1--(d)o(e)o 2,(q)-h(a)-,(b)+
j=o 1-q+

Since

(3.16) lim
(t)k (q)k-,

t--)! (l)o
we have

(3.17) (a)o(b)oo (d/q),(e/q),q
za (a)k (1 qgRE-(d)o(e)o = (b)g )

and

(a)o(b)o (d/a)k(e/a)k(aqm) ’(3.18) Ra=(d)(e)o :, (bqm)k(q),(l_qk)
--O(qm).

By (3.10), (3.15), (3.17) and (3.18),

(3.19)

a.b.q
3t2 d, e

(a)(b) ("-’ +2X(q)-(d)(e)o io 1-qj+i

Cl
, }-X(a)-X(b)+ , (d/q)(e/q) +O(q)"

=. (a)k(b)(1-q)

This completes the proof of (1.6) in the case c q.
We next prove that (1.6) holds for c= qn for all positive integers n. Let c--qN for

an integer N> 1, and assume as induction hypothesis that (1.6) holds with c q for all
n such that _< n <N. Since

(a) +(l_qk)(a)g_,,(3.20) (a),-q t’ - ,
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we have

a,b,c(3.21) 3q2 d,e
(1 d/q)(1 e/q) ( a, b/q, c/q
(1 b/q)(1 c/q) 3q d/q, e/q

(1- d/q)(1- e/q ) ( a/q, b/q, c/q )(1 b/q)(1 c/q) 32 d/q, e/q
q

m

Since a(b/q)(c/q)-(d/q)(e/q), the first term on the right of (3.21) can be
evaluated by the induction hypothesis.

The last term on the right of (3.21) equals

(3.22) (1 d/q)(1 e/q) ( a/q, b/q, c/q(1-b/q)(1-c/q) 32 d/q,e/q q)+O(qm),
since the 32 in (3.22) converges; by Lemma 5, the first term in (3.22) in turn equals

(3.23) (a)(b)(c)oo E (d/c)k(e/c)g(c/q)g
(1-b/q)(d)o(e)o(q)oo ,=, (a)g(b)g

The relations

kq

(b/q),(1-q’) (b/q)t,+ (b),(1-q’)
and

X(b/q ) b,------l--:: (b ) + O(qm )
1--qm+l

show that (3.21) and (3.23) imply that (1.6) holds for c=qN. This completes the
induction, so (1.6) holds for c=qu for all positive integers N. Taking the limit as rn
tends to , we see that (1.4) also holds for all c of the form c=qu.

We next prove that (1.4) holds without the restriction c=q. Since qU0 as
N , it suffices to show that each member of (1.4) is an analytic function of c on the
disk Icl< for each fixed choice of a, b, d, and q.

Fix t, 0< < 1. To show that the right member of (1.4) is analytic in c, it suffices to
prove that the series

(3.24) (d/C)k(ab/d),c’?l (a),(b),(1-q’)

converges uniformly in the disk Icl<t_. Since I(d/c)cl- IIj.=0g-lc-dql<<t for some t,
t<t < 1, and since (ab/d)k/(a)k(b) is bounded, the series in (3.24) converges uni-
formly in the disk Icl_< t.

To show that the left member of (1.4) is analytic in c, it suffices to prove that the
series

(3.25) 2 (dq)(q+ )(abcq/d) l
k=o ( aq ) ( bq ) ( cq ) qk+l
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converges uniformly in the disk Icl t.By Lemma 6, as k

(3.26) ( dqk) + O(qk ) ( qk+ ) + O( q’ )(aq,), (bq,)

( abcq’/d) + O( q’ ).

Therefore the summand in (3.25) is <<q’, so the series in (3.25) converges uni-
formly in the disk Icl_< t. This completes the proof of (1.4).

By (3.26), we see that if the index of summation in (3.25) begins at k-rn instead of
k-0, the resulting series is O(qm), where the implied constant depends on a,b, c, d, e, q
but not on m. Thus (1.6) follows from (1.4).

4. Proof of Theorem 2. By Lemma 7, we see that if the index of summation in
(1.7) begins at k-m instead of k-0, the resulting series is O(1/m), where the implied
constant is independent of m. Since also

mx k+ll =logm+,+Ok=0

(1.9) follows from (1.7). It remains to prove (1.7). If one took limq_+ of each side of
(1.4) and then interchanged limits and summations, (1.7) would result. However, since
it appears to be a difficult task indeed to justify this interchange of limits and summa-
tions, we take a different approach.

The proof in {}3 began by showing that (1.4) holds for each c of the form c--qn,
where n is a positive integer. Mimicking this proof with q= 1, we can deduce that (1.9)
holds for c= 1, as follows. In place of (3.1), write, for e>0,

a,b,3F2 d,e+e 1) m-I --HI--H2’
where

a,b,HI 3F2 d,e+e

and

(a)m(b)m
H2- (d)m(e+e)m 3F2 1,b+m,a+m

d+m,e+e+m

Apply Lemma 4 to get analogues of (3.4) and (3.5) for H and H_. Let e-+0 to obtain
the analogue of (3.10) of the form

a,b,1(4.1) 3F2 d,e

The analogue of (3.12) is

r(d)r(e) (r’(1)-r(a)r(b) r(1)

1) m-I -G +G2-G

r(a)
F’(b) F’(b+m) )I’(b) + I’(b+m)
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Since [4, p. 33, (8)]

F’(b+m)=logm+O(1 )r(b+m)
we obtain the following analogue of (3.15):

(4.2) G,=r(d)r(e) (r(a)r(b) - r’(a)
r(a)

r’(b) )r(b)
t-logm +

Apply Lemma 7 to obtain the following analogues of (3.17) and (3.18):

(4.3) _=r(d)r(e) (d-1)(e-1)k
r(a)r(b) (a)k(b)kkk=l

and

(4.4) G3 =F(d)F(e) (d-a)g(e-a)g=O(1)r(a)r(b) k= (b+m)k(1)kk -Combining (4.1)-(4.4), we deduce that (1.9) holds for c 1.
An induction argument analogous to that following (3.19) shows that (1.9) holds

for each positive integer c. Taking the limit as rn tends to oo, we see that (1.7) also holds
for each positive integer c.

To prove that (1.7) holds for all c with Re(c)>0, it suffices by Carlson’s theorem
1, p. 39] to prove that, for fixed a, b, d andfixed e> 0, both sides of (1.7) are analytic in
c and equal to O(e2.d/3 ) for Re(c)>_ e.

Write D= Re(d-e), adjusting e if necessary so that D {0,- 1,-2,-3,-.. }.
Write z c+D- d, so in the notation of (1.2),

.’ V.’-
, (d-c)g(e-c)g= X Ag
k=l (a)k(b)kk

(D-z)g
(D)k

with

(a+b--d)k(D)k
(a)k(b)kk

By Lemma 7, hk-O(k-I-e). By Lemma 9, (D--z)k/(D)k--O(e2*l/3). Thus S is
analytic in z and equals O(e2zl/3) for Re(z)_>0. It follows that S is analytic in c and
equal to O(e2/3) for Re(c)>e.

It remains to prove that

o { r(a+k)r(b+k)r(c+k)T’- X r(l+k)r(d+k)r(a+b-d+c+k)k=l k+l

is analytic in c and equal to O(e21cl/3) for Re(c)_>e. Let E=d-a-b. By Lemma 7,

e-(c+k)E(1 +k-lO(1))-k+

-0(1)+ X k-’ l+-k=l
l} (1 +k-’O(1)},
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where the expressions O(1) are bounded analytic functions of c for Re(c)_>e. By
Lemma 8, (1 + c/k)e- O(c/k), so T is analytic in c and equals O(c) for
Re(c)_>e.

5. Proof of Theorem 3. Define

f(k)- r(a+k)r(b+k)r(c+ k)r(d+k)r(e+k)r(1 +k)

and V=Ykof(k)uk+ log(1--u)--L, where L is defined in (1.8). We must show that as
u 1,

By (1.7),

V= 0((1- u)log(1-u)).

V= f(k)-k+ (uk-l)+ k+lk=0 k=0

The last sum is ( u 1)/ulog(1 u) O((1 u)log(1 u)) as u 1. Finally, by Lemma
7,

f(k)-kl (uk-l) << ] 1--

k=l k2

=(l-u) k-2 ] u"-(1-u) u"
k=l n=O n=O k=n+l

,,//.2 U n }<(l-u) --+ -n- o((1-u)log(1-u)).
n=l

6. Concluding remarks. The series

a,b,c3F2 d, e 1)
converges for Re(e+d-a-b-c)>0. Theorem 2 gives information of the divergence
at the boundary a+b+c=d+ e. We have not investigated related problems, such as
a+b+c=d+e+l.

Bailey and Darling have given transformations for truncated 1-balanced 3F2’s [1,
p. 94-95]. We were unable to use similar techniques to derive Theorem 2. There may be
similar results for special truncated very well poised 6Fs’s.

The special case c-e of Theorem 3 gives an asymptotic expansion of a zero-bal-
anced 2F(x) as x 1. This is equivalent to (1.10). This result is easy to obtain in the
following way. The point x-1 is a regular singular point of the differential equation
for 2F(x). There are two independent solutions (u and u2) near x= 1. If the 2F1 is
zero-balanced, one solution is logarithmic. The precise definitions of u and u2 and the
constants c and c2 such that 2F(x)--CUl +c2u2, are given in [3, eq. 2.10 (14)]. The
asymptotic formula follows immediately.

For the 3F2(x) case, Norlund [5] has explicitly given three independent solutions
(u, u2, and u3) near x= 1. (The authors would like to thank Dennis Hejhal for pointing
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this out.) Again the zero-balancing condition gives a logarithmic solution. So an
expansion of the form of Theorem 3 is guaranteed. However, the constant L is. not
given. One would need to find the constants c l, c2, and c such that 3F2(x)=cu +c2u2
+ C3U3. This is not an easy task.
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CHARACTERIZATION OF QUADRATURE FORMULA II*

FRANZ PEHERSTORFER"
Abstract. In a recent paper (SLAM J. Math. Anal., 12 (1981), pp. 935-942) we have described positive

quadrature formulas (qf). The purpose of this note is to complete our results on positive qf and to extend
them to qf which have a given number of positive and negative weights. Furthermore we display the
connection between our results and the results of Sottas and Wanner (BIT, 22 (1982), pp. 339-352).

1. Introduction. Let w be a nonnegative weight function on [- 1, + ]. We consider
interpolatory quadrature formulas of the type

n

(1) f_’f(x)w(x)dx- Y if(xi)+Rn(f),
i:1

where --I<xI<X2<’’" <x,<l. If R(f)=0 for all fP2n-l-m (])2n--m--I denotes
the set of polynomials of degree at most 2n-1-m), we say that (1) is a (2n-1-
m, n, w) quadrature formula (qf).

In [7] we have given a full description of positive (2n-1-m,n,w) qf. Recently,
Sottas and Wanner [10] have given an independent characterization of (2n- 1- m, n, w)
qf which have a given number of positive and negative weights. In this paper we extend
our investigations of [7] and display the connection between our results and the results
of Sottas and Wanner.

2. Characterizations. Henceforth let pn denote that polynomial of degree n with
leading coefficient one which is orthogonal to P-I on [-1, + 1] with respect to the
weight function w. Thus the polynomials (p) satisfy a recurrence relation of the form

wherep-1-0, P0- 1. Note that fl>0 and lal< 1.
The following lemma can be derived from [10, Thm. 1]. However we shall give a

proof which is independent of this result.
LEMMA 1. Let n,ko be such that n>_2k. Suppose that the polynomial q,_k+(x)

=II’/-k+l(x--Yi), Yi R, Y <Y2<’’" <Y-k+, has no common zero with P-k and that
qn_k+l_LP_g_2. Then each polynomial t of degree n with t-LP_2g_ has a unique
representation of theform

tn(X)--rk(x)Pn_k(X ) +Sk-l(X)qn_k+ I(X),

where rg and Sk_ -" :k- l"

Proof. Let x <X2<’’’ <Xn_k denote the zeros of Pn-k" Construct rk and Sk_
such that

(2)
and

(3)

rg(yi)-tn(yi)/p_g(yi) for i-1,...,k+ 1,

Sk_l(Xi)--tn(Xi)/q,_k+l(Xi) for i-1,-..,k.

Received by the editors July 7, 1982.
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Then for n- 2k the lemma is proved. For n>2k let us consider the polynomial

u(x)’- t,(X)--(rk(x)P,_k(X)+Sk_,(x)qn_k+(X))
We claim that u-0. Suppose to the contrary that u0. Since u_l.P_2_ , u can be
represented in the form

u(x)= II (X--t,)v(x),
i=1

where t <t2<...tt, l>_n-2k and vP_ is nonnegative or nonpositive on . Fur-
thermore there exist,, i- 1,..., 1, such that

i=1

for all p Pl+n-2k-l"

Now let xvl,- .,xv. (y,l,. ",Y,m.) denote those xi’s, . { 1,. .,k), (yi’s, { 1,... ,k+
}) at which u does not change sign. Note that in view of (2) and (3) u(x)-O for

i- 1,..., k and u(y)-0 for i- 1,..., k+ 1. Defining
k* m*

:(X)’--Pn-k(X)/ H (X--Xv,), l(X) qn-k+l(X)/ H (x-y,),
j=l j=l

we obtain

(4) X Aiff(ti)P(t,) f_+ 0
i=1

for all p ll_(k_k,)_ l, where 6(x)-v(x)/II*= I(X--Xvj) Pn-l-k*; resp.

(5) ,igl(ti)q(ti) f_Flqn_k+l(X)q(x)(X)W(x)dx--O
i=1

for all qll_(k+l_m. where d(x)-v(x)/II m*j=l(X--Ylj)(.ln_l_m.. Since at most
l-(k-k*)(1-(k+ -m*)) of the points p(t)(l(t)) are not zero, it follows from (4)
((5)) that

)iff(ti)-O fori-1,...,l

and

Aigl(ti)-O fori-1,..-,l.

Using the fact that/ and have no common zero we get that ,-0 for i- 1,...,1; this
contradiction proves the lemma.

Remark 1. Lemma remains true for n-2k-1, if the leading coefficients of r
and sk_ are fixed.

Notation. Let p-x2) denote that polynomial of degree n with leading coefficient
one which is orthogonal to P-! on [-1, + 1] with respect to the weight function
(1 -x2)w.

P,(z)=z"+ denotes that polynomial which is orthogonal on the unit circle
with respect to the weight function f() w(cos tp)lsin tpl for 0, 2r). Furthermore
let Ube the open unit disk (z [[zl< }.
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It is well known (see e.g.[4] and [11]) that the polynomials {P,} satisfy a recurrence
relation of the type

P+(z ) zP(z ) aPn*( z ),
where P*(z)-z(z-). Note that lal<l. Concerning the determination of the so-
called parameters a we refer to [4]. For example, if w(X)(x)=(1-x)x-/ for
(-1/2, oo)one obtains from [4, Thm. 31] that a(X)-0 and (x)a+ -/(n+ +h) for
no. Let us note that the formula given in [7, p. 938] for h-1/2 is incorrect.

LEMA 2. Let n be a polynomial of degree n with leading coefficient one, such that
tn_[_Pn_m_l, O<m<n. Then there exists a real unique polynomial qm of degree rn with
leading coefficient one, such that

tn(X ) 2-n+ lRe{z-n+ lqm( z )e2n_ l_m( Z ) }
x= 1/2(z+ 1/z), z-e, p [0,rr].

Proof. First let us note (see [4, p. 65] and [11, p. 294]) that for vNo, x=1/2(z + l/z),
z e, [0, rr

2-’p(x) Re{z-’+ ’P2u_ l( Z ) } Re{z-V2(z ) }
(1-a2_l)

2o_,..(_x)t Im{z-o+lP2-l(Z)}_ Im{z-P2,,(z)}
r- x) sinp (1 + a2_ ) sin p"

Suppose that 2k- <_m<2k. It follows from Lemma that there exist polynomi-
als r, [*g and s,_ P,_, such that

t.(x )- rk( x )p_k(x)- sk_ 1( X )(| X 2 n(l-x2)(X )]Fn-k-

Case 1. rn- 2k. Setting

(6) qzg(Z) (2z)k {
the assertion follows.

Case 2. m=2k- 1. Let c,d be the leading coefficients of rk (resp. Sk_l). Since the
leading coefficient of o is one, we have that c+d= 1. From f+_Ix-2tw--O it follows
that

f_FI 2c p;,_kw d [_(_2 )w 0.pn_k_t]2(1 X 2

Using the fact (see [4, p. 68]) that

D,,_
p;,_w-

a2(n-k)-

and

n(l_x 2( 2)w Dn-kv,-k-t] 1-x
+aE(n_k)_

where D._k +, simple calculation gives

c-(1-a2,_)_)/2 and d: (1 + a2(._)_ )/2.
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Setting

(7) qzk_(Z)_2(2Z)k_l{ r,(1/2(z+(1-azn_k)_l)l/z)) z2- sk_,(1/2(z+ l/z)) )2z (1 + az(n_k)_ 1)

the lemma is proved.
THEOREM 1. Let n,mMo, n>_m. A (2n-l-m,n,w) qf based on the nodes

x,. .,xn R, <x <x2<. <Xn< has n-lpositive weights and l negative weights
if and only if there exists a polynomial qm of degree rn with real coefficients and leading
coefficient one, such that

n

2-n+lRe(z-n+lqm(z)P2n-l-m(Z))-- H (x--xi),
i=1

x--1/2(z+ I/z), z--ei, q0[0,r], and qm has m-21 zeros in the unit circle, no zeros on
this circle and 21 zeros outside of this circle.

Proof. Necessity. In view of Lemma 2 there exists a real polynomial qm of degree rn
with leading coefficient one, such that

t.(x)- 2-"+ Re{z-’+ lqm(z)P2n_l_m(z)},
x cos q, z e, q [0, rr ]. On the other hand we have that

n n

t.(x)- I (cs-cos)-(2z)-" lI (1-2zcsq+z2),
j=l j=l

where qj arccos xj forj 1,..., n, z ei, q [0, qr ].
Hence

n

Zqm(z)P2n-l-m(Z)--q*m(z)Pn-l-m(Z)-- 1-[ (1--2zcosq)j+z)
j=l

Now let o, vN0, denote the polynomial of second kind with respect to the
weight function w(cosq)lsinq9I. Then it is well known (see [4, p. 7]) that the following
relation holds:

(8) Po*(z)o(z)+Po(z)*o(z)-Koz (vlo, KoR+).
Let us put

2..m( Z ) Zqm( Z )Pz.- ,-m( Z )
Then we have that

if,* ,n(Z)-q*(z)P_ m( Z )2n, 1--

and 2n,m(Z)--Zqm(Z)2n_l_m(Z).

and n,m(Z)--q*m(Z)n_,_m(Z).

With the help of (8) one deduces (compare [4] and [7]) that

2n-- --m 2n,m( Z ) .... n,m( g )
(9) + X Ckzk -- O( g 2n-m )

k:l P2n,m(Z) "qt- P2*n,m( Z)

_-1- ]Aj 1-z
2 1-2zcos "" Z 2
j=

for z U,
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where

c,- 2
+ lTw for k-0,...,2n- l-m,

Tg denotes the Chebyshev polynomial of first kind, and

(o) 2(-- 2n,m"k O’n,m )( Zj )
zj( d/dz )( P2n ,m -ll- ff’*2n,m )( Zj )

2e-i";(-2n +* )(ei;),m 2n,m

i( d/dq) )e-inj( ff2n,m -k &,m )( eiqJ)
for j-1,.- .,n, zj-eij. The second equality in (9) follows by partial fraction expan-
sion.

Now we claim that qm has no zero on the circumference. Since t,(- 1)0 implies
that qm(--- 1)0, we have to show only that q,, has no zero of the form e iq’, (0, "lr).
Suppose to the contrary that qm has such a zero e, k (0, r). Then qm (resp. q’m) can
be represented in the form

qm( Z) ( Z-- ei+ )( z- e-i+ )qm-2(Z)

(resp. q*m(Z)--(z--eiq)(z--e-iq’)q*m_2(z)),

from which it follows that ei and e-i+ are also zeros of -O2n, -’}- * and fi2, +rn 2n,m ,m

P*2,,m" Thus we get by (10) that there is aj* { 1,... n}, such that X,- O, which is a
contradiction to X=/= 0 forj= 1,. -,n.

Using relation (8) we find that at the zeros .-e of/,,+/*,,m the following
relation holds:

( l2n,m- ffn,m )( Zj )(- 2n,m -It- ’n,m )(Zj) 2K2n_ _,zf"lqm( za)]2.

Thus we obtain by setting

and

that

tn(C’OS q) ) Re { Z nff’2n ,m( g )}

&__ l(COS) Im{z-n-zn,m(Z)}
sin

(11) s-
2

KZn-l-mlqm(eij)l,
sinjSn-l(COSj) (d/dfp)Rn(COSfpj)"

Denoting by A argf(ei) the net change in argf(ei) as q0 varies from 0 to 2r we
get with the aid of (11) that

(12) Aoarge-inff2,,,,(ei)--2r (
j---I
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Using the facts that the qfhas negative weights and that Pg_-m has all zeros in U we
obtain

2r(n- 21) A argqm(ei ) + 2rr(n- m);
hence

(13) A argqm(ei)- 2r(rn- 21).

Sufficiency. The assertion follows from (9), (13) and (12).
Remark 2. Let us note that the polynomial Re(z-n+lqm(z)P2n_l_m(Z)} z-ei,

[0, r ], has n simple zeros in (- 1, + 1), if qm has all zeros in U.
THEOREM 1’. Let n,kllo, k<[(n+ 1)/2]. Xl,...,xnl, -l<xl<x2<... <x,,

< 1, are the nodes of a (2n- 2k, n, w) ((2n- 2k, n, w))qf with (n- 1) positive weights
and I negative weights if and only if tn(x)’- II i= (x-xi) has a unique representation of
the form

t.(x)--rk(x)p.-k(X)--Sk-,(X)(1 X2" x2)

where rgPk and sg_ Pk- have (leading coefficient (1--a2._k)_l)/2 resp. (1 +
a2._k)_ )/2 and) no common zero and

As usual I+_ s_ i/rg denotes the Cauchy index of sk_ /rg between and + 1; see e.g.
[21.

Proof. Necessity. Let q be the unique polynomial of Theorem 1. Putting:

for m- 2k

rk(x )-- 2-Re(e-iCqm( ei )} Im(e-’qm(e’)}
and Sk_(x)--2-k sin

for rn- 2k-

and
rk(x )-- (1 aztn_k)_ )2-kRe(e-ik- ’)qm(ei ))

sk_,(x) (1 +a2._)_,)2-* Im(e-i(k-’)9qm(ei)}
sin

the assertion follows from the facts that qm has no zero on the circumference and that

AEo"arge-it’q2k(ei)
_2ri+ Sk-I(14)

A2o,arge-ik-)q2k_(ei ) rk

Sufficiency. Setting qm as in (6) and (7) and using relation (14) the sufficiency part
is proved.

Remark 3. Using the fact that (x 2 ,,-2t.,-k-I has a unique representation of the
form (x-a)p,_k +#p,_k_ (see [11, Thm. 2.5]) one obtains immediately (see (15) and
(16)) the connection between the polynomials rk, sk_ and the polynomials f, g of Sottas
and Wanner (see 10, Thm. ]).
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As a simple consequence of Theorem 1’ we obtain
COROLLARY 1. Let n>_2k. Xl,.-’,Xn are the nodes of a positive (2n-1-

2k, n, w)qf if and only if xl,. .,x are the zeros ofa polynomial of theform

rkPn-k-- Sk- l(1 x 2 a"(
11"n-k-

where rk (Sk_ ) is a polynomial of degree k (k- 1) with positive leading coefficient, which
has k (k- 1) simple zeros in (- 1, + 1) and the zeros of rk and sk_ separate each other.

Proo[.. Follows immediately from Theorem 1’ and the fact that rkP,_k--Sk_(1-
x2)ptn_-’_ has n simple zeros in (- 1, + 1), if rg, sg_ satisfy the above conditions.

For positive quadrature formulas we obtain additionally the following characteri-
zations (compare also [10, Corollary to Thm. 2]).

THEOREM 2. Let n>_2k. Then the following conditions are equivalent:
(a) x are the nodes ofa positive (2n- 1- 2k, n, w) qf
(b) n(x)" II= (x xi) can be generated by a recurrence relation of theform

where a’j, fl] It satisfy the following conditions:

a’j- aj fl:= flj forj: l, ,n k;

laS.I< 1, flj’>O, (1-aj)-flfQj_l(1)>O and (1 +a’j)+fl]Qj_(- 1)>0 for j-n-k+
1,. .,n, where Qj_(+- 1)"- tj_2( +- 1)/tj_( +- 1).

(c) x are the zeros ofa polynomial of theform

where fk( gk-1) is a polynomial of degree k (k- 1) with positive leading coefficient, which
has k (k-1) simple zeros in (-1, + 1), the zeros of fk and gk-l separate each other,
fk(1)--gk_(1)Qn_k(1)>O and sgn(fk(-- 1)--gk_(-- 1)Qn_k(-- 1))=(-- 1)k; Qn_k( +- 1)
:Pn-k- l( -+ 1)/Pn_k( +- 1).

Proof. (a)(b). Since the qf is positive, i.e. ,j>O forj= 1,...,n, it follows that the
sequence (co}"- defined by

n

c0-2, co- ,jcosv% forv=l,..-,2n-1,
j=l

where % arccosx., is positive definite (see [1] and [4]). Now let us denote by if2,-
that polynomial which is orthogonal with respect to the sequence {co}02-1. Since
{co}-l is positive definite, it follows (see [4, pp. 4-5]) that ff2-I can be generated by
a recurrence relation of the type

v-0,...,2n-2,

with Iol< for v-0,...,2n-2. Using the fact that
n

co- hjcosvqj-2 ITvw W
j=l --1

for o=0,.- .,2n-2k- 1, it follows that

ao-ao forv-0,...,2n-2k-2.
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From [4, Thm. 31.1, Thm. 31.2] it follows that tn(X)--2-n+Rez-n+l2n_l(Z ) can be
generated by a recurrence relation of the above type.

(b)=(c). Let go(X)- 1, g(x)-x-a’, and

j(X ) ( X-- Oltn+ l--j) j-- l( X ) +2--jj--2(X )
forj-2,... ,k. Puttingfk-k it follows by induction that

t.=fkP.-k-- fl+ kgk- Pn-k- l"

Furthermore we get from the recurrence relation in (b) that j(1)>0 and sgng(- 1)-
(- 1)L The implication follows now from the recurrence relation of gj.

(c)(a). Let y,.. ",Yk- denote the zeros of gg_. Putting

(15) 2sk_(x)-(Q,_k(1)-Q,_k(-1))gg_ (x)
and

(16)

2rk( x ) Elk(x)- [( Qn-k(1) Qn-k(-- 1))x + ( Qn-g(1) + Qn-k(- 1))] gk_ l(X),
we obtain with the aid of [11, Thm. 2.5], that

rkPn_k+Sk_l(X2- 1,,(-)Ik’n--k- fk Pn-k-- gk- Pn-k-

Taking into consideration the facts that

sgnrk(Yi)--sgnfg(yi)-- (- 1)-i for i--1,...,k-

and

sgnrk(--1)--(--1)k and rk(+l)>O,
it follows that rk has k simple zeros in (-1, + 1), and that the zeros of rk and s,_
separate each other. In view of Corollary the implication is proved.

The following simple lemma is often useful.
LEMMA 3. Suppose n,m l%l o, n>m. Let vm be a real polynomial which is positive on

[- 1, + 1]. If the polynomial n is orthogonal with respect to the weight function w/vm, then
the zeros of tn are the nodes of a positive (2n- 1-m,n, w) qf.

Proof. Since there exist positive weights/l,. .,/,, such that
n

X ilgm(xi)p(xi)----f_-1 W

i=1 m
for allpP2n_l_m, the assertion follows by setting ,i=lVm(Xi) for 1,. .,n.

As a consequence of Lemma 3 we obtain (compare [7, Cor. 3])
COROLLARY 2. Let n,m UNo, n>_m+ and let w(x)- (1 x)(1 + x), et, flu ( --+1/2 ).

If the polynomial Ejm-_odjzj, (do," ",dm_l)l m, dm- 1, has all zeros in Izl<1/2, then the
qf based on nodes which are the zeros of the polynomial ’j=0djPnW-m+j is a positive
(2n m, n, w) qf

Proof. Let qm(Z)--,jm=odj2-JzJ. Then qm has all zeros in the open unit disk and
thus (see [11, p. 31] and [3]) ,jm=odjpnW_m+j is orthogonal to P,_ with respect to the
weight function W(X)/12mqm(ei )12.

Polynomials which are orthogonal with respect to a weight function of the type
w/v, where v is a polynomial which is positive on [- 1, + 1], were studied in [8].
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Next let us consider quadrature formulas with preassigned nodes (see e.g. [5, pp.
402-412]). From Corollary we obtain immediately

COROLLARY 3. Let n,ko, n>_2k and let y,’’’,Y2k, (--1 <)Yl <Y2<" <
y2(< 1) be given. There exists a positive (2n-1-2k, n,w) qf with nodes at the given
points Yi if and only if the system of linear equations

X Ay/ P,,-,(Yi)- X Bjy/ (1 -yiz) "(’-x2)tln_k_l,Yi) 0, 2k,
j=0 j=0

Ak+Bk_--l, has a unique solution (Ao,...,Ag,Bo,...,Bk_)R 2’+1 such that
Yj=oA J, Xj=0- BjxJ satisfy the conditions of Corollary

Quadrature formulas which have preassigned nodes at the zeros of Pn are of special
interest (see [6] and [9]). By Theorem 2 we are able to give a full characterization of
such quadrature formulas. We need the following:

LEMMA 4. Let n, k,j o, n >_ k+ >_j+ 2.

Pn(X)’--Pk,n(X)Pn-k(X) --n-k+ lPk-l,n(X)Pn-k-l(X),
where1, is defined by the recurrence relation

Pj,n(X ) ( X-- Oln+ -j )Pj- I,n( X ) n+2-jPj-2,n(X ),

po,(x)-l,pt,,(x)-x-a,.
Furthermore the following relation holds:,, p.,.(x )p_,._. ( ) ,_+,

_
,,(x)p

__
,,__ ,(x ).

Proof. The first relation follows immediately from the recurrence relation of p.
Next let us show by induction that

(17) Pk,n(X)--(X--Oln)Pk_l,n_l(X)--nPk_2,n_2(X )
For k-2 the assertion follows immediately. Let us assume that (17) is true for 3_<i<

k- 1. Using the relation

Pk,n(X ) (X--an+ l-k )ffk- l,n( X ) n+2-kPk-2,n(X )
and the inductive hypothesis for pg_,, and Pg-2,, it follows that (17) is also true for
i-k.

Thus we have shown that the relation

(18) Pk,n(X ) =Pj,n(X )Pk_j,n_j(X ) n_j+ Pj_ l,n( X )Pk_j_ l,n_j_ l( X )

is true for j= 1. Assume that (18) is true for 2_<i_<j. Replacing pk_s.,,_s, in (18) by its
value from (17) we obtain that (18) is also valid for i=j+ 1.

COROLLARY 4. Let n,ko, n>_2k. There exists a positive (4n+ 1-2k,2n+ 1,w)
qf which has n nodes at the zeros ofp, if and only if there exist polynomials fk, gk_ , such
that

f, ffn-k,Zn+ l-k-- gk- ff,-,-1,2n--k =P,

andfk, gk._ satisfy the conditions of Theorem 2(c).
Proof. Necessity. Let x, i-1,---,2n+ 1, be the nodes of the positive qf and set

tzn+ l(X)- II/_--n (X--Xi). Then it follows in view of Theorem 2(c) that

t2n+ fk Pzn+ l-k-- gk- PZn--k"
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In view of Lcmma 4 we obtain that

t2n+ (f:-,+---gk- :-- l,a#-/)Pn+

Since ta+) vanishes at the zeros of Pn, it follows that f/n-,a#+--g-/#--,--
vanishes at the zeros ofp#.

Sufficiency. Putting t_n+)=fp_#+)_-g_pa#_ the assertion follows im-
mediately.

Acknowledgment. I would like to thank Professor Wanner whose enquiry on the
connection between the results of [10] and our paper [7] stimulated our investigations.
The statement of Theorem above was also suggested by him.
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ON OSCILLATION PROPERTIES AND THE INTERVAL
OF ORTHOGONALITY OF ORTHOGONAL POLYNOMIALS*

ERIK A. VAN DOORN"1"

Abstract. This paper is mainly concerned with the true interval of orthogonality for a sequence of
orthogonal polynomials, which is the smallest closed interval containing the limit points of the set of zeros of
the polynomials. We give bounds for the endpoints of this interval in terms of the coefficients in the three
term recurrence formula and show them to be generalizations of most existing results. Similar findings are
reported for the limit interval of orthogonality, which is defined as the smallest closed interval containing the
derived set of the set of limit points. Our bounds are based upon an oscillation theorem for orthogonal
polynomials which is of independent interest.

AMS-MOS subject classification (1980). Primary 42 C 05

1. Introduction. Let (Cn)=l and (}% be sequences of real numbers and as-
sume that An is positive. Then it is a classical result that the polynomials Po(x),
n- 0, 1,. ., defined by the recurrence formula

(1) Pn(x)--(x--cn)Pn_l(X)--hnPn_2(x), n--1,2,- ..,
1,

where it is convenient for us to define h-0, are orthogonal with respect to a (not
necessarily unique) mass distribution dk(x) on the real line. That is, there is a bounded,
nondecreasing function k with an infinite spectrum (-support of d) such that

(2) Pm(x)P,(x)d(x)-kn6nm (kn>O).

P,,(x) has n real, distinct zeros Xnl <,X,n2 <’’" <X,nn with the property

(3) x,+i,i<x,i<x,+l,i+ i- 1,2," ,n,

so that

(4) - lim x and .- lim x,,,,,_+

both exist in the extended real number system (see, e.g., [6, 1.5]). The interval [,1] is
called the true interval of orthogonality since it is the smallest closed interval in which
the support of a distribution corresponding to {P,} is concentrated. The spread of the
true interval of orthogonality is defined as /-t, while its centre, defined only when
l > or r <, is given by 1/2( + /l ).

Regarding the finiteness of , we will have use for a criterion which is essentially
due to Stieltjes [20] and elaborated by Chihara [1]. Namely, in order that
it is necessary and sufficient that there exist numbers , such that

(5) cn--A--’Y2n_2+T2n_l and kn+l--[2n_l2n n>O,

*Received by the editors September 24, 1982, and in revised form March 24, 1983.
Netherlands Postal and Telecommunications Services, Dr. Neher Laboratories, P. O. Box 421, 2260 AK

Leidschendam, the Netherlands. Present address, Stichting Mathematisch Centrum, Kruislaan 413, 1098 SJ
Amsterdam, the Netherlands.
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where 70_>0 and ,n>0 for n>0. Here ),0_>0 may be replaced by 3,0=0, since the
existence of a sequence {3’,,} satisfying (5) and 3,0>0 implies the existence of a sequence
{3’,} satisfying (5) and 3,=0 (or, in fact, any number between 0 and 30). When (5)
holds one also has r/l m if and only if {3,n } is unbounded.

From (3) and (4) we obviously have g_<+ <r/+ _<r/, so that

(6) o- lim i and "r- lim %

exist, again allowing for -+ o. It is important to note at this point that

(7) Ii+,-li=o-li, i-0,1,-..

and

(8) "Oj+I--Tlj:=T--Tlj, j--O, 1,’’’,

where 0 -o, /0= o (see, e.g., [6, Thm. 11.4.6]).
It can be shown [6, Thm. Ili.4.2] that the sets of orthogonal polynomials {Pk)(x)},

k-0, 1,- ., which are determined through the recurrence formula (1) by the sequences
(Cn(k)- Cn+k}=l and (X(nk)--n+k)Z=2, have true intervals of orthogonality [k),ri])]
with the properties

(9) g)_<k+l)_<O and r_<]k+l)_</k), k-O, 1,’".

Further, the next theorem is easily seen to hold as a consequence of [6, Thms. IV.2.1
and IV.3.2].

THEOREM 1.

We emphasize that o and are determined only by the limiting behaviour of the
parameter sequences (c,} and {h,}, so that any finite number of changes in the
parameter values has no influence on the values of o and z. In view of this fact, we are
justified in calling [o, ] the limit interval of orthogonality. The spread and the centre of
the limit interval of orthogonality are defined as r-o and 1/2(o+r), respectively,
provided these quantities are meaningful.

It is the purpose of this paper to give bounds on the true and limit intervals of
orthogonality in terms of the parameters c, and hn. Our ,main tool will be the oscilla-
tion theorem for orthogonal polynomials given in 2, which is of independent interest.
An extension of this result will be derived in the Appendix.

We note that any result on (or o), e.g., Stieltjes’ criterion (5), may be trans-
formed into a result on /l (or ) and vice versa by considering the polynomials
P,(x)-(-1)"P,(-x), which satisfy the recurrence relation (1) with parameter se-
quences {,- -c,} and (,-,,}. Therefore, as far as the endpoints are concerned, we
shall concentrate only on one side of the intervals of orthogonality. In fact, upper
bounds on l and o will be given in 3 and lower bounds in 4. Several known results
will appear as corollaries to our theorems. We remark that some of these known results
are given in the literature under the condition that the distribution dq with respect to
which the polynomials P, are orthogonal is unique. This is because they are stated (or
derived) in terms of supporting points of dq instead of limit points of zeros of the
polynomials Pn, while both points of view are equivalent only if dp is unique (cf. [3]
and [6, Chap. II]).
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In the final section, some bounds will be derived on spread and centre of the true
and limit intervals of orthogonality and these will be compared with existing results.

2. The basic oscillation theorem. We need some preliminary results and notation
first. Let u-(uo, Ul,...,u,,... } be an infinite sequence of real numbers. The finite
sequence consisting of the first n+ dements of u will be denoted by U(n), i.e.,
u={Uo, U,...,u}. By S(u,), we denote the number of sign changes in the se-
quence u(n by deleting all zero terms, with the special convention S(0n))=- 1, 0(n
denoting the sequence consisting of n+ zeros. We let S(u)=lim,_S(un), which
exists but, of course, may be infinite.

Our next prerequisite concerns Sturmian sequences of polynomials. We recall the
definition (see 17, pp. 7-8]).

DEFINITION 1. A sequence of n+ polynomials (Ro,RI,...,Rn}, n>0, is called a
Sturmian sequence on the interval (a, b) if these four conditions are satisfied:

(i) R(x):/:O for x=a, b,
(ii) Ro(x)vO for all x[a,b],
(iii) Ri(x)=O (O<i<n)&x[a,b]Ri_(x)Ri+(x)<O,
(iv) R,(x)-O&x[a,b]R,_(x)R’,(x)>O.
This definition is justified by the following theorem [17, Satz 7].
THEOREM 2 (Sturm’s theorem). If the sequence ofpolynomials (Ro,R,.. .,R,} is a

Sturmian sequence on the interval (a,b), then the, number of zeros of Rn in the interval
(a,b) equals S(R(a))- S(R(b)), where R(x)- (Ro(x),R(x),. .,R,(x)}.

The relevance of this theorem for this paper resides in the next lemma, which
concerns the sequence of orthogonal polynomials {Po,P,’",Pn,"" ) defined by the
recurrence relation (1).

LEMMA l. The sequence Pn): {P0,P, ",P }, where n >0, is a Sturmian sequence
on any interval (a, b) where P(a) v 0 and P,(b ) v O.

Proof. See [21, p. 45].
We are now in a position to state our basic result.
THEOREM 3 (basic oscillation theorem). For the polynomials (Pn }--0 defined by the

recurrence relation (1) one has:
(i) S(P(x))=kc, rlk+ <x<rlg, k=O, 1,. .,
(ii) S(P(x)) o *x< or x=<rbfor allj,
(iii) S((x))- k ,, <X<_6k+ l, k-O, 1,...,
(iv) S((x)) *x>o or x o>i for all i,

where P(x)- (Po(x),P(x), }, (x)- (ffo(X),P(x), } and P,(x)-(- 1)PAx).
Proof. It is evident that (ii) and (iv) are implied by (i) and (iii), respectively, while

(iii) readily follows from (i) by considering the polynomials P,(x)-(- 1)Pn(-x)
mentioned in the introduction. So it remains to prove (i).

To this end, let x and n be such that P,(x)vaO. Choose ,/such that max(X, Xnn)<rl
</0----o. By (3) we then have ,l>xi (i= 1,2,..-,n), and (1) subsequently implies
Pi(r/)>0 for i=0, 1,--.,n, whence S(P(n)( ,/ )) 0. Now applying Sturm,s theorem to
P() in the interval (x,,/), we get S(P(,)(x))-S(P(n)(,1))=number of zeros of P, in
(x, n), i.e.,

(10) S(P,)(x))-number of zeros of P, in (x, ).

Letting n tend to infinity in (10), (i) emerges as a consequence of (3) and (4).
Aspects of the basic oscillation theorem may be found in the literature under

various guises. Thus a special case of it was employed by Stieltjes [20, p. 564] in the
context of continued fractions, while parts (ii) and (iv) of the theorem are essentially
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contained in [23, Thm. 8(a)] in the context of difference equations. Further, by making
the identification

(11) P.(x)-det(A.-xI.),

where I, is the n n identity matrix and

(12) A,,-

C

n-- Cn

our questions regarding (essentially) the zeros Xnk may be put in terms of eigenvalues of
symmetric tridiagonal matrices for which the Sturmian approach is well known (see,
e.g., [16, Chap. 7]). Indeed, we shall repeatedly make use of this identification to obtain
new results or point out alternative proofs.

In closing this section, we remark that Chihara ([1], [4], see also [6]) has obtained
characterizations for , rll, and which are in appearance quite different from the
basic oscillation theorem. A third characterization, which may be conceived as a
consequence of Chihara’s results, has been stated and given an independent proof by
Whitehurst [22, Chap. 4]. It is not very difficult to prove directly the equivalence of
Chihara’s or Whitehurst’s results and the basic oscillation theorem.

3. Upper bounds on/j and r. Our starting point in this section will be a lemma
concerning the system of equations

(13) zn+a.z._ +bnZn_2--O n-- 1,2,’’-.

LEMMA 2. If the system of equations (13), where b>0, possesses a solution
z_,Zo,Z, satisfying Z, Zn+ <O for n>_N>_O, then

M+k

(14) aM+ (am--2bm) >0
m=M+l

for any two integers k>_O andM>N+ (M>_N+ ifzN_ --0).
Proof. Assuming that a given solution has Zm 0 for m-M- 1, M,- .,M+k- 1,

we can write down the equalities

ZM ZM-2
aM-- bM--------ZM- ZM-

and, for m-M,M+ 1,...,M+k- 1,

/m Zman,+i--2 +1 Zm- Zm Zm-IZm
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Summing these k+ equalities yields

m+k M+k- Zm.Ji Zm_lbm’
aM+ X (a,-2 b )- - ZM+’------Z--* +bM zm-2 + X z,_ zmm=M+l ZM+k-I ZM-I m=M

from which the lemma follows at once. E]
Returning to the recurrence formula (1), we let x be any real number,

(15) y,-Pn(x), n--I,0,1,...,

and y-{Yo,Y,"" }. Further, let {Xl,X2,"" } be any sequence of positive numbers
and define

(16) z_-0, Zo= and Zn-(XIX2... X,,) -y,,,n>O.
If we let b be positive but otherwise arbitrary,

(7) a.-(c.-x)/x, and b.+l--X.+/(X.X.+l), n>O,

then {z.)=_ satisfies the recurrence relation (13) with b. >0, so that Lemma 2 applies.
Translating this result in terms of y., c., ., X. and x yields

(18) cm + X -=--2 >x X
XM m=m+ Xm-IXm m=M Xm

for k>_0 and M>N+ (M>_N+ ifyv_-0), wheneverynyn+ <0 for n>_N>_O.
By the basic oscillation theorem one has x< if and only if S()-0. That is,

x< if and only if yy+ <0 for n>0, since y,-0 is clearly impossible when x<.
Further noting that y_ l-0, we conclude that the inequality x< implies the inequali-
ties (18) for all k_>0 and M>0. From this result one easily deduces the following
theorem.

THEOM 4. For any sequence of positive numbers {X, X2,"" } and integers k >-0
and M>0 one has

(19) 1< M m=M+l Xm-lXm m=M-m
-1

Taking k=0 and X,-1 for all n, we obtain Corollary 4.1, which is also a direct
consequence of Stieltjes’ criterion (5) and therefore well known (see, e.g., [6, p. 109]).

COROLLARY 4.1.

l<Cn, n= 1,2,....

Letting k- and X- for all n, a result emerges which was first given (with an
error) by Maki [11] and later improved by Chihara [5].

COROLLARY 4.2.

1<(n++1)-- n+l n=l,2,....

We remark that the other part of the Maki-Chihara result to the effect that
1/2(c +c+)- Ch,+ is unbounded when l > oo and /t- oo, can also be generalized
in the spirit of Theorem 4, at least when X,= for all n. One should simply use Maki’s
argument on the basis of which lies the result of Stieltjes mentioned in the introduction.
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Assuming that inf{c,} >-o, we can choose k= and X,=C,-C in (19), where c
is any number smaller than c, for all n. After some rearranging, we then get

(20) j,<c+2
(c"-c)(c"+’-c)-(X"+(c"-c)(c"+’-c))/2

c,+c,+-2c
n- 1,2,-. .

In combination with Corollary 4.1, this result yields a useful third corollary. Namely, if
)2+4,n+ )1/2), n-- 1,2, with thethere are values of ,=-1/2(c,+C,+l-((c. c,+

property ’,<cm for all m, we can choose c equal to any of those ’,, ’1 say, after which
the choice n yields that < ’l. Hence, in this case, < ’n for all n. If, on the other
hand, ,>cm for some rn and all n, Corollary 4.1 implies that the same conclusion
holds. Thus, we have the following result, which is sharper than Corollary 4.2, while
involving the same parameters.

COROLLARY 4.3.

1<2 Cn"-Cn+l Cn+l--Cn -+-4kn+ n- 1,2,---.

We note that upper bounds for can be obtained on the basis of the interpreta-
tion (11) for P,(x). Namely, considering that the eigenvalues of A, equal those of
K,A,K,, where K, is the nn matrix consisting of elements kj.= when i+j=n+
(i,j 1,2,..., n) and 0 elsewhere, one also has

(21) P,(x) det(K,A,K,- xI,).
Hence, we can identify P,(x) with the n th polynomial in an orthogonal sequence
{/m(X)} determined by the recurrence formula (1) through the parameters dm-C,+ -m
(m<_n), O,,--cm (m>n), m--kn+Z_m (m<_n+ 1) and m=m (m>n+ 1). It now
follows from (3) and (4) that

(22) j <x,=,<:k, k= 1,2,... ,n- 1,

where :m denotes the smallest zero of m(X). However, the only practical bounds
obtained by this approach are <, but this gives Corollary 4.1, and <:2, which
amounts to Corollary 4.3.

Remark. A third proof of Corollary 4.3 may be given on the basis of Chihara’s
characterization for (cf. [6, Thin. IV.2.1 ]).

The arguments leading to Theorem 4 need only slight modification to obtain
results on the limit interval of orthogonality. For by the basic oscillation theorem we
have x<o only if S() is finite; that is, only if y,y,+ <0 for n sufficiently large (by
definition of o, y, =0 occurs for at most finitely many n if x <o). Hence the inequality
x<o implies the inequality (18) for M sufficiently large and all k_>0. From this it is
easy to derive Theorem 5, which, however, also derives directly from the Theorems
and 4.

THEOREM 5. For any sequence of positive numbers (X, Xz,’"} and integer k>_O,
one has

(23) o_< lim inf c.__ + mm- 2
M-,oo XM m=M+l Xm-lXm

Taking k=0 and X, arbitrary, we get the analogue of Corollary 4.1, which has
been obtained previously by Wouk [23, last inequality of Thm. 8(e)] and Chihara [1,
Thm. 6]; see also [6, Thm. IV.3.1].
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COROLLARY 5.1.

o_<lim inf ( cn ).

We also state as a corollary the analogue of Corollary 4.3, although its proof is
most conveniently given via Theorem and Corollary 4.3.

COROLLARY 5.2.

o_<liminf- Cn-Jl-n+l--((n--Cn+l +4,,,+,)
An interesting case arises when we let k tend to infinity in Theorem 5. However,

we had better do this not in (23), but at at earlier stage in the reasoning leading to
Theorem 5. Namely, from Theorem 4 we see that for all M>0, _< lim inf(f( M, k ) ),

k-o

wheref(M, k) denotes the expression between braces in (23). Hence, by Theorem 1,

(24) o< lim inf( lim inf(f(M,k))}.
Moo ko

Now let us assume that XX=oo. Then, evidently, liminfk_.o(f(M,k))=
liminfk_oo(f(1,k)}, so that we obtain the next theorem.

THEOREM 6. For any sequence ofpositive numbers {Xo, Xl,"" } such that x-l oo,
one has

k---, oo m-I m-2 m

Xm- lXm m m
Taking Xn-1 for all n, we obtain the important Corollary 6.1, which has been

given previously by Wouk [23, Thm. 8(g)].
COROLLARY 6.1. - Cm-- 2 mo_< lim inf

k--* oo m=l

4. Lower bounds on/1 and tr. As in the previous section we start our discussion by
considering the system of equations (13). If we plot a solution Z_l,zo,z,... of this
system by joining successive coordinates (i, zi) by straight line segments, then the points
where such a line segment meets the x-axis will be called a node of the solution. We can
now cite the following classical result [14].

LEMMA 3 (Sturm’s separation theorem for difference equations). For any system of
equations (13) where bn >0, the nodes of any two linearly independent solutions separate
each other.

Suppose an+ <-bn<O for n>N>_O and let two arbitrary numbers gN>gN_l-->0
determine a solution (n)_ of (13). Then we have by induction

n--n_l----(an+ 1)(.n_l--,n-2)--(an+bn+ 1)n-2>0

for n>N. Lemma 3 now implies that any solution (z} of (13) has at most one node in
the interval N- 1, oo). Hence, also noting that ZZn_2<-O if z_ =0, we can state the
following lemma, which is also essentially contained in [9].
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LEMMA 4. If an+b.+ 1<0 and b.>O for n>N, then any nontrivial solution {Zn} of
(13) for which Zm_Z,.<_O for some m>_N has the property that sign(zm+k)=sign(z.,) if
z.,vO, and sign(-Zm_) ifzm=O, for all k>0.

Back to our orthogonal system (1) we let x be any real number and define the
quantities y. as in (15). Further, we let {X0,X,"" } be any sequence of positive
numbers and define

(26) z_-0, zo- and z,- (-1)"(X,X2’’’ X,)-’Y, n>0.

Finally, we let b be positive,

(27) an=-(c.-x)/x, and bn+,=,n+/(XnXn+), n>0.

Then {z.} satisfies the recurrence relation (13) with b. >0, so that the second condition
in Lemma 4 is satisfied for n>0. In terms of c., ., X. and x, the first condition in this
lemma reads

(28) ’n >xCn XnXn-

provided n > 1. Supposing (28) to be valid for n >0, we can choose b >0 so small that
an + bn + <0 for n >0. Hence, Lemma 4 applies and we have sign((- 1)kyk) -sign(zk)

sign(zo)-1, since z_zo-O. Thus, by the basic oscillation theorem, x<. A trivial
argument subsequently leads to our next theorem.

TI-InOgE 7. For any sequence ofpositive numbers {Xo, X, }, one has

(29) inf cn Xn <.
n>--I Xn-I

Remark. This theorem may also be obtained via the identification (11) for P.(x).
Namely, the zeros X.l,X.2,...,x.. of P.(x) are the eigenvalues of A.; and therefore,
also of the matrix .-A.., where q.-diag(q, q2,"" ", q.) and qi> 0. With Gershgorin’s
theorem (see [12, p. 146]), one may subsequently prove that

(30) x.,_>min c
i Vii-

i<--n

where q’0 1, say. Taking {q) such that ck+-XCk/+ and letting n tend to infinity
yields (29).

Various consequences of Theorem 7 suggest themselves; e.g., one could take Xn-
for all n, or, X0 and X.-h.+ (n>0), the latter result being implicit in Maki [11].
We will explicitly state as a corollary the case X0-1 and X. Xn+ (n>0), since this
result improves directly upon Lemma 3 of Nevai [15, p. 21].

COROLLARY 7.1.

inf {c.-V--h.+
n_>i

By choosing Xo- and Xn--kn+l/(Cn+l--tn+l) (n>0), where qn<Cn (n> 1), we
obtain the following useful, alternative formulation of Theorem 7.

TnEOIM 7’. For any sequence {q,q2," }, with q <_c and qn<cn (n> 1), one has

(31) inf {q-A.+,/(C.+l-qn+) )
n_>l



INTERVAL OF ORTHOGONALITY 1039

Thus formulated, Theorem 7 is seen to improve upon a result of L6opold [10],
specified for the present context, which amounts to (31) with a fixed value (_<% for
all n) for all %.

As a final lower bound for , we mention a theorem of Chihara. Actually, Chihara
gives the corresponding result for o, but his argument applies equally well here (cf. [2],
[4] and [6, Thm. IV.3.3]).

THEOREM 8 (Chihara). For any chain sequence (fln}= , one has

(32) infl{ ). 1/2}
.>1 " Cn’-Cn+l--((Cn+l--Cn +42,+,/fl,,) <j,.

Remark. (.)t=l is a chain sequence if there exists a sequence (gk}=0 with
0<g0< and 0<g< (k>0), such that fl=(1-g_l)g; {gk} is called a parameter
sequence for {fin}. For instance, { 1/4) is a chain sequence for which (1/2) is a parameter
sequence.

Remark. Theorems 7 and 8 are in a sense best possible since equality may be
obtained in (29) and (32). To this end, one should take n---an(l)n+l/((n+l--
)(Cn-l)) (which is a chain sequence according to [6, Thm. IV.2.1]) in (32) and
Xo=(cn-)( -go-l), with {gk} a parameter sequence for {an()), in (29). Thus we
have actually obtained new characterizations for the true interval of orthogonality.

Using an argument similar to that for Theorem 7 or, alternatively, exploiting
Theorems and 7, one easily produces the following general lower bound for o.

THEOREM 9. For any sequence ofpositive numbers (Xo, XI, }, one has

(33) lim inf % X,,
no Xn-I

We will explicitly state as a corollary of Theorem 9 the case where Xn- n+l for
n>0.

COROLLARY 9.1.

lininf (c,-hV-hn+
The latter result has been given by Wouk [23, Thm. 8(f)], while it is a slight

generalization of a result of Chihara [2, p. 704]; see also Nevai [15, p. 22].
In this context we remark that the proof and subsequent formulation of another

one of Wouk’s results [23, Thm. 8(h)] contains an error. The corrected version of this
theorem is an easy consequence of the above corollary.

For completeness’ sake we finally mention the analogue to Theorem 8, Chihara’s
lower bound for o.

THEOREM 10 (Chihara [2], [4], see also [6, Thm. IV.3.3]). For any chain sequence

1( )2 1/2}(34) lim inf,- cn+c,+-((c,+-cn +4,n+/fln ) <-o.

Remark. It can be shown that the left-hand sides of (33) and (34) can be made
arbitrarily close to o by a suitable choice of (Xn) and (fin}, respectively.

5. Bounds on spread and centre. As mentioned in the introduction, we can
straightforwardly produce lower (upper) bounds for r/ (or z) on the basis of upper
(lower) bounds for 1 (or o) by considering the polynomials Pn(x)-(-1)nPn(-x)
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which are determined by the recurrence formula (1) via the parameters ?n Cn and
n--n, and thus have [-r/l, -l] ([-r,-o]) as their true (limit) interval of .ortho-
gonality. Then various upper (lower) bounds on the spread of the true (or limit) interval
of orthogonality may be obtained by combining upper (lower) bounds for l (or o) with
lower (upper) bounds for r/1 (or z). Similarly, we should combine upper (lower) bounds
for 1 (or tr) with upper (lower) bounds for r/l (or z) to obtain upper (lower) bounds on
the centre of the true (or limit) interval of orthogonality. We will not pursue this
approach in any detail except that we show how known results on the spread of the true
interval of orthogonality may be reproduced in this way. Also, we show that additional
information on the centre of the true (or limit) interval of orthogonality may be
obtained by exploiting .Stieltjes’ criterion (5).

Let us first note that as a consequence of Corollary 4.3 and its dual result for /l,
we have the following theorem, which is essentially due to Mirsky [13], who states it in
a finite eigenvalue context (the term spread is taken from Mirsky).

THEOREM 11.

)2 1/2ll--l>((Cn+l--Cn +4,n+l) n-1,2,.--.

This is the simplest result combining parameters c and ,. A bound involving
only %’s, which is not necessarily worse than Theorem 11, is

(35) rll-l>%-Cm, n,m- l,2,. .,
which follows from Corollary 4.1. However, Theorem 11 does improve upon a result
involving only ,n’s which, together with (35), was given already by Shohat [18], [19],
viz.,

(36) r/l -jl >2V-, n-2,3,....

But then, the latter inequality can be sharpened in another direction on the basis of (19)
(with X-- 1) as follows.

THEOREM 12. For any two integers k>0 and M>_O, one has

4 m+
(37) /1-1 > k+ m"

m--M+

In particular, it follows that Tl 1 4v/X- when ,m- ’ as m o.
So much for the spread.
Regarding the centre of the true interval of orthogonality, let us assume /l < oo.

Then, by Stieltjes’ criterion (in dual form), we have

--Cn-- --’01 -+"Y2n-2"+" 2n- 1, n+l--f2n-l2n
for n >0, where 3,0-0 and 3,>0 for n >0. For convenience, we define ),_ 1- 1. By (29)
we then get

{ ’2n--3’2n--2 ),(38) inf ’Ol /2n_2-- V2n_ --Xn 1"
n>-I Xn-I

Subsequently, substituting Xo- "Y2n- for n_>0 yields

(39)
Combining this inequality and its dual result, we obtain the next theorem.
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THEOREM 13. ff/j > oO or 1 < oZ, then

<1(40) inf(Cn)_-( +/)--< sup(c).

Similarly, we obtain the corresponding result for the centre of the limit interval of
orthogonality.

THEOREM 14. If o> or <, then

<1(41) lim inf{cn)_-(o+)< lim sup(cn}.

Appendix. A second order oscillation theorem. In this appendix, we shall assume

> . We define

(A1) Q,(x)=P,(x)/P,(,), n=0, 1,...,

where (P) is given by (1), and wish to study the behaviour of the sequence Q(x)=
(Qo(x), Q(x),... }. To this end, we define the polynomials P*(x), n=0, 1,. ., by

(A2) Pn*(x)=Pn+l(l)(Qn+l(X)--Qn(x))/(X--l),

i.e., {P*} is the set of kernelpolynomials with parameter which is associated with our
original system (P,} (see [6, {}I.7]). These kernel polynomials form an orthogonal

* k-1 2,-.. n, and in an obvioussystem. The zeros of P*(x) will be denoted by Xng,
manner we define the numbers and r/, k-0, 1,. --. The following lemma holds.

LEMMA A1 For all k>0, one has *--k+ and ,lk

Proof. There is a separation theorem saying that

* <Xn(A3) x,,<x,, +l,k+l

[6, Thm. 1.7.2], whence the second statement holds.
Regarding *k we can only conclude from (A3) that

(A4) k--< --<k+ , k- 1,2, .
However, there exists a distributiondq:(x) with respect to which the polynomials P, are
orthogonal whose support contains the points , k= 1,2,-.., but no other points
smaller than o [6, Thin. II.4.5]. The polynomials P* are then orthogonal with respect to
the distribution dq/*(x)=(x-)dq:(x) [21, Thin. 3.1.4]. Assuming that dq/* is the
only distribution with respect to which the P,* are orthogonal, we subsequently obtain
from [6, Thm. II.4.5] that- + (k- 1,2,-.- ).

Now suppose that dq/* is not uniquely determined by (P,*}. We see from (A4) that
2" But ’<2 would be contradictory to the fact that the support of d6* contains

at least one point in (-o, ]’] (see [6, Thm. II.4.4(i)]). Consequently, ’-2. Invoking
[3, Thm. 5], we conclude that dq* is the unique distribution corresponding to {P*}
whose support is contained in 2, 00), and that --k+l for k> too.

The following second order oscillation theorem is the main result of this appendix.
THEOREM A1. The polynomials Q, defined by (A1) and (1) satisfy

(A5) S(Q(x))- S(AQ(x)) k

iff < x <+ (k- O, 1,...). Here Q(x)- (Qo(x), Q(x),... ) and Ae(x)--
(Qo(x), Q(x)-Qo(x), Qz(x)-Q(x), }.
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Proof. The fact that S(Q(x))-k iff k<Xk+l is a restatement of the basic
oscillation theorem. The second part follows by application of the basic oscillation
theorem to the polynomials P,* and observing that, by Corollary 4.1, Q0(x)(Ql(X)
Qo(x))<0 when X>l. ["]

When /l < c a similar theorem may be obtained for the polynomials

(A6) R,,(x)--Pn(x)/P,,(II), n--O, 1,....

In closing, we remark that a finite version of Theorem A1 is stated in [7] in the
context of birth-death processes. Indeed, the results of this paper apply to these
stochastic processes as is shown in [8].
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A PROPERTY OF ORTHOGONAL POLYNOMIAL FAMILIES
WITH POLYNOMIAL DUALS*

MARCI PERLSTADT

Abstract. We show that for those discrete orthogonal polynomial families, {pi(/(x))}, that have poly-
nomial duals, the "finite convolution-type integral" operator, 2t=0w(y)2=0pi(/( x))pi(l(y))/h i, commutes
with a second order difference operator.

1. Introduction. Let pi((x)), (i,x=0, 1,...,N, where N is finite or infinite), be a
discrete family of orthogonal polynomials with weight function, w(x), and normaliza-
tion factor, h, i.e.

N

(1.1) 2 Pi(tx(x))pj(#(x))w(x)-ijhi"
x=0

Expanding a square integrable functionf(/(x)) in terms of the p(t(x))’s yields
N N

f(p,(x))-- 2 f(i) Pi(P’(x)) wheref(i)- 2 /(#(x))w(x) Pi(l(x))

The f(i)’s can be interpreted as "Fourier coefficients" for the expansion and as a
reminder of this interpretation we write

F(f)--/ and F-(f)-f,
for the "Fourier" and "inverse Fourier" transforms of f.

We wish to consider the analogue of "timelimiting" and "bandlimiting" for the
standard Fourier and inverse Fourier transform. By "timelimiting" f(x) to M, we mean
multiplyingf by the characteristic function of the set {0, 1,...,M) and by bandlimiting
f(x) to L, we mean multiplying fby the characteristic function of {0, 1,. .,L). Here it
is assumed L,M<N. We will abuse our notation slightly and denote these operations
as L and M, i.e.

Mf=f’X(o,,...,M), Lf f X (o,, ,t)

The operator we wish to study is E-LFM, namely the operator that timelimits, inverts,
and then bandlimits a function. We remark that E*-MF-L and thus we can consider
the self-adjoint operator E’E-MF-LFM. In particular

M L

E*Ef(#(x))- 2 w(y)f(p,(y)) E Pi(l(x))Pi(l(Y))
y=0 i=0 hi

x@ {0, 1,...,M).

It should be noted that any time a timelimited function f is to be recovered from
knowledge off only on {0, 1,...,L}, we are faced with the need to study E*E. Namely
we are given

Mf--f and LFf=g (known).

*Received by the editors December 7, 1982, and in revised form March 15, 1983.
Department of Mathematics, Drexel University, Philadelphia, Pennsylvania 19104. This research was

partially supported by the National Science Foundation under grant MCS-8302526.
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Combining these two equations yields

LFMf=El= g.

To solve we multiply both sides of the equation by E*

E*Ef-E*g.

Thus we would like to determine the eigenstructure of E*E. Ordinarily this can pose a
somewhat forbidding problem. Our approach, however, will be to find a simple means
of determining the eigenfunctions by extending the methods of Slepian, Landau, and
Pollak to this situation.

2. The Slepian-Landau-Pollak approach. In [1], [2], [3], Slepian, Landau, and
Pollak consider the operator E*E for the case of fL2(l l) and F and F-1, the
standard Fourier and inverse Fourier transforms on the real line. In this instance
operator L represents f’xz where L-[-T/2, T/2] and M represents f’XM where
M=[-W, W]. The eigenfunctions of the finite convolution integral operator E*E are
found by producing a second order differential operator, L, with simple spectrum such
that /5 and E*E commute. Thus /5 and E*E share their eigenfun.ctions and the
determination of these eigenfunctions is considerably simpler using D. In [4] Slepian
extends these results to the standard Fourier transform on R" and in [5] to Fourier
series. In both cases a commuting/5 is found.

The existence of such a commuting L is not to be expected in general. In [6]
Morrison shows that for the case of the standard Fourier transform on R 1, the commut-
ing/5 does not exist unless L, M are symmetric intervals about the origin. There are,
however, other directions one may turn in attempting to generalize these results. Thus
in [7] a number of cases including Gegenbauer .polynomials are considered and, for
appropriate choices of L and M, a commuting D is found. In [8] Griinbaum extends
these results to expansions in the classical orthogonal polynomials: Jacobi, Hermite,
Laguerre and Bessel. In [9] these results are extended to certain discrete orthogonal
polynomial families, namely the Poisson-Charlier, Meixner, Krawtchouk, and Hahn
polynomials. In the discrete cases a second-order difference operator L is found that
commutes with E*E.

As mentioned earlier, the existence of such a L is not the usual case. In fact, there
seems to be two basic properties of the polynomial families mentioned above that are
necessary for the construction of/5. They are"

(i) the existence of a second-order difference equation of the form

(2.1)

(here Af(x)----f(x + 1)--f(x) and vf(x)=f(x)-f(x 1)), and
(ii) the existence of a first-order difference equation of the form

(2.2) r(x)Api(x ) S(x,i)Pi(X ) + t( i)pi_l(x).

Note that, of course, for the continuous (classical) cases, the difference equations are
replaced by differential equations.

Bochner [10] has shown that in the continuous case the only polynomial families
satisfying a second-order differential equation corresponding to the form of (2.1) are
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the classical cases. Lesky [11] has shown that the only families satisfying a second-order
difference equation of the form (2.1) are the Poisson-Charlier, Meixner, Krawtchouk,
and Hahn polynomialsI. If, however, one is willing to loosen the restrictions on the
form of (2.1) and consider p(tffx)) instead of just p(x), then some new families arise.
In particular, we will consider here those polynomial families with polynomial duals.

3. Polynomial families with polynomial duals. Let p(/(k)) and R((i)) be two
families of orthogonal polynomials normalized so that p((0))= and R(,(0))= 1.
These two families are dual2 if

Pi(l( k )) Rk( ,( )).
Our interest in polynomials with polynomial duals stems from the fact that they
guarantee a three-term recurrence (in k) for the Rk(,(i))’s and thus a second-order
difference operator of the form (2.1) for the p(/(k))’s (and for the Rk((i))’s). Thus
any ortho.gonal polynomial family with a polynomial dual is a prime candidate for an
operator D to commute with E*E. Recent work [13], [14], [15], [16], [17], [20] in the area
of orthogonal polynomials makes it possible for us to show here that such a/ can be
found for all such families.

It is now known that in addition to the Poisson-Chaflier, Meixner, and Krawtchouk
(all of which are self-dual), as well as the Hahn polynomials and their duals [12], there
is Wilson’s discovery [13], [16] of the Racah polynomials (which are clearly self-dual).
In addition, where appropriate, there are "q-generalizations" of these polynomials:
q-Krawtchouk [18], q-Hahn and dual q-Hahn [19] and, more generally, the recently
discovered Askey-Wilson q-analogue of the Racah-polynomials [14], [15]. In [20]
Leonard shows that these are the only families with polynomial duals.

Before proceeding we further remark that the difference formulas (2. I), (2.2) can in
fact be rewritten as divided difference formulas. Thus, for example, (2.1) can be recast
as

,, 1+ x, p,
Here x=/(k) and

f[Xk_l,Xk] -f(xk)-f(xk-l) f[Xk_ Xk Xk+l] -f[xk’xk+l]-f[xk-l’xk]
Xk--Xk- Xk+l--Xk-

This is useful to remember not only because of the analogy with the differential
equations of the continuous case, but also because it provides an important clue in the
construction of L. For the families studied in [8] and [9], the 6(x) in (2.1) and r(x) in
(2.2) were identical. In the cases studied here we will have

(3.1) [/(x+ 1)-(x-1)]*(x)=r(x)
since r(x), 3(x) come respectively from first- and second-order divided differences.
This observation will help in constructing/5 in 4. In particular the e(x) term (see (4.2))
was taken as e(x)=x-M for the cases studied in [8] and [9]. Here we will take e(x) so
as to compensate for the extra factor in (3.1), i.e.

Ae(x)--I(X+ 1)-/x(x-1).

Note that these cases also satisfy equations of the form (2.2).
2Note that for .any orthogonal polynomial family {pi(l(k))}, one can consider its dual: Rk(h(i))

Pi(#(k)). The dual is always orthogonM but need not be polynomial.
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4. The operator/. Returning to the problem of finding a commuting second-order
difference operator /) for E’E, we recall the form of the second-order difference
operator for Pi(l(x))

(4.1) D- w( i A[w(x--1)8(x--1)V].

We will show that/ can be constructed to have the form

l-w(x A[w(x--1)8(x--1)e(x--1)V] +G(Z)c(x),

where e(x- 1), G(L), c(x) will be explicitly determined in 5 and 6.
Note that it will suffice to choose these unknowns in such a manner that e(M)-0

and that

:,K(x,y)-gK.(x,y)
L

where KL(x,y)- 2 Pi((x))Pi((Y))
i=0 h

This follows by essentially the same argument as in [9] but we outline it here for
completeness. By repeated application of the summation by parts formula we have

M

2
y-- 0

M

--A -B+ CI:M-’ + 2 f(l(y))[ff)yK(x,y)] w(y),
y--O

where

A-K(x,y+ 1).e(y)w(y).(y). Af(p,(y)),
B-e(y+ 1). w(y+ 1).8(y+ 1).f(/x(y+ 1))AKL(x,y+ 1),
C=f(IJ,(y+ 1))b[e(y)’w(y)’8(y)VKz,(x,y+ 1)].

Then by expanding the A term in C and by combining terms, we get
A B+ CIM_ 0 if e(M) 0. Thus since

M

:E*Ef(I(x))- 2 f(#(Y))[:Kt(x,y)]w(Y),
y=O

it suffices to show that :xK(x,y) -yKt,(x,y) (provided e(M)-O).
We note that the real work here is in carrying out the Racah and q-Racah cases

[14], [16], as the rest of the cases are simply special limiting cases of these polynomials.
In fact, the Racah polynomials can be obtained from the q-Racah polynomials, but, as
the notation used for the two is quite different, both derivations are given. Further-
more, the proof for each case follows the same general outline in [9].

Before continuing we remark that this particular form (4.2) for /) is strongly
reminiscent of the commuting differential operator Slepian, Landau, and Pollak find
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for the case where f,fG L2(I 1), L-[- T, T], M- [- W, W]. There

E*Ef(x)=ff sin(W(x-y)) f(y)dy, xA.
r x-y

The commuting/ can be chosen to have the form

(4.3) f(x)-((T2-x2)f’(x))’- W2x2f(x),

and the eigenfunctions of (4.3) are the prolate spheroidal wave functions. Note that
(T2-x-) and -W2x2 in (4.3) play roles corresponding respectively to the e(x) and
G(L)c(x) terms in (4.2).

5. Wilson’s Racah polynomials. All of the polynomials we have mentioned can be
expressed as hypergeometric series or basic hypergeometric series:

where

and

rFs b .,b
;x n

"" n:O (b,)- (b,)nn!

( al,’",ar+l ) (al;q)n’’’ (ar+l;q)nx"
r+ ldPr b,"" ,b

;q,x
n-O (b;q)n" (br;q)n(q;q)n

(a)"- { ()(a+ l)"

(a;q) -(1-a)(1-aq)"" (1-aq"-’),

The Racah polynomials in particular can be defined [16] as

p,[(x + a)2] 4F ( -,,a+b+c+d+ n-1, -x,x+
b,a+ c,a+ d

The orthogonality relationship (1.1) has

;1).

where

and

.(x)-(x+a)
(2a)(a+l)x(a+b)x(a+c)(a+d)x =w(x-1) fl(x)

fl(x)--(2a+x--1)(a+x)(a+b+x-1)(a+c+x-1)(a+d+x-1),
"y(x)-(x)(a+x-1)(a-b+x)(a-c+x)(a-d+x),

i!(a+b+c+d-1) (c+d (b+d)i(b+c)i.H_hi_ O----(a+b+c+d-1)i(2i+a+b+c+d-1) (a+b
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where

Bi=(i)(2i-3+a+b+c+d)(b+c+i-1)(b+d+i-1)(c+d+i-1),
Di=(a+b+c+d+2i- 1)(a+b+ i-1)

(a+c+i-1)(a+d+i-1)(a+b+c+d+i-2),

H- (2a+I)N(1--c--d)N
(a--c+l)N(a--d+l)N

It is required that a + b, a + c, or a + d-- -N. The above orthogonality relationship and
the difference formulas that follow are derived in [13], [16]. In addition to the difference
formulas of the form (2.1) and (2.2) we will need the Christoffel-Darboux formula.
These are given below using the notation xa (X -" a)2.

(i) Second-order difference equation.

(5.1) w(x)
where

A[w(x-1)8(x-1)Vpi(Xa)]-i(a+b+c+d+i- 1)Pi(Xa)

6(x)- (2a+x)(a+b+x)(a+c+x)(a+d+x)2(2a+2x+l)(x+a)

(ii) First-order difference equation.

(5.2)

2(x+a)(x)A[ Pi(X,) _i(x+2a)(x+a+b+c+d+i_ l)[p!(ha)
-4(-

gi[(Pi(Xa)/Vii -( "i-’(Xa)/h;--’ )(V///V/)]
(2i- 3+a+b+ c+ d)(2i- 2 + a+ b+ c+ d)

(iii) Christoffel-Darboux.
k

(5.3) (Xa--Ya) 2 [Pn(Xa)Pn(Ya)/hn]
n=0

here C-D/(a+b+c+d+2k-1)(a+b+c+d+2k-2)(a+b+c+d+2k-3).
CLAIM. The commuting can be chosen

a[w(x-1)(x-)(x-)]-(x)
where e(x)-x(x+2a+ 1)-M(M+2a+ 1)-(x-M)(x+M+2a+ 1) and G(L)-
-L(a+b+c+d+L).

Proof. Clearly e(M)-0 and thus we need only show that

)K(x,y ) yK(x,y )
L

where KL(x,y)- , pi(xa)Pi(Ya)/hi.
i=0

We begin by noting that using (5.1) and (5.2) gives
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B,(p,(x,)/f-)
+

(2i- 3 + a+ b+c+ d)(2i- 2 + a+b+c+ d)

llif-i(pi-’(xa)/l/hi’i) +G(L)xaPi(Xa..___).
(2i- 3 + a+b+c+ d)(2i-2+a+b+ c+ d)

Thus

(5.4)

(x-,)(x,l-[(x-(x+-(-
L

2 ((++c+e+(xl’(l

L

+(x-y) 2 (i)(a+b+c+d+i)
p(x)p(y)

L

+(x-y.)G(L) X p(x)p,(y.)
i=0 hi

Noting that by (5.3)

L 1/-ii[Pi(Xa)Pi_,(ya)-Pi_l(X,)pi(y,,)]
=o (2i-+a+b+c+d)(Zi-Z+a+b+c+d)#_,

L i-I

i=0 n=0

L--I L

=(x--y,) ] [p,,(xalPn(Ya)/hn] X (2i-1 +a+b+c+d)
n=0 i=n+l

L

=(x-y) ] [L(L+a+b+c+dl-n(n+a+b+c+dl][p.(x.lp.(yl/h.],
n--0
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and applying this to (5.4), yields
L

(Jx-ff)y)Kt.(x,Y)-(x-y)(x+Y +2a) (i)(a+b+c+d+i)[pi(xa)Pi(Ya)/hi]
i=0

I (xa)p,(ya)+ (Xa--Ya )G(L ) X p’

i=0 hi
L

+(Xa--Ya) (L(L+a+b+c+d)
i=0

-n(n+a+b+c+d))[ Pn(Xa)Pn(Ya) ]
(since G(L)--L(a+b/c+d/L)).

6. Askey and Wilson’s q-Racah polynomials. In [14], [15] Askey and Wilson gener-
alize the Racah polynomials (5.0) and consider the q-Racahs"

(6.0) Pn(t(x))-4tk3( q-n’qn+iab’q-x’qx+lcd
bdq, cq

q’ q

where l(X)- q-X+ qX+ lcd and aq, cq, or bdq- q-V. The orthogonality relation (1.1) in
this case has

w(x)-
(cdq; q)x(1-cdq2X+i)(aq; q)x(bdq; q)x(cq; q)x(abq)-X

( q; q)x(1 cdq)( cdq/a; q)x( cq/b; q)(dq; q )x

hn (q;q) (1-abq)(bq;q) (aq/d" q)n(abq/c;q) (cdq)n n n ho( abq q ) n (1 abq 2n+ ) ( aq q ) ( bdq q ) n ( cq q ) n

where h0 is a constant depending on a,b, c,d, and q. This relationship and the second-
order difference formula are derived in [14]. The first-order difference is derived in [17].
We state these below using the notation =/x(x).

(i) Second-order difference equation.

(6.1) w(x) A[w(x--1)8(x--1)Vpn()]- --(1- q-n)(1-q"+’ab)pn(.),

where (x) (1 cdqx+ l)(1 cq+ 1)(1 bdqx+ 1)(1 aq’+ )/(1 cdq 2x+ )(1
cdq2X+2).

(ii) First-order difference equation.

(6.2) q-’(1 cdq+’)6(x)[ A[p,,( )]/hT/.

=q-"(1-abqZ"+l)C,,[(p,,(.)/-/.)- (p,,_,()//h,,’;)(/h,,,/h )]
+ (1 q-n)(qn+ lab_ q-X 1(1 qX+ lcd )[Pn(9)/hn],

where Cn q(1 qn )(1 bq" )( c abq" )(d- aqn )/(1 abq2")(1 abq2"+ ).



A PROPERTY OF ORTHOGONAL POLYNOMIAL FAMILIES 1051

(iii) Christoffel-Darboux.

(6.3) Cn+llhn/hn+l [p.+,(fc)pn()--pn()pn+,)]/fn /h.+l
n

[(q-,_ q-y) + (qX+_ qY+)cd] X [Pi()pi(9)/h].
i=0

CLAIM. ff)-(1/w(x))A[w(x- 1)8(x- 1)e(x- 1)V]+G(L) where e(x)=(q-X+
cdq+2-q--cdq+2)/(1-q)-(q--q-)(1-cdq++2)/(1-q) and G(L)-
[(q-+abq+Z)/(q 1)]- [(1 +abq)/(q 1)]-(q- 1)(abq2-q-)/(q 1).

Proof. The proof follows the same general outline as the proof for the Racahs. We
sketch it briefly noting that e(M)=0 and that using (6.1) and (6.2) we have

(P,()/)
-e(x-1)(1- q-i)(1-qi+’ab)[pi()/]
+q-i(1-abq2i+’)Ci[(p(2)/)-(p-l(2)/(h- )(hl/)]
+ (1- q--i )( q’+ lgb q--X )(1-- q+ ’cd )[p,()/] + G(L)[p,()/].

Thus (3x-3y)Kk(x,y)-I + II +III + IV, where

I-- --[e(x--1)--e(y--1)] X (1--q-i)(1--qi+’ab) Pi().i())
i=O

II= 2 1-q-’)[(q’+’ab-q-)(1-q+’cd)
=0

L

-Pi-l()Pi(.))/(i /hi )][hi’i-/h/],
L

IV=G(L)(-) E
i=0

Therefore, in a manner similar to 5, we obtain

I + II- [(q-’-q-Y)+(cdq’+-cdqY+)]
L [ (l_q-i)(l_abq,+2)] Pi()Pi(.)]],:o (q-l)

+ (-9)[ (l+abqZ)](q--l) i=0
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and

L i--I

III- q-i(1-abq2i+)
i=0 k=0

t-,

( p/(fc)p(.)=[(q-X-q-Y)+(cdqX+’-cdqy+l)] E hk=0 k

L

q-i(1-abqZi+’)
i=k+l

=[(q-X-q-Y)+(cdqX+’-cdqy+l)]

E (q- + )
/,=o (q-l)

(q-t+abq+2)

It follows that (lx-y)K(x,y)-O.
7. Some special cases. We remark again that all of the polynomials with poly-

nomial duals arise as special cases of Askey and Wilson’s q-Racah polynomials [20].
Thus a particular/9 can be found by taking appropriate limits of the D in 6. The
results in 5 can be obtained by taking limits as q--, and reparameterizing the Racahs
as:

(7.1) rn(.x)_4F3(-n,n+a+fl+ 1,-x,x+7+8+l )
where )x-X(X+’t+8+ 1).

One can further obtain/3 for the limiting case where q 1. The orthogonality of
these polynomials was given by Leonard [20]. All of the "classical" polynomials (Pois-
son-Charlier, Meixner, Hahn, Krawtchouk) for which/5 was constructed in [9] can also
be obtained by ap.propriate limits [15]. Letting/3 o and a + -N in (7.1) gives the
Hahn duals and D for this case is given by:

where

(x+a+fl)(x+a)(N-x)(2x+a+fl+ 1) w(x-1)w(x)-(2x+a+fl-1)(x)(x+fl)(x+a+fl+N)
8(x)- (x+a+fl+ 1)(x+a+ 1)(U-l-x)

(2x + a +/3+ 1)(2x + a +/3+ 2)

e(x)-(x)(x+a+ fl+ 2)-M(M+a+/3+ 2),

hi- [(N- n )( a -l- n )/( n )( N-t- fl- n )] h i_ ,.
Some other limiting cases of interest include the q-Hahn polynomials [14], [19]

which result from taking d--0 and cq-q-v in(6.0),the dual q-Hahns [14], [19] with
b-0 and aq-q-u in(6.0),and Stanton’s q-analogue of the Krawtchouk polynomials
[18], [14]. With appropriate limits the corresponding/ can be constructed.
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8. EE*-LFMF-L. In [7] it is noted that one can equally well study the operator
EE* LFMF- 1L. Namely if f is an eigenfunction of MF- ILFM with eigenvalue A: 0,
then LFf is an eigenfunction of LFMF-IL with eigenvalue A. We can represent EE* by
the (L+ 1)x(L+ 1) matrix with entries

M

(ee*)i,j- Pi(t(x))Pj(lX(X))W(X), O<_i,j<_L.
x--0

A tridiagonal matrix T that commutes with EE* can be found by applying/5 to p(x)
and obtaining the resulting three-term recurrence in terms of pg_(x), p(x), and

P+ l(X)- From this, the matrix T can be read off. For a detailed example of this sort, see
[7]. Note that the reduction of work in using T rather than EE* to compute the
eigenfunctions is equivalent to the reduction of work in .computing the eigenfunctions
of a tridiagonal matrix rather than of a full matrix.

If we represent T in the form:

al bl
a2 b2

hi_+- aL

then T has simple spectrum if b :/= 0, i-0, 1,-..,L- 1. Thus by computing the entries
of T, we can be guaranteed simplicity of spectrum for our commuting operators.

We further remark that for all cases studies so far, the existence of a commuting
difference operator/5 for E*E has been equivalent to the existence of a commuting
tridiagonal matrix T for EE*. Thus by forming EE* for any given case and checking to
see if an appropriate T exists, one has some indication as to the possible existence of/5.
We note numerical tests indicate that T will not exist, in general, if the operators M and
L of are taken as

Lf--f’X{L,,I,+I,...,L2},Mf=f’X{M,,M, + l,..-,M},

unless Mi--0 or M2-N, and L-0 or L2-N. This is reminiscent of the results of
Morrison [6] for the standard Fourier transform.

Acknowledgment. The author would like to thanks Professors Richard Askey and
James Wilson for their help and for access to their preprints.
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BIFURCATION TO QUASI-PERIODIC TORI IN THE
INTERACTION OF STEADY STATE AND HOPF BIFURCATIONS*

J’0"RGEN SCHEURLE"t" AND JERROLD MARSDEN$

Abstract. Bifurcations to quasi-periodic toil in a two parameter family of vector fields are studied. At
criticality, the vector field has an equilibrium point with a zero eigenvalue and a pair of complex conjugate
eigenvalues. This situation has been studied by Langford, Iooss, Holmes and Guckenheimer. Here we provide
explicitly computed conditions under which the stability of the secondary branch of toil, and whether the
flow on them is quasiperiodic, can be determined. The results are applied to "Brusselator" system of reaction
diffusion equations.

Introduction. Consider a smooth vector field on R which has a singular point at
the origin. Suppose that the linearized vector field at the origin has an eigenvalue zero
and a pair of pure imaginary eigenvalues -i-/, 3,>0. The aim of this paper is to show
that in a two parameter unfolding of this singularity satisfying explicitly computed
nondegeneracy conditions, there are continuous curves, emanating as a tertiary bifurca-
tion from a secondary curve of Hopf periodic orbits, along which one has invariant
2-tori carrying quasi-periodic flow. In particular, this shows that within a structurally
stable situation one has an abundance of bifurcations that are the first part of a
Landau sequence:

trivial
primary secondary branch tertiary branch of

equilibrium--’ branch of
equilibria

of Hopf orbits quasi-peilodic 2-tori.

Explicit exchange of stability results are established for each bifurcation. Because of the
concrete nature of the formulas for the nondegeneracy conditions that are derived, the
results can be applied to specific problems for specific choices of parameters. We work
out these conditions for a reaction diffusion problem as an example. We expect that the
method will also apply to certain plasma instability problems; see Crawford [1983].

We shall work within the class of Ck vector fields with a zero at the origin. No
other symmetry conditions are imposed. The eigenvalues are assumed to cross the
imaginary axis "with nonzero speed" with respect t6 the unfolding parameters and
some nondegeneracy conditions are imposed on the second and third order terms of the
unfolding. These assumptions will imply that the trivial solution undergoes transcritical
and Hopf bifurcations. Langford 1979] showed that the interaction between this steady
state and Hopf bifurcation leads to invariant tori under some genetic-type assumptions.
Although Langford’s paper forms the basis for the present work, our approach is more
in the spirt of singularity theory and the work of Holmes [1980] and Guckenheimer
[1981], [1982] in that it uses normal forms and the ideas of unfolding. Of course there
are now many papers in bifurcation theory using this approach, such as Golubitsky and
Schaeffer 1979], Schaeffer and Golubitsky 1981] and Golubitsky and Langford 1981].
Some partial results similar in spirt to ours have been given by Broer [1982] (see also
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Broer 198 lb], Braaksma, and Broer 1981], and Chow and Hale 1982]). As we have
mentioned, we impose no symmetry conditions, but also do not forbid them. In
particular, we begin with a normal form somewhat more general than that considered
by Guckenheimer 1981 ], 1982].

To construct the bifurcating 2-tori, we use a theorem of Sacker [1965]. To locate
the toil carrying quasi-periodic flow, we use KAM theory and methods of Scheurle
[1982]. The results will be local, and will be robust against higher order perturbations,
so we have a form of structural stability. (For global results, the work of Chenciner
[1982] may be relevant.) Despite the fact that individual quasi-periodic flows are
structurally unstable, their occurrence in this bifurcation is stable and in fact their
occurrence along appropriate arcs in parameter space is an open condition. To make
the explicit computation for the example considered in 3, we use Poincarr-Birkhoff
normal forms and center manifold theory, a technique of Ruelle and Takens [1971] that
proved effective for explicit calculations in the Hopf bifurcation (see Marsden and
McCracken [1976] Hassard and Wan [1978], and Hassard, Kazarinoff and Wan [1981 ]).

There are other singularities and corresponding unfoldings where our method
should be applicable to yield invariant tori with quasi-periodic flow. If, for example, the
spectrum of the linearized vector field is as above and the second order terms vanish
identically, then we have a more degenerate singularity, and a two-parameter unfolding
is reasonable only within the class of ’ 2-symmetric vector fields. In this context, one
has an interaction between a pitchfork and a Hopf bifurcation. For this case, Langford
and Iooss [1980] succeeded in showing the existence of invariant 2-tori provided the
5-jet satisfies a certain (implicitly given) nondegeneracy condition. In the case of a
vector field in 4 with two pairs of purely imaginary eigenvalues of the linearization,
one expects the existence of invariant 3-tori under suitable conditions (see Iooss and
Langford [1980], and Guckenheimer [1980]). However, as far as we know, only in some
symmetric cases has it been shown that the flow on some of these tori is actually
quasi-periodic. In particular, Guckenheimer [1980] assumes a type of axial symmetry
and Broer [1981b] and Braaksma and Broer [1981] deal with divergence-free vector
fields.

Although quasi-periodic motions are chaotic in some sense, one should also men-
tion that even much more complicated dynamical behavior has been discovered in these
problems. In the case considered in the present paper, Guckenheimer 1981], 1982]
showed that a genetic perturbation of a certain truncation of the system possesses
transversal homoclinic orbits and hence horseshoes. He uses a geometric argument
based on an argument of Silnikov. The precise hypotheses can be expected to be
difficult to check in specific examples of perturbations. P. Holmes [1980] applied
Melnikov’s method to prove the existence of transversal homoclinic orbits for a very
particular unfolding of this singularity. Exact verifiable results are again difficult to
obtain since the Melnikov function is exponentially small and is not seen at finite
orders in perturbation theory (cf. Holmes and Marsden [1982]). These results together
with our result, however, strongly suggests the verifiable coexistence of both quasi-peri-
odic motions and horseshoes, even for equal parameter values. We plan to address our
attention to this question in a forthcoming paper.

The structure of the paper is as follows: In 1 we discuss the normal form of the
unfolding and we prove that there is a curve in the parameter space along which one
has Neimark-Sacker bifurcations. We construct the bifurcating invariant tori near this
curve and show that they are asymptotically stable if they bifurcate to the right, and
unstable, if they bifurcate to the left. In 2 we show that there are continuous curves in
parameter space emanating from the critical curve, along which one has invariant tori
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with quasi-periodic flow. Finally in {}3 we apply our theory to a model system of
reaction diffusion equations, the so-called Brusselator. Although this is a system of
partial differential equations, center manifold theory and the method of Birkhoff-
Poincar6 normal forms is used to reduce it to the normal form discussed before.

1. Bifurcation of periodic solutions into invariant 2-tori. We consider the following
unfolding of a three-dimensional codimension-two singularity (cf. Guckenheimer 1981],
[19821):

(1.1) =(h-o)r+arz+dr3+erz2+ +O(l),. )kz’F bz2 + cr2-Ffr2z-F gz3 + +0(1),
-V+hlz+h2r2+haz2+ +O(l)/r.

Here (r,z,O) are cylindrical coordinates in R 3. It is assumed that the vector field on the
fight is sufficiently smooth and has been written in Birkhoff-Poincar6 normal form up
to terms of order 1, i.e. the coefficients a, b, c,-. are real numbers, whereas O(1) stands
for functions which are of order 1 in r and z uniformly in 0. -/ is a given positive
constant, while h and o are (real) unfolding parameters. We shall refer to h as the
bifurcation parameter and to o as the splitting parameter (cf. Langford [1979]). Note that
we cannot further simplify the 0-equation as done by Guckenheimer [1981], [1982] or
Broer [1982], since we are mainly interested in quasi-periodic solutions. Although
invariant tori are preserved by these simplifications, Poincar6 rotation numbers are in
general changed.

If abc=/=O in (1.1), then the equation is classified by Langford [1979] into six
qualitatively distinct cases according to the values of a,b, and c. In each case, if o:/:0,
one has transcritical steady state bifurcations as well as Hopf bifurcations as h varies.
These are the primary and secondary bifurcations. In one case the possibility of a
so-called tertiary bifurcation is allowed, i.e. the bifurcation of periodic solutions into
invariant 2-tori (through the Neimark-Sacker bifurcation). This case arises when

(H1) ab<O and c(b-a)>O.

Under an additional nondegeneracy condition on d, e,f, and g given explicitly below in
(1.14), we shall show in this section that such a bifurcation indeed occurs.

As far as primary and secondary bifurcations are concerned, there are three curves
in the (h, o)-plane, along which such bifurcations occur, near the origin. These curves
are given by the asymptotic formulas

(1.2)
b o+o(o)2 ’-b-a

3: X=+O(2),

respectively. Along we have a transcritical stationary bifurcation from the trivial
solution. For 0>0 the trivial solution loses its stability to the supercritical stationary
solution branching from it. Along 2 we have a Hopf bifurcation from the stable
stationary solutions that branched out along . For 0>0 this Hopf bifurcation is
supercritical, and so the periodic solutions acquire the stability for a small parameter
range. Finally, along 3 these periodic solutions run back into the trivial solution again
in a subcritical Hopf bifurcation. Near this bifurcation point the periodic solutions are
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unstable. There is an intermediate neutral stability curve for the periodic solutions
asymptotically given by

2b 0+0(02).(1.3) e4 h=2b_a

Here the Floquet exponents of the periodic solutions are purely imaginary. This gives
rise to a tertiary bifurcation into invariant 2-tori (cf. Marsden and McCracken [1976]
and Iooss [1979] for expositions). See Fig. 1. For o<0 the Hopf bifurcation from the
trivial solution occurs first as in Fig. l(c).

(a)

C 3

(b)

O"
# SUPERCRITICAL

HOPF BIFURCATIONS C2

/ BIFURCATION TOA

!/ -----------X/ SUBCRITICAL HOPF

/ l k BIFURCATION:C3
/ TRAN$CRITICAL

/ STEADY-STATE
/ BIFURCATION: C

(c)

/

:.----.---’-- ---X
c )*x4
/ C2

Fit}. 1. (a) The curves , 2, Ca and 4 in the (, o)-plane (b) The bifurcation diagram corresponding to

the horizontal section shown in (a); o>0. (c) The case o<0.
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In order to construct these tori one proceeds as follows (see Guckenheimer [1982]
for details): Truncate the equations in (1.1) after terms of order 1-1. The truncated
system is axisymmetric with respect to the z-axis and so the 0-equation decouples from
the (r, z)-part, and corresponding to the periodic solutions discussed above for r:/: 0 are
the zeros (with rq:0) of the vector field f-- (fl,f2) given by

(1.4) f(o,h,r,z)=(h-o)r+arz+... + (monomial of order 1- 1),
f2(o,h,r,z)=Az+bz2+cr2+ + (monomial of order 1-1).

Their "Floquet exponents" are given by the formula

(1 )/2(1.5) l+_ --trDf+__ -tr2Df--detDf
Here Df is the Jacobian matrix of f with respect to r and z. Hence, for the reduced
system, the neutral stability curve for these solutions determined by the condition
Re# _+- 0, is given by

(1.6) f=0, trDf=0,

assuming detDf>0. In order to solve (1.6), we introduce rescaled variables as follows:

(1.7)
and consider the corresponding rescaled (or "blown-up") vector field

(1.8)
Note that there is a reflectional symmetry in our problem which guarantees that for
given h and o, solutions appear in pairs (0, +--r,z). Hence we can replace Iol by o in
(1.7). For small I1, the implicit function theorem applies to yield a solution

+o(o)(1.9)

of (1.6). Moreover, the implicit function theorem applies to yield the periodic orbits

(1.10) e--ro(o,X ), e--z0(o,X )
of f for parameter values near the curve given by (1.9). Their Floquet exponents
# +_ a +-- ifl have the properties

_1 b
--->0, a(0 x0(0))- 0>0(1.11) a’’h’"=--O’ Oh

( ()) -:
2 a

All these functions are smooth (in fact locally analytic). Note that for practical reasons
it suffices to compute them up to terms of order 1-1 in o.

Next we introduce local variables near the periodic orbits (1.10)

(1.12) X-Xo(O)+h, e-ro(o,X)+R, e-Zo(O,X)+Z,

and transform the linearized vector field Df to Jordan normal form. This can be
achieved by a similarity transformation which is analytic in o and . Furthermore, the
transformed vector field is brought into Birkhoff-Poincar normal form up to terms of
order four. Again, this can be done via a coordinate transformation which is analytic in
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o and .. We end up with a vector field, the components of which have the following
form in polar coordinates (, q), _>0, in the (/,) plane:

(1.13) -a)=A) + 0() ),-- fl’- n2--- O(4).
Here a and fl are as in (1.11), A and B are functions of o and , and the symbols O(5)
and O(4) stand for functions which are of order five and four, respectively, uniformly
in 4,o and and which are 2r-periodic in . All functions are smooth (in fact
analytic). We have the following asymptotic formula for A:

b

)2 [4b (--b 1) d-4bc-e-2bf+6cglo+O(Ifkl+o2 ).(1.14) A(o,x)--
(2b-a a a

This formula is obtained by straightforward calculations as outlined above. We also
have A(0,0)=0. This is a consequence of the fact that the vector field in (1.8) is
Hamiltonian and integrable for o-0 and X-X0(0) (see Fig. 2, Guekenheimer [1982]
and Langford [1982]). We shall make the following hypothesis:

(H2) i)-A(0, 0) :/: 0.

For given values of a,b,c, and h, this is a nondegeneracy assumption for the third
order terms in (1.1). Formula (1.14) tells us that this assumption is fulfilled for all
values of the coefficients h 2 and h3, and for (d, e,f, g) outside a hyperplane in R 4. Thus
it is genetic within the class of vector fields considered here.

FIG. 2. The homoclinic orbit and phase portrait forf with o:0 and :,0(0).

If we neglect the higher order terms in (1.13) for a moment, zeros of the equation

(1.15) aq-A3-0

correspond to limit cycles of that system. Moreover, if we add the equation -y, they
correspond to invariant 2-tori of the (0, f,)-system. In fact, we shall use these tori as a
zeroth approximation for the invariant toil of the complete system.

Because of (1.11) and (H2) we can write

(1.16) ) oa, (o, A ) + ),
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where the functions &,h and 24 2 are smooth (even analytic), and

(1.17) &(0,0)-a0>0 At(0, 0) f =/= 0.

Hence, if I.1 is sufficiently small depending on o, then (1.15) has a solution

(1.18) Oo- oA +A2

either for _>0 if 0[2<0, or for <0 if 0[2>0. Thus, a vertical bifurcation of tori is
excluded by our assumptions. Observe that P0- 0 as-0.

In order to continue these tori to the complete system, we now introduce the
rescaled parameter A via

(1.19) f--omA, _<lAl_<, A[2<0.

where m> is an odd integer to be determined later and 8 is some given positive
number. The restriction of A to such a domain is quite natural, because -0 corre-
sponds to the neutral stability curve of the truncated system and differs from 4 to a
higher order in o. Moreover, we restrict the -variable to a neighborhood of the tori
given by (1.18), i.e. we introduce a local action variable p via

(1.20) } po+olAI l/2 Ipl<l,

where the integer n>_m will be chosen later.
After making the above substitutions of variables in (1.1) (the 0-variable is left

unchanged so far), we end up with a system of the following type"

(1.21) [o-o(2pAp+g,(o,A,O,p)+hl(o,A,8,O,p)),
[#- o( fl +Bp+g2( o,A, O,p ) + h2( o,A, 8, O,p ) )
O-Y+o(fo(o,A,O)+g3(o, A, 0,P)+ h3(o, A, 0,0, P) )

Here the functions P0, fl, A,B,fo and gk (k= 1,2,3) are analytic in the variables o,

IAI/2, ,p restricted to the indicated regions. Furthermore, f0 and gk are 2or-periodic
trigonometric polynomials of finite degree in . f0 can in fact be chosen so that it has
degree two by absorbing the higher order terms in g3- Moreover, these functions have
the following order of magnitude with respect to o, uniformly in the other variables as
Iol-,O:

(1.22) p O(Iol<- l)/2), - O(1),
m=o(lol), B- O(1),

f0- O(1), g-o(Iol+lols(m-l/a-) (k-1,2,3).

The functions hk (k-1,2, 3) are as smooth as the original vector field with respect to,,p and are at least continuous in the parameters, provided that n is not too large
compared with I. They are 2r-periodic in both the variables and O, and

(1.23) h-O(Iol’-/lol’-’-’) aslol-0.
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Observe that without loss of generality we can assume that f0 does not explicitly depend
on q,. For otherwise, we transform the 0-variable via

(1.24) 0--/+ xI’(o, A, q,),

where xI, is the solution of the equation

(1.25)

_____
f0--[f0]

Here [f0] denotes the constant term of the trigonometric polynomial f0- Clearly (1.25)
has a unique solution, and this is again a 2r-periodic trigonometric polynomial in q,
with coefficients depending smoothly (even analytically) on o and IAI 1/9-. The new
0-equation reads as follows:

(1.26) =V+o[fo]+o{g3+h3}-o- (g2+h2).

The other equations in (1.21) are not affected by this transformation. Subsequently we
shall simply assume that f0 does not depend on in (1.21).

Now we are ready to apply Sacker’s theorem (Sacker [1965, Thm. 1]) on invariant
submanifolds to prove the following result:

THEOREM 1.1. Let the vectorfield in (1.1) be of class C with r_>21. Moreover, let the
coefficients a, b, c,... satisfy the hypotheses (HI) and (H2). Let iS (0, 1) be some given
number and denote by S the regions of the (), o )-plane which are bounded by the two
curves )=O,o(O)++-i$ol and):O)o(O)+--o, where X0(o) is as in (1.9). Then, there is a
positive oo such that, for all parameter values either in S+ fq {()k, o)l I1 -<0} or in S- A
{(,,o)111_<0} depending on the sign of f, the system (1.1)possesses an invariant 2-torus
of class C i. This torus depends continuously on the parameters. If f >0 it exists in S
and is locally attractive. If <0 it exists in Sd- and is locally repelling. (Thus we have the
usual exchange ofstability phenomenon.)

Proof. We apply Sacker’s theorem to the transformed system (1.21). To this end we
set 1= 21, m=9, n= 10 for the integers in (1.1), (1.19) and (1.20). Then, in Sacker’s
notation we have u=p, Xl’-’dp, X2--O t-"t:110, tol--ofl+oBPo, to2--Y+of0, P=
09-pgA/o 10, Al=(g2+h2)/o9, A2--(g3+h3)/o9, and -(gl +hl)/O9. So we are in
his degenerate case i). Because of (H2), P is strictly bounded away from zero. The sign
of P is equal to that of f. Furthermore, (1.22) and (1.23) imply that the functions k
and ( together with all their derivatives with respect to 0, q, p, up to order r tend to
zero uniformly as o--, 0. Hence, for IS_<IAI_< and IAI sufficiently small Sacker’s theorem
applies to yield an invariant manifold of (1.21) given by a function

(1.27) O=z(o,A,0,O),

which is Cr- and 2r-periodic in 0 and q and together with its derivatives continuous
in A and o. Note that the estimates in Sacker’s proof are independent of to=(tol, to2) in
bounded regions. Hence it does not matter that to depends on o in our ease. Now, in
view of (1.19), A has to be chosen positive if f<0 and negative if f> 0. This proves the
two alternatives in the existence part of the theorem. In order to prove the stability
assertion, note that the constructed torus is locally stable if -#P is positive i.e., if
f<0 (of. (1.16)) and unstable if this matrix is negative, i.e. if f> 0. ff]

Remark 1.2. The regularity assumption in Theorem 1.1 is obviously not optimal.
Moreover, the existence domain of the tori in the (,, o)-plane is only estimated very
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roughly. It cannot be expected in general that the tori reach the curve h-oh0(o), i.e.
/$-0, for this curve is only an approximate neutral stability curve for the periodic
solutions of (1.1). However, we still aim to show that the tori actually emanate along
curves from the exact neutral stability curve 4-

To prove this, one has to localize the vector field around the exact periodic
solutions of (1.1) rather than around approximate solutions as in (1.12). Moreover, the
complete 2-jet of the localized vector field has to be taken into consideration for the
construction of a zeroth approximation of the toil. To this end, one has to transform
away all nonresonant terms of the 2-jet. In fact, there is an almost identical transforma-
tions of the variables A, R, Z, 0 of the form

(1.28) .-+Ao(o),
R-l+Ro(o,,O,,),
z-2+Zo(o,;x,O,k,2),

such that, in the new variables, our method applies uniformly for I.l_< and Iol
sufficiently small. The periodic solutions are given by/-0, +-0, and A-0 corre-
sponds to the curve C4. The remaining resonant terms in the 2-jet (with respect to/
and ) of the transformed vector field are independent of and differ from the old
ones only by terms of order greater than or equal to in o. The same is true for higher
order terms. In (1.28) all functions are smooth, 2or-periodic in , and polynomial of
order two in R and Z. Such a transformation is easily constructed using the classical
implicit function theorem, for there are no small divisors involved.

COROLLARY 1.3. Let the assumptions of Theorem 1.1 hold. Then, for each fixed o
sufficiently small, there is a continuous branch of invariant 2-tori of (1.1) which emanates
at the curve C4 from periodic solutions. It can be parametrized by ). For each parameter
value, the torus contains the corresponding periodic orbit in its interior. (The torus
collapses to the periodic orbit if the curve 4 is approached.) It is locally stable if it

bifurcates supercritically, and unstable if it bifurcates subcritically.
Remark 1.4. A result is similar to Corollary 1.3 has been proved by Langford

[1979]. However, his condition is rather implicit, and it seems to be hard to check it in
applications.

Remark 1.5. In many formulations for the bifurcation to tori, a nonresonance
condition up to order four is needed. This does not occur here since the characteristic
exponents of the periodic solutions tend to zero as o- 0 while their period tends to
3,>0.. The existence ot bifurcating tori with quasi-lmriodic/low. It is well known (cf.
Iooss [1979]), that the flow on a bifurcating 2-torus is qualitatively described by
Poincar6’s rotation number p. If p is rational, then the flow is periodic and otherwise it
is quasi-periodic, so ergodic. Also it is known that there is a set of parameter values of
positive Lebesgue measure for which the flow is ergodic, provided that p varies effec-
tively with a parameter. The measure of this set tends to when the corresponding
family of flows approaches a family of parallel flows (see Arnol’d [1965] and Herman
1977]). The purpose of this section is to show that this actually happens in the present
situation for genetic paths through the (X, o)-plane close to the origin. In particular we
shall see that there are specific continuous curves emanating from C4 along which all
the toil are quasi-periodic. In between these curves one expects the phenomenon of
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phase locking to occur which means that p takes constant rational values in open
regions of the parameter space (see Arnol’d [1965]).

Let # (o, A, 0, qb) be the invariant 2-manifold of (1.21) constructed in the previ-
ous section. Then the flow on this submanifold induced by (1.21) is given by the
equations

(2.1) k-o(,8+B#+g:,.+h2), O-3/+o{fo+g3+h3}
where the p-argument in the functions gk and hk (in (1.21)) is replaced by -. Rescaling
the time by a factor x we get

(2.2) k--_. {+Bp+g,:,.+h2} /-__Y+Z {f0+g3 +h3}.

Now, because/3(0,X0(0))=j/0>0 and 3/>0, we can replace o and x in (2.2) by new
parameters

(2.3)

Recall that
Hence, when m 3 the implicit function theorem gives a unique smooth solution

(2.4) o=o(A,w,,2), x=x(A,,,:)
of equations (2.3) for near 0 and near 7. In particular, we have

(.5) o(A,0,)-0, (A,0,)-

We shall look for curves in (, w2)-space parametfized by A, where the flow of
(2.2) is quasi-periodic with two given basic frequencies I1 and w near 0 and 7,

respectively ( is allowed to be negative). To ts end we first consider the modified
system

(:.6)

Note that the fight-hand sides of these equations are smooth in and 8 and, together
with their derivatives, continuous in A, and (recall that we have only proved that
z is continuous in and A).
LE 2. ]. Let the functions gk and hk be of class C, r 8, in 8 and and let them

satis (1.22) and (1.23) with respect to o(l,m,n as in l). Moreover, let q be a given
integer with q n(n, 5(m 1)/2 n, 1- 2,1- n 1). Then, there is a positive constant c
with the followingproperty. If the vector o_(,) is contained in the set

for some e (0, 1), then there is a continuous function (A,) definedfor

and a 2-periodic coordinate transformation of class C

(:.9) o-#+v(a,.,$,#)
continuo in A and , such that (2.6) is transformed into
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In particular, we have

q
(2.11) A O(Iw

Proof. The existence of such a transformation is proved, for instance, by Zehnder
[1975, Thm. 4.1] (cf. also Moser [1966] and HSrmander [1977]). The estimates (2.8) and
(2.11) are due to the fact, that the functions (o/x){g2+h2}/e2to and (o/:){g3-+-
h3}/e2toq, together with their derivatives, have to be sufficiently small. Here the factor
e2 in the denominator stems from the nonresonance condition (2.7) and the second
factor toq guarantees (2.11). In view of (1.22), (1.23) and (2.5), these functions can be
made arbitrarily small by choosing an appropriate c in (2.8). []

In particular, this lemma implies that the flow of the modified system (2.6) is
quasi-periodic with the two basic frequencies to0 and to2:
(2.12) (h- to + U( A, to, tot, tot), 0- + v( A, ,o, ,o,, ).
Hence, it remains to be shown that there is a curve in (to1, to2)-space, on which the
systems (2.2) and (2.6) agree. Such a curve is determined by solutions of the equations

(2.13) to to + Ato(A, tol, to2),

We shall solve (2.13) for tol and to: using Brouwer’s fixed point theorem.
Let rl *l(e) denote the right-hand side of the inequality in (2.8), and set too (0, ,).

Then, with respect to to, the right-hand sides of the equations in (2.13) define a
continuous map from the ball B(to0) with center too and radius r/, into R 2. This map
depends continuously on A. In order to make sure that it maps Bn(to0) into itself, we
require

(2.14)

where the constant stems from (2.11). Here a difficulty arises. Namely, it is not clear
whether or not there are elements too in I satisfying (2.14). But a measure-theoretical
result helps. It is "well known" (see Siegel and Moser [1971] and Rtissmann [1979])
that the Lebesgue measure of the complement set of I in any ball is of order O(lel) as
e 0, uniformly for balls with small radius, i.e. we have

(2.15)

with some constant , where/ denotes Lebesgue measure. Thus

(2.16) r( q)2__8>0
implies

(2.17) Bn_znq (tOo ) N I v

Hence, if q> and r/is of order less than as e 0, there are many frequency vectors
too such that Brouwer’s fixed point theorem applies to yield a solution

(2.18) to=to(A)

of (2.13) which depends continuously on A (see Chow, Mallet-Paret and York [1978]).
In fact, the relative measure of the set B,_z,q(to0)O I in this ball tends to as e 0.
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THEOREM 2.2. Let the assumptions of Theorem 1.1 hold. Let S be the regions of the
(, o)-plane as defined there, and let flo be as in (1.11). Then each interval around 0
contains a subset I with the following properties: The relative measure of I tends to as
the interval shrinks to the point O. For all oo I, near the line =% there is a continuous
curve in S
(2.19) h=s(oo,A), o--s(Oo, A ) (8<A_< 1),

along which the flow on the tori constructed in the previous section is quasi-periodic with
two basic frequencies nOoflo and ,. The frequency ratio ,1/,2 is a constant along
each curve. These curvesjoin the two boundaries ofS andform a set ofpositive measure.

Proof. Let the integers l,m,n be chosen as in the proof of Theorem 1.1 and set
q--2. The right-hand side of the inequality in (2.8) is of order less than as s-0.
Thus, according to the above discussion and (2.4), for almost all frequency vectors 0
near o-(0,7), there are values o--o(A,0), -(A,) depending continuously on
A, such that the flow of (2.2) is quasi-periodic and given by (2.12). In view of (2.3) and
(2.11), we have

Now, consider the curves o-o(A, 0) in parameter space. In the ofinal time scaling,
the corresponding frequencies are v-x and n2-r. Hence, for different ratios
o 0t/2 these cues cannot intersect. However, if the ratios for two different 0 are

coincident, the coesponding cues may coincide. Therefore, it suffices to consider
ts subspace of 0 ’s where -V. In ts case, (2.3) implies

(2.21) 1 + o(Iol).
Thus, with

(2.22)
we conclude from (2.20) that

(2.23) o-Ool-O(o0), I-1= O([o0),
as o0 0. Now set

)-  kx0(_ +

with ho from (1.9), and note that the measure theoretical result mentioned above,
carries over to the subspace of frequency vectors 0 with fed second component-. Thus, the theorem follows.

Remark 2.3. As in the case of Corolla 1.3 it can be shown that the cues in
Theorem 2.2 actually emanate at the neutral stability cue of the periodic solutions
of (1.1). Ts has an interesting consequence. Passing throu the pameter space on a
path wch ns into one of these cues, one has a bifurcation from periodic orbits
into quasi-periodic solutions with two basic frequencies. See Fig. 3. These are stable if
they are supercfitical. Althou indidual quasi-periodic flows are nongenefic, one
geneficly sees ts bifurcation in the unfolding in (1.1) wch thus ebits the first
part of the Landau sequence of transitions from trivial stationa solutions to quasi-
periodic solutions.
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A PATH IN
PARAMETER
SPACE

A CANTOR SET OF
CURVES OF QUASI-PERIODIC
TORI ( O

FIG. 3. A path in parameter space generally meets a set ofpositive measure of quasi-periodic tori.

Remark 2.4. Note, that for an analytic vector field in (1.1) the tori with quasi-peri-
odic flow and frequency vectors contained in some set 1 are analytic 2-manifolds. This
can, for instance, be pro,ed by the method in Scheurle [1982], which combines the
construction of the torus, with that of the flow on it and thus avoids a separate
reduction step as in Theorem 1.1 (el. also Bogoliubov, Mitropolskii and Samoilenko
[1976]). In general, even C-smoothness is lost by such a reduction process (see Sacker
[1965]).

Remark 2.5. Consider the differential equation

(2.25) ’:/(o,X,),
where f: R R R 3._, R 3 is sufficiently smooth. Assume the existence of a trivial
solution x 0, i.e. f(o, h, 0) 0. Moreover, let D f(o, h, 0) have the eigenvalues a(o, h),
and fl(o, , ) -+- r(o, h ) where a(O, O) O, fl(O, O) O, r(O, O) v 0 and

(2.26) O( a, fl )
(o,h)

v0 at (o,h) (0,0).

This is a generalized Hopf condition due to Langford [1979]. Then, introducing a and
a-fl as new parameters, (2.25) can be transformed to a system of form (1.1). Of
course, the coefficients a,b,c,..., and , will depend on the parameters in general.
However, our theory still applies to this situation, if in (HI), (1.2), (1.3), (1.9), (1.11)
and (1.14) the values of the coefficients at o= 0, h= 0 are inserted.

3. The Brusselator. We apply our theory to a model system of reaction diffusion
equations, namely to the so-called Brusselator. Although this system originally consists
of partial differential equations, there are parameter values where the solutions we are
interested in, lie in a three-dimensional, locally invariant center manifold, and the
restriction to this submanifold has a singularity of the type discussed in the previous
sections. In particular, the generalized Hopf condition (2.26) is fulfilled, so that (1.1) is
a reasonable unfolding. This example has been studied in detail by Guckenheimer
1982] (see also Keener 1976]). (See Schaeffer and Golubitsky 1981] for a discussion of
the steady state bifurcations near a double zero eigenvalue.) We shall give explicit
formulas for the relevant coefficients and in particular we compute the third order
coefficients. We shall use a complex representation for convenience.

The following reaction schema is considered:

A--,X, B+XY+D, 2X+Y3X, XE.
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Here A,B, D,E are reactants whose concentrations are assumed to be fixed throughout
the reaction. It is the dynamics of the intermediates X and Y which is examined. In
addition, the reaction is assumed to take place in a one-dimensional medium (with
position variable ) and that X and Y diffuse with diffusion constants D and D2. This
yields the following system of reaction diffusion equations

X 02X X2(3.1) O---i-=D, --+ Y-(B+ 1)X+A,

Oy )2y

O-- D2 "----X2y+BX.
It is further assumed that the reaction is at equilibrium at the end points of the interval
[0, r so that X(0) X(r) A and Y(0) Y(r) B/A for all t-> 0.

Obviously, the Brusselator problem has the trivial equilibrium solution X(, t) A,
Y(I, t) B/A. Let us introduce the relative coordinates

(3.2) u-X-A, v Y-B/A.

Then the equations (3.1) become

(3.3)
8u

DI
2U 1)u+A2v+ ( B U2 +2A

Ov 02v ( B U2a-- D2 ---Bu-A2v + 2A

and the corresponding boundary conditions are u(0, t) u(cr, t) 0 and v(0, t) v(r, )
0. If w-(u, v), we write wt-Lw+N(w), where Lw is the linear part of the right-hand

side of (3.3). Let us consider L as a linear operator in the Banach space C[0, r] with
domain of a definition equal to the subspace C02[0, r] of C2-functions which are zero at
the boundary of [0, r]. Representing w as a Fourier series w(, t)-=w,(t)sinn, we
find that the two-dimensional spaces spanned by the vector valued functions w, sinn
are invariant for L with spectrum given by the eigenvalues of

B-- n2D A2 )gn--
B -A2-nED2

In particular, L generates a holomorphic semi-group e Lt in C.
Guckenheimer [1982] showed that there are parameter values for which, at the

trivial equilibrium, there is a simple zero eigenvalue of Ek, pure imaginary eigenvalues
--+iv of.Et, and all other eigenvalues have negative real parts. This is a consequence of
the fact that trE is a monotonically decreasing function of n 2 and detE is strictly
convex. If one regards (A2,B) as being experimental parameters with the diffusion
rates (D, D2) fixed, then the corresponding conditions are

(3.4) A2 D2k2 Dt +D2-Dk2 B- +A2+DI +D2+Dk2- DEk2,

subject to the following inequalities on the diffusion rates

(3.5) detEk_ >0.

There are solutions to (3.4) and (3.5) with A,B, D and DE all positive.
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Now let 12 and B vary in a neighborhood of such a critical point. Then a
straightforward computation shows that Langford’s condition (2.26) is satisfied. More-
over, the center manifold theorem applies to yield a three-dimensional submanifold of
C02 near the origin (depending smoothly on the parameters) which is locally invariant
and attractive for the flow induced by (3.3), and which contains all "small" solutions
which are bounded for all R, in particular equilibria, periodic orbits and invariant
tori near the origin. Hence, the restriction of (3.3) to this submanifold gives a complete
description of the dynamics we are interested in. The corresponding vector field V can
be transformed to the form (1.1). According to Remark 2.5 it suffices to compute the
coefficients a, b, c,... at the critical parameter values, in order to check the hypotheses
of and 2.

Let E be the three-dimensional eigenspace for L corresponding to the eigenvalues
with zero real part and let P: C02[0, r] - E be the projection onto E. Moreover, let F be
the complementary eigenspace, and set Q-P-id, Pw-x, and Qw=y. Since the center
manifold is tangent to E at w-0, the Taylor expansions of the vector field V and the
restriction of P(L/N) to E agree up to terms of order two. Let us choose a basis for E
such that the linear part is given in (complex) Jordan normal form

(3.6) Lie 0 il’ 0 7(detE
0 0 0

Then the second order terms of Nle are given by

(3.7) N2(x) [(x2all d- x22a22 + XlX2al2)sin2 +xaa3 sin2k

+ (x,x, +x2xa2)sinsin k]( )-1
where

(3.8)

a,z-- (B(I 4-’y--D)--2A(I 4-3,-D(I + D,))),
A

t22 I11 23 13"

Now the coefficients a,b, c in (1.1) can be read off from PN(x). We list the result of
this computation:

+ - sin sinkd(3.9) a-Re--__
sin

.2 sin sin k dCI

-1
2
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To compute third order coefficients requires considerably more effort. Here not
only PN3(x) has to be considered but also the second order terms of the center
manifold representation and of the Poincar6-Birkhoff transformation are involved.
(The techniques used are analogous to those in Marsden and McCracken [1976] and
Hassard and Wan [1978].) To be more precise, if the center manifold is given by

(3.10)
and if

(3.11)

is the Poincar6-Birkhoff transformation, then we have to compute the (resonant) third
order terms of the vector field

(3.12) f((2)-[id+DT(Yc)]-[PL2+PLT(f)+PN(2+ T(2)+C(2+ T(2)))].

Obviously, we have

(3.13) f(3(2)=PNa(2)+2PN2(2, T2(2))+2PN2(2, C2(2))
DT2(. )( PLT2( ) +PN2(Y ) DT2(2)PL2).

Hence, T2(2) and C2(2) have to computed.
The contribution of PNa(2) to the resonant terms in (1.1) is

(3.14)

4dl:(-3-y-2DWEy-ID2+(1 +DI)(-Ey-2D2+y-I w 3T-2D)) sin Sd,

e= (-2B(A2+kED2)(1--D2)

(A2+k2D2 )2(1- -l(1 +O ))) ’sin2sin2kd,

2gfl-(-2(A+k2D)(l+y-2D(l+D,))-B(l+y 2D)) sin2sin2kd,

Next we compute the second order terms C2() in the center manifold representa-
tion (3.10). These are determined by the solution of the linear equation

(3.15)
Setting

DC2( )L2=LCz(2 ) + QN2(2 ),

3

(3.16) C9_()- , flijij, flU--flji
i,j

and using (3.7), we get the following expressions for the 2-vectors flu-(fl]i’ fl/)"
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(317). 11--x, (/.q + 2i)t)- 1Q ( -11) sin2’
’812 = " aE/’a 1

(f122-- --a22(h 2iy )- lQ -1

)sin2k,flaa ass Q (
-, ( 1)ssink,fla--ala(v+iv) Q

_1

-I

Note that

(3.18) B=B,
Inserting (3.16) into 2PN(,C(2)) yields the followg contNbution to d,e,f,g in
(.1.

(3.19)

d2_Re
2(l+i) [( B

+ (+-%)-(+-’(1+,) ,i

+A(1-i7-’D2), sin2d+A(1 +i,-’D2 )B2sin2 d],

+ --(A2+k2D2)-AB ill3 sinksind

A+ 7(1 + iy-’D2 )f0"/323 sin2 d+A(A2+k2D2 )f0"/,23 sinksind

f2-Re ’r (1-i’t-’D2)-A(1-i’l-’(1 +D,)) fllsinsinkd
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Now we compute TE(:). This bilinear form is again determined by a linear
equation

(3.20) zr:( )li-,ir:( ) rteN( ),
where II denotes projection onto the nonresonant terms. Here the ansatz

3

(3.21) TE(ff )

leads to the following values for the components of ,q C 3.

f-a fo"sin3 d, 222 ---’y--’(3.22) ,l,- ,,,
3’"

V2

sin ksind, g=,
sin sinkd -,

G-0, G-0,

sin sin k d =

TNs leads to the following contbution of 2PNa(, T()) in (1.1):

(3.23) d3--Re
(1+i) [(43,,y2+Ea22Y,+a12(Y,+EY2))fsin3d

+ sin sinkd

(1+i) [( 2 g 4333,3sin2ksinde

+2 sinsinkd

[f3 -2# 4(a1,3 + a22)q2a) sin2 sinkd

+ 2(X13 ("y233 q-’/2 )q-C23 ("1/133 + "122 ))sinjsinEkd

2# ( a13Y3 q.. Ct23y23 )sin sinEkd.g--V
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Thus, putting these computations together, we end up with the following formulas for
the third order coefficients in the normal form (1.1):

(3.24)
3 3 3 3

d=Edn, e-en, f=f, g-g
n=l n=l n=l n=l

with d, e, f, gn (n-1,2,3) given by (3.14), (3.19) and (3.23), respectively. Here we
have used the facts that, according to (3.20), the argument of the bracket in (3.13) is
just [id II PN2() and

(3.25) HDT2( )2 )lid- II PN(2 ) -0.

In conclusion, we remark that there are solutions of (3.4) and (3.5), such that
hypothesis (HI) of 1 is fulfilled for a,b and c in (3.11), e.g. for k=5, D =0.02 and
D2 =0.09 (see Guckenheimer [1982]). Moreover, if one considers the coefficients in (3.9)
and (3.24) as functions of D and D2 (A2 and B as in (3.4)), then it is plausible that f in
(H2) (see 1.14) does not identically vanish. (The precise verification of this is awkward
because the constraints on the variables prohibit an asymptotic analysis. However, the
numerical computation of fl for any particular parameter values by, for example,
appropriate truncation of the Fourier series, seems to be straightforward, but is not
undertaken here.) Hence, apart from isolated exceptional values of the diffusion rates

D and D2 in this set, both hypotheses (HI) and (H2) are fulfilled. Thus, for these
values, one has, in particular, bifurcation to quasi-periodic orbits lying on invariant
tori. If fl >0, then these quasi-periodic orbits form an asymptotically stable 2-torus.
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RESONANCE ZONES IN TWO-PARAMETER
FAMILIES OF CIRCLE HOMEOMORPHISMS*

GLEN RICHARD HALL

Abstract. We consider a two-parameter family of diffeomorphisms of the circle where one of the
parameters controls the amount of rigid rotation while the second controls the nonlinearity. In particular, we
show that the regions in the parameter plane for which the map has a periodic orbit of a particular rotation
number (resonance zones) increase in size linearly as the second parameter is increased from zero. This is a
discretization of the phenomenon known as "phase locking" for ordinary differential equations. Using this,
we obtain some results on the smoothness of the curves between the resonance zones.

AMS-MOS subject classification (1980). Primary 58F22, 58F14

Key words, periodic orbits, resonance, phase locking

Introduction. Let " [// be the circle with unit circumference and consider the
two parameter family of maps from $ onto "[ given by

(1) O(O++a,(0))

where . ) denotes fractional part, and a are parameters and 3’ is a smooth function,
periodic with period one. When a=0, this map is merely "rigid rotation" by : hence it
will have periodic orbits if and only if is rational. When a >0, the set of parameter
values where a periodic orbit exists of a particular period and rotation number opens
into a region in the (,a) plane (see Brunovsky [3]). In this paper we study the rate at
which these resonance zones open near a 0. This can be considered a discretization of
the phenomenon of ’phase locking’ in O.D.E.’s which has been extensively studied (see,
for example, Loud [8], Bushard [4], [5]).

When a is small, the resonance zones corresponding to periodic orbits of different
period or rotation number will remain disjoint. Between these zones there will be arcs
in the parameter plane where the above map has no periodic orbits and all orbits are
dense. Herman [6] has shown that when 3’ C3 for a0> 0, a0 small the set of q such
that at parameter (, a0) the map (1) has no periodic orbits will have positive measure.
Herman [6] also showed that this set tends to one with full measure as a tends to zero.
Amol’d [1] showed that certain of these arcs of nonresonance will be smooth depending
on a number theoretic condition on the rotation number. In the final section of this
paper we point out that although all the nonresonance arcs will have a first derivative
at a--0, for certain rotation numbers (depending on -/) they will not have second
derivatives at a 0. The precise nature of the nonresonance arcs for arbitrary irrational
rotation number remains open.

1. Detinitions and notation. We let ,: [ --, R be a function satisfying
(1) 3’ C and Id’t/dOl <- 1,
(2)

yd.t(o)ao=o,

*Received by the editors May 18, 1983, and in revised form November 16, 1983. This research was
sponsored by the U.S. Army Research Office under contract DAAG 29-80-C-0041, and by a National
Science Foundation postdoctoral fellowship.

Mathematics Research Center, University of Wisconsin, Madison, Wisconsin 53706.
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and we let E--oo anein2s=3[(O) be the Fourier series of V. Given such a 3’, we may
define a two-parameter family of mapsf" ..., by

/" (0,,)0++(0).
The parameter controls the rotation or "twist" wle a controls the nonlinearity of f.
Note that for fixed (9, a) we have

VOe, f(O+ 1,,a)=f(O,,a)+l;
hence f is the left of a two-parameter faly of degree one maps of the circle. By
condition (1) on , fis a homeomosm when a [0,1).

Notation. For fed (,a) we let f"(O,,a) denote the nth iterate off(.,,a), i.e.
f(O,,a)=f(f-(0,, a),, a).

DrIIIO. ForR, a[0,1) the rotation number off(.,,a) is defined to be

We will use the following facts about the rotation number due to Poincare.
TnoA. For , a [0,1)
1) p(, a) exists and is independent of the 0 in the definition,
2) p(, a) is continuo in (, a) and increasing in ,
3) ifp(,a)=p/q Q, then there exists 0[0,1) such thatfq(o,,a)=O+p.
Proof. See Herman [7].
Remark. Since f(.,,a) is the lift of a homeomosm of a circle when a[0,1),

we may reinteret part (3) of Theorem A as saying that ts circle map has a peodic
orbit with peod q and rotation numberp/q.

DEFInition. For we let

Aa= ((,a)" R, a [0,1), p(,a)=fl ).
Remark. When fl =p/q is rational, then the set Ap/q is called the p/q resonance

horn or the p/q Amol’d tongue.
Notation. We say yC+ for rl an integer and e (0,1] if yC and there

ests a constant c > 0 such that

clo 

ae thenIf C+ and is Nven by the Fourier series (0)E_
O(11--) (see [11).. Neees. For as in 1 and rational p/q in lowest terms, we wish to
consider the set A/q for near zero.
ToN 1 (Herman [7], Boyland [2]). For each rational p/q there exist

functions , [0,1) N
1) e[0,1),

3) (,,)A/q g and only
oreover, the Lschit constant of, is ndependem ofp/q (i.e., it depends only on
).

We will include a proof of Theorem 1 since it allows us to set up notation for
ToN 2. With (0)_ae,for each rationalp/q, the functions ,

are dfferemiable at 0, (d/d)(O)N 0 (d/d)(O) and there exists an e > 0 such
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that ifa e [0, e), then

(.) 2(a)-,(a) >__ a E laql 2.

Remark. Genetically, all the Fourier coefficients of , are nonzero, so generically all
the horns "open" about the vertical ray at a positive rate. (See Fig. 1.) This is a
discretization of Bushard [4, Thm. 1].

FIG. 1

Proof of Theorem 1. Since, by Theorem A, the function #(,, a) is continuous and
increasing in , we may define functions ’1,2 [0,1) --, R satisfying (1, 2, 3) of Theo-
rem 1. It remains to show that , ,2 are Lipschitz.

For " e [0,1) we note that

>__ +p.

Since (ofq/)(O,,a)>_l for all (O,,a) with a[O,l), we may use the implicit
function theorem to obtain a curve #’[0,I) such that fq(L,a)=+p if and
only if =k;(a). Moreover kt;(O)=p/q and

d# fq ofq
dot ( a) Oa

Using the chain rule we obtain

d,

By Theorem A part (3) we see that

l(a) inf (a)
’e[ 0,1)

< sup
Oe[ 0,1)

and 02 (a) sup q. (a).

Hence, t2 are Lipschitz with constant independent ofp/q.
Proof of Theorem 2. Noting that for any q,

q-1

fq(o,dp,a)=O+q+a E /(O+j)+ah(O,dp,a)
j=0
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where h is C and h 0 as a 0, we see that, using the notation above,

dr q-

d-’(O) E 7(+jP/q)/q.
jO

.,...in2’OSince 7 is given in Fourier series by 7(0)=E,=-o u,e we see that

d oo

d-"" (0) E anqeinq2rt[.

The LE-norm of (d;/da)(O) as a function of " is thn equal to (E_la12)/2. But
] (d/da)(O)d= a0= 0 so (d/da)(O) must attain in absolute value the valu of its
LE-norm and assume both positiv and ngativ values. For each ’[0,1), a[0,1),
we have

and this shows the inequality (,).
Let fl=infto, (dk/da)(O). Then fl=(dqo/da)(O) for some ’o [0,1) and

(a)-P/q
limsup _<ft.
a0 Ct

If there exists 8 > 0 such that

(
liminf <fl-,
a--O

then there exists a 0 such that

x(an)-P/q
n

and hence there exist ’n [0,1) with

P.( an ) -P/q

since pl(an)=infto,1) p(an). By taking a convergent subsequence of the ’n’s and
noting that (dqr/da)(a) converges to (depr/da)(0) uniformly in " as a 0, we see that
this contradicts the choice of ft. Hence dkl/da exists at a=0 and equals ft. That
d2/da exists at a=0 and equals suprto, t) (dqr/da)(O) follows in precisely the same
manner, which completes the proof of the theorem, ra

Remarks. 1) The curves , 2 are also characterized by the existence of a "node"
orbit with rotation numberp/q. If we let F: R 2 be defined by

( )fq(o ,a)- 1)F(0,t,a) fq(o,tk,ot)-O-p,-
and if ), is C2, then the curves 1, 2 may be obtained by applying the implicit function
theorem to the equation F= O. Hence and 2 are, generically, piecewise as smooth as
7 on a (0,1).

2) The rate at which the Fourier coefficients of ), decrease is controlled by the
smoothness of 7. In particular, if ), is C+, then lanl<_c/nr+ where c is a constant
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independent of n. From this we easily obtain that

oo 2 1/2

lanai} <=clqr+’

which may be used in (.) when 7 is C +.
3) Let B= {" p(,a) Q } and let h be Lebesgue measure on R. As noted in the

introduction, Herman [6] has shown that for any bounded interval I and 0 __< a < 1,
h(BcqI)>0 whenever B(I/ and 7C3 and A(BcqI)--,A(I) as a--,0. An
immediate" consequence of Theorem 2 is

COROLLARY. Let 7(0)=E=_oo aen be as above with aOfor infinitely many n.
Then for any bounded interval I

_
[ there exist constants ei, ci > 0 such that

x( n

whenever a [0, et].
3. Nonresonance. Fix 7 as in 1. For a given irrational there exists a Lipschitz

curve fin" [0,1) --,R such.that p(, a)= rl if and only if =ffn(a) (see Herman [7]).
THEOREM 3. For any irrational 1, the derivative of n(a) exists when a=0 and

equals O.
Proof. Recall that since p(ffn(a), a)=, there is a unique.f(., fin(a), a) invariant

probability measure/ and

lim

n--11 EJi_.m ;;_o

(see Herman [7] for details). But noting that fin(0)= we see that

It follows from the fact that the measure d/, is determined, up to an error small with n,
by the first n iterates of f(. e/,( a), a) that fd?(O)dl,--,fd7(O)dO=O as a--,0 (see
Herman [7, p. 73]). So the derivative of fin(a) exists at a 0 and equals zero. ra

If, for example, 7 is analytic and r is sufficiently poorly approximable by rationals,
then the curve if, will also be analytic (see Amol’d [1]). However, this will not hold for
all irrationals.
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anein2" with infinitely many an :/:0 and g (0,1)-) RTnV,ORV,M 4. For (0) ,n.
a strictly positive, continuous function with g(a) -) 0 as a -) 0, there exists a residual set of
irrationals such that

( ) lim sup

Proof of Theorem 4. Fix a rational p/q such that anq 0 for some n. Then for any
/1>0 there exists an open interval J(#,p/q)_R with either right or left end point at
p/q such that for each /J(#,p/q)-- Q there exists a [0,/t] such that

(see Fig. 2). Hence for each M> 0 there exists #u> 0 depending on p/q such that for
each rl J(il,p/q)" Q there exists a [0,/Iu) with

>M,

and/1u--+ 0 as M-) oo. Since a 0 for infinitely many n, it follows that

U { J(SM, r/s)" a, :/: 0 for some n )
r/sQ

is open and dense. But then (, ,) holds for every rl(fqMzKu)--Q which is a
residual set and the proof is complete, ra

FIG. 2

Remark. Since the first derivative of fin at zero is zero, the above implies in
particular that fin has no second derivative at zero, i.e. lim:_+0((ffn(a)-ll)/a2) does
not exist. We conjecture that 6n is in fact C on [0,1) for all irrationals r/. It is possible
that fin is even smoother on (0,1) for arbitrary irrationals
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OSCILLATION THEOREMS FOR
NONLINEAR SECOND ORDER DIFFERENTIAL EQUATIONS

WITH A NONLINEAR DAMPING TERM*

S. R. GRACEt, B. S. LALLI" AID C. C. YEH

Abstract. Sufficient conditions for the oscillation of the nonlinear second order differential equation

( a( t)k(x( t)).(t))’+p( t)k( t,x( t),Yc( t))g(t) + q( t)f( x(t)) 0,

are established. A systematic study is attempted which extends and correlates a number of existing results.

1. Introduction. Our main objective in this paper is the study of the oscillatory
behavior of the differential equation

(1) (a(t)(x(t))Yc(t))’+p(t)k(t,x(t),Yc(t))Yc(t)+q(t)f(x(t))=O =-di’
where the functions a,p, q: [t0, oo)R=(-oo, oo), k: [t0, oo)R: [0, oo), k,f: RR
are continuous, a(t)>0, if(x)>0 for all x and xf(x)>O for x4:0.

The functions appearing in equation (1) will be assumed to be sufficiently smooth
for a local existence and uniqtieness theorem to hold for equation (1) on 0< o< t< oo.

In what follows, we consider only solutions of equation (1) which are defined for
all large t. A solution of equation (1) is called oscillatory if it has no last zero, otherwise
it is called nonoscillatory.

A well-known sufficient condition for oscillation of the linear equation

(2) g( ) + q( )x( ) =0,
where q: 0, oo)R is continuous, is that

This result has been extended in [1] to the nonlinear equation

(4) g(t) + q(t)f(x(t)) O,

where f is nondecreasing, continuously differentiable and xf(x)>O for x4:0. Coles [3]
and Kamenev [7] obtained oscillation criteria for (4) and/or related equations by using
weighted integral conditions which include (3) as a special case. Other oscillation
criteria which involve the behavior of the integral of q are established by Wintner [24]
who showed that the condition

lim-lftlduftq(s)ds-oot--’ to t

is sufficient for (2) to be oscillatory. In [6], Kamenev improved Wintner’s result by
using the nth primitive

An(t)- (n- 1)! (t--u) q(u)du
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of the coefficient q(t) for some integer n_>3. Yeh [25], [26], extended Kamenev’s result
in [6] to a larger class of equations which include equations (2) and (4). Extensions to
the above mentioned criteria as well as other criteria are the subject of many studies.
For general interest, we refer the reader to the papers [1 ]-[26].

The main results of this paper are presented in the form of seven theorems. In
Theorems 1-3, we discuss the oscillatory behavior of (1) when this equation is either
superlinear, i.e., f (u)/f(u)du< oo, or sublinear, i.e., f (u)/f(u)du< oo, for
every e>0. Theorems 4 and 5 concern the oscillation of equation (1) where weighted
averaging procedure is used. These theorems are given in a form which is useful in
investigating the oscillatory and nonoscillatory .solutions of equations of the form
(t)+k2t-2x(t)=O, according to different values of k. Theorems 6 and 7 ensure, the
oscillation of equation (1) when p(t)=0 and q(t) is of varying sign. Examples are
inserted in the text to illustrate the relevance of the theorems.

The results obtained here are presented in a form which is essentially new. Our
results of this paper extend and unify some of the results in [1], [3], [6]-[10], [13]-[16],
[181, [221-[261.

To obtain our results we need the following lemma.
LEMMA. Let p(t)>_O and q(t) be nonnegative and not identically zero on any ray of

theform t*, oo), t* >_to, and assume that

(5) k(t,x,y)<lyl, -oo<x,y<oo, t>_to
and some constant a >_ O,

tp(x)_>c>0 forallx,(6)
and

(7)

Then ifx(t ) is a nonoscillatory solution of (1), we must have

x( )Y( ) >O for all large t.

Proof. Let x(t) be a nonoscillatory solution of (1) and assume x(t)>0 for t>_to>_O.
If :(t)=0 and q(t)>0 for some _>t0, then

( a( t)(x( t ))Yc( ))’lt=, q(t )f(x( )) <0,
from which we can prove that :(t) cannot have another zero after it vanishes once.
Thus (t) has a fixed sign for all sufficiently large t. Let :(t)<0 for t>_t2>_t. Then

P(t) ot+i(8) a(t)+V aa+,(t) u (t)_>0 for t>_t,

where u(t)- -a(t)(x(t))(t) and y-c-+ ).
Integrating (8) from tz to t, we obtain

(9) (x(t))Yc(t)<_- a(t--- u tz)+a3,
t2 ,aa+l(s) ds if a>0,



1084 S.R. GRACE, B. S. LALLI AND C. C. YEH

and

)U(te)exp -f d ifet-O.(10) (x(t))Yc(t)<_ a(t) t ca(r)

Now integrate (9) and (10) and use (7), and obtain a contradiction. This proves our
lemma.

Note. If p(t)=0, then condition (5) can be disregarded and condition (7) takes the
form

oo

a(s )
ds-

2. Main results.
THEOREM 1. Let conditions (5)-(7) hold,

(11) p(t)>O,q(t)>Ofort>toandq(t) isnoteentuallyzeroon [to, oo);
(12) f’(x)>_O forallx, (’-).

Suppose that there exists a differentiablefunction #: o, o) (0, oo) such that

(13) #(s )q(s ) ds- oo

Then each of the following conditions ensures the oscillation of each of the continuable
solutions of (1):

(I) #(t)<_O for t>_to;
(II) #(t)_>0, (a(t)#(t))’<_O for t>_to, and

oo (u) du< oo and(14) f(u)
oo for everydu< e,O"

f(u)

(III) fl(a(s)#(s))’l ds< oo and (14) holds.
Proof. Let x(t) be a nonoscillatory solution of (1), say x(t)>0 for t>tl >to. By the

lemma, there exists 2> such that X(t)>0 for > . Let

w( t ) a( )(x( ))Yc( )
f(x(t)) p(t).

By differentiation, we obtain that for every t>_t2

(15) i’(t)-- (a(t)tk(x(t))Yc(t))" a(t)(x(t))Yc(t)
f(x( ))

p(t)-
f(x( )) [( )

a( )(x( ))( :t, )
/9-(x(t))

f’(x(t))p(t)

Yc(t)=-p(t)q(t)-p(t)p(t)k(t,x(t),Y(t)) f(x(t))

+ a(t)(x(t))Yc(t)#(t)_a(t)(x(t))Y2
f(x(t)) f2(x(t))

f’(x(t))p(t).
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Thus

(16)

(17)

(t)<_O(t)q(t)+a(t)(t ) (x(t))Yc(t)f(x(t))
Integrating (16) from t2 to .t, we obtain

w(t)<_w(t2)_ft_O(s)q(s)ds+fta(s)i(s ) k(x(s))(s) ds
f(x(s))

We consider the following cases.
Case 1. Let (I) hold. Then (17) becomes

w(t) _< w(t2)-fti#(s)q(s ) ds --, ov

which contradicts the fact that w(t)>0 for t>_t2.
Case 2. Let (II) hold. Then (17) becomes

(18)

as t oo,

w(t)<-w(t2)-fti#(s)q(s)ds-a(t)(t)fx(t) (u)f(u du
+a(t)i(t2) f(t2).’x du+ (a(s)(s))" du ds

which implies that

w(t)<w(t2)+a(t2)[a(t2)fx (U) du ftp(s)q(s)ds-ov(t2) f(u) t2

contradicting the fact that w(t)>0 for t>_t2.
Case 3. Let (Iii) hold. From (14), it follows that

for some constant M.f= +(u)O< du<M
xt)f(u)

as t- o,

Note that fl(a(s)i(s))’lds< ov implies la(t)i(t)l<M for all t, where M is a positive
constant. Thus (18) becomes

w(t)<w(t2)+a(t2)(t2)f
x

(u) _ftp
(t2) f(u)

du
t

(s)q(s)ds

+n I(a(s)i(s))’lds-- ast--,ov,

which is again a contradiction.
The following theorem concerns the case when (13) fails.
THO 2. Let conditions (5)-(7), (11), (12) and (14) hoM. Suppose that there exists

a differentiablefunction p: to, ov)--,(O, ) such that i(t)<_Ofor t>_to and

(19) f fsa(s)p(s) p(r)q()dds=o.

Then (1) is oscillatory,
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Proof. Let x(t) be a nonoscillatory solution of (1). Assume that x(t)>0 for
t>t>to. Following the same reasoning as in the proof of Theorem 1, we get (17).
Since (t)_>0 for >_ t2, we have

a(t)(x(t2))Yc(t2) f=O<
f(x(t))

p(tg_)
t

O(s)q(s)ds.

Hence, for all t_> t2,

ftoOP(s)q(s)ds<a(t)p(t) p(x(t))Yc(t).
/(x(t))

and integrating we obtain

/t | foop( v )q( r ) dr,ds</t(x(s))(s )
t2 a(s)(s) t f(x(s))

ds.

This contradicts (14), since the integral on the left diverges.
TrmORM 3. In Theorem .1 (III), let the condition (14) be replaced by

fo+(u) fo-(u)(20) /(u)
du< oo and

f(u)
du< o for every e>O.

Then every bounded solution of (1) is oscillatory.

Proof. Let x(t) be a bounded nonoscillatory solution of (1), say x(t)>0 for
t_> t _> to. As in the proof of Theorem 1, we obtain (17). Thus,

w(t) <w(t:)-ft:p(s)q(s ) ds + a(t)p(t)fx(t) (u )
f(h)au

_a(t2)(tZ) (u):(u) du-ft:(a(s)i(s))’( ,o
fx(s f(u)

The rest of the proof is similar to that of Theorem 1, Case 3, and is omitted.
TrIEORr 4. Let conditions (5)-(7) and (11) hoM, and

(21) /’(x)>0 and fXx <a for xvO.

Suppose that there exists a differentiablefunction p: [to, oo) (0, oo) such that

(22) lira sup ft[t--* oo O

a, a(s)i)-(s)
:-4 p(s) ="

Then (1) is oscillatory.
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Proof. Let x(t) be a nonoscillatory solution of (1), say x(t)>0 for t>_t >-to. Using
arguments similar to those in the proof of Theorem we get (15). Thus,

v( ) < p( )q( t ) - a( )i2( ) tk( x( ))
4#(t) f’(x(t))

-a(t)+(x(t))[#(t)f’ (x(t))

a, a(t)[z(t)<- O( )q( t ) +’- O( )

(t______) #(t)
f(x(t)) 2p(t)f’(x(t))

Integrating the above inequality from 2 to t, we get

ft[la(s)q(s)--aa(s)[a2(s)]ds<-w(t2)-w(t)<-w(t2)<O’t4O(s)
t>t2.

This contradicts (22). The case x(t)<0 for >t is similar.
THEOREM 5. Let condition (22) in Theorem 4 be replaced by

(23) limsup ftI )n-a[ )2
t--’o tn,I (t--u (t--u O(u)q(u)

a,a(u)[(t--u)h(u)--(n--,4p(u) 1)p(u)]2 ] du=oo,
for some integer n >_ 3. Then (1) is oscillatory.

Proof. Let x( ) be a nonoscillatory solution of (1). Assume x( )>0 for _> t _> to _> 0.
Following the same way as in the proof of Theorem 1, we get (15). Thus

f/2(/ n-- __ftl )n--It--u) l(u)du (t--u #(u)q(u)du

+ fti(t_u)n-l#(u) a(u)p(x(u))Yc(u)f(x(u)) du

fti(t--u)n-’l(u) a(u)(x(u))YcZ(u)f’(x(u)) du.
f-(x(u))

Since

fti( )n-t--U ’v(u)du= (t t2)n-’w(t2)

ftl )n-2a(u)p(u)t(x(u));C(U) du+ (n-)(t-u f(x(u))
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we get

’-n (t-u (t-u)2p(u)q(u)--- p(u)
du

w(t2) t’-nftla(u)(x(u))([(t--u)"-’p(u)f (X(U))] I/2

f(x(u))

(t--u)(n-3)/2[i(u)(t--u)--(n 1)p(u)] )2
t2 )n-!<-1- w(t2)-w(t2) as/o,

which contradicts (23). Thus our proof is complete.
COROLLA. Let condition (23) in Theorem 5 be replaced by

(24) lim supt’-" (t(t-u)"-’O(u)q(u)du o,
"/o

and

(25) lim t-nfti(t-u)n-3 [ a(u)t-.o p(u) [(t-u)l(u)-(n-1)p(u)] 2 du<o,

for some integer n >_ 3. Then the conclusion of Theorem 5 holds.
Remarks.
1. If p=0 (or k= =), then in Theorem 5, q (or q and p) need not be of fixed

sign to ensure the oscillation of (1). In that case, Theorem 5 includes [25, Thm. 2], [26,
Thms. 1,2], [6, Thm.], [24, Thm.].

2. We can easily verify that the equation + t-x-O is oscillatory by Theorem 5
for #(t)= t and n- 3, while none of the results mentioned in Remark can be applied
to this equation. Hence, we conclude that our Theorem 5 is stronger and more general
than these results.

For illustration, we consider the following examples.
Example 1. Consider the equations

( (l+x2): +(El) + sin210g t 7x=0, t>0,

and

/
(E2) | (1 + x

+ sin2log
+ t>0.

Equation (El) is oscillatory by Theorem (I) for O(t)= and all bounded solutions of
(E2) are oscillatory by Theorem 3 for O(t)= t. Equations (El) and (E2) admit the
oscillatory solution x(t) sin log t.

Example 2. The equations

(E3) 72 + x=0, t>0,
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and

( t"_), +2(E4) 7(1 +x (x+x3)-0, t>0,

are oscillatory by Theorem 4 for O(t)= t z. One such solution of (E3) is x= sinlog t.
Example 3. Consider the equations

(E5) 7(l+sin2x)X "+x -0, t>0,

and

(E6) ((1 +sin2x):) +t3+Tx -0, t>0.

One can easily check that equation (E5) is oscillatory by Theorem (II) and (III) for
p(t) t 2. Equation (E6) is oscillatory by Theorem (I)-(III) for p(t)= 1. We may note
that the oscillatory character of these equations is not discernible from previously
known oscillation criteria.

Example 4. Consider the equations

(1)" e33 1, ,x--O, t>_ee(E7) -[eXyc + +2i21nt
and

( )":(E8) -[e + x-O, t>_e.
t21nt

One can easily check that all bounded solutions of (E7) and (E8) are oscillatory by
Theorem 3 for p(t)= t. These equations have the nonoscillatory unbounded solution
x(t)=lnt.

The remainder of the theorems in this paper concern the oscillation of all solutions
of (1) when q(t) is of varying sign and

p(t)=0.

THEOREM 6. If, in addition to conditions (12) and (20), we assume that there exists a
dtfferentiablefunction

p" [to, oo)-,(0, oo )

such that

(26) f o(s )q( ) ds-

and

(27) foo j f.p(r)q(’)d’ds-o,a(s)p(s to

then each of the following conditions ensures the oscillation of each of the continuable
solutions of (1):

(At)/(t)_<0 and (a(t)#(t))’>_O for t>_to;
(A2) condition (14) and fl(a(s)#(s))’l ds< oo
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(A3) condition (21) (or condition (20)) and foo a(s)[a2(s)/p(s)ds<
(A4) f’(x)>0, 0<(x)_<c for all x,/(t)>0 for t>_to and there exists a constant

CI >0, such that

G’2(x) C,

and

p(t)(a(t)#(t))’<_ _C for t>__to,a(t)#2(t)
where

G(x) .to f(u)

Proof. The proof of Theorem 6 can be modelled on that of [4, Thm. 2.2] and hence
is omitted.

THEOREM 7. Let conditions (12) and (14) hold. Suppose that there exists a differentia-
ble function I" to, oo) (0, oo), such that

(28) foo a(s)#(s)
ds-’

and either

(29) #(t)>_O, (a(t)#(t))’<_O for t>_to

and

(30) s )q(s ) as= oo,

or

(31) #(t)>0, (a(t)#(t))’>_O for t>-to

and

(32) lim ft(s)q(s) ds-
,-.oo a(t)i(t)

Then (1) is oscillatory.
Proof. Let x(t) be a nonoscillatory solution of (1), say x(t)>0 for t>_t >_to. Let

w(t) -a(t)k(x(t))yc(t) p(t).[(x(t))

Then w(t) satisfies

(t)= -p(t)q(t)+ a(t)#(t)(x(t))Yc(t)
f(x(t))

a( t )#( )(x( ))f ( x( ))yc2( )
f2(x(t))
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Thus,

f2(x($))

()o()f’(x())(x()) f(x())
d.

Consider the following two cases.
Case 1. Lt (29) hold. Bonnet’s form of the second mean-value theorem implies

f, a(s))(8)(x(s))J(8) ds<c du<c2,, f(x()) .(,, f()

for some constants c, 2>0. Thus, by (30), there exists a t2_>tl, sBch that
(33)

Case 2. If (31) holds, then, by using again the Bonnet theorem, for some c >0,
t_> , we have

ft a(s)i(s)e/(x(s))yc(s)
ds<c3a(t)i(t)f(x(s))

and consequently we obtain

a(t)p(t)(x(t)) Yc(t) + a(s)p(s)f’(x(s))(x(s))
f(x(s))

dsa(t)#(t) f(x(t))

<_c3 a(t)#(t) a(t)#(t) p(s)q(s)ds.

Using (32), it follows that for some t2t and for eve tt2 (33) holds. Since, from
(33), we have (t)<0 for tt2, (33) can be rewritten as follows:

(34) a(t)p(t)(x(t))(-2(t))
>1+ a(s)p(s)f’(x(s))(x(s))

f(x(s))
dsf(x(t))

Multiplying (34) by

-f’(x(t))Yc(t) +fta(s)p(s)(x(s))f,(x(s)) dsf(x(t)) t2

and integrating, we obtain

->0,

(35) In/(x(t2))_<ln
f(x(t))

1+ a(s)p(s)(x(s))f’(x(s))
f(x(s))

ds
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By (35) and (33) we conclude that

(x(t))Yg(t) <q(x(t))Yc(t) <-
f(x(t)) f(x(t2)) a(t)p(t)’

which, by (28), leads to a contradiction. The proof is now complete.
For illustration we consider the following example.
Example 5. The equations

(E9)

and

) sin tx2 cosh(sin ) + x2 2 "’[" (sin ) e- 0

(EIO) (2 sech(sin t)(1 +x2):t)’+(sint)e-5intxS-O
have the nonoscillatory solution x(t)-esint; the only assumption that fails is condition
(30) (or (32)).

Remarks.
1. Some of the results in this paper are extendable to inequalities of the form

x(t)((a(t)q4x(t))Yc(t))" +p(t)k(t,x(t),(t))Yc(t) / Q(t,x(t))} _<0, where " to, oo) R
-, R is continuous and

Q(t,x)>_q(t)f(x) for x0,

as well as the functional inequalities of the form

x(t)((a(t)(x(t))Yc(t))’+p(t)k(t,x(t),Yc(t))Yc(t)+Q(t,x[g(t)])) <_0

where Q is above and g: 0, oo)R is continuous and limt_.oog(t)= oo.
2. It is obvious that condition (27) used in Theorem 6 is weaker than condition (28)

given in Theorem 7, and consequently our Theorems 6 and 7 generalize and improve
the corresponding ones in [2], [3] and [7].

3. In Theorems 4 and 5, if we replace all conditions onfby

(36) f(x)_>c>O forx=/=0,x

then the conclusions of these theorems remain valid. It is obvious that the function f in
condition (36) need not be a monotone function, e.g., f(x)= xesi".

4. One can easily check that in view of Theorems 4 and 5, Kamenev’s results in [8]
can be easily extended to equation (1). Here we omit the detail.

5. Our results include some of the results of Wong [22], [23], Kartsatos [10], Yeh
[25], [26], Naito [14], Graef, Rankin and Spikes [6], Grace and Lalli [4], Legatos and
Kartsatos [13], Staikos and Sficas [16] and Opial [15].

Finally, it remains an open question to the authors if the results of this paper can
be extended for (1) where q: 0, oo)- R is a continuous function and is of varying sign.
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ON A COMPARISON THEOREM OF HILLE FOR SELF-ADJOINT
SECOND ORDER LINEAR DIFFERENTIAL SYSTEMS*

D. F. ST. MARYt

Abstract. Hille-Wintner type comparison theorems are developed in which two second order self-adjoint
linear systems are compared. In particular, classes of n n Hermitian matrix functions are defined, using
Opial-type inequalities, which can be used for comparison purposes in the Hille theorems. Additional
theorems are presented in which a system and a scalar differential equation are compared.

1. Let p(t), q(t) be real valued continuous functions defined on a, ), and

P(t) =rlirn p (s ) ds= ) ds, Q( ) q(s ) ds

exist (finitely).
Tno.M. Let e(t)>_lQ(t)l on [a, ). If u" +p(t)u=O is nonoscillatory on a, ),

then u" + q( )u 0 is nonoscillatory on a, ).
The previous theorem is the basic statement of the comparison principle and was

first stated in a weaker form by Hille [11]; it has evolved through the efforts of Wintner
18], Taam 16], Hartman 10], Willett 17], and Wong 19]. No general analogue of this
result for systems appears in the literature, although much recent activity has developed
around it. Erbe [6],[7] has considered the problem for scalar differential equations of
order three and four, and Butler [3] has taken another look at the scalar second order
problem. Jones [12], and Etgen and Lewis [8] consider the case of systems (the latter in
B*-algebras) but relate a system to a scalar equation.

In this paper we present several versions of the theorem for the corresponding
matrix systems. In particular, we show that for certain classes of nonoscillatory com-
parison functions p(t), for which incidentally P(t) need not be nonnegative, Hille’s
theorem holds for a pair of systems. In 3 we revert to comparing matrix systems to
scalar equations and derive the Taam and Hartman generalizations. In the latter case
we present a theorem which also encompasses the Sturm comparison theorem.

2.. Let p(t), q(t) be continuous n n Hermitian matrix .valued functions defined
on a, ). The differential system

E[p] U"+p(t)U=O

is said to be nonoscillatory on a, ), if there exists a conjoined (i.e. U’*U- U*U’ =0)
nn matrix solution U(t) of E[p] which is nonsingular on [a, ) for some a.
Throughout the discussion P(t), Q(t) will denote n n Hermitian matrix functions
such that P’( ) = -p( ), Q’( ) q( ). In particular, if we assume that p( ) satisfies

(t-a)-l fatfp(o)dods>-E
for all t large, ? some real number, E the n Xn identity matrix, and that E[p] is
nonoscillatory, then the existence of the limit as t--, + of the left side of (2.1) follows,
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see [5]. Further, if the limit is denoted by C and P(t) is defined by

(2.2) P(t)-C- p(s)ds,

then there exists an n n Hermitian matrix function l/’(t) such that

(2.3) V’(t)=P(t)+fl2(s)ds on [a,
"t

(Note that in this case if fp(s)ds exists then P(t)= ftp.) Finally, we remark that a
well-known criterion for nonoscillation of E[p] is the existence on [a, o0), for some
a>_a, of an nn Hermitian matrix function W(t) for which the Riccati inequality
[W] W"+ W2 +p_<0 holds on [a, 00). The corresponding result for systems of the
form E[p; r] to be considered later also holds. Matrix inequalities are considered in the
positive (nonnegative) definite sense.

We now present a sequence of Hille type theorems which successively define
classes of comparison functions. The comparison functions satisfy Opial type inequali-
ties [1 3]. At the conclusion of this presentation we shall discuss an example demonstrat-
ing a relationship among the theorems.

THEOREM 2.1. Let c, C be n n Hermitian matrix valuedfunctions satisfying C’( )
-c(t) on [a, o0) and let (i) (P(t)+ C(t))2<_c(t) on [a, oo). If (ii) (Q(t)+ C(t))2<_(P(t)
+C(t))2 on [a, o0), then E[q] is nonoscillatory. In particular, if p2(t)<p(t)/4, then
Q2( ) <_p2( t ) implies E[ q] is nonoscillatory.

Proof. It follows from [5, Lemma 4.1] that (i) implies E[p] is nonoscillatory, but
then (ii) in conjunction with (i) yields, in the same manner, the nonoscillation of E[q].
The corollary is obtained on taking C(t) =- P(t). Hypothesis (i) is dear. We show that
(ii) is satisfied by using the matrix inequality

AB* +BA* <AA* +BB*,

(Q+ C)2_ Q2+ Qp+pQ+pZ<_4p2_ (p+
We remark that for Hermitian matrices A,B,O<A <B does not imply A2<B2. In

order to begin to observe the differences between the various hypotheses we shall be
considering, we note that the function P(t) ((1 + sin t)/kt)E does not satisfy P 2<p/4
for any k, nor does it satisfy fro p2<p(t)/4 (to be commented upon later) for any k,
but if C(t) (2/kt)E, then (i) holds for k_> 8.

THEOREM 2.2. Let (t), L(t ) be n n Hermitian matrix functions satisfying ’(t )
-e2(t), 9’(t)= _Q2(/) and let 2(t)<_p2(t)/16 on [a, oo). If (i) Q2(t)<e2(t) on
a, oo), or (ii) 92(t)<63’2(t) on a, oo), then E[q] is nonoscillatory.

Proof. Let p(t)=-4e2(t); then for.el(t)--4(t ), 4P(t)<p(t). Thus pl(t) is a
comparison function for Theorem 2.1. Using (ii) Theorem 2.1 implies that E[4Q] 2 is
nonoscillatory from which the conclusion follows [5, Lemma 4.2]. In the case of (i), the
nonoscillation of E[p] implies that of E[4Q2] by the Sturm comparison theorem and
hence the conclusion. We remark that implicit in his proof is the conclusion that E[p]
is nonoscillatory, see also [5, Thm. 4.3].

It is not difficult to present examples of functions p(t) such that P(t)= flop exists
and (fro e2)2<_e2(t)/16 but which do not satisfy e2(t)<_p(t)/4for all large t.

Let Y(t; s) be the solution of the initial value problem Y’=P(t)Y, Y(s)=E, E the
n n identity matrix. Define, when the integral exists,

if(t) Y(s; t)P2(s)Y(s; t)ds.
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Analogously define Q(t). It was shown in [5, Thm. 3.2] that (2.1) in conjunction with
the nonoscillation of E[_p] yields the existence of P(t), where P(t) is defined by (2.2).

THEOREM 2.3. Let P( ) exist and

t)d 

If Q-( ) exists, 2( )<ff2( ), and, for

A(t)-(((t)+ Q(t))-( ff(t)+P(t))),

<ff2(t)/16.

B(t)= Y4ff2yds,

A(t)B(t)+B(t)A(t)<_O, then E[q] is nonoscillatory.
Proof. [5, Thm. 4.4] implies that E[p is nonoscillatory. Let W(t) Q(t) + Q(t) +

B(t); ,then W is Hermitian and

W’(t)- -q-Q2(t)-(t)Q(t)-Q(t)(t)-aff2(t)-B(t)P(t)-P(t)B(t),
SO

W’ + W2+q=AB+BA ( ff B )2 + 2(BZ ffz ) +z ff2 <- O.

Thus E[ q] is nonoscillatory.
The conditions relating P, Q and P, Q in this theorem reduce in the scalar case to

those of Willett [17] and Wong [19] which yield a generalization of the classical
comparison theorem. The proof of the final theorem in the series is completely analo-
gous to that of Theorem 2.3; one uses W(t) Q(t) + Q--(t) + (t)+ B(t).

THEOREM 2.4. Let P--( ) and P( ) exist, where

P(t)

Z,(t; T) is the solution of the initial value problem Z’-(P(t)+P(t))Z, Z(T)-E, and let

Z(s; t)ff2(s)Zp(s; t)ds _</32(t)/16.

If Q-(t) and .(t) exist, O.2(t)<-fi2(t), and, forA(t)-(_.++Q)-(+ff+P), B(t)-
f Z42Z,ds, A(t)B(t)+ B(t)A(t)<_O, then E[q] is nonoscillatory.

We shall now present an example in which Theorems 2.1, 2.3, and 2.4 all apply
and upon the successive application of each we observe an improved result concerning
the nonoscillation of E[q]. We shall take for q(t) the 22 matrix which has
(asinflt)/t v, 3,>0, on its main diagonal and has (acosbt)/t, r/>0, in the other
positions, and for p(t) the 22 matrix (1/4t2)E. It follows that P(t)-(1/4t)E; Q(t)
has ((acosflt)/fltv)+O(1/tv+) on its main diagonal and ((-asinbt)/btn)+
O(1/t+) in the off-diagonal, positions; and P2<_p/4. Thus, applying Theorem 2.1,
E[q] is nonoscillatory whenever Q2(t)<_p2(t). In all cases we choose to analyze such
inequalities by showing that the maximum eigenvalue A(Q2(t)), of Q2(t) is less than or
equal to the minimum eigenvalue ,(p2(t)), of p2(t) for all large t. A(Qg-(t)) is easily
obtained, e.g. in the case 3,-1, r/>l, A(Q2(t))-((ot2cos2flt)/fl2t2)+O(1/t), ,>2

and the condition, Q2<p2, translates to E[q] nonoscillatory when la/l< 1/4, a,b
arbitrary. The other cases in which E[q] is nonoscillatory are: ,> 1, r- 1, la/bl< 1/4,
a, fl arbitrary; -> 1, r/> 1, a, fl, a,b arbitrary; and -- 1, r/- 1, la/l+la/bl< 1/4.
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Henceforth we shall concentrate exclusively on the case 3’- 1, rl > 1. In the applica-
tion of Theorem 2.3 the conditions on p are all trivially satisfied and the analysis of the
existence of and the relation A(2)<h(/2) is carried out by using the fact that

Y(s; t)Q2(s)Yq(s; t)<_A(QZ(s)) Y(s; t)Yq(s; t)

_<A(Q2(s)) xp2 ))dr E, s>t.

Since__ A(Q(,))dr- O(1/t) for s> t, Q-(t)<((a2/2B2t)+ O(1/t- ))E and the condi-
tion Q<ff- implies that la//31< 1/2, but the auxiliary condition AB+BA<O trans-
lates into (a2/2B2)+(a/B)cosBt<3/8 for all large. This latter is dominant and we
have E[ q] nonoscillatory when la//l< +ff/2 .323.

Theorem 2.4 is applied using the same kind of analysis,

ftsA(+Q)dr<(a2/2fl2)ln(s/t)+O(1/t-2), s>t,

and

{(t)--<(62/4(1 _62 )t) + O( 1//v- ),

E[p;r] (r(t)U’)’+p(t)U=O.
We shall assume that the coefficient of U satisfies the same conditions as earlier and
that the coefficient of U’ is an n n Hermitian matrix which is positive definite for all
t_>a. In this section one of the differential equations will always be scalar but it will be
convenient to think of a scalar differential equation of the form E[p; r] as a matrix
system of that same form. For (real) scalar valued functions r(t), p(t) we shall (abusing
the notation) also denote the nn "scalar matrices" r(t)E, p(t)E by r(t), p(t) respec-
tively, and in this case call the nn matrix system E[p; r] a scalar system. We remark
that if a system E[p] is nonoscillatory, then every scalar equation of the form u"+
,r*p(t)rru=O, rr a unit vector in C, is nonoscillatory (generalizations of this remark

3. Taam [16] generalized the Hille comparison theorem to equations of the form

The condition 2<_p2 yields la/#l< v/( + 1T-)/8 .625. The equation determined
by the auxiliary condition is /4(1 2) + 2/2 + 6 7/16< O, a solution of which is
.3655... So if la//31<.365, E[q] is nonoscillatory. Thus we have shown that the three
theorems give successively better results when applied to E[q] with ,= 1, rl> 1, a,b
arbitrary.

Some additional remarks regarding this example are in order. Theorem 2.2 (ii) can
also be applied and yields la//31< 1/2- .354. Theorems 2.1 and 2.2 have a decided
advantage in ease of application. The best possible result for the nonoscillation E[ q] is
la//31< 1/v- and is obtained from [5, Thm. 4.4]. The sharpness holds since, when
la//l> 1/-, the diagonal element, as the coefficient in a scalar problem, is-oscillatory
and hence E[q] is oscillatory, see [14], [19]. To this point we have applied the theorems
in a matrix equation versus scalar equation comparison since p(t) is essentially scalar.
We need to build up a set of matrix functions which satisfy the various hypothesis of
the theorems, the "p" hypothesis, so as to make them comparison functions. To this
end we remark that the function q(t), la//l< 1/V, ,-1, 1> 1, is one such, since in
particular it satisfies the hypothesis of Theorem 2.3 (but not that of Theorem 2.1 or
2.2).
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appear in [1],[9],[14],[15]). This makes it possible to obtain certain kinds of compari-
sons of systems directly from the scalar theorem, e.g., forp an arbitrary n n Hermitian
matrix and q a diagonal matrix (here one uses the fact that for diagonal q, E[q] is
nonoscillatory if every diagonal equation u"+quu-O is). It is the modification and
significant generalation of these ideas which are considered in Etgen and Lewis [8].
The following results do not appear to follow from direct application of scalar the-
orems.

THEOIM 3.1. Let E[p; r] be a scalar system for which P(t)- fp(s)ds exists and
0<r(t)<kE on a, ) for some constant k. If l(t), q(t) are n n Hermitian matrices
satisfying:

(i) r(t)<l(t),
(ii) Q(t)l-(t)+ l-(t)Q(t)<2r-(t)P(t), and
(iii) Q2(t)<p2(t) on [a, ),

then the nonoscillation of E[p; r] implies that of E[q; 1].
Proof. By a well-known argument the conditions on E[p; r] imply the existence of

a scalar matrix V(t)such that V(t)-f’ V(s)r-l(s)V(s)ds+P(t). Put W(t)-Q(t)+
f Vr-Vds=Q(t)+H(t); then

w’+ w - W+q

H(I-’-r-’)H+ ((QI-’ +1-Q)-2r-’P)H+ (QI-’Q-Pr-P).
It follows from (i)-(iii) that (W)<0.

Condition (ii) is trivially true under the classical scalar hypothesis IQ(t)l<P(t) and
thus Theorem 3.1 is a generalization of the Taam result.

The next theorem is a generalization of a result of Hartman [10] and represents the
first time a theorem has been presented which encompasses both the Sturm and Hille
comparison theorems.

THEOREM 3.2. Let E[p] be a scalar system, (2.1) hold, and P(t) be defined by (2.2).
If q(t ) is an n n Hermitian matrix and , fl are real numbers such that

(i) a2Q2(t)+(1-a)q(t)<fl2p2(t)+(1-fl)p(t) and
(ii) aQ( )<fie(t),

then the nonoscillation ofE[p implies that ofE q].
Proof. The conditions on E[p] insure the existence of a scalar matrix v(t) such

that v(t)-fvZ(s)ds+P(t). If z(t)=-y v:(s)ds+(1-)P(t), then [z+(/-1)P]’=
-v:(t)= -[z +/3P]: and hence

z’ + z 2 + flzP+BPz+ (1 -#)p+BZP20.

Now (i), (ii) imply the matrix inequality

qo=-W’+ w +awQ+aQw+ (1 -a)q+aQ<O

is satisfied by the scalar matrix w(t)= z(t). Let U(t) be the solution of the linear system
U’=(aQ+w)U, U(a)=E; then U satisfies the second order linear system U"+(q-
qo)U=0 and hence this system is nonoscillatory, since U is a conjoined (Q and w are
Hermitian) nonsingular solution. But q-qo>_q and hence the standard Sturm compari-
son theorem implies the nonoscillation of E[q].

Acknowledgment. The referee has called the attention of the author to the paper
by Amol’d [2], which he indicates is an important milestone in the generalization of
oscillation and comparison theorems.
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GENERAL SOLUTION OF THE
STOCHASTIC PRICE-DIVIDEND INTEGRAL EQUATION:

A THEORY OF FINANCIAL VALUATION*

S. P. SETHI, N. A. DERZKO: AND J. LEHOCZKY

Abstract. This paper deals with the problem of the financial valuation of a firm and its shares of stock
with given financing policies in a general stochastic environment. A model of the firm is described which
includes the price-dividend balance integral equation whose solution yields the time path of the share price,
the number of outstanding shares and the value of the firm. These are shown to be the unique conditional
expectations of certain stochastic processes. A broad class of firms for which the solution formula yields
finite valued solutions is characterized. This paper represents a rigorous mathematical treatment, as well as a
significant stochastic extension of the Miller-Modigliani theory of financial valuation. It is also shown that
the cash-flow approach and the dividend approach to valuation of a firm are not equivalent in general. A
precise condition, which makes them equivalent, is also obtained.

Introduction. In this paper, we generalize the earlier work [1] of the first two
authors in order to study the valuation of a firm in a general stochastic environment.
The financing policies of the firm are defined by a pair of real-valued stochastic
processes denoting the rates of total dividends paid out and the external equity raised
at each time t_>0. The total dividend process is assumed to be nonnegative. A positive
value of the external equity at time implies that the firm is issuing new stock at that
time, while a negative value means that the firm is buying back its own stock. All
transaction costs are assumed to be zero in the model.

The rate of dividend per share at time is given by the rate of total dividends
divided by the number of outstanding shares at that time. The rate of change in the
number of outstanding shares at time is given by the total rate of external equity
divided by the price of a share at that time. With the initial number of outstanding
shares being given, the above procedure defines the stochastic process denoting the
number of outstanding shares over time, provided that the price per share over time is
known.

The crucial piece of information for the valuation problem is, therefore, the price
per share over time. This requires some assumptions about the economy in which the
firm operates. We shall assume that there exists, in the economy, a spot rate of interest
at which money can be borrowed or lent. The interest rate process will be assumed to
be a stochastic process. If the agents in this economy are risk-neutral, then the price of
a share at time can be defined as the expected total discounted value of future
dividends per share payments given the information available through time t.

In the absence of the risk-neutrality assumption, the reformulation of the problem
is accomplished by taking the expectation with respect to an appropriate probability
measure that is absolutely continuous with respect to the given underlying probability
measure. This idea will be discussed in detail in 5. For now, it suffices to state that the
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entire analysis in this paper remains valid for any probability measure that is absolutely
continuous with respect to the given measure.

Within this context, the integral equations governing the price per share and the
number of outstanding shares are developed and solved under fairly minimal assump-
tions.

Moreover, we assume that some market processes, and other information processes,
have influence on the dividend, external equity and discount rate processes. These
could be economic indicators, technological forecasts, the announcement of the firm’s
future plans, etc. These are also taken into account implicitly in valuing the firm and its
shares.

This paper represents an important advance over the seminal work of Miller and
Modigliani [4] (MM hereafter). It provides a rigorous mathematical foundation for the
MM theory in a general stochastic environment. MM claimed that the cash flow
approach and the dividend approach to valuation are equivalent. This is not true in
general. In fact, we show that the cash flow approach can provide valuation for a larger
class of firms than can the dividend approach. We also provide the precise additional
restriction under which the two approaches are equivalent.

In the next section, we specify the notation. The model is developed in 2. The
solution of the model and the main results of the paper are obtained in 3. The
financial interpretations and discussion of results are provided in 4. In 5, we discuss
how the model can be extended to more general economies. 6 concludes the paper.

1. Notation. Let (f, ,r} denote the underlying probability space and let T=
[0, oo). Let E l(f,, or) denote the space of integrable random variables over (f,, or).
Let the nondecreasing family {6"3t, T} of sub-a-algebras be given and be right-con-
tinuous. Assume that 0 consists of f and all the r-null sets, and 2"o --=o{ t_JtT)--Let {D(t), T}, (E(t), T) and (p(t), T } be real-valued right-continu,,ous
adapted stochastic processes defined on the probability space; these represent, respec-
tively, the rate of total dividends issued by the firm at t, the rate of total external equity
raised by the firm at and the interest rate at t. Furthermore,

(1.1) 0_<(t)<oo, -oo</(t)<oo, 0_<p(t)<o, tT, r-a.s.

The notation r-a.s. or or-almost surely means that the inequalities hold with probability
r- 1, i.e. or(0_<D(t)< oo)- 1, etc. From now on, all equalities and inequalities relation-

ships between random variables will be understood to be w-almost sure relationships,
unless otherwise specified. The symbol is used to mean equals by definition.

It should be remarked that we begin our analysis with a given probability space
(f],,cr} and a family (63t, tT} of sub-t-algebras._ We_ do not require to be the
(smallest) o-algebra generated by the processes (D(),E(-),p(’), 0_<_<t}. Thus, addi-
tional information not implied by these processes may be contained in ’-3t. However, no

explicit representation of this additional information is used in this paper.
Let t denote the conditional expectation operator with respect to the o-algebra -3t,

i.e., for any random variableXE(f,,r), we have the notation

Note that X also belongs to E(f, 0, g), where g is a r-continuous probability measure.
We also define $" as the expectation operator and $, as the conditional expectation
operator with respect to ft. It should be emphasized that all the results obtained in this

paper remain valid if we replace $, by $," for some r-continuous probability measure g.
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It is convenient to perform the entire analysis in present-value terms. For this we
define

O()df; t>_s, s,tT,

having the property

(1.3) Ksu(to)=Ks,(to)K,u(to), s<_t<_u,

on each sample path to ft.
We can now define the present-valued processes (i.e., values discounted to t=0)

denoting total dividends and external equity as

(1.4) D(t)=---Ko,D(t) and E(t)=--KotE(t).
Note that K0,, D(t), and E(t) are -measurable.

By convention in this paper, the processes denoting values will, henceforth, be in
present-value terms. The qualification "present-valued" or "discounted" for these
processes will be automatically implied, unless otherwise specified.

The main object of the paper is the determination of the share price P(t), the
number of outstanding shares N(t) and the value of the firm V(t). Let

(1.5) N(0) No;
it is possible to set N(0) arbitrarily to any positive number without any loss of
generality. We also define the obvious relation between P(t), N(t) and V(t) as

(1.6) V(t)=P(t)g(t).

The quantities P(t), N(t) and V(t), must be observable in period t, once the
history up to time t is specified. This implies the requirement that the processes P(t),
N(t), V(t), T, be adapted to the a-field {-3t, T}, i.e.,

(1.7) P( ), N( ) and V( ) be-measurable.
In the next section, we take up the analysis of the infinite horizon firm. See [7] for

the analysis of the infinite horizon as well as a ,r-a.s. finite horizon firm in a discrete
time framework, and see [8] for its special deterministic version.

2. Valuation equations for the infinite horizon firm. An infinite horizon firm shall
be denoted by the pair of stochastic processes

{D(t),E(t),tT},
satisfying certain assumptions to be specified later. Note that (1.1) implies

(2.1) 0_<D(t)< o, oo <E(t)< o, tT.

The equation giving the number of outstanding shares in period t is

tt E(,r)(2.2) N(t)--N+]"O V("r) d’r, teT.

IThe analysis in this paper can be generalized to allow for lump-sum dividends and external equities. In
such a case, one defines processes of bounded variations representing cumulative dividends and cumulative
external equity. Also, one can assume the discount process Kot to be of bounded variation.
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The dividend-stream approach equates the share price to the expected value of the
total dividend streams paid to that share. Thus,

D(’)
d tT(2.3) P(t)=t N(.)

Note that (2.3) implies limt_.ooP(t)=O. In writing (2.2) and (2.3), we assume
{E(t)/P(t), t T} to be locally integrable and {D(t)/N(t), t T} to be integrable
processes.

By a formal manipulation of (2.3), we can derive from it the arbitrage equation

P(t)-tlP(t+At)+ft+AtD() d], At>0 tT
"t N()

This arbitrage equation states that the expected capital loss per share from selling a
share at time + At instead of at time is equal to the expected value of dividends
received in the interval t, + At].

In the deterministic case ], there would not be any conditional expectation on the
right-hand side of the arbitrage equation, and it would be possible to convert it into a
differential equation by dividing both sides by At and letting At approach zero. This is
not possible in our general stochastic environment. What is possible, however, is to add

f(D(’)/N(’))d to both sides of the arbitrage equation and derive the condition that

(2.4) M(t) --= P(t) + N()
d is a martingale.

This generalizes the arbitrage equation of MM to a continuous-time stochastic environ-
ment. Here, M(t) represents the sum of the price of a share at time and all the
dividends that have so far accrued to the share. This sum is a constant (i.e., M(t)= P(0),
T) in the deterministic case and is a martingale (i.e., 0M(t) P(0), T) in the

stochastic case. Since tM(T)=M(t) for any T>_t, it states that in collecting the
dividends during [t, T] and then selling the share at time T, the owner of the share can
expect on the average to be neither wealthier nor poorer than he is at time t. In other
words, there are no arbitrage opportunities in the trading of the firm’s shares.

We shall now define two systems of valuation:
Dividend system =-- Equations (2.2), (2.3), (1.6),
P-arbitrage system =-- Equations (2.2), (2.4), (1.6) and limt_, P(t) 0.

The P-arbitrage system is named because of the boundary condition on P(t). Later on,
we shall define another arbitrage syster0 with another boundary condition.

For a given system, a triple (P(t), N(t), V(t), T} satisfying the system (1.7) and

(2.5) 0<P(t)<oo, 0<N(t)<oo, 0<V(t)<oo, tT,

is termed a positive solution for which the system is well defined. For the dividend
system, e.g., it means that the integral in (2.3) is well defined. Note also that in view of
(1.6), the conditions in (2.5) need only be satisfied for any two of the three quantities.
In the following theorem, we establish that the two valuation systems defined above are
equivalent.

THEOREM 1. {P(t), N(t), V(t), t T} is a positive solution of the dividend system if
and only if it is a positive solution of the P-arbitrage system.

Proof. It is obvious that every solution of the dividend system satisfies the P-arbi-
trage system.
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Now suppose (P(t),N(t), V(t), tT) is a solution of the P-arbitrage system. By
definition, the integral in (2.4) is well defined for this solution. Moreover, (1.7), (2.1)
and (2.5) imply that M(t) is a positive El-martingale. By the convergence theorem for
nonnegative E-martingales [3], X(t) has a limit as approaches infinity, thus

(2.6) lim M(t)=M()>O.
t-- 00

Since limt_. P(t) 0 for our solution, we have

(2.7) M(oo)-- N(,)

from (2.4) and (2.6), and therefore the integral in (2.7) is well defined. With the
martingale property M(t)=G,M(), we can use (2.4) and (2.7) to derive

P( ) 9 M(m)--.o N() N(-)

which is the same as (2.3) and establishes that {P(t), N(t), V(t), T} is a solution of
the dividend system. This completes the proof.

Theorem does not provide us with a solution. This, we shall do next.

3. Solution of the infinite horizon firm. In this section we specify the precise
assumptions for the firm and derive the main results of our paper. Along the way, we
introduce two more valuation systems, which will facilitate us in obtaining a solution.

For a positive solution, it is clear from (2.2) that N(t) is of bounded variation. We
also know from (2.4) that M(t) is a martingale. It follows [9, Thm. 1.2.8, p. 26] that the
process Y(t) defined as

(3.1) Y(t)=--M(O)No+folV(s)dM(s)--M(t)N(t)--fotM(s)dN(s) is a martingale.

It is noted in passing that G,Y(t)= M(O)No P(O)No represents the value of the firm at
time zero. A more meaningful interpretation of Y(t) will be provided following (3.3).
Substituting for M(t) from (2.4) and using the definition (1.6), we can write (3.1) as

(3.2) ftD(s) ds_f P(s)+ d" dsY(t) N(t)P(t)+N(t).lo N(s) N() P(s

V( ) +f0t[ D(s ) E(s)] ds is a martingale.

To solve (3.2) for V(t), we require some assumptions only on

(3.3) C(t)=--D(t)-E(t), tT,

and a suitable boundary condition on V(t). It is important to note that C(t) is the net
cash outflow in period from the firm to the society. Also, note that Y(t) is the sum of
the firm’s value at time and all its net cash outflows in the interval [0, t]. Furthermore,
valuation of the stream of these cash flows can be used as the basis of the valuation of
the firm. For a meaningful valuation, we impose the boundary condition

(3.4) lim V(t) --0.
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It is now possible to define two more valuation systems:
Cash flow system =--Equations (2.2), (3.2), (3.4), (1.6),
V-arbitrage system Equations (2.2), (2.4), (3.4), (1.6).

Like the definition of the P-arbitrage system, the definition of the cash flow system is
based on the martingale property (3.2). The definition of the V-arbitrage system is
inspired by the boundary condition (3.4), i.e., the boundary condition (3.4) is on V(t)
rather than a condition being imposed on P(t) in the P-arbitrage system.

THEOREM 2. (P(t), N(t), V(t), T} is a positive solution of the cash flow system if,
and only if, it is a positive solution of the V-arbitrage system.

Proof. Since (3.2) was derived from (2.2), (2.4), (1.6), it is dear that any solution of
the V-arbitrage system will be a solution of the cash flow system.

To prove the converse, let (P(t), N(t), V(t), T } be a solution of the cash flow
system. From (3.2), Y(t) is a martingale. From (3.1) and the fact that N(t)>0, we
conclude that M(t) is a martingale. This completes the proof.

We have now shown that the cash flow system and V-arbitrage system are equiva-
lent. In Theorem 3, we derive a formula for N(t) in terms of E(’) and V(’), 0_<_<t.

In Theorem 4, we specify fairly minimal assumptions on the firm (D(t), E(t), T }
and obtain a unique solutiQn for the cash flow system.

THEOREM 3. For any positive solution,

(3.5) N( ) Nexp
V( , )

Proof. From (2.2) and (1.6), we have

(3.6) N’(t.___): E(t____) N(0)-NON(t) V(t)’

which integrates to (3.5).
THEOREM 4. Assume

(A1)

(A2)

(A3)

D(t)>_O, tT,

f0 ( D(’r) + IE( "r)l ) d’r C l(, 6, .),

stf[D(z)-E(,)]d,>O, tT.

Then the cash flow system has a unique solution (P(t), N(t), V( ), T) given by

(3.7) V( ) f [D(’r)-- E(’r)] d"r =- U( )

(3.8) [f0 E(’/’) d,t.]-N0expN( ) Nexp
V(’r )

E( ) d’r]
v(t)(3.9) P(t)-N(t)

Solution (3.7)-(3.9) is a positive solution and shall henceforth be termed the

financial solution.
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Note that we have defined

(3.10)

Proof. We need only to derive (3.7) and show that it is unique and positive.
Because of (3.4) and (A2), we can take the limit of (3.2) as t- oo and write

(3.11) Y(oo)=fo [D(s)-E(s)] ds.

But Y(t) is a martingale. Therefore, tY(oo)= Y(t); thus (3.7) and uniqueness follow.
That V(t) of (3.7) is positive follows from (A3).

A corollary of Theorem 4 deals with the valuation of a firm without a corporate
structure. From (3.3) and (3.7), we can see that such a firm can be valued under much
weaker conditions, since the solution consists only of V(t), tT. From (A1)-(A3), we
can derive these weaker conditions to be

Ic(’)! d" e el(a, ,r), $, C(,r) d’r>O, teT.

Before we proceed any further, it would be instructive to solve an example explicitly.
Example 1. In this example, a firm pays out total dividends at a constant rate of $1

per unit time until time to, which is exponentially distributed. For t_>to, the firm pays
out total dividends at the variable rate of + (t-to) dollars per unit time. The discount
rate is p(t)----1, tT. The main purpose is to explicitly obtain the solution
(P(t), N(t), V(t), T). Another purpose is to demonstrate that the primitive price
defined by the ratio U(t)/N(t) need not equal the primitive price defined by the
integral ff(D()/N())d. However, the conditional expectations with respect to
information at t of these primitive prices are precisely the prices P(t). Wc need the
following notation to state the example.

Let
Let the probability measure t(dto) e dto. Let

1.
1)e-’,  V0-

Then, using (3.7)-(3.9), we obtain the following financial solution:

Moreover, we can compute the primitive

N(t,to) e-t-2’, t>_to,

which is not equal to the primitive

e-3t 2e-3

N(’r, to )
e_t_2,

Nevertheless, their conditional expectations with respect to -3 is the price P(t, to).
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So far, we have established an equivalence between the dividend system and the
P-arbitrage system. Henceforth, these two terms will be used interchangeably. We have
also established an equivalence between the cash flow system and the V-arbitrage
system and have obtained a unique positive solution, termed the financial solution, for
the two systems under conditions (A1)-(A3). Henceforth, the terms for these two
systems will be used interchangeably.

In the next two theorems, we show that the dividend system (P-arbitrage system)
and the cash flow system (V-arbitrage system) are not equivalent under (A1)-(A3). In
other words, the financial solution is not a solution of the dividend system, in general.
This will be shown by showing that, in general, P(t) of (3.7)-(3.9) does not approach
zero as t approaches infinity. Moreover, when the financial solution does not solve the
dividend system, then the dividend system does not have any positive solution.

In Theorem 5, we show that any positive solution of the dividend system is a
positive solution of the cash flow system, i.e., a financial solution. In Theorem 6, we
obtain a precise condition under which these two systems are equivalent. These results
are surprising and quite remarkable.

THEOREM 5. Assume (A1)-(A3). Every positive solution (whenever it exists) of the
dividend system is a positive solution of the cash flow system, i.e. the financial solution.

Proof. Let {P(t), N(t), V(t), T) be a solution of the dividend system. From the
derivation of (3.2), we know that the solution satisfies (3.2). From the martingale
property of Y(t), therefore, we have

(3.12) Y(t)-tV(O)+,tfo [D(s)-E(s)] ds for O>t.

From (3.11), we can derive

(3.13)

for Oi,02>t implying that g,V(O) is a Cauchy sequence in 0. Taking the limit as 0--,
gives

(3.14)

where

Y( ) fl( ) +tfo [ D(s)-E(s )] ds= fl( ) + tU(0),

(t) lim G,V(O)--$ lim V(O).

lim/3(t) =/3>0

Y(t)=t[+ U(O)].

(3.17)

and

and (3.13) can be rewritten as

(3.19)

But for s_< t we have

(3.16) sfl(t)--s lim tV(O)= lim stV(O) - lim sV(O)=fl(s),
O-*oo 0

and therefore (t) is a martingale. Furthermore, since V(O) 0 and is in (, @, r),
](t) is a nonnegative -martingale. Thus
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From (3.2) and (3.19), we obtain

(3.20) V(t)-[B+ U(t)] -t[B+ft [D(s)-E(s)] ds].
We shall now show that (3.20) with (3.5) and (1.6) will solve the dividend system

only if/3--0. The proof is by contradiction, i.e., by showing that

v(t)
lim P(t)--=lim N(t)t-OO

Suppose then that fl>0. Then, from (3.5) and (3.20), we have

(3.21) N( ) Nexp
,fl+,f U(s ) ds

From (A3) and fl>0, it follows that we can choose a large T so that for -> T

Using (A2), we can conclude that

=
(3.23) oo<

,fl+,f U(s)ds
implying that

(3.24) 0< lim N(t) Noo < oo.
t-,OO

Then

(3.25) V(t)_limV(t)_ >0lim e(t)-- lim N(t)- limN(t)---t--* OO t--* OO

Thus {P(t), t } does not solve (2.3) and, therefore, (P(t), N(t), V(t), } is not a
solution of the dividend system. This contradiction implies that fl=0. From (3.20), we
now have

V(t)-tU(t)-,ft [D(z)-E()] dz,(3.26)

which is the same as (3.7).
This completes the proof of Theorem 5. The converse of this theorem does not

hold in general. In Theorem 6, we obtain the necessary and the sufficient conditions
under which the converse holds.

THEOREM 6. Assume (A1)-(A3). The financial solution is the unique positive solution

of the dividend system ifand only if

(BI) in F(oo) ___fo
o D(’r) fo D(’r)d’r

V(’r)
d’r= ,LOO[D(sl_E(sl] ds-- oo.

Also a sufficient, but not a necessary, condition for the financial solution to be the unique
solution of the dividend system is

inf f’ E()d(B2)
,T JO ,/Y[D(s)-E(s)] ds

> -"
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Proof. To prove this theorem, we need to examine the limiting behavior of P(t)-
V(t)/N(t) of (3.7)-(3.9). Since lim V(t)-O, it is obvious from (3.8) and (3.9) that
limP(t)- 0 if infN(t)>0, i.e., (B2) holds.

To obtain (B1), however, the price formula (3.9) is not suitable. So we derive an
alternate formula for P(t). For this we need to define processes F(t) and R(t), which
will be interpreted economically in {}4. We let

(3.27) F(t)=--exp fo D(s)
where we note that D(s)/V(s) represents the dioide#d yieM at time s. Since F(t) is of
bounded variation and M(t) in (2.4) is a martingale, it follows [9, Thm. 1.2.8, p. 26]
that

(3.28)

g(t)-M(O)t(o)+fotF(s)dM(s)-M(t)t(t)-foM(s)df(s ) is a martingale.

Substituting for M(t) and F(t) and simplifying gives

(3.29) R(t)=P(t)F(t)--P(t) exp[fotD(S)v(s) ds] is amartingale.

Moreover, it is obvious that R(t) is a positive E -martingale, and so it converges. Thus

(3.30) R(m)= ,--,lim P(t) exp
V(s)

which, it should be noted, is uniquely defined and ,-measurable. Moreover, NR(m)
=R(t) and R()-R(O)-P(O). From (3.29), therefore,

It follows that

(3.32) lira/;(t)--0**f0 D(s) lnF(oo) oo
t-.oo V(s)

ds= = i.e., (B1) holds.

This completes the proof.

4. Financial interpretations and discussion of results. In this section, first we pro-
vide the financial interpretation of formula (3.7) for the value of the firm and the price
formula (3.31). Then, we discuss the significance of Theorem 6 and condition (B 1).

The interpretation of (3.7) is that the value of a firm at time is the conditional
expectation of the total discounted future net cash outflow from the firm to the society,
given the information available by time t. Formula (3.7) can also be interpreted as the
expected present value of the total future dividends accruing to the stockholders of
record at time conditioned on . The integral of the first term in the integrand
represents the expected total present value of dividends issued by the firm in the
interval [ t, oo) given . A portion of the total future dividends is obviously going to
stock issued in the interval (t, oo). In the absence of arbitrage possibilities, the expected
value of this portion, conditional on , must equal t ft E(,)d,. Clearly, the residual
represented by the fight-hand side of (3.7), which belongs to the stockholders of record
t, can now be interpreted as the present value of the firm at time t given .
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Moreover, for s<t, we carl define SsV(t) to be the value of the firm at time t given
the information up to time s. It should be obvious that tP(s)=P(s) for s<_t.

For the interpretation of the price formula (3.31), we first note that

(4 1) D( t___) = D( )/N( )
v(t) e(t)

is the dividendyield at time t. It can also be interpreted as the share growth rate under a
dividend reinvestment plan. Now we rewrite (4.1) as

(4.2) P(t) exp V(s’) ds -t[R(oo)],

and draw the following diagram:

timeO" R(oo)
g[R()]=P(O)-

r’.

MOre information
becomes available
s time progresses

equal by (4.2)
time t: t[R(0o)] )

e(0)
of shares

grows under
a dividend
reinvestment
plan

At time zero, a risk-neutral investor is indifferent between the random amount
R(oo) and one share of the firm valued at P(0). At time t, the value of the random
amount is ,[R(oo)], based on the information available, by time t. On the other hand,
the number of shares has grown by time t to F(t) exp[ fd(D(s)/V(s )) ds by having
the one share at time 0 in a dividend reinvestment plan and, therefore, the value of the
resulting portfolio is R(t)= P(t)F(t)=P(t) exp[fg(D(s)/V(s))ds]. Equation (4.2) says
that the risk-neutral investor is also indifferent between the choices at time t arising out
of the two indifferent courses of action at time zero.

We also remark that the above interpretation remains valid in the economy with
risk-averse agents provided the conditional expectation is taken with respect to an
appropriate martingale measure; see {}5.

We shall now discuss condition (B1). We know from Theorem 6 that when (B1)
holds, the financial price P(t) also solves the dividend system and, therefore, it is equal
to its future dividend content (i.e., the present value of the future per share dividends) as
in (2.3).

When (B1) does not hold, the financial price P(t) does not satisfy the dividend
system. In fact, in this case, the dividend system has no solution. Note, however, that
since P(t) solves the V-arbitrage system, we can express it as

(4.3) P(t)- a+
N(s)

ds

where

(4.4) a- lim P(t)
t--* oo

and a>0 when (B1) does not hold. (4.3) can be related to (2.3). It states that P(t) of a
share exceeds its future dividend content by an amount ta.



STOCHASTIC PRICE-DIVIDEND INTEGRAL EQUATION 1111

It is important to note that in the case when (B1) does not hold, the firm is unable
to pay out all of its full value in the form of dividends. It does, however, pay out its full
value by retiring a part of its value by rcpurchasing its own stock. Note that
limt_.ooV(t)=0, and since limt_.ooP(t)=a>0 in this case, it is obvious that
limt_.oo N(t)=0. In the limit there are no remaining shares outstanding. In a way, the
firm buys back all its shares "eventually". Thus, even though the price of a share does
not equal its future dividend content, the case when (B 1) does not hold should not be
considered pathological.

Thus (B1) can be interpreted as the precise restriction under which the.firm must
operate to be valued as a dividend system. In words, (B 1) states that the sum of the
dividend yields, In F(oo), cannot be too small, i.e., the firm, in the long run, must issue
sufficient dividends in relation to its value.

It should be noted that condition (B2) prevents N(t) from approaching zero, with
the consequence that lim V(t) 0 limP(t) 0. Condition (B2), therefore, is sufficient
for the financial solution to be a solution of the dividend system. It is obvious that (B2)
implies (B 1).

We shall now present two deterministic examples in which N(t) 0, but (B 1) holds
only in one of them.

Example 2. lnF(oo)< oo.

V(t)_(1/2) l+t
ln2

E(t):(1/2)’+2t-(1/2) ’+t t>__O, N(0)-

) exp[1 (1/2) 0,N(t)--( t] --,

P(t)-(1/21n2)cxp[(1/2)t- 1], a =limP(t)-1/2eln2>0.

Example 3. In F(oo) oo.

D(t)=(1/2)(1/2)’, E(t)= __(_)(1/2)l+t, N(0)--I
V(t)= (1/2)’+ ’/ln 3, N(t)=
P( t ) (1/2)’ +t/2/in 3 - 0.

In both these examples (B2) does not hold. In Example 2, (B1) does not hold and
a 1/2eIn 2> 0. In Example 3, (B 1) holds and a= 0. These examples clearly indicate
the significance of (B1) and that condition (B2) is too strong.

In relating our results to those of MM [4], we proceed as follows. We have shown
that the class of firms that can be valued (Le., defined by (A1)-(A3)) can be partitioned
into two subclasses. The first subclass defined by condition (B1) consists of the firms
that can be valued by either the dividend approach or the cash flow approach. That is,
in valuing these firms, the two approaches are equivalent. The other subclass defined by
the negation of condition (B1) consists of the firms that cannot be valued by the
dividend approach. The dividend approach is simply meaningless for this subclass.
Thus, for this subclass, the question of whether the two approaches are equivalent
cannot even arise.

To deal with the question whether the dividend policy is irrelevant, we must
understand that the question applies only to the valuation V(t) of the firm and not to
the share price P(t) and the number of outstanding shares N(t). The formula for V(t)
is obtained in (3.7). Observe that V(t) depends only on the cash flow trajectory
C(t) =D(t) E(t), T. It does not depend on how C(t) is divided between D(t) and



1112 S.P. SETHI, N. A. DERZKO AND J. LEHOCZKY

--E(t). Therefore, in the sense of MM, the dividend policy is irrelevant for the firm’s
valuation.2 In other words, if (Dl(t),E(t), tT} and (D2(t),E2(t), tT} are two
different firms such that D(t)-E(t)-D2(t)-E2(t), tT, then (3.7) gives V(t)=
V2(t ), tT. Of course, it is possible for these firms to belong to the two different
subclasses defined above. In that case, the dividend approach will be meaningful for
one firm and meaningless for the other. Even so, the dividend policy will be irrelevant
in the MM sense.

It is extremely important to emphasize that the above discussion concerning the
irrelevancy of dividends assumes that the underlying family (-3t, T} of sub-o-alge-
bras is given a priori.

If we assume, on the other hand, that -3 is the sub-o-algebra generated by
{D(),E(),p(), 0_<_<t}, then the dividend policy will no longer be irrelevant. This
should be obvious, because in the new definition of 6"3t, the dividend policy contains
relevant information for the purpose of valuation.

5. Extension to more general economies. So far, we have discussed the valuation
problem of a firm in an economy with only risk-neutral agents. We now consider the
case where agents need not be risk-neutral. In such an economy, if there are no
arbitrage opportunities in a market and if the markets are complete, there must exist a
unique positive linear functional that can value risky streams [5], [6]. Moreover, if the
discount rate process (p(t), t T) is interpreted as the process of spot interest rates in
the economy, then a valuation functional need only be defined on the space E (f, -3", r).
Let (.) denote this valuation functional. It can be easily shown (e.g., see [6]) that this
valuation functional has a representation in terms of an expectation operator E
defined on the space (fl,,r). The probability measure #, which is absolutely
continuous with respect to r, is uniquely determined by . Thus,

v(0)
where U(O) is defined in (3.10). Moreover, we can define the conditional expectation
StY: t(2, "3", or) --. (2,, g) in terms of which we can write

V( ) $tU( ) ’[U(t)I].
Comparing this to (3.7), it is obvious that the entire analysis of the paper remains valid
if St is replaced by St. Note also that (3.2) is replaced by

V(t)+fot[D(s)-E(s)] ds is a l(f,Y,#)-martingale.

Thus, the probability measure/ is also known as an (equivalent) martingale measure [2].
It should be noted that we do not address the issue of the conditions under which

a market is complete [2]. Nor do we construct the valuation functional . Our scope
here has been limited.

In the same limited way, we can discuss an economy in which agents have different
expectations regarding the future. This requires the definition of the appropriate family
{0-Yt, t_>0} of sub-o-algebras. We proceed as follows [6]. Let J denote the set of agents.
Let the nondecreasing family {-3tJ, t_>0} o_.f sub-o-algebr_as represent the information set
of agentjJ. Assume that processes {D(t), t_>0}, {E(t), t_>0} and {p(t), t_>0} are

2It should be noted that C(t)= X(t)- I(t), tT, where X(t), tT} denotes the total earnings process
and {l(t), tT} denotes the total investment process [1], [4]. Once again, it is immaterial for the firm’s
valuation how net cash outflow C(t) is divided between X(t) and -l(t).
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adapted to {J, t>_0} for every jJ. We can now define the appropriate family {,
t_>0) by

= J, t_>0.

jJ

With this definition for , the measurability requirement for the solution variables in
(1.7) is now defined. A martingale measure # corresponding to a given valuation
functional k can be obtained as before.

Needless to say, the issue of the market completeness and the construction of the
valuation functional for a fairly general economy is a very difficult problem. Even more
difficult is the general equilibrium problem where the interest rate process (p(t), t_>0}
is not exogenous, but is to be determined within the model.

6. Concluding remarks. In this paper, we have developed conditions under which
a firm may be valued. We have also obtained precise conditions under which the
different valuation systems specified by MM[4] are equivalent in a fairly general
stochastic environment. Our paper, therefore, represents both mathematical and sto-
chastic extension.of the Miller-Modigliani theory.

We have also developed a mathematical framework within which several other
extensions of our model may be easily addressed. These would include incorporation of
debt-financing and the valuation of an almost surely finite horizon firm. The latter
extension has already been dealt with in a discrete-time framework [7].

Finally, in solving the valuation problem of a firm in a general stochastic environ-
ment, we have communicated an important economic problem to mathematicians and,
we hope, at the same time enriched the economists’ understanding of martingale
methods.

Acknowledgment. Thanks are due to S. R. S. Varadhan for his helpful suggestions.
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QUENCHING IN TIME-DELAY SYSTEMS:
A SUMMARY AND A COUNTEREXAMPLE*

RAY REDHEFFER AND REINHARD REDLINGER

Abstract. This paper combines the salient features of two separate investigations. The first pertains to
existence theorems for parabolic-functional systems and is based upon the Karlsruhe dissertation of the
second author. The relevance of these results is that they permit a time delay and they do not require the
functions to be Lipschitzian. Thus the equation for the unknown function u(t, x) can contain such terms as
u( --/(t), x), lu( t, x) and Igrad u( t, x), all of which play a role in our analysis.

The second line of thought, pertains to the theory of quenching in time-delay systems as developed since
1976. (Here the word "quenching" has its usual English significance and means that the solution vanishes
after a finite time t*.) As a rule one must have a singularity such as ]u to induce quenching and, in the
absence of time-delay, the proof of quenching then involves little more than a comparison argument of
standard type. But if the equation contains such terms as u(t-t(t),x), the question whether the solution
does or does not quench hinges on a delicate and nonobvious relationship between the memory-function t and
the controlparameter . Study of this relationship forms the essence of the memory-quenching problem.

Here we give a simplified exposition of the two topics above, without proofs, and we use the existence
theorems to show that the quenching theory applies (nonvacuously) to equations as well as inequalities. With
this as background, we construct a counterexample to show that the quenching theorems remain sharp when
applied to equations with Dirichlet boundary conditions. The example settles a question that has been open
in the theory of quenching since its inception.

1. Introduction. For broad classes of parabolic operators P the solutions of the
inequality

(sgn u)u+ lu[’<_O
quench; that is, they vanish after a time t* which depends on the initial condition and
on the constant ,, 0_<2< 1. The proof of this well-known fact involves little more than
construction of a solution u(t, x)= p(t) of the opposite inequality which itself quenches,
together with an argument of Nagumo-Westphal type to conclude that ]u(t,x)l<-p(t ).
If p(t) 0 for t_> t*, the same is true of u(t, x).

Let us apply this familiar line of thought when the parabolic operator P incorpo-
rates a functional as part of its structure. The strength of this functional is measured by
a memory-function I(t)->O; roughly speaking, the functional has memory # if it can be
assessed by

sup sup lu( ,6)l.

The question is" If the initial conditions and are such that the solutions quench when
P is purely parabolic, what conditions on the memory-function # ensure that the
solutions quench also in the parabolic-functional case? Although this bears a superficial
resemblance to the familiar phenomenon outlined above, it is in fact an entirely
different question which, so far as we know, was not asked before the first author
started work on it in 1976. To underline the difference between the quenching problem
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and the memory-quenchingproblem a brief bibliography of the former is given in [3], [4],
[5], [6], [7], [8], [11], [12], [17]. These references embrace ordinary differential equations
as well as partial differential equations of both elliptic and parabolic type, but they do
not address the question of time-lag, which is the feature of the principal interest in
[181.

One aspect which these investigations have in common is the presence of a suitable
singularity, in virtually all cases a function of the form C(u)=lu sgn u, 0_<,< 1. Such
a term is refered to in [18] as the control. At first glance this terminology is perhaps
unusual, but it is suggested by the fact that C(u) always tends to push u toward the
equilibrium position u-0. The chief difference between C(u) and a true control in the
sense of control theory is that the switching locus of the latter (the locus where C(u)
changes sign) is subject to outside manipulation, whereas here it is constrained to be the
same as the locus in which u itself changes sign. The special case C(u)= sgn u obtained
when h 0 is effectively a bang-bang control, subject to the above proviso regarding the
switching locus. As shown in [18] the theory of quenching for this case is vastly simpler
than in the general case and involves little more than the obvious condition t-/(t)--, oo
as t--, oo.

After these preliminary remarks we can describe the purpose of this paper, which
is threefold. The theory in [18] is developed in a degree of generality which makes it
difficult to read and the problem is compounded by the fact that [18] is written in an
unattractive style which is highly condensed. Our first objective is to present a sim-
plified version, without proofs, in which the main features are more readily discerned.

Since [18] is developed within the context of differential inequalities, questions of
existence do not play a significant role. This approach has the advantage of allowing a
good deal of generality in the parabolic-functional operator P, but at the same time it
leaves open the question whether the theorems might hold under weaker hypotheses on
/ for the corresponding equations. (Recall, for instance, that the Harnack inequalities
hold for equations, or for two-sided inequalities, but not for the one-sided inequalities
that form the basis for the theory of subharmonic functions.) A comprehensive ex-
istence theory for parabolic-functional equations is given in [23]. As our second objec-
tive, we describe a class of operators P that satisfy the hypotheses of both theories,
quenching and existence, and within this class we show that the use of differential
equations rather than inequalities has no significant effect on the structure of the
quenching problem. Reference [23] is of broad applicability but is somewhat long, and
we present a simplified version, free of proofs, which is more readily accessible. Of
course the literature on existence theory for parabolic problems is extremely compre-
hensive, and references [1], [2], [4] [9], [10], [13], [14], [15], [16], [25], [26], [27], [28] are
only a small sample. However, no prior work known to us admits both a time-delay
and a class of nonlinearities which are non-Lipschitzian in u and grad u, as do the
results [23]. The full force of this generality is used in meeting the third objective of this
paper, discussed next.

Our third, and principal, objective is to answer a question that has been open ever
since the research leading to [18] was initiated about seven years ago. The question
pertains to the construction of counterexamples with a view to showing that the
sufficient conditions for quenching are also necessary; in other words, that the quench-
ing theorems are sharp. Only if this is so can it be asserted that the memory-function
has been correctly characterized. The theorems in [18] are developed in a context of
general boundary conditions, in which the Neumann condition up=0 is allowed as a
special case. When this condition is imposed the construction of examples is trivial,
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because one can choose u to be a function of alone. Thus it is seen that the hypotheses
in [18] are in fact sharp when the conclusions are asserted in the degree of generality
there given. But this observation sheds no light on the most important case of all--the
case of the Dirichlet boundary condition, u--0. It is with a view to filling this gap that
we have undertaken the present investigation. The relevant result, which has no overlap
with [18] or [23], is presented in {}7. It is a source of satisfaction to us that the equation
in the counterexample, although highly nonlinear in grad u as well as u, nevertheless
satisfies the hypotheses of the theorems in [23]. Thus the example shows that the
quenching theorems are sharp not only when Dirichlet conditions are imposed, but also
when the inequality is replaced by an equation.

2. Notation. Throughout this paper points of Rn+l are written in the form (t,x)
with R and xRn, f is a bounded domain in Rn with C + boundary Of, and

ro-[Ole,
We refer to G as the parabolic interior and to F--I"0 td I’ as the parabolic boundary.
Derivatives are written ut, u,, u,x, where u is a left-hand derivative, ux is the gradient
and U is the Hessian. These expressions denote the value of the function at (t,x),
while u(-) is the function itself. Thus,

uR, utR, uR, UxxS, u(.)X,
where Sn is the class of real symmetric n by n matrices and X is the class of continuous
functions G R. We denote by W the subclass of functions u X for which u and u
admit a continuous extension to G.

For fixed T>0 let G(T) denote the part of G in which t<_T, thus G(T)-(O, T]fl.
We write Z for the subclass of functions X which satisfy a Hrlder condition

Iq(s, x ) dp( t,y ) l-<K( Is t[’/2 + Ix -yl), a>0

in G(T) for each T, where K and a can depend on (q, T). The subclass of functions
X for which the above condition holds with s- is denoted by Y. Thus,XYZ.
A similar definition is used for functions with domain G instead of G and for

functions with range in R" or S"; in the latter case I’1 is the Euclidean norm. Super-
scripts on X, Y, Z mean that corresponding conditions are imposed on the x derivatives.
For exa_mple, xI,Z2 means xI, Z, xI, Z, xI,,Z where the functions are of the
forms GR, GR and GS, respectively. The side condition t<_T remains in
force, T being fixed but arbitrarily large.

3. An existence theorem. A parabolic-functional operator is defined by

(1) Pu-- ut--rlAu--f( t,x, u( )),
where ,/is a positive constant and f is a real-valued functional at each (t, x) G, whose
properties will be described later. The problem to be considered is

(2) Pu+JlulXsgnu-O in G, u-9Z in I"

where J and h are constant, J>0, 0<X< 1. The term with Jlu is a control which makes
quenching a possibility; the strength of the control is measured by J and X. We want to
give conditions under which the following statements are both true:

(i) The problem has at least one solution.
(ii) Every solution has compact support.



QUENCHING IN TIME-DELAY SYSTEMS 117

Both questions involve a measure of the extent to which f depends on the past
history of the function u. Let g" 0,)R be a given function such that

and for u X let

O<_l(t)<_t O_<t<,

lul,,-sup(lu(,6)l" t-t(t)<-’r<-t,lf}.
Important special cases are ]ult, and lug,t. The first involves the entire past history while
the second does not involve the past at all. We refer to # as the memory-function, and a
functional which can be assessed by lul,,t, is said to be of memory/; more correctly, of
memory _</. The two measures above pertain to functionals of memory and of
memory 0, respectively.

The following result gives an affirmative answer to the first question posed above"
TnEOM 1. With P as in (1) let f be a continuous function G WX which satisfies

.a closure condition of theform
(3) u xn Y’ = f(t,x,u(.))

_
Y

and is of linear growth in the sense

(4) If( t, =, u(.))1-< (const) ( + ul ,,, + u=l ,,, ).
Then (2) has a solution u C(G-) f3 C2(G).

This follows from the results in [23]. The term in J is not included there, but since
the functions need not be Lipschitzian, Theorem is brought within the scope of [23]
by redefining f. Condition (4) is required only in G(T) for each T and the constant can
depend on T.

4. A condition for quenching. We denote by 0 a continuous nonnegative function
of t and we write p, as an abbreviation for Ipl,,t. Thus,

p,: sup{p(-)" t-(t)<-<_t}.

The simplest example of the type of problem introduced in the foregoing discussion is

p(0)-., t>0.

Here Ot is a left derivative and a is a positive constant. The problem is: What conditions
on (h,a,/) ensure O(t)=0 for large t? Since 0t_>O-px it is dear that a< 1 and < 1
are necessary. Suppose next that X< and # are given. If the condition a< is sufficient
to ensure #(t)= 0 for large t, we say # Q(X). Thus,/ Q(X) means

a<lp(t):0 fort>-t*(a).

In [18], where this definition is introduced, it is seen that the hypothesis # Q(h)
ensures quenching in a comprehensive class of parabolic-functional inequalities. Since

pt<_p,-px is itself a member of this class, the condition #Q(,) is sharp (cf. 6
bdow).

Use of the hypothesis/ Q(,) in connection with (1), (2) requires a finer measure
of growth than the condition (4). This is described by

w, ux--0 (sgnu)f(t,x,u(.))<-.41ul+Blulo,,+Clul.,,,
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where A,B, C are continuous functions GR with C_>0. We assume also that A +B
and C are bounded above in G. In that case the constant

K-- sup(A +B+ C)
is finite and is called the growth constant of f. (If a unique K is desired one can take the
inf over the possible choices of A, B, C, but this is not essential.) The following holds:

THEOREM 2. Under the hypothesis of Theorem letf admit the growth constant K and
let Iff’]_<I, where the constant I is unrestricted ifK<0 but

< -g - -x
ifK>O. Suppose further that #Q(A). Then u has compact support if, and only if, ’ has
compact support.

The result follows from those in [18] or can also be proved by a simplified version
of the comparison argument given there. (Comparison theorems for parabolic-func-
tional inequalities can be found in [19], [20], [21], [22], [24].) In the course of the proof it
is seen that lul_<I, a fact which gives the following corollary.

COROLLARY 1. Under the hypothesis of Theorem 2, the growth conditions of Theo-
rems 1 and 2 are needed only for those functions u W that satisfy [u[ <-1 in G.

The corollary allows such terms as e u or uSlul and greatly increases the scope of
the results.

5. An outline of certain generalizations. It is convenient to denote the class of real
symmetric n by n matrices by Sn and to write

ab-E aijbij, al=E iaijj

for a, bS" and R’. In this notation the term /Au in (1) can be replaced by
a(t,x)u, where a: G--, S" satisfies aj Y together with an ellipticity condition of the
form

Ia(t,x)>--l(T)l[
2

r/(T)>0, (t x)G(T)
Under these conditions, Theorems 1 and 2 hold with

(5) Vu- u,- a( t,x )Uxx-f( t,x, u(. )).
The main results also extend to systems. For functions u: GR we use lul to

denote the sup norm lul-maxglu2l and we interpret regularity conditions such as u X
componentwise; that is, in the sense uJX, j-1,2,...,m, where the latter condition
has the meaning previously assigned. For twice-differentiable functions u X an opera-
tor P-(P l, p2,...,pm) is defined by

Pu-u, -a(t,x) -f(t,x,u( )) k-1,2, mUx o

where each ak: GS has the properties imposed on a(t,x) in (5) and each fk is a
functional analogous tofin (1). The system

pku--Jk]uklXsgnuk--o in G, uk--xk in F

can be written in the condensed form

Pu+JJulXsgn u- 0 in G, u-’I, in F,
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where sgnu denotes the matrix diag(sgnul, sgnu2, .,sgnum) and where Jlulx is the
vector

JlulX- (JlulX,J’-lu)-Ix Jmlumlx)
Theorems and 2 apply to this problem with virtually no change. It is remarkable that
the control term involves only ]u]x in the k th equation, and not ]ulx as one might expect.
The underlying reason for this is the fact that the kth equation is used only at points
where lukl lul.

So far we have assumed #(t)<_t, so that the history of u prior to t-0 is not
involved. If, instead, #(t)_< + r, where r is fixed, we redefine I’0 to be r, 0] f and
proceed as before. The initial condition associated with the class Q(,) is now p(t)-a
for -r_< t-< 0, rather than p(0)- a, and some of the classes X, Y, Z must be referred to
[- r, T] 2 rather than to [0, T] f. Otherwise there is no significant change.

Finally, it is possible to extend the theory to more general boundary conditions,
including those of Neumann type, and to unbounded regions including those for which
no boundary conditions are needed, e.g., the Cauchy problem. These extensions in-
crease the technical complexity of the proofs but again the results are virtually the same
as before. As explained next, such extensions facilitate the construction of counterex-
amples.

6. Simple counterexamples. By choosing all coordinates of u to be the same, one
can obtain a counterexample for the vector case m> from a corresponding example in
the scalar case, m- 1. In view of this fact [18] we consider the case m- here. We will
show that the hypothesis I<(J/K) and the hypothesis/ Q(,) are both necessary if
Theorem 2 is to apply to the whole class of operators P considered there.

Let us begin by considering the equation

(6) ut--rlAu-- ( au+ bu+ cu) +11 ul - 0,

where a,b, c are functions G-o R and u, is an abbreviation for u(t-I(t),x). For the
moment we operate within the context of the last-described generalization in 5, so that
the Neumann boundary condition u,-0 is permissible or, in the case of the Cauchy
problem, no boundary condition is needed. Thus u can be a function of alone.

In order to satisfy the prescribed continuity and monotonicity conditions we
assume

(7) a<_A, Ibl<_B, O<_c<_C.

The factor u in bu in (6) could be replaced by a zero-memory functional such as F:
u(t, x) u(t, a(t, x)), but this extension is not needed for the counterexample. Thus, the
theorem allows operators P of considerable generality, but the counterexample applies
even when P is severely restricted.

Let us inquire under what conditions (6) admits a constant solution u-I>O,
which of course does not quench. By inspection the sole condition needed is kl-JIx,
where k-a+b+ c. Clearly this can be satisfied, in the presence of (7), whenever
I>_(J/K), K=A +B+ C>0. Therefore the initial-value inequality I<(J/K)r of The-
orem 2 is sharp. We need not consider the case K_<0 because Theorem 2 asserts that
there is no counterexample in that case.

Since the choice u-I satisfies ux-uxx-O, we could add to the left side of (6) any
function

f(t,x, ux,Uxx,U(.)) f(t,x,O,O,u(.))-O.
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Thus the seemingly special example (6) leads to a variety of additional examples. The
same applies when u(t, x) p(t), as assumed next.

Under the harmless assumption that # is continuous, we now show that the
hypothesis # Q(,) is also sharp. In the contrary case the problem

#t--iO/--iO’, t>O, p(O)--a, O<a<l

has a solution which does not quench. We define

u(t,x):J#(t)
and consider (6) with a+b=A +B, c=C, where A +B=0, C-- 1. Thus K-- and the
initial value satisfies

since a< 1. (It is here that we use the fact that/ is not in Q(h).) Equation (6) is
satisfied, as seen by the fact that the left side is

ut--ut+Ju--J’l(pt--Pu+p)--O.
Thus the condition # Q(X) is sharp even when I<(J/K)L

7. Diriehlet boundary conditions. No function of the form u(t,x): t(t) can pro-
vide a counterexample in the presence of Dirichlet boundary conditions such as those
in Theorem 2. Namely, if p-I’ on the boundary, where has compact support, then p
vanishes for large and hence p quenches. As explained in the introduction, construc-
tion of a counterexample satisfying Dirichlet boundary conditions is a major objective
of this paper.

For simplicity let f be the sphere Ixl< 1 where, here and below, I’1 denotes the
Euclidean norm. We consider solutions of the form

u(t,x)-Jp(t)o(x), o(x)- 1-1xl
where Ot-Or-0x, and we note that u(t, x) vanishes on the boundary. The analysis of {}6
serves to motivate the analysis given here.

With a and h chosen so that

a(o+lgradol)--Ao,
it is seen that

hlgradolX--J(oX-o),

u -lAu-a( u + Igrad ul) h grad ulx- u,+JlulX 0.

Indeed, because of the definition of a, the terms involving r/ and a cancel. There
remains

JVo(O,- 0x ) JvxtXh grad o[x-JVoo+JJVXoxox.
The two terms in t, cancel, and the three terms in px cancel by the definition of h when
we recall that , +,. Thus, the final result is 0.

Since the continuity inequality involving A,B, C is required only at points where
gradu-0, it holds if a<_A +B and C= 1. Hence K- /a is an admissible choice and
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the initial-value inequality of Theorem 2 holds if

JVa< +a
ta(O) a.

Since a 0 uniformly as ,/ 0 this holds for small /if a< 1. The latter condition in turn
is possible for a O which does not quench, provided # is continuous and does not belong
to Q()). Thus we get a counterexample in that case.

It remains to show that the coefficients a and h satisfy the continuity conditions
imposed in Theorem 1, so that the example falls within the scope of the existence as
well as the quenching part of the theory. Since

+ 21xl> Ixl = 0 < Ixl_<
the coefficient a=2nrl/(1 + 21xl-lxl2) has the same continuity properties as Ixl and is
admissible. The only difficulty with h occurs in the neighborhood of the point x=0
wheregrad a vanishes. Expanding ox-o in powers of Ixl we see that, near 0,

h(x ) 12xlX-1(1 X ) Ixl= /
so that h(x)=2-xJ(1-X)lxl2-x+ .... This shows that h is also admissible and com-
pletes the construction of the counterexample when the initial condition holds but/ is
not in Q(X).

Suppose next that I>(J/K)v. In this case we carry out the above calculation with
t-1. Here/t i0--O

h for every choice of/, including/-0, and a counterexample is
obtained for small / as before. If 1-0 we can take a-0 and also role out the case
I=(J/K)v. The condition /=0 is allowed in the quenching part of the theory [18],
though of course not in the existence theorems of [23].

The discussion of counterexamples in this and the preceding section sheds light on
the structure of the quenching problem. The problem involves two classes: a class Q(X)
of memory functions and a class P(I, h) of parabolic-functional operators together with
initial conditions. The class Q(X) is described by a specific delay differential equation,
while P(I,X) is distinguished by its extreme generality; within the context of differen-
tial inequalities, which is the natural setting for the theory, the class is vastly more
general than any of the classes discussed in {}5. The final result takes the following
form: If/t Q(X) then quenching occurs for every operator P P(I,X) with initial
values dominated by L But if g is not in Q(X) then there exist operators P P(1,X),
with initial values dominated by 1, whose solutions in

(8) (sgn u)Pu+ lulX_<0

do not quench. The present paper shows that the same behavior is found for solutions
of the corresponding equation, a matter which is not addressed in [18].

8. Characterization of the class Q(h). One of the most interesting features of the
memory-quenching problem is that the same basic hypothesis,/ Q()), is encountered
in all the extensions outlined above. Furthermore, as we have seen, the hypothesis is
sharp. Because of this it was though worthwhile to characterize Q() by explicit
structural properties in [18], and the main features are summarized here without proof.

In the first place, if/x Q(,), there must be an increasing sequence {t} such that

tn oO and

(9) #(t)<_t-t,, t>_t,.
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’,/1

FIc. 1. The graph ofI must lie below the slanting lines.

This means that the graph of tt lies below an infinite set of fines of slope as shown in
Fig. 1.

Another necessary condition restricts the growth of/ at the left of the points tn,
and, if the restriction is sufficiently stringent, it is also sufficient. For example [18], it
suffices to have

t(t)-<lt-ttlAIt-t2IA It-t3lA I,-t,I "", 0_<t<oo

where {tn} is any unbounded sequence whatever; that is, if this holds for such a
sequence then/ Q(X). (Here a Ab min(a, b), as usual.) The above condition agrees
with (9) near t +, but is unnecessarily stringent near t-.

If we confine our attention to growth which is measured by a power of t,-t, the
appropriate restriction is of the form

(10) /.t(t)_<r(tn- ,) x ,-s<,<,

where r and sn are positive numbers. Within this framework a sufficient condition for
/t O(h) is

(11) lim supM(logs. y log+ r. ) >O,

where 3, 1/(1-) and where it is assumed that (t} is separated in the sense that
inf(tn t_ )> 0. Conditions (10) and (11) are sharp in that they do not imply/t Q(X)
if weakened in any one of the following ways:

(a) The exponent in (10) is replaced by some ,<.
(b) Thelim sup in (11) is negative.
(c) The factor M in (11) is replaced by M+(’) with (n)--,
(d) The constant V in (11) is less than 1/(1-).
(e) The sequence {tn} is subjected to no separation condition.

With regard to (e) the condition inf(t-t._)>0 imposed above can be substantially
weakened, and it is here that the principal difficulty in characterizing the class Q(h) is
found. The weakened separation condition is discussed at length in [18].

9. Double-exponential decay. An interesting feature of the memory-quenching
problem is that the simple hypothesis (9) alone leads to an astonishingly fast rate of
decay for u(t,x), in general, even if the more delicate criteria involving X are not
fulfilled. Here the phrase "in general" means that the initial-value inequality of Theo-
rem 2 is imposed, and that {t} satisfies the mild separation condition to which allusion
was made at the end of the preceding section. In particular, inf(t- tn_ 1)>0 suffices.
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Under these conditions u satisfies an inequality of the form

lu(t,x)lO/x t>tn>>

where 0< is a constant depending on the initial value 1 and on the structure of the
operator P. One could have for example 0- 0.1, X- 0.1 so that

lu(t,x)[<_lO-, t>_tn.

The surprising nature of this inequality is appreciated when we note that for n-100,
say, there are not just 100 zeros before the decimal point, but 101 zeros before the
decimal point. As seen in [18], iterated exponentials pervade the theory of quenching in
the presence of memory.
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EXISTENCE OF SOLUTIONS TO
SINGULAR CONSERVATION LAWS*

MARIA ELENA SCHONBEK"
Abstract. We consider the existence of solutions to singular scalar conservation laws of the form

ut+f( U)x+dp( U)/X=0. We prove existence by regularizing the equation and taking a singular limit using the
recently developed theory of compensated compactness. This theory allows us to pass to the limit without
gradient estimates.

1. Introduction. The existence theory of inhomogeneous systems of conservation
laws

ut+f(U)x--g(x,u )
has been developed primarily with regular forcing terms g [5]. There is presently no
existence theory for singular inhomogeneous systems. In particular there is no existence
theory for singular equations of the form

(1.1) ut+f(U)xq-(U)-o,
x

where f: Rn -Rn, : R"- R", even in the scalar case n 1. Algebraic singularities of the
type (1.1) arise, for example, in the equations of fluid dynamics with spherical or
cylindrical symmetry. The main difficulty in estimating solutions stems from the well-
known fact that bounded initial data does not give rise to bounded solutions due to the
focusing of waves at the origin. This paper is concerned with the existence of solutions
to the Cauchy problem for scalar conservation laws

(1.2) utd-f(U)xd-(U) -o.
x

Here f and are smooth maps from R to R. We note that the model equation (1.2)
retains the essential feature of waves focusing at the origin. We establish global
existence of weak solutions with initial data vanishing at infinity. The class of flux
functions f and forcing functions considered will satisfy certain sign conditions at
infinity (cf. 2). This class includes a model situation studied by Whitham [15], =CoU
and f=cu2/2+c2u. Existence of solutions is established by regularizing (1.2) and
passing to the limit. The regularization employed takes on one of two forms according
to the sign of at infinity. If u(u)>0 for u large, (1.2) is regularized by adding a
dissipative terms and removing the singularity at x-0

(1.3) ut+f(u)x+ (u)x+ -eUx’ e,>0.

If u(u)<0 for large values of u, only the singularity at x-0 is removed

(1.4) Ut’q-f(u ) q-(U)--O,
x x+
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Department of Mathematics, Duke University, Durham, North Carolina 27706.
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where the solutions of (1.4) are distributional solutions in L obtained by the viscosity
method. For details on the existence and uniqueness of such solutions we refer the
reader to 10] and 14].

With regard to the general problem of taking a singular limit we recall that the
classical approach is first to obtain uniform bounds on the amplitude and the deriva-
tives of the solution, then appeal to standard compactness arguments to extract a
subsequence which converges in the strong topology. We note that in nonlinear prob-
lems it is necessary in general to establish strong convergence since nonlinear maps are
typically not continuous with respect to the weak topology, i.e. if u converges weakly
to ,f(u) does not need to converge weakly to f(7). We also recall that uniform
bounds on the amplitude alone yield by classical methods only weakly convergent
subsequences. In this paper we use the recently developed theory of compensated
compactness [12] to pass to the limit without uniform control on the derivatives. The
theory of compensated compactness provides a description of the weak limits and in
certain cases the conditions under which weak limits become strong. Several results in
measure theory and compensated compactness will be used in this paper. The results in
measure theory describe the weak limit of continuous functions as the expected value of
a family of probability measures. To be more specific the first result establishes for any
L-bounded sequence u: R"/m, the existence of a subsequence u and an associ-
ated family of probability measure {Vx(h):xR",Rm} such that for anyfC

( lim f(u))(x) (Vx,f(;k))=ff(,)dvx(,), a.e. in ,",
eke0

where the limit is taken in L weak .. From this theorem it follows that strong
convergence is equivalent to having as associated measures {vx} point masses, i.e.

v 15atx if and only if u converges strongly to ft. The theory of compensated compact-
ness is used to show that the associated measures to the sequences of solutions of (1.3)
and (1.4) reduce to point masses.

The program in this paper will be first to establish a priori bounds on the
amplitude of the approximate solutions and then show that the associated measures
reduce to a point mass. In order to do this the notion of entropy for hyperbolic
conservation laws is used together with the information that certain nonlinear functions
are continuous in the weak topology. The problem of showing that the associated
measures to solutions of approximate hyperbolic equations (equations of the type (t.3)
and (1.4) for example) are point masses is reduced, by compensated compactness, to
obtaining control on the rate of entropy production (cf. 3).

The paper is divided into two sections. In the first local L a priori bounds are
obtained either by maximum principles for parabolic equations (1.3), appropriate
entropy inequalities or by estimating the solutions along generalized backward char-
acteristics introduced by C. Dafermos [2], for solutions of (1.4). In the last section we
use the a priori bounds in conjunction with results of the theory of compensated
compactness in order to obtain the existence of a solution of (1.2) for the Cauchy
problem, that is we obtain a subsequence of solutions of (1.3) (or (1.4)) which converges
pointwise a.e. to a solution of (1.2). For general background on compensated compact-
ness the reader is referred to Dacorogna [1], Murat [6], [7], [8], and Tartar [12], [13].

2. A priori bounds. In this section we obtain a priori bounds on the amplitude of
the solutions of the equations

(2.1) ut.+f(U)x+ x+5 -eUxx,
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(2.2) U +f(U)x+
q(u)
x+ -0.

Here f and q are smooth functions satisfying certain sign conditions at infinity which
will be specified below. In addition it will be required in general that f is strictly convex
or strictly concave. The a priori bounds on the amplitude will be uniform in e and i and
they will be used in conjunction with results of the theory of compensated compactness
in order to pass to the limit in equations (2.1) and (2.2) obtain a weak solution of the
conservation law

ut+f(U)x+dP(U)--O.
x

The a priori bounds will be derived from entropy inequalities or from estimates on
generalized backward characteristics [2]. For completeness we recall the definition of
entropy associated to a hyperbolic conservation law.

DEFINITION 2.1. A pair of real valued functions (/, q) is called an entropy pair for
a conservation law

(2.3) ut+f(tt)x--O
if all smooth solutions of (2.3) satisfy an additional equation of the form

"q(U)t+q(U)x--O.

We note that (, q) is an entropy pair if and only if the compatibility condition

(2.4) ’(u)f’(u)=q’(u)

is satisfied.
First we shall establish an L estimate for solutions of (2.1) if (u) satisfies the

following sign condition at infinity: There exists M>0 such that

(2.5) if [u[>_M, uck( u) >_O.

We note that this condition holds in the case discussed by Whitham [16] where
q(u)=cou, c0>0. In what follows we suppose that the functions q andf are smooth.

THEOREM 2.1. Let Uo(X ) be a smooth function vanishing at zero and infinity. Let u
be a sequence of solutions of (2.1) with initial and boundary data u(x, 0)= Uo(X) and
u(0, t) O. Ifq satisfies (2.5), then

lua(.,t)[<-c
where C is independent of e and 8.

Proof. We recall that in [10] and [11] Oleinik has established the existence of
bounded solutions with continuous derivatives for the Cauchy problem

ut+f(u,x,t)x+(x,t)=eUx,
u(x,O)=uo(x),

where f and are smooth and Uo(X ) is a bounded measurable function. Here the
assumptions on Uo(X ) insure that limx_oo u(x,t)-O pointwise a.e. for each fixed t. To
establish an L bound we construct the entropy

w(u)-(luI-M)
2

for lul>_M, otherwise,
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where M is such that uck(u)>O for all lul>M and luol <M. Multiplying equation (2.1)
by r/’(u) we obtain

(2.6) rl ( u ) -4- q( U ) x rf( u ) dp ( u ) _f_ erl ( u ) uxxx+
where q is the corresponding entropy flux, cf. Definition 2.1. Equation (2.6) can be
rewritten as

rl(u),+q(U)x--rf(u) X+ + )Ux (U)Ux"

One integration in space yields

(2.7) dt n(u)dx--q(u)]o n’(u) q,(U)x+6 dx

The hypotheses on the initial data Uo(U) imply that lim_ u(x,t)-lim_. u(x,t)-
0, and the definition of q and rl imply that q(0)-rl’(0)-0, thus the boundary terms in
(2.8) vanish. It follows from (2.5) and the definition of / that r/’q_>0 for lul>_M.
Combining this with the fact that r/" >0, we obtain

7i ( u ) ax <_ o.

Therefore

fo= ( u ) <-fo n( uo )

and since luol <M, rl(Uo) 0. Hence rl(u)=0 which means that ]ul _<M.
We recall the following two ordering principles which are corollaries of the maxi-

mum principle for parabolic equations.
LEMMA 2.1. Let u be a solution of (2.1) with smooth initial data Uo(X ) and boundary

data u(O, t) O. If q(O) 0 and if Uo(X) >_ 0 for all x or if Uo(X) <_ 0 for all x then
u(x, t) >0 or u(x, t) <_ 0 for all (x, t), respectively.

For a proof see [4, Lemma 5, p. 43].
LEM_tA 2.2. Let u(x, t) be a solution for the Cauchy problem for (2.2), with smooth

initial data Uo(X ) with compact support. If q(0)=0 and if Uo(X ) is nonnegative for all
x >_ 0 or nonpositivefor all x >_ 0 then u(x, ) >_ 0 or u(x, ) <_ for all (x, ) respectively.

Proof. A straightforward modificatiqn of Volpert’s argument [14, p. 264], shows
that for fixed iS there exists a sequence of solutions u of (2.1) with smooth initial data
Uo(X ) and zero boundary data which converges to a solution u of (2.2)_in the following
sense:

lim f0 lu(x,t)-u(x,t)l dx-O
e>O <--x<r

for any r> 0, >0. Hence integrating in time implies by Lebesgue’s dominated conver-
gence theorem that

lim f0rfo lun(x,t)-u(x,t)l dxdt-O
e-,O <--x<r
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for all T>0. It follows that u converges to u, pointwise a.e. and u, is a distributional
solution of (2.1) in L. Moreover the initial data Uo(X ) is taken on in the weak
topology, i.e. limt_of(u(x,t)-Uo(X))p(x)dx=O for all p(x)C(R). Hence the
conclusion of Lemma 2.2 is an immediate consequence of Lemma 2.1.

Lemma 2.1 and 2.2 ensure the existence of nonpositive and nonnegative solutions
of equation (2.1) and (2.2). For such solutions the following corollaries of Theorem 2.1
hold.

COROLLARY 2.1. Let u be a sequence of nonnegative solutions of (2.1) with smooth
initial data vanishing at zero and infinity and with u(O, t) O. If q,(u) >- 0 for u >_M, then

[u(’,t)lo<-c,
where C is independent of e and 19.

Proof. We use the same line of argument as in Theorem 2.1 with entropies of the
form

l(u)-(u-M)2

2
for u>_M, /(u)-0 otherwise,

where u(u)>0 for all u _> M.
COROLLARY 2.2. lThe conclusion of Corollary 2.1 holds if the u are nonpositive and

q satisfies q( u ) <_ O if u<_ M.
Proof. Use the entropies

l(u)-(u+M)2

2
for u< M, rt (u) 0 otherwise.

COROLLARY 2.3. Let Uo(X) be a smooth function vanishing at zero and infinity. Fix 19
and suppose that there exist M such that for lul>-M, u,1,(u)>__O, then the solution u, of (2.2)
with initial data Uo(X ) satisfies

where C depends only on f, q, and the L norm of the data.
Proof. By Theorem 2.1 there exists a uniformly bounded sequence of solutions u

of (2.1) with initial data Uo(X ) and zero boundary data. Standard methods will give a
bound on the spatial total variation of u independent of e. For background material,
we refer the reader to [14, 17 and 18]. Thus Helly’s theorem [9] can be applied to
obtain strong convergence of the family u to a solution u, of (2.2) as e vanishes. The
L bound on u which is independent of e and iS yield the desired result.

COROLLARY 2.4. Let Uo(X ) be a smooth function vanishing at zero and infinity. If
Uo(X)>_O and uq(u)>_O for u>_M or if Uo(X)<_O and uqff u)>_O for u <_ -M<0 then the
conclusion of Corollary 2.3 holds.

The next cases that will be considered have forcing term (u) satisfying

(2.8) u(u)<0 for u>M and/or
u(u)<0 for u_<-M

for some M_>0.
We now estimate the solutions of (2.2) on the generalized backward characteristics

introduced by Dafermos [2]. Consider a solution u(x, t) to the equation

ut+f(u)x+g(x,t,u)=O
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where f and g are smooth and f is either strictly convex or strictly concave in u.
Through each point (x, t) there exists backward generalized characteristics which con-
sist either of a single classical characteristic or an infinite number of curves spanning a
funnel confined between two classical characteristics. The backward classical character-
istics are globally defined on the common domain of definition of f and g. In our case
the backward characteristics either runs into the x-axis or runs into the t-axis. For
equations which admit only outgoing waves, i.e. f’>0, we obtain the following result.

THEOREM 2.2. Suppose that f’ >0 and f" =/=0. Let Uo(X) be a smooth function with
compact support contained in (0, oo). If there are constants M and a such that for lul >_M
uck(u)<0 and ( f ’( u)/q(u))(u/lul) -> a>0 then there exists a sequence of solutions u
of (2.2) with initial data Uo(X ) satisfying

i) limx>oU(X,t)=O for all t>_O,
ii) lun(x,t)l<_const(1 + [lnxl)for all (x,t)R+R+ where the constant is indepen-

dent of 6.
Proof. Since Uo(X ) has compact support and f’>0, the t-axis is noncharacteristic

for (2.2). Arguments similar to the ones used by Oleinik [10] will yield the existence of a
sequence u of solutions of (2.2) which are uniformly small for x << 1. Hence i) follows.
We shall denote by C.t the set of all classical backward characteristics originating at
(x, t). We note that the definite, sign off" insures the existence of generalized backward
and forward characteristics [2]. In order to estimate the solutions on classical backward
characteristics we recall that if (x(t), t) belongs to a classical backward characteristic

lim un(u,t)- lim un(y,t)-un(t)
yx+ yx-

where u(t) is absolutely continuous in and satisfies the following system of differen-
tial equations.

(2.9) du ok(u) dx ,(-d-i x + -d-i=f u)

or equivalently sincef’>0 implies x’ >0

(210) du= q(u) dt_
ax f’(u) ax f,(.)"

Let (if, t-) be an arbitrary point in [0, oo)[0, o). The following two cases need to be
considered.

i) The intersection of C,t-with the support of u0(x) is nonempty.
ii) The intersection of C,t-with the support of Uo(X ) is empty.
Case i. Let (x0, 0) C,t-- (supp u0(x) 0, oo)}. Let M be such that uq(u)<0,

-(u/lul)f’(u)/qffu)>-a>O for ]ul>_M and [Uo(X)l<M for all x. Then either lu(x,t)l<M
for all (x, t) C,rand we are done or there exists (x, t ) C,t-such that lu(x, t )1 M.
We suppose first that u(x, t)=M. In what follows for any point (x, t) C,rwe shall
use the notation S(x, t) to indicate the classical backward characteristic in C,t-contai_n-
ing (x, t) and we shall write s(x, t) for the section of S(x, t) joining (x, t) and (if, t).
After separating variables in the first equation of (2.10), we integrate over s(x, t) to
obtain

ds- <_ln/x
Xl X"-

l’
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where ff=u(,/). We note that f’>0 implies that O<k=minsuppu<x(O)=xo<x
and since <0 for u_>M it follows that 7_>M, hence

and

a(-M)<_ ’/ds<_lnY,/k,

<M+lln/k.
If u(x 1’ )"-- --M the proof is analogous and will be omitted.

Case ii. By uniqueness of solutions for ordinary differential equations it follows
that u(x,t) is zero in C,. Since (,t-) was an ordinary point in [0, oo)[ 0, oo) the
proof of the theorem is complete.

For incoming waves, i.e. f’< 0, the following result holds.
THEOREM 2.3. Suppose f’<O and f"0. Let Uo(X ) be a smooth function with

compact support. If there exist constants M and a such that for lul_>M, u(u)<O and
(f’(u)/q,(u))u/lul>_a>O then there exists a sequence u of solutions of (2.2) with initial
data Uo(X ) such that for any (x,t)R+R+.

[u,(x,t)l<_const(1 + [lnxl)
where the constant is independent of 6.

Proof. Two cases need to be considered.
Case 1. The intersection of Cx, with the support of Uo(X) is empty. Here as in the

former theorem the local uniform bound on the u, is a consequence of the uniqueness
of ordinary differential equations.

Case 2. The intersection of Cx, with the support of u(x) is nonempty. The bound
is obtained integratin over classical backward characteristics. The analysis is the same
as in Case of Theorem 2.2 and will be omitted.

Remark. By Lemmas 2.1 and 2.2, if (0)=0 and Uo(X ) is either nonnegative or
nonpositive and if the hypotheses on and f’ hold for either u>_M or u_<-M

respectively, then the conclusions of Theorem (2.2) and (2.3) hold.
Example 2.1. Let

 (u):cou,

This is a model situation considered by Whitham [16].
Case (i). c0>0. Theorem 2.1 and Corollary 2.3 apply with arbitrary c and c2

yielding uniform bounds on the solutions u of (2.1) and us of (2.2).
Case (ii). Co<0, c>0, c2> 0. For positive data the characteristics corresponding to

CoUut’-" ( ClU- c2 )Ux"" X_{_
--O

are all outgoing since clu+c2>O. Since limu_,oof’(u)/q(u)=cl/Co<O, Theorem 2.2
applies.

Case(iii). c0<0, c>0, c2<0. Here limu__oof’(u)/q(u)=c/co<O. For negative
data the characteristics are all incoming, i.e. cu+ c2<0, and Theorem 2.3 applies.

We now consider solutions of (2.2) where the speed of propagation f’ does not
have a definite sign for all values of u. In this case there are waves intersecting the t-axis
and, no boundary data can be imposed at x=0. In order to bound solutions on
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backward characteristics intersecting the t-axis we suppose that the speed of propaga-
tion satisfies an appropriate sign condition at infinity.

THEOREM 2.4. Let u,L(R+R+) be a sequence of weak solutions of (2.2) with
smooth initial data Uo(X ) which has compact support contained in (0, oo). If there exist
nonnegative constants M, co, c and r such that for ]u]_>M, ]q( u)l<_CoU andf ’(u) <_ c]u]r,
then for all T>0 and N>0

ess sup
(x,t)[O,U][O,T]

[xo/",u(x, t) 1_< const,

where the constant is independent of.
Proof. It will be supposed that uq(u)<0 for lul>_M, otherwise the result follows

from Theorem 2.1. First energy methods and Gronwall’s inequality will be used to
show that for all s_>

as<_c( s, ),

where c(s,6) are constants such that lims_.o C(S,)l/2s is finite and independent of &
Let p(x)-x1 if x<_N, p(x)-Nl"+3/x2 if x>_N, p will be specified below. For
notational convenience ff-q, and u-u will be used. Multiplying equation (2.2) by
tk(x)( u+ 1)2- and integrating in space and time yields

f0rfoax-- y’(U)UxaXat

foTfo (x)(u)(u--
X-+-

1)2s- q(x)lu0+ 11-dxdt+fo 2s

Letting q(u) ff’(y)(y+ 1)- dy, we can rewrite the last equation as

(2.11)

fo q(x)lu+
dx- forfo((x)q(U))xdx dt+forfo/’(x )q(u)dx dt

foTfo (u)(X)(u-F’X.I_ 1)2s-1
dxdt+fo ff(x)lu+2s ll2sdx

=I1 +12 +13 +f0 (X)Iu0+2S llz

Since if(0) 0 and limx_ (x) 0 and since for each fixed i lim q(un(x, t)) 0, we
have that limx_oo(x)q(un(x,t))=limx_.Oe/(x)q(u,(x,t))=O hence I vanishes. The
plan now is to obtain the appropriate bounds on the integrals 12 and 13 and use
Gronwall’s inequality. The first estimates that will be obtained are for the restriction of
the integrals I and 13 to [Nn, 00][0, T] where N, is chosen so that N,>_N and
lun(x,t)l<M for x>_Nn and t[0, T]. Without loss of generality it will be supposed that



SOLUTIONS TO SINGULAR CONSERVATION LAWS 1133

N>_3, hence for x>_N Itk’(x)l-13Np+/x3l<+(x) and

fo fN7 forfN7 foU(y dydxdt(2.12) (x)’q(u)dxdt<-kl 4,(x) + 1)2-’

<-k (x) 2s
dxdt

where kl-Suplul<_mlf’(u)l. The estimate of I over [N, c][0, T] is obtained as fol-
lows:

x/ dxdt<_k= ,/,(x)lu/ 11 dt

where k2- sup,_<tl(u)l. In order to estimate 12 and 13 over [0,N] [0, T] some further
subdivision of the domain of integration will be needed. In what follows k will denote
any constant which is independent of i,p, q, T and N. Let

A- ((x,t)" lu(x,t)lM),
AI.t--Am("I [0,N] [0, T] and At=Af3 [0,N] [0, T].

Then

(2.14) ff.+ x+
1)2-

dxdt

<_g(M+ 1):Sforffp x,-’
2s + X+ dxdt

MW,(/s+ /f)r.
Noting that

ff+’(x)q(u)dx at=ffPXP-’’(Y)yZ-’dy dx dt

Ne 1):+ ff u+
K(M+ T-c _px-it follows that

ff. ( ’(x)q(u) -q(u)(u+ 1)2s-I

7, x+

KNP(M+ 1)9s+r
2s --pc

(u+l)2s+r )2s+r +c]u+ l]2s dxdt

+ffxP-I 2s-I

x+ (u)u dxdt.

Since u(u)<0 the last integral is negative, hence it will be sufficient to bound the first
integral. For this let p-(2s+ r)co/c; then

(215) ff [e/’(x)q(u) -’(u)(u+ l)2-I
x+ dxdt<_kNp (M+

2s
1)2s+r



1134 MARIA ELENA SCHONBEK

To estimate 12 and 13 over [N,N,] [0, T] let B=AmN[N,N6][O, T] and Bt=Amfq
N, N, [0, T]; then

(2.16) ffB[t’(x)q(u)--dP’(U)(u+l)XS-1] foTfo 2Sdxx+ (x) dxdt<_K ,(x)lu+ 11 dt

and

i’t" ,(x)q(u)dxdt<_KN+2(Nn_N) (M+ l)2s

; 2s
T+ffBG(x) (U+2s+r1)2s+r

Hence

(2.17)

ff,;,,,(x)q(u)axat<KV,+ (M+) fo fo I
2s

NnT +ll+ul
r oop(x ) lu+l

2s
dxdt.

And finally

(2.18) (u),() (u+ ):’-’ddt<Co +()lu+ 1 t.
x+8

It is in this last step where the linearity of (u) for large u is needed. Combining
inequalities (2.11) through (2.18) yields

 o   x lU+ll2s
dx< (x) lu+ l2"

2
a+ Zs- [(+M)N]’

2s ( l + c2s ) dx dt"

By Gronwall’s inequality it follows that

fo q(x)(u+ 1)2
2s

dx <_.KNnT
2s [( +M)N]f.o q(x)lu+2s 112 dx

expr l+u.l.(l+co2s

Taking the 2s root on both sides of the last expression and letting s- yields

irn (fo(x)lu+ 112") /2 _<[(1 +M)NexpcoT lim (x)luo+ l)2Sdx
S--- O0

l/2s

Since for all x<_N, (X)--’xP--xc/c’(2s+r) the last inequality implies that

ess sup
(x,t)[O,N][O,T]

Ixo/,ul<_21uolooN+o/,( +M)expcor.

Theorem 2.4 applies in the following examples.
Example 2.2. Letfand be smooth functions which satisfy for lul>_N, f’(u) -u

some s_> and ,#(u)-cou, Co<0.
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Example 2.3. Let f and be smooth functions such that for lul>_N, f’(u)--CllU[+ c
and (u)=cou where c0<0, c <0 and c2 is arbitrary.

It is worth noting that this last example includes the case ,k(u)=cou, f’(u)=cu+
c2, co<0, cl<0 for u positive. Whitham [15] considers this case as a model for spherical
gases.

3. Existence of solutions. In this section we establish the existence of solutions to
the initial value problem

(3.1) ut+f(U)x +’’alp(u) --0, U(x,O)--Uo(X),
X

where the behavior of f, and u0 is described in the theorems of 2. A weak solution of
(3.1) will be obtained as the limit of solutions u of (2.1) as e and i 0 or as the limit of
solutions u, of (2.2) as dl0. We note that in general it is necessary to establish strong
convergence since nonlinear maps are generally not continuous in the weak topology.
That is if u, converges weakly to ,f(u) need not to converge to f(ff). The classical
approach to problems of this type is to obtain uniform estimates on the amplitude and
on the derivatives of the solutions in an appropriate norm, then appeal to some
standard compactness argument in order to pass to the limit, i.e. extract a subsequence
of solutions which converge strongly to the solution of the limiting equation. The
approach here will be to use a priori bounds on the amplitude of the solutions together
with results of the theory of compensated compactness [12]. No uniform gradient
estimates will be required. We first state some results in measure theory and in the
theory of compensated compactness. The first result characterizes composite weak
limits in terms of expected probability measures. For the proof we refer the reader to
[12, p. 147] and [1].

THEOREM 3.1. Let u*(x): R-Rm be a family offunctions such that lu*loo <M. There
exists a subsequence u and as associatedfamily ofprobability measures (Vx(A),x RO,A
Rm} with compact support, depending measurably on x such that for all continuous

functions g: Rn- R

limg(u*)(x) (Vx,g)=fng(h)dvx(h) a.e. in Rn,

where the limit is taken in the weak-star topology ofL.
From Theorem 3.1 it follows that strong convergence corresponds to the state-

ment that Vy is a point mass a.e. [12, p. 154]:
COROLLARY 3.1. Let u converge to u in the weak-star topology of L. Then u

converges strongly to u in L, <_p< oo ifand only if vx=Su(x)fOr almost all x.
Proof. If u converges strongly to u by the last theorem, we have

F(u)(x)- lim F( ue) (x ) ( vx, F( A ) )
0

for all continuous F, which shows that v=i(x). For the converse we note that if

Vx 8u(x) then

u*u and (u’)2 2 LOOu in weak star.

From Theorem 3.1 it follows that the deviation between weak and strong conver-
gence is measured by the spreading of the support of vx [3]. That is, let g be Lipschitz
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continuous; then

g(lim u*(x ) limg( u*(x )))]= f [g(u)--g(,)] dvx(, )

_< sup Ig(u)-g(,)l<_Ksuplu(x)-l

_<Kdiam convhull supp vx,

where K is the Lipschitz constant of g. These remarks imply that it will be sufficient to
show the reduction property

(3.2)

where vx are the probability measures associated to the solutions u of (2.2). To pass to
the limit for solutions of (2.1) we reduce the problem to finding convergent subse-
quences of (2.2) by letting first e go to zero for fixed & The next lemma by Murat and
Tartar describes a certain nonlinear function which is continuous under weak limits, it
says that given two vector sequences bounded in L2, if the rotation of one sequence and
the expansion of the other are controlled then the inner product is continuous. More
precisely

LEMMA 3.1. Let Pn and q, be two sequences uniformly bounded in (L2)N. If divp, lies
in a compact set of Hd and curl qn lies in a compact set of Hl-c, then there exist
subsequences Pn and qn such that

Pn’qn-*P’q in the sense of distributions where Pn-*P, qnq in (L2)N weak.

Proof. (For details see [6], [12, Example 3, p. 167 and p. 179]). Roughly speaking,
by Plancherel’s formula it suffices to show that

(3.3) /9,. c,-/. -* 0.

The weak convergence of the p, and the q, insures the convergence of (3.3) on
compact sets and the differential constraints given in the hypothesis guarantee that the
Fourier transform is small at infinity.

The program now is to use the results of Theorem 3.1, Corollary 3.1 and Lemma
3.1 together with the notion of entropy, cf. Definition 2.1, in order to show the
reduction property (3.2) for the probability measures associated with the sequences of
solutions of (2.2). In the future for notational convenience we shall write q,H"-1 and
q,L to indicate that , is a sequence of distributions which lie in a compact set of

H or which lie in a bounded set of L’loc, respectively, and 31L will denote a set of
bounded measures. The notation q, H-+ 31L will be used to indicate that ,-,, +, where , /_/- and q,: 31L. The next theorem due to Tartar makes the connec-
tion between results on compensated compactness and the weak limits of solutions to
conservation laws. It says that if a sequence of approximate solutions of

(3.4) ut+f(U)x-O
has the correct entropy production it will converge to an exact solution of (3.4). More
precisely

THEOREM 3.2. ([ 12, p. 200]). LetfCI. If u= u*(x, t) is a sequence of approximate
solutions of (3.4) uniformly bounded in L which satisfy the entropy condition

o +o__(3.5) O.r(u, ) oxq(U,)nl
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for all entropy pairs (rl, q) with convex, then there exists a subsequence uk such that u
converges in the weak star topology of L to an exact solution fie C(O, T; H-ocl(R)) of
(3.4) and

i) f( u ) f(fi) in the weak topology ofL,
ii) 7 satisfies Lax’s entropy condition,
iii)/ff" >0 (orf <0) then u in Lp, <_p< o.
Proof. Only the main ideas will be presented. For details we refer the reader to [12,

p. 200]. Let (r/,q) and (2,q2) be two entropy pairs with 1 and r/2 convex; by
condition (3.5) we have

diV(l,ql)-i,+ql,n +63]L,

curl(-q2,2)-2t+ q2,H. +).

In order to apply Lemma 3.1 the following result by Murat is needed. The proof can be
found in [8] or [12].

LEMMA 3.2. If gH-1 +631L and if g lies in a bounded set of W-’ then
ge.H I.

By hypothesis r/i,+ qix, i- 1,2 lie in a bounded set of IF’-1,oo hence Lemma 3.2 and
condition (3.5) yield div(r/l,ql)tEn- and curl(-q2,r/2)H-. By Lemma 3.1 it fol-
lows that

(Vy,Blq2--B2ql)-- (Vy,’rl,)(vy, q2 )-- (vy, 12 )( vy, q2 )

where Vy is the family of probability measures associated to u. The last equation states
that there exists a bilinear form B which commutes with Vy, i.e.

Bovy-vyoB.

Under this condition Tartar shows that the reduction property (3.2) holds, i.e. Vy
reduces to a point mass ([12, p. 204-207]) iffis not affine on any interval.

THEOREM 3.3. Let k,f and uo be smooth functions which satisfy the conditions of
Theorem 2.1, Corollary 2.1 or Corollary 2.2. If u is a sequence of solutions of (2.1) with
initial and boundary data u(x, 0)- Uo(X), u**(O,t)-O then there exists a subsequence u,,
which converges to in the L weak star topology and

i) f(u,k)f() in the L weak star topology,
ii) is a weak solution of the Cauchy problem for the singular conservation law (3.1)

with initial data Uo(X) and satisfies Lax’s entropy condition,
iii) iff"=/=O then uk in LP([O, T](a, fl)), O<a<fl< oo, p< o.
Proof. The conclusions of Theorem 2.1 and Corollaries 2.1 and 2.3 imply that the

solutions u have uniform a priori bounds in L. In order to apply Theorem 3.2 we
need to establish entropy condition (3.5). Multiplying both sides of equation (2.1) by
we obtain

rl(u) +q(u)x+rl’(u)k(u)-erl’(u)(u)
X"[- xx"

Since erl’(u)Uxx-erl(U)xx-el"(u)(u,) and r(’_>0 we have that

(u) +q(u) + <el(U)xxx X"-
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Letting e go to zero yields

(3.6) l(un) +q(Un)x+
( ,(

<0

where un is a distributional solution in L of (2.2). Let O--rlt-kqx; then for any set E
contained in [a,/3] (0, T) 0<a</3< oo

(3.7) IO( E)I<_KfEIXtI+ IXxl dO g,

where X is a smooth positive function which is in E and zero outside a neighborhood
of E and has bounded gradient. We note that by (3.6), rltd-qxk-rl’/(x-k ) is a
nonpositive measure, hence by (3.7) it is sufficient to show that ,l’ck/(x+) is a
bounded measure to insure that the entropy condition (3.5) holds. Since un was bounded
in L]oc (cf. 2) ,l’(un)q(un)/(x+) is contained boundedly in Loc and hence is a
bounded measure. Theorem 3.2 now insures the existence of a subsequence u of
solutions of (2.1) such that u,ff and f(u)--,f() in Loc weak star and ff is a
solution of (3.1). Moreover, if f"0 the sequence u, converges strongly in Loc(R+
R+)p< o. Since the initial data Uo(X ) is taken on weakly by the solutions uo of (2.2)
we have that for any test function q

f a <_f
+ f

It also follows that the initial data u0 is taken on weakly by the solution ft.
COROLLARY 3.3. Let f, ck and uo be smooth functions which satisfy the conditions

described in Theorems 2.2, 2.3 or 2.4. If us is a sequence of solutions of (2.2) with initial
data Uo(X) then there exists a subsequence uk which converges in the weak star topology
of L to and the conclusions i), ii), iii) of Theorem 3.3 hoM if we replace the sequence
Ult, by usk.

Proof. Since the un are obtained as the limit of a subsequence of solutions u of
(2.1) the proof follows the same steps of Theorem 3.3 and will be omitted.
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SOME PERTURBATION RESULTS AND THEIR APPLICATIONS
TO STABILIZATION OF HYPERBOLIC SYSTEMS*

e. . McKENNA AND I. LASIECKA

Abstract. Real selfadjoint perturbations B of a real symmetric operator T on L2( are considered.
Necessary and sufficient conditions for the spectrum of T+B to remain real are given. This perturbation
result is used to solve certain stabilization problems for hyperbolic systems.

1. Introduction. When solving differential equations for vibrating systems of the
form

(1) UttWAu:O,
where A is an n n matrix, a necessary condition for stability of the solution is that all
eigenvalues of A be real. Indeed, if ,j. is the eigenvalue corresponding to the eigenvector
v, then e +- Xtv is a solution of (1). Thus if hy has nonzero imaginary part, the solution
will grow exponentially.

In this paper, we consider infinite-dimensional versions of (1), where the operator
A= T+B with T real symmetric on L2(f) and B a small but nonselfadjoint real
perturbation. General perturbation theory predicts that if B is small, then the spectrum
of B will be close to that of T. However, it does not tell us whether or not the spectrum
remains real.

If T has an eigenvalue of multiplicity greater than or equal to two, then one can
construct arbitrarily small perturbations B such that T+B has complex spectrum. One
simply chooses B-[-bb 0] on a two-dimensional subspace of the relevant eigenspace.
This works whether the space is finite- or infinite-dimensional. Clearly, this also works

0 for someif a subsequence of eigenvalues becomes arbitrarily close, i.e. if
subsequence {ng}. Thus, in order that the spectrum of T+B, o(T+B), should remain
real under arbitrarily small perturbations B, it is necessary that (a) the spectrum of T
must consist of eigenvalues ’i of multiplicity one, and (b) there exists d>0 such that
?,+-,_>d>0. In this paper, we show that these conditions are sufficient. This is
done in 2.

In order to guarantee the stability of (1), one must show that the eigenvalues are
real and in addition, that the corresponding eigenvectors form a Riesz basis. By
modifying arguments given in [1], we show that this is true under the same hypotheses
as before, namely eigenvalues of multiplicity one and the gap condition. This is done in
{}3. In 4, we apply these theorems to some problems in stabilization and in 5, we give
examples of obvious physical importance, where the gap condition is satisfied.

Throughout the paper, f will be a smooth bounded region in R" with smooth
boundary. The span of a finite number of vectors h t,’" ", h, is denoted (h ,-.., h, }.

2. The main theorems. The main tool used in the sequel is the following technical
lemma..Here H is a real Hilbert space.

LEMMA 1. Let T: H-.H be a bounded linear operator having eigenvalue with
eigenvector h H. Let H-{hj} H2, where h ..I-H2, and assume that IIT[II<I. Let
T2--T]u and let O<e<(1-1lT2ll)/4. Then if IIBll<e, the operator T+B has a real

*Received by the editors February 14, 1983.
Department of Mathematics, University of Florida, Gainesville, Florida 32611.
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eigenvalue h satisfying l1-,l<2e. Furthermore, if )k 2 is any other eigenvalue of T then

Proof. We write

where

al2" n2-->{hl),
B22" n2 n2.

We define a (nonlinear) map on the space

B- {uE({h},n)" Ilull_<l} by

F(u)(y)-(T2u+B21 +B22u)(I+BII "+" nl2u)- (y).

Clearly Fu is a linear map with domain (h} and range H2. We verify that IIFull 1.
This is the case since II(Fu)yll<_(llT211+ 2e)(1-2e)-lllYll and since e<(1-IIT211)/4, this
guarantees that (llTll+2e)(1-2e)-<l. Next we verify that F is a contraction on B.
Let y {h}, Ilyl]- 1,

(Fu)y-(Tzu +B2 +B22u)(I+B +B2u)-’Y,
(Fu2)Y (Tzuz+B2, +B22u2)(I+BII +B12u2)-1 y.

Then, an elementary calculation shows that

IIFu,- Full<-II TzlI (1 )-llu2- u, II-
Thus F: B B is a contraction and has a fixed point. Therefore, there exists u: (h } --, H2
with Ilull_< and

y=(I+B,I +B,2u)()7), u(y)=(Au+B2, +B22u)()7).
Without loss of generality, let 119711= 1. Since u: {h } H2 has rank one, it follows that
u(y)=u(h9)=hh 2 for some h 2H2 with IIh211 < 1. Thus we have

)kh2 B21 T2+B22 h2
and we may conclude that the vector )7+ h 2 is an eigenvector of T+B and , is the
corresponding eigenvalue. Since all the spaces in question are real, , is real. Further-
more

I(-x)l-Ily-YlI= II(B,, +B,2u)fill<2e.
This proves the existence of a real eigenvalue within 2e of 1. Now suppose there exists
and h 2 such that

2 B21 T2 + B22 /2
Then we can check that
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In particular I.-IIT21112ellll1/2. This would allow us to define another linear map
a by ft(e.f)=ch 2, with Ilall_<1/2. This would violate the uniqueness of the fixed point of
F. Thus if is another eigenvalue of T+ B, we have

This concludes the proof of the lemma.
We are now in a position to prove our first theorem.
THEOREM 1. Let T be selfadjoint T: H--, H, where H is a real Hilbert space. Assume

that o(T)-{)t}= where lti<lti+ --, o, inflhi-hl>_d>O and each eigenvalue is of
multiplicity one. Then if llBIl<d, the spectrum of T+B is real and consists of eigenval-
ues lt of multiplicity one satisfying I, ,il<d/3.

Proof. We shall show that for each i, there exists precisely one real eigenvalue
such that Ih- l-< d/3.

Let k=lt-d/3 and let S=d/3(T-kI)-. Note that IISII- 1, is an eigenvalue of
S with associated eigenvector , the ith eigenvector of T. If H2={} +/-, we have
IISln=ll-(d/3)suPlA-Aj-d/31-t<_1/2. Thus the hypotheses of the lemma apply to S.
Note that h* is an eigenvalue of T+B if and only if (d/3)(A*-k)- is an eigenvector
of (d/3)(T+B- kI) . However,

(2) -[(T+B--kI) -(T-kI) ]--[(T+B-kI) B(T-kI)11

-<5 5-Ilnll Ilnll?- -5-11Bll Ilnll.
Since ]IBII((d/3)-IlBI])-<- the hypotheses of the lemma apply with e’-{. Then
(d/3)(T+B- kI)-l has precisely one real eigenvalue X satisfying I- ll<2e’= -.

Thus X’, defined by
d

is an eigenvalue of T+B, and recalling that k-A-d/3, an elementary calculation
yields that

d( 2e’ ) 2d
I)’-xil <- 2e’ -i-"

THEOREN 2. Let T be as in Theorem 1, and assume in addition that
+ oo as i o. Then for any B E(H), there exists an integer N such that if h is an
eigenvalue of T+B, and >_N, then h has multiplicity one and is real.

Proof. The proof is practically identical to that of Theorem so we include only a
sketch. The main point to observe is that in (2), the expression (d/3-11BII)-IIBII can
be made arbitrarily small by choosing sufficiently large. The rest of the calculations
then go through as before, showing that dose to each eigenvalue of T there is an
eigenvalue of T+B of multiplicity one.

THEOREM 3. Let T be as in Theorem 1. Let B be a compact operator. Then ifX is an
eigenvalue of T there exists an integer Nn such that i>_N implies that near A there is
exactly one eigenvalue of T+ B. Moreover, is real.

Proof. The proof in this case is again similar to that of Theorem 1. The only
change is to observe in (2) that if B is compact then the norm of B(T-(Ai-d/3))-may be made arbitrarily small by choosing large enough. The rest of the theorem goes
through as before.
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The next theorem shows that the requirement that T be selfadjoint can be relaxed.
THEOREM 1’. Let H be a real Hilbert space and let T: H H be such that:
(i) The resolvent of T is compact.
(ii) o(T) {i}= , where ]’i- vI>-d>0 and each , is real of multiplicity one.
(iii) The corresponding eigenfunctions ki are similar to an orthonormal basis, i.e., the

eigenprojections Pi corresponding to eigenfunctions ki and eigenprojections Qi
corresponding to some orthonormal basis are related to each other by the
similarity transformations Pi W-lQiW.

Then there exists e>0 such that ifllBIl<e, then o(T+B) is real.
Proof. Let k=,-d/a for tt a constant to be determined later. Let S=(d/a)(T-

kI)-. Observe that is an eigenvalue of S, and that if H2 {}, then for an
appropriate choice of a, we have IlSl=ll< 1. Indeed, since ’l(x, i)12< CIIxll 2, we have

IIsl. (x)ll IIw-’llllwllcllll= IIw-lllllcllli-a dll- 1/[ a-1

Now choosing a so that 1114-llllWIIf(a-1)-l<l, we conclude that IlSl=ll< 1, Thus
the hypotheses of Lemma are satisfied.

Notice that h* is an eigenvalue of T+B if and only if (*-k)-l(d/a) is an
eigenvalue of (d/a)R(k, T+B). Since k is real, it is enough to show that (d/a)(*-
k)- is real. However,

l,dR’k T+B)-d -,
-d(r+B-gI) -e+s,

where (as before)
d II<r/-kI)- B(T- kI)- ’ll
d

d I111 II(T- kI)ll
-I (1- I111 (T- kI )-’ II)-’-

Since,

1 1/a) -d/-’)( 1) d’

we have

I!11IIPII < d Ilnll tt Ilnll/dl IIll/d
In order to satisfy the assumptions of Lemma 1, we must require that

a) - C(3) 411zll l-llzll <llw-’llllw]l ,---si-i

which is accomplished by choosing IIBII sufficiently small. By Lemma 1, we conclude
that (d/a)(h*-k)-1 is real and therefore ,* is real. This procedure, applied to each i,
yields the result of Theorem 1’, namely that all eigenvalues are real.
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3. A perturbation result in complex Hilbert space. In the applications of {}2, the
requirement that the spectrum of T+B be real was merely necessary for stability. For
sufficiency, we shall need another theorem which is similar to one appearing in the
literature. Rather than repeat an entire proof on account of one small technical
variation, we shall outline the main steps and refer to Kato [1] for the details.

THEOREM 4. Let T be normal, with compact resolent and simple eigenalue ,
I,-?b.l>d>0. Let B(H) with IlBll<_e<d/2. Then we have

a) o(T+B)-{/}], satisfyinglh-ll<d/3, k=1,2,3,..-.
b) If Q are the eigenprojections of T+B and P are the eigenprojections (corre-

sponding to h) of T, then there exists an invertible WEE(H) such that

Qk=W-Ipkw.

Proof. The proof is similar to that of [1,Thm. 4.15a, p. 293]. We shall use the
following facts (referenced if not elementary).

(i) T normal IITII- spr(T) where spr(T) is the spectral radius of T.
(ii) spr(T-I)-l dist(!, o(T))-i.
(iii) II(T- hi)-ll dist(h, o(A))-.
(iv) T normal and B bounded imply that ifl,-,l=dk/2. Then II(A +B-hI)-ll

<_[(d/Z)-IIBII]-.
(v) If B(h,d/3)= {hC: I,-hl_<d/3 ), and if IIBIl<3/d, then B(h,d/3) contains

exactly one eigenvalue of T+B of multiplicity and no other points of o(T+ B) see
[1, Thins. 317, 318, p. 214]. We will use the following lemma due to Kato.

L[Mt 2. Let {P)g=o.l be a complete family of orthogonal projections, and let
{Qg)j=o,l be a family of (not necessarily orthogonal) projections such that QgQk=Ijk,
Qg. Assume that:

(i) dimpo dim Qo rn<,
(ii) Yj% lllPj.(Qj-P)ullZ<cllull z, c< 1.

Then there exists an invertible W such that Qj-W-PjW., j-O, 1,2,....
Therefore in order to complete the proof, it is enough to establish the validity of (ii)

(we take Po=O) with Pj. and Qj as follows:

fo R(X,T+)dX,

After setting"

we have

(4)

fa R(h,T)
z -T 7 xzx- fo R(,T+B)d,

see [1, (4.38), p. 296]. We observe that since

(5)

fa/R(Qk -ff-i h T+B ) dh

(d-I1 11)dh_<C
Bk
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for some C independent of k. Furthermore,

iiz;ll_< ) /" IIR(X, T/B)II(6) C:

for some C2 independent of k. Since, by [1, p.40],

II/ull- 18 Y Ix.-xl-ll.ull
k k jk

and since

sup E Ix-xl--sup <c
j = =l j-k
kj

for some C3 >0, we have

(7) ’ IIAull= ca 2 IIP.ull=- callull =.
Equations (3), (4) and (5) immediately give

(8) 112nZull’-<-C411nll=llull
k=l

and

(9) 2 IIz’neull=Cllnll-Ilull=
k=l

for suitable positive constants Ca, C5. This together with (4) completes the proof for
suitably small IIBII. Theorem 4 yields the following"

COROLLARY 1. Let

Assume T: H H satisfies the hypotheses of Theorem 4 with eigenvectors ok l, 2, "", and
M stands for a bounded linear operator from Hn H, where H is n-dimensional real
Hilbert space. Assume that all eigenvalues "[i of M are distinct and different from the
eigenvalues of T.

Then the assertions of Theorem 4 hold on HH. More precisely with Po(Qo)
standing for the eigenprojection of T(T+B) corresponding to i (perturbed "ri), we have:
:IW invertible such that

Q-W-PgW, k-0,1,2,....

To prove the corollary it is enough to apply Lemma 2 with Q0 being defined as a
total projection on perturbed eigenvalues y. Notice that due to the completeness of the
system P, i=0, 1,2,. ., on HH,, by Corollary 1, the system Q=i=0,1,. -, is also
complete (it is similar to P). Consequently the eigenvectors of T+B constitute a Riesz
basis in H H.

Remark 1. The conclusions of Theorem may also be obtained by modifying and
expanding Kato’s perturbation theory [1,p. 293] on the complex plane. Indeed, by
modifying Kato’s argument along the lines of our proof of Theorem 4, we obtain the
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eigenvalues in small circles B(a/3,,r). Since A and B are real operators, one can
immediately deduce that if , is an eigenvalue, so is the complex conjugate. By using
the fact that in each circle there is one eigenvalue of multiplicity one we conclude that

must be real. This method relies heavily on the machinery of [1 ]. We feel our proof is
more self-contained, and gives rise to an easier estimation of the constants, using as it
does, only the constructive contraction fixed point theorem.

4. Applications.
4.1. Statement of results. In order to illustrate some of the applications of the

previous perturbation results we present the following stabilization problem for a
vibrating string.

Let be a bounded open domain in R" with a boundary F. Let A stand for a
selfadjoint generator of a strongly continuous semigroup. Assume also that the resolvent
of A is compact. Consider the following model

(10)
d2x(t) Ax(t) +g (x(t), w ) 2n), x(O) xo, x (0) x

dt 2

where the vectors g, w belong to L2().
Remark 2. As a canonical example of A one can take:

Ax=A(li, O)x, x.D(A)

with A(, 0) formally a selfadjoint strongly elliptic operator and

D(A)- or --r -0

It is well known that due to the compactness of the resolvent of A, the spectrum of A
consists of a sequence of isolated eigenvalues {A}, with -h- oo. Since A is assumed
selfadjoint, all h are real, and the corresponding eigenvectors form an orthonormal
basis in L2(f).

We assume that the first N eigenvalues of A are strictly positive (for example
A A + C2I). Hence the "free system" (when g=w=0) blows up exponentially as

IIx(t)ll+ll (t)ll-’ oo as t oo.

By introducing the appropriate vectors w and gL2(f), we wish to "stabilize"
system (10). By "stabilization", we mean the restoration of the oscillatory character of
the system. It is worth noticing that unless feedback on velocity is introduced, this is
the most we can expect. In fact the solution of (10) will not decay to zero unless a
feedback term involving xt(t ) is introduced. Stabilization is achieved by shifting the N
positive eigenvalues of A to the left half of the real line.

THEOREM 5. Assume:
(HI) The eigenvalues {,i} ofA are simple and satisfy [i+l-i[>d>O.
(H2) The coordinates w (wi, q ) ofw satisfy w v O, 1,2,..., N.
Then there exists i>0 such that for every xoD(A/2), x L2(fl) and for every

g L2(t2) satisfying IIgll(u_<, the solution of the system (10) can be written

x( t,Xo,X,)- sin(,lit)ai(Xo,Xl)li’JI- X COS(i )i(XO,Xl )li,
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where the above series are convergent in D(At/2), rli are real, ki are a Riesz basis in
D(A/2), and a(Xo,X) are bounded linearfunctionals on D(A/2) L2(). Analogously

Xt( t,Xo,X, )- X sin( rli )ai(Xo,X )rlii+X cos( rli )i(Xo, x, )rlitki

where convergence takes place in L2(t2).
As an immediate corollary of Theorem 5 we obtain:
COROLLARY 2. Under the assumptions of Theorem 5, we have

where the constant C does not depend on t, x0, x 1.

4.2. Preliminaries to the proof of Theorem 5. Set

E(I)--D(A1/2 ) x L2(a).
It is immediately verified that the original system (10)can be rewritten equivalently as a
first order system on E, i.e.,

d(11) -d-iy(t)-6y(t)+y(t ),

(12) $-
A 0

y(0) =Y0 withy (XlX

where By’- (y,w)g and D(6)=D(A)XD(A/:z). It is well known that 6 is the genera-
tor of a continuous group on E. Since o is a bounded operator on E, by standard
perturbation theorem+ also generates a continuous semigroup e(+z)t and

By elementary calculations one can easily check that the spectrum of consists of the
points:

Xi-+--i, i-1,...,N, Xi-+--hi, i-N+l,...

with the corresponding eigenvectors"

where the last vectors constitute an orthonormal basis on D(AI/2)XL2()’-’E.
According to a standard decomposition theorem (see [1, p.178]) one can decompose the
space X-" L2(t2) into two orthogonal subspaces Pu(X) and Ps(X)’- X-Pu(X) with P,
standing for an orthogonal projection onto span {’i}i-1,...,N. Accordingly, one
decomposes E into o,(E) and 6s(E), where , is an orthogonal projection onto span
{,i- 1,2,-.-,N}. Let %(Au) and %(As) be the restriction of (A) to %(E) (Pu(X))
and 62;(E )(P( X)), respectively. After setting

we rewdte (11) as follows:

dt
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where

0

s -e g(e w, .),
s -e g(e w,

Notice that the eigenvalues i- 1,-..,N of a 2N2N matrix (u are real (2N positive
and 2N negative), while the eigenvalues of 6 are purely imaginary. Therefore the
purpose of introducing a perturbation is precisely to shift N eigenvalues ofA to the left
(hence eigenvalues of 6u to imaginary axis) without perturbing "too much" the spec-
trum of s (i.e., leaving it on the imaginary axis).

For sake of clarity of" exposition we start by outlining a brief plan of the proof of
Theorem 5.

(i) By selecting appropriate vectors gu Pg we force the eigenvalues of 6u+
to lie on the imaginary axis. This can be done, due to Hypothesis (H2) by using rather
standard arguments in finite-dimensional control theory.

(ii) By requiting that Ilgll be "small" enough, and using Hypothesis (H1), we
make sure that the spectrum of+ is purely imaginary.

(iii) Having established the location of the spectrum of 6+ we must finally show
that the corresponding eigenvectors constitute a Riesz basis in E. To accomplish this we
will make use of Corollary 1. Notice that in the case of an analytic semigroup, after
having established the location of the spectrum, one can automatically conclude stabil-
ity of the system. This is however not the case in our present situation (e<e+*)t is
certainly not analytic). Correct location of the spectrum is only a necessary condition
for stability but not by any means sufficient. That’s why one must show that corre-
sponding eigenvectors form a basis.

Let us proceed with the details.

4.3. Proof of Theorem 5. Let us consider the following system of N equations:

d(13)

By (12)

o /
6.+.- A.+B. 0

Without any loss of generality, we can assume that the N N matrix Au is diagonal with
distinct real eigenvalues. Then A.+B.-A+ GW, where

A-diag[Ai]i=,...,N, G-

gl

W- wi w2, WN
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(recall g (g,), w (w, )). Provided that the N N matrix

(14) [Wr, AWr, .,AV-wr]
is of full rank, a well-known result in system theory (see [5]) guarantees the existence of
a matrix (vector) G such that A u +B has an arbitrarily preassigned set of eigenvalues.

It is then readily seen (see [5]) that hypothesis (H2) is necessary and sufficient for
(14) to be satisfied. Therefore we are in a position to select a vector gu=[gl,g2,...,gs]
such that the eigenvalues of A+Bu say -/ are all distinct, negative, and different
from , N+ 1, N+ 2,. .. Thus
(15) o(.,+,)- (---i/; k-1,. .,N,/ are real, distinct

and different from -hg, k-N+ 1,-.- }.
To proceed with part (ii), let us rewrite the original system (12) as:

d ys s 0 y+(16) - Y 0 +ffb Y u 0 Y

Notice that the spectrum of the first operator is purely imaginary. Our aim is to
guarantee that the perturbations

will perserve this characteristic of the spectrum. Therefore it is natural to view the last
operator as a perturbation of

0 +u
and then apply our Theorem 1. By exploiting explicit forms for C, , Cu and we
rewrite the eigenvalue problem for (16) as follows:

0 I 0 0 Pls 0 0 0 0 Pls Pls
A +B 0 0 0 Pg. + -iu

0 0 0 I Plu 0 0 0 0 Plu Plu
0 0 A+Bu 0 2u Bus 0 0 0 2u 2u

The above yields:

(17a)
(17b)

(17c) [A 0

0 A,+ B,

Equation (17c) can be viewed as a perturbation of

0 Au+ Bu
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on the real Hilbert space L2(). Notice that all the requirements of Theorem 1’ are
fulfilled. In fact all the eigenvalues ofA and A+B are real, negative and distinct (see
(15)) and the "gap condition" is satisfied with

d-min(lX,-Xl,ij-N+ 1,... IX,-t,]l,i-N+ 1,’" ,k-1,2," ",N}.
The eigenvectors of

A 0 ]0 A,+ B,

generate a Riesz basis. This can be readily seen by recalling that A has a system of
orthonormal eigenvectors which are a basis in P(L2(f)) and A+B, has distinct
eigenvectors, which generate N linearly independent eigenvectors in P,[L2(fl)]. There-
fore we are in a position to refer to Theorem 1’ in order to claim that for IIBII, IIBII,
IIB,II sufficiently small, _#2 are real and negative and consequently the eigenvalues of
C+ are purely imaginary and equal to +--il. Next we observe that the condition that
IInll, IIn,l], IInl] be small, can be slightly relaxed so as to demand only that IIgll is
small (i.e., Ilnsll). In fact after rewriting (17c) we arrive at

(A + Bs )qg +Buseg u I:z qt" ( A u+ Bu ) "q"
u + B uqZ

Hence after noticing that [Au+Bu+p,2I] is invertible for all -t2$o(A,+B,,) (it is
enough to consider only such/ since otherwise our assertion is proved), we have

(18)

It is readily seen that (18) depends on the product of Bu, and B,,, therefore for all
-#2qo(Au+B,) it is enough to demand that only one term, namely B,, have a small
norm. This way we arrive at the following lemma which completes the proof of (ii).

LEM 3. With gu Pug selected so as to guarantee (15) and gs Psg such that IIg, II
is sufficiently small, we have

(C+3) {i#t‘; #t, real}.

To prove (iii) we simply refer to Corollary applied with

0 6gu+u
+ su 0

where T=Cs, M=C,+u, H=@sE, H,=@uE and dimH,,= 2N. It is left to the reader
to verify, by using, arguments similar to those above, that all the hypotheses of
Corollary are satisfied. (Recall that the eigenvectors of a selfadjoint operator generate
a basis in @,E.) Therefore Corollary yields

LEMMA 4. With gs Psg such that IIg, II has sufficiently small norm, the eigenvectors
+t‘ ofC+6; +t‘ =[i#t‘ff’t‘] constitute a Reisz basis in E.

Finally, using Lemmas 3 and 4 we are in a position to complete the proof of
Theorem 5. In fact, by virtue of Lemma 4 we write

y( ) e(+)tyo- e(+)t , at,( yo
k=l
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where a(y0) are linear bounded functionals defined on E-D(A/2)XL2() which
converges to a limit also in E. Lemma 4 yields

y(t) eittotk(Yo)Pk, # real.
k=l

which completes the proof of Theorem 5.

5. Examples of operators satisfying a gap condition. In this section we present
some examples of dynamic systems satisfying the condition

IX,-Xjl->d>0 if i4:j.

The first and most obvious example is when [2 c_l, that is when we consider a
Sturm-Liouville operator on an interval. For example, take

Ay=y" withy(0)-y(rr)-0.

Then the eigenvalues are ,,--n2, and are of multiplicity one. This operator satisfies
(h,+-h,)--,oo. We now give some examples where the gap does not go to plus
infinity. Consider the operator

A y y,, x(O)-x(rr)-O, y’(0)-0, y’(rr)=y(rr).

As before, the A(l)_ n 2 are eigenvalues with corresponding eigenvectors (x,y)- (sin nt, 0).
However, in addition, the numbers h(,)-3,,2 defined by x,-cotanrrx,, A,>0 are also
eigenvalues, with corresponding eigenvectors (x,y)-cos x,t. It is easy to check that for
large n, the solution of xn cotanrx, is approximately x- 1/(n-x) and we can verify
that h,---(n + Vtn2_ 4 )/2. Thus the gap between any two eigenvalues is

n2-- ’2n-- 2 2 n+n2+4
ash-,

As another example, consider the biharmonic operator Ay--A2y on the region-- ((x,y),O<_x<_rr, O<_y<_2/arr} withy-0 on 0t].
In this case, the spectrum consists of’eigenvalues A,m- (n2+ /-m2)2 of multiplic-

ity one and we can check that

:i(nZ-kZ)-v(m2-1Z)( nZ+ kZ+ v(m2+ ,z))l
(n2-k2)2-2(m2-12)2
(n2-k2)+f(m2-12)

.(n2+ k2) +f(m2 +/2).

However I(n2-k2)2-2(m2-12)21>_l since 7 is irrational, and therefore we may
conclude that Ihm,,--k>--1. If for all integers q, we have that la-(p/q)l>_e/q 2, we
can verify that when 2= {(x,y)R2,0<_x<_r,O<_y<_et/zrr) the biharmonic with zero
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boundary data satisfies a gap condition. The set of a satisfying this condition is of the
same cardinality as the continuum [3]. Thus, the vibrating plate equation fits into the
framework of (10).

As a fourth example, we consider a problem in heat conduction which occurs in
[2]. We consider a bar, of negligible depth on the interval 0_<x_< r. The conductivity k
of this bar is small compared to its specific heat R. The region f-(0_<x_< 1,z <0) is
filled with a material whose specific heat r is small compared to its conductivity. The
heat flow equations are

(19) lIT 0T K,r
0x2 0z

Or (02r 02’r)r-r-K+0X2 0Z 2

where T(x, t) is the temperature on the bar and r(x,z, t) is the temperature in [2. Along
with (19) we consider the boundary conditions

(20)
aT(0,t)_0, aT 0 (0,z, t) _0, 0
D- -x (l’t)-O’ - -0- (l’z’t)-O’

-a-,_0 (x,z,t)- lim r(x,z,t)-O, r(x,O, t)- T(x,t),lim
a --K OZ Z’--

0_<x_<l.

If we assume k, r very small compared to K, R, we may use a simplified model for (19)

0T K 0"t" 02T + 02r --0Or R 0z’ 0x 2 0z 2

together with boundary conditions (20). Russell [2] showed that (21) can be written as

KOrdT_A(t) whereaT= R 0zdt
with (A)-- Hi(O, 1).

In addition, it was shown that A is the square root of the Sturm-Liouville operator

ST=
K2 d2T
R2 dx 2

and thus A has spectrum

hn__(rt2R2"ff2) 1/2

K2

and the gap condition is satisfied.

Acknowledgments. We wish to acknowledge helpful conversations with Robert
Long and D. Russell.
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BOUNDARY PROBLEMS FOR THE BIHARMONIC
OPERATOR IN A SQUARE WITH Le-DATA*

LORENZA DIOMEDA? AND BENEDETTA LISENA**
Abstract. Applied boundary value problems for the bi-Laplacian often actually involve domains with

nonsmooth boundaries. The second fundamental problem of plane elasticity, the viscous flow and Stokes
problem are representative examples of problems which can be reduced to the interior or exterior Dirichlet
problem for the bi-Laplacian. In this paper we study the Dirichlet problem for A in a plane square with
LV-data, looking for a solution in potential form. By the method of pseudodifferential operators we show an
existence theorem provided the data are in Lp, l<p<3, and satisfy a proper compatibility condition. We
also solve two further boundary value problems which are related to the Dirichlet problem.

Introduction. In this paper we study the Dirichlet boundary problem for the
operator A: in a plane square, with LV-data.

In polygonal regions analogous problems were studied by many authors, for
example P. Grisvard [2], [3], . E. Lewis-C. Parenti [4], [5], M. Merigot [7], J. Necas [8],
S. M. Nikol’skii [9], K. Rektorys-V. Zahradnik [10].

For the Dirichlet problem for the Laplace operator in a polygon f Grisvard [2]
obtained some results which concern the injectivity of the operator eu=
(Au, Ulr,. -, Ulr,, ) where i IFi 0, and the index of this operator in L2.

Merigot studies the regularity of the variational solutions of boundary problems
for 2m-order operators and he obtains results similar to Grisvard in Lv spaces. Gris-
vard [3] considered a boundary value problem for the Navier-Stokes equations with
data given in H studying solution behaviour in a neighbourhood of the corners by
using the behaviour of the biharmonic equation’s solutions.

For boundary problems on the operators A and A-, a numerical approach can be
found, for example, in Nikol’skii and Rektorys-Zahradnik’s works [9], [10].

Necas studies a boundary problem for biharmonic operator with data given in the
Le subspace whose elements are transforms of functions in W-() by a linear map and
gives an appropriate definition of problem’s solution.

The Dirichlet problem for the biharmonic equation in a C-domain of the plane,
with boundary conditions in LV-sense, has been recently solved by J. Cohen-J. Gosse-
lin in 11].

In our last paper [1 ], we solved the Dirichlet problem for the operator A in a plane
sector with LV-data by a potential representation of the solution and by using the
theory of pseudodifferential operators on LV( +) defined by Lewis-Parenti in [4].

One of the motivations of [5] is the study of single and double potentials to solve
the Dirichlet problems in bounded polygonal domains with LV-data for the Laplace
operator. In 1 we state some definitions and theorems developed in [5] to which we
refer for more details.

In this paper, we study exactly the following problem.
Let f= {(x,y)[2lO<x< 1, 0<y< },

(I) A:u=O in f,
iU

_h LP(i)
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where r is the unit tangent to 02 and n+ is the unit interior normal to 0f and the
equalities are to consider as boundary limits on Lp.

Writing the solution in potential form, we obtain a boundary operator A, which is
in the new class of pseudodifferential operators introduced in [5]. The operator A is
elliptic and it has finite index for everyp 4: 3.

We also calculate the dimension of Ker(A) for <p<3, determining the "adjoint"
problem of (I). Therefore, by Fredholm’s theory, we show that (I) has a solution if the
data h verifies an appropriate compatibility condition. These results are proved in 2 of
this work.

By the potential technique, in 3, we study two further problems for A with
second order boundary conditions. The first problem has a unique solution for all
boundary data, whereas the second is solvable provided boundary data verify a proper
compatibility condition. The extension of these results to any polygonal domain in g ,
presents only technical difficulties.

1. In this section we define a class of pseudodifferential operators (pdo’s) acting on
Le([0, 1]). We find this type of operators studying previous boundary problems. The
algebra of these pdo’s has been introduced by Lewis and Parenti in [5] so we refer to
this work for details.

We shall denote the open half line (0, + oo) as R + and [0, + oo) as R +. If a is a
real number the integer (a] will be defined as the greatest integer smaller than a.

DEFINITION 1.1. Let oo <a<b< + oo. By ,b we denote the class of functions
fC(+) such that"

1. For i-0, 1,..-, (-al, there are scalars fo such that for every k and every #>0,

-o(-o-"),

2. Forj-0, 1,..-, (hi, there are scalarsf. such that for every k and every >0,

j=0

DEFINITION 1.2. For <c<d_< + and m NI the class 0m consists of those
functions a() holomorphic in the strip

Sc,a=(zCIc<Rez<d}
such that for every (c’, d’)c (c, d ), for every k

d a(z)-O(llmz}’’-) as [Imzl--, +oo zSc,,a,
dz

by
DEFINITION 1.3. For -oo <c<d< oo and m, the symbol class 2,.m,d is defined

(c’,d’)C(c,d)

DEFINITION 1.4. A symbol a(t,z) is in the class E/p. iff for some c,d with
O<_c< l/p<d<_

1. a( t, z )2.a.
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2. There are functions a+(t), a_(t)c_d,d_ such that

a(t z)-a+(t)O(z)-a (t)(1-O(z))5’.-lc,d
where t9(z) (1 e2,m )- i.

If a(t, z) ,/v, the functions a+ (t), a_(t) are uniquely determined by the rela-
tions

a+(t)=a t,-+ioo a_(t)=a t,--ioo
DEFINITION 1.5. If a(t,z)Xl/ and

fR t-Za(t,z)f(z)dzAf( )
e z /p

where f(z) is the Mellin transform offC(), then the principal symbol of A,o(A),
is the function a(t, z) restricted to the boundary of the compact rectangle

R,/,- {(t z)lO<_t<_ +oo,z=l+i,,, }p

Now we are able to define the class of operators acting on LV([0, 1]) which interest us
directly. ForfLe([0, 1]), define

(1.1) Tf(t)=f(1-t).
DEFINITION 1.6. A bounded operator A on Le([0, 1]) is a pdo of class OPXl/([0, 1])

iff
1. If 0, ff C() have disjoint supports then the map

f(dpA)f
is a compact operator on Lv( +)-

2. If ,ffC([0, 1]), there is an operator A,OPXl/v and a compact operator
K, on Le([0, ]) such that

3. The operator TAT satisfies conditions and 2.
An example of an operator of class OPEl/v@, 1]) is the finite Hilbert transform

-S
and Hardy operators on Lv([O, 11).

The principal symbol of an operator A OPY./v([O, 1]) is a continuous function
defined on the boundary of the compact rectangle R/,Io, in Fig. 1.1.

t=0 t=l
z 1/p+io ao(t,1/p+ioo) >" |--al(1--t,1/p--ioo) z- 1/p-io

a(0’z) I al(0’z)
z--1/p--ioo ao(t, 1/p--ioo)=(1--t,1/p+io) z--1/p+ioo

t=O t=l

FIG. 1.1

For the definition of Hardy operator see [41.
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The functions ao(t,z ) and a(t,z) are obtained in the following way: Let ,+
Cf([0, 1]) and Ag and A be the two operators of class OPZ/p(+) provided by
Definition 1.6,

ok( TAT ) A,+K,
Then

o,(A)( t,z ) ao( t,z )q( )( ),

op(A)( t,z ) a,( t,z )q( )( ).
The principal symbol of an N N system of pdo’s of class OPY/p([0, 1]) is defined

as the matrix of principal symbols.
DnrINTON 1.7. An NN system of pdo’s of class OPZ/p([0,1]) is elliptic on

(LP([0, ]))iff the determinant of the matrix of principal symbols does not vanish on

If A is a system of pdo’s of class OPZt/,([0, 1]) which is elliptic on L’, we denote

(1.2) ind,( A ) dim KerA dim KerA*,

Argdeto(A)(1.3) n 1/p( o(A )) ---- AoRI/p.[o.i
In [5] it has been proved that

(1.4) indp(A)- n,/p(o(A)),
the change in argument of deto(A) being taken as ORl/p,[O,l in Fig. 1.1 is traversed in
the clockwise direction.

Among applications studied by Lewis and Parenti in [5] there is the resolution of
the Dirichlet problem for Laplace’s equation in a polygon. We consider this problem in
the square, -- ((x,y)l2lO<x< 1,0<y< 1}
with boundary 0t2= F t3 F2 t.J F3 t.J F4 and vertices labeled Po,P,P2, P3, P4 Po as 0t2 is
traversed in the clockwise direction.

For t[0, II,
Pt= Pt,I tPo + (1-- )P, F,
Pt Pt.2 tP2 + (1- )P, F2
Pt= Pt,3 tP2+ (1- )P3 I’3,
e,= + (1- )

This parametrization is shown in Fig. 1.2.

t=l t=0

t=0 t=l

1-’PI

F. 1.2
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The arclength do on F is given by

do-(-1)’dt.
For q L’(0) define the double layer potential

(1.6) u(S)- IX-QI2

where nQ is the interior unit normal to a point Q and we seek such that u is a
solution of the problem:

(1.7) Av=0 in, vloe=, LP(0).
The boundary condition of (1.7) turns into the following system:

(1.8)

I K Z K
K I K Z
Z K I K

K Z K I

2
3

=Bq=,

where el(t) (Pt), Pt Fi,

fo XK (x )
x + ( )

(1.9)
f0 ,1Z(x) =- x-0

and K TKT with T defined by (1.1).
K is a Hardy operator, Z is a compact operator so that B is a matrix of operators

in OP2/([0, 11).
It has been proved that B is elliptic forp and in this case we also have

ind(B)- 0 ifp>.

For p> Ker(B)-{0} and B is invertible on (L([0, 11)); hence, for p>, the
problem (1.7) has a unique solution in the form of double layer potential.

Z In this section we solve the problem (I) in . We use the notation of the
previous section relative to the Dirichlet problem in a square. In particular, is
parametzed as in Fig. 1.2.

We seek a solution of the problem as the following potential with densities
f,gLe(a):

1 5F(X-Q)f(Q)doQ+ OZF
+ (X-Q)g(Q)do,(21) u(X)

a aO*"0

where F(X) is the fundamental solution of A2 defined as

(2.2)2 F(X)- Xl=logl xl=.
See [6] for the definition of F.
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The unit tangent o to a point Q 0 has these values:

(2.3) tO= ((- 1)’,0)

and n is the unit interior normal to a point Q 0f.
Then, for P

(2.4)

lim
0u

x-. e -*e ( X) Gf(P ) +Mg(P )’
Xf

lim
0u

x-.en (X)-(I-C)f(P)+Ng(P)’

where the limits in (2.4) are taken in L’(0f) as X--, P and the operators G,M, C,N, are

H K -R -K
K H --K --R
-R -K H K

-KI -R K H

0 -K’+S’ -V
-K’+S’ 0 -K+S
-V -K+S 0

-K+S -V -K’+S’

so defined:

(2.5)

-V
-K’+S’

0

Z K
K Z
0 K’
K’ 0

0 K’
K’ 0
Z K[
K[ Z

H
K-S
-R+L

-KI+S

K-S -R+L --KI+S
H -KI+S -R+L

N-
K1 +S H K-S
-R+L K-S H

Here H is the Hilbert transform on LP([0,1]), K,Z,K are defined by (1.9),
K’,S,S’ are the following Hardy operators:

(2.6)
K’q(t)-- S2+’t2 q(s)ds,

fo 2ts
s’,( ) --;

( + )
,( ) d.

fo 2tS 2

Sq(t)- (s2+t2)2rk(s)ds,

K, S,S are obtained from K’, S, S’ in the following way:

(2.7) K[- rK’r, s,- rsr, s- rs’r,

where T is the intertwining operator (1.1).
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(2.8)

Finally R, V, L are the following compact operators:

f, 1--t--s q(s)ds,Rq(t) -"o l+(1-t-s ):

f0_1 1--(1--t-sv,t)

f0 2(1-t-s)Lq(t)= (1 + (I--l--s)2)2

Therefore the boundary conditions of problem (I) turn into the following system of
integral equations:

(2.9) A()-(I-C N

Now we have to study the properties of the boundary operator A.
PgOPOSITON 2.1. A is a matrix of operators in OPY./p([0, 1]). Moreover A is elliptic

in (LP([0, ]))8 for every p ]1, + oo[, p v 3, and its index has the following values:

4, <p<3,
indp(A)- -4, p>3.

Proof. First we remark, that in the matrix A there are the compact operators
R, V,L,Z, the Hilbert transform H, the identity operator I, the Hardy operators
K,K’,S,S’ and the operators K,K,SI,S, obtained from K,K’,S,S’ by translation.
All these operators are in OPZ/([0, 1]) by Definition 1.6.

The principal symbols of the compact operators R, V, L, Z are zero. Since THT=
-H, the principal symbol of H is given, on OR/t,,to, 1, as shown in Fig. 2.1.

z--+i
P
COSSTrz

sinrrz

P

t=0 t=l

t-O t-1

COS

sin rz

z=--+i
P

FIe;. 2.1

The principal symbol of the Hardy operator K is given in Fig. 2.2,

z---+ io t-O t-1
P

z----io t-O t-1
P

z----ioo
P

1+z- ioo
P

FI3. 2.2
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where/(z) is the Mellin transform of K(t) t/(1 + 2 ), the kernel of operator K, i.e.

1 o, 1 o,Kck( ) - t2+s 2 ck ( s ) ds -rr K ok(s)

The principal symbols of K’,S,S’ have an analogous representation. Since K
TKT the principal symbol of K may be represented as in Fig. 2.3, and likewise for

z---+ ioo
P

z----ioo
P

t-O t-1

t-O t-1

g(z)

z =--+ io
P

Fro. 2.3

Hence we can show op(A)(t, z) as in Fig. 2.4

z=--+ ioo
P

A(O,z)

P

A t,+ioo -A 1-t,-
t-O t-1

t-O t-1

A’(0,z)
z---+ io

P

FIG. 2.4

where the matrices A(t, l/p--+ ioo) are independent of and their determinant is equal
to 1; the matrix A(O,z) becomes a 2 2 block diagonal matrix by an even number of
row and column transpositions and the two blocks on the diagonal are both equal to

where

cos rrz /(z) sin(rrz/2) l’(z) cos(rtz/2)fi(z) sin rrz’ sn rrz sin rrz

(1 )sin( ’//’7,/2)(z) z ’(z) z co.,
sin rrz sin rrz
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The matrix of symbols AI(0,z) is of the same type of A(0,z). Furthermore

detA(0’ z )- detA! (0’ z )- os2zz- 4 sin2 rz/2

and this function is zero only at z-1/2, 0<Rez< 1. By Definition 1.7 the system (2.9) is
elliptic on (Lv([0, ]))8 for p 3.

Finally, by (1.3) and (1.4), we can readily compute the index of A.
When <p< 3, we will determine the dimension of Ker(A) in (LP([0, ]))8. To this

end we compute the dimension of the kernel of A*, the adjoint operator of A, in
(Lq([0, 1]))8, q>-.

The operator A* is obtained from the following exterior problem:

(1)(2.10) A2u--0 in 2_, ---Au 2u--hLq(O)’
OuOn- -lLq(O),

where n is the exterior unit normal to a point Q 0t2 and is defined as (2.3).
To solve the problem (2.10), we introduce the following potential with densities f,

gU_.Lq(O):

OF OF(2.11) u(X)-fou-(X-Q)f(Q)dQ+foan (X-Q)g(Q)doQ

where F is the fundamental solution of A2 defined in (2.2).
Then for P 0"

(2.12)

lim
X--, P
X2--

1Au(X)-G*f(P)+(I-C*)g(P)--2u
x-,P OzeOne
XR2-

(X)-M*f(P)+N*g(P),

where G*, C*, M*, N* are the adjoint operators of G, C, M,N defined by (2.5)3.
The boundary conditions of the problem (2.10) turn into the following system of

integral equations:

(2.13) A*()-(M,G* I-C’N, )(gf)-(h)!"
If q>- we will show dimq(Ker(A*))- 1.
It is easy to verify that (a,0)KerA* if a is the vector (1,- 1, 1,- 1). To show

that, modulo multiplicative constants, (a, 0) is the unique element of Ker(A*), we state
a lemma concerning the kernel of the operator G*.

Note that K’, S’, -H are the adjoint operators of K, S, H respectively, and the compact operators
R, V, L, Z are selfadjoint.
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LE,A 2.1. For q>-, the kernel of G* is spanned by (1, 1, 1, 1), in (zq([0, 1]))4.
Proof. Let f=(f,f2,f3f4)KerG* and consider the following potential w with

density f"

x

)2
fl(t)dt+ y )s2 2f2(s)dsw(x,y) - (x-t +y2 (y-s +x

fol 1--x--t 1--y--s }+ )213(t)dt+ )2 )2
f4(s)ds

(1--x--t)2+(1--y (1--y--s +(1--x
One can easily verify that w satisfies the following exterior Dirichlet problem:

Aw--0 in lR2-, wlaa-0 limx,y)l_,oow(x,y)-O.
By the maximum principle w is equal to zero in 2_ and, therefore, it is also a

solution of the following exterior problem:

(2.14)4
lim f__’ Ow (x,v)dv-O
X0- O0 ""+ Ow v)dv O.lim 0- (x’
x + --y

(2.15)

The boundary conditions (2.14) lead to the following system of integral equations:

-If,(x ) rA(x ) + zA( ) Iq f,(x ) =o,
-Kf (y)-If2(y)-K, f3(y)+ Zf4(y) 0,
Zfl(X)-K, fz(x)-If3(x)-Kfa(x)=O,
Kl Yl( y ) + Zf2( y ) KY3(Y ) If4( y ) =0.

Put q= (f, -f2,f3, -f4), so (2.15) can be written synthetically as

(-I+ C*)O=0.
(-I+ C*) is the boundary operator which one obtains solving the exterior Dirichlet
problem for A by a solution like (1.6). In [5] it has been shown that, for q>,

Ker(-I+ C*) C) Lq(O) {const. }.
Therefore, modulo multiplicative constants, we have"

f, =f3 1, /2=f4 -1.

Lv.tA 2.2. If u is the solution of the homogeneous boundary problem (2.10) in form
(2.11), then u has the following expression:

u(x,y)=c(x2-y2)+p(x,y), (x,y) ii2-,
where c andp(x,y) is a first degree polynomial.

These boundary conditions can be also expressed by the inverse operator of A: LI(R) LP(R) s.t.
Af)() =-Ilf(*), where is the Fourier transform.
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Proof. Since u is a solution of (2.10) in form (2.11), we have that v--Au is a
solution of the following problem:

(2.16) Av--0 in 2__, Vlafl--0, lim v(x,y)--O.
I(x,y)l /oo

By the maxirhum principle, v is equal to zero in 2_, i.e., u is harmonic in
2_. On the other hand w-O2u/OxOy also satisfies the problem (2.16) and therefore

w is equal to zero in 2_.
From O2u/OxOy=O in 2__2 it follows that

u(x,y)-a(x)+b(y) V(x,y) u2-,

with a and b twice differential functions.
Moreover, u being harmonic in 2_, the statement of Lemma 2.2 is true.
PROPOSmON 2.2. The kernel of A*, in (Lq([0, 1]))8, with q>-, is spanned by (a,0),

(a--(l, 1, 1, 1)).
Proof. Let (|, g) Ker(A*) and consider the function u defined by (2.10) with

densities t and g. By Lemma 2.2

u(x,y)-c(x2-y2)+p(x,y) V(x,y)2-.

Consequently, putting

w(x,y)- u(x,y)--C(X2--y2 )--p(x,y)
we have

V(x,y) 2

and

w-=0 in 2__

0w 0w
:0 in R2_.x --y

Since w, Ow/Ox, Ow/Oy are continuous on Of, we have

lim w(x,y)- lim lim
(x,y)-P (x,y)-+e’-ff-ff (x’Y) (x,y)-+’-(x’Y)
(x,y)Ut2 (x,y) (x,y)

PO.

Therefore w is a solution of the following problem

dw
-0.(2.17) AEw--0’ wlau--0’ d- a,

Apply Green’s formula to the pair of functions w and Aw.

(2.18) Aw dw d )ffn(awaw-wa(aw))axay- -W (aw) ao.

The integral on the r.h.s, of (2.18), is well defined because the function
(Aw(dw/dn+) w(d/dn+)(Aw)) is summable.

The behaviour of this function, in a neighbourhood of vertices of f, may be
obtained in the same way as in [1, 3].
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By (2.17), the boundary integral in (2.18) is zero and therefore

ff.( aw) d ay-O,
from which Aw 0 in f.

Since w is harmonic in A, zero on 0f, w is zero in f, i.e.

u(x,y)=c(x2--y2)+p(x,y) V(x,y)2.

By this equality we have that u is harmonic in f and Ou/OxOy--O in
Therefore, for P

(2.19)
) G*lim ---Au (X)- I(P)+(-I-C*)g(P)-O,

XP

lim u
x-,Pxea O’eOn*"

(X)-M*|(e)+N*g(P)-O.

Subtracting (2.19) from (2.4) we obtain g--0. Since (f,g) KerA*, from (2.13) we
deduce, in particular G*f =0, i.e. f Ker G*. Applying Lemma 2.1 we can assert that
f- ca, c R. Since a KerM* too, we can conclude that (a,0) spans KerA* in
(Lq([0, 11))8, q>{.

PROPOSITION 2.3. The kernel ofA has dimension 5 in (LP([0, 1]))8, <p<3.
Proof. By Proposition 2.1, indp(A)=4, <p<3, and by the previous proposition

dimq(Ker(A*))- 1, q>-.
Then

dimp(Ker(A )) -indp(A) + dimqKer(A*)- 5.

PROPOSITION 2.4. For <p< 3, the problem (I) has a solution as (2.1), provided that
the data h Lt’(O2) satisfies the following compatibility condition:

Proof. Let <p< 3. Since A is elliptic, A has closed range and so we can apply the
Fredholm theory to A.

In particular the equation

A(g
is solvable in (L’([0, 1]))8 provided (h,l) is orthogonal to the unique element of KerA*.
Then the following condition must be satisfied:

(4 )(2.20) fo h,(t)ai(t ) dt-O
i=1

where a are the coordinates of vector a, (a (1, 1, 1, 1)).
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Keeping in mind that 0 is traversed in the clockwise direction and the parametri-
zation of the sides of Of, the condition (2.20) can be written as follows:

=fh,(t)dt-folh2(t)dt-fh3(1-t)dt-folh4(1-t)dt
Jafhd

3. In this section we study two further boundary problems for A2 with second
order boundary conditions. About the first problem which is the corresponding interior
problem of (2.9), we show that there is an unique solution as a proper potential for
every boundary data. By the same potential we solve the second problem, provided
boundary data verify a proper compatibility condition.

Consider the first problem:

(3 1) A2u--0 in On+

where 0 is the unit tangent to a point Q0 defined as (2.3) and n is the interior
unit normal to a point Q

For t,g(Le([0, 1]))4 define the following potential

l(l( u(x,y)-- log((v-t +y )dv fl(t)dt

+1(l-Xlog((v-t)+(1-y))dv)f3(t)dt
+1(LI-Ylog((1--X)2+(V--S)2)dv)f4(s)ds(3.2)

i log((s- +y2)gl(t)dt+ y t)2

1 log(x+(y s))g2(s)ds+ X

+ (1-y)log((1-x-t)+(1-y))g(t)dt

+ (1-x)log((1-x +(1-y-s))g4(s)ds

The first four terms of u can be regarded as

f0f A- IA F)(x-o)f(O) doo
(see footnote 4); the last four terms of u represent

F

n (X-Q)g(Q)do
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For P 02 we obtain

lim 02u+ (X)-Bf(P)-N*g(P),
x-. e Ozt,On e

(3.3)
x,

lim
x-+ P -( Au)( X)- O|( P ) + Bg( P)
X

where B is defined by (1.8) and N* denotes the adjoint matrix operator of N defined by
(2.5).

Then the boundary conditions (3.1) turn into the following system of integral
equations:

[ B -N*(3.4)

For this problem we have the following proposition.
PROPOSITION 3.1. The matrix operator defined in (3.4) is elliptic in (Le([0, 1]))8 for

every pyre. Its index is equal to zeroforp> and is equal to 8 for <p<. Furthermore
forp>, its kernel has dimension zero so the matrix (3.4) is invertible forp>.

Proof. Since the determinant of the matrix of principal symbol of the operator
(3.4), is equal to the square of det o,(B)(t,z), the proposition is true by the results of 1
about operator B.

PROPOSITION 3.2. The problem (3.1) has a unique solution in the form (3.2)for all
data h and belonging to LP(Ot2 ), with p >.

Now we study the following problem

(3.5) AZu-O in
OZu -hZP(O), lu -lL 0),

where ro is the unit tangent to a point Q 02 defined as (2.3).
We seek a solution u of problem (3.5) as the potential (3.2). When we impose the

boundary conditions of problem (3.5) to this u we have for P 0t2

(3.6)

2u
lim (X)-Df+Eg,

lim Au(X) Ot+ Bg,
X-+P
Xf

where D and E are the following matrices of operators in OPX/,([0, 1])
(3.7)

H K’ R -K[
K’ H -K[2 R

D- R -K[ H K’

-K[ R K’ H

0 K+S V K+S
K+S 0 K+S V

E-
V K +S 0 K+S

K+S V K+S 0

and B is defined by (1.8).
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Then the boundary conditions of (3.5) turn into the following system of integral
equations:

(3.8) J( g O B

PROPOSITION 3.3. The matrix of operators (3.8) is elliptic in (LP([0, 1]))8 for every
p =# and its index is equal to zero when p>, and to eight when <p<-.

Proof. By Definition 1.7 we must compute the determinant of the matrix of
principal symbols of J on

This determinant is equal to 16 on the top and the bottom of OR/p,[O, and is
equal to ((4sin2rr/2z-3)/cos2rz/2)4 on the right-hand side and the left-hand side of
ORl/p,[O,].

The zeros of 4 sin2rz/2 3 occur only at z- and therefore J is elliptic for p 4=-.
From (1.3) and (1.4) it follows

indp(
8, <p<{.

Now we will study the kernel of the boundary operator J when p >-.
It is easy to see that (1,0) (L’([0, 1]))8 is in the kernel of J. We will show that

dimpKer(J) 1.
LEMMA 3.1. Let (f, g) (LP([0, ]))8 be in Ker(J), then

Proof. By (3.8) if (f,g)KerJ, g satisfies in particular the homogeneous system
Bg 0. Then g KerB fq (LP([0, ]))4, p > 3/2, and by results of 1, g 0.

PROPOSITION 3.4. Let be p>, then

(3.9) KerS fq ( LP([0, 1]))8- { (c, 0)l c G R ).

Proof. By Lemma 3.1, if (f, g) KerJN (LP([0, 1]))8, p> 3/2, then g =0. Then
f KerD f3 (L e([0, 1]))4. Comparing the matrix D with the matrix G* and then using
Lemma 2.1 we can state that f-cl.

In order to apply Fredholm theory to the operator J we consider the following
exterior problem for A2:

Au-0 in-,

l((3.10)6
A- Au)

o
h Lq(O),

OU --l_Lq()).On- o

Writing the solution as

See footnote 4 for the definition of A-i.
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we obtain the adjoint operator of J as a boundary operator. By Proposition 3.4 we have

dim(KerJ*)fq((Lq([o, 11))8)-1 when l<q<3.

Let us denote by (0, to’) an element of KerJ*.
Applying Fredholm’s theory we can state the following proposition.
PROPOSITION 3.5. If the data ofproblem (3.5), h and l, are in Ll’(Of) with p> and

satisfy the compatibility conditions

oahtodo-O foalo’ do,
then the problem (3.5) has a solution in the form (3.2).

Acknowledgment. We wish to thank Prof. J. Lewis for useful conversations about
this work.
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ON A POLYNOMIAL BASIS IN
SOME SPACES OF ANALYTIC FUNCTIONS*

YU. A. KAZMIN

Abstract. In the article we consider for polynomial systems the problem of stability of the property of
forming a basis relative to some perturbations in a number of spaces of analytic functions. Some sufficient
conditions are obtained in this direction. It is shown that the conditions mentioned above are sharp in some
particular cases.

Introduction. In this article we consider three (in some senses similar) Banach
spaces of functions defined as follows:

x+(t) x IIx I1-- E lx;Ir< + c
k=0 k=0

II. /-(r)
def { x- alx-l }X-(t)-- X tk+l" IIX-IIr- E < +Ot

k=0 k=0 r/+

III. 1,(r) de__f X(t)-- X Xktk" II/llr-- 2 IXklr< /

These three spaces of absolutely convergent power series are defined for every
positive parameter r, 0<r< oo (but r is fixed for each space). It is obvious that, for
given r, 0<r< + o, we have ll(r)-l(r)l{(r ). In a similar way we can introduce
the spaces l(r) and l(r) for all r, 0<r< o and all p, _<p_< c. All these spaces are
Banach spaces. For example,

l(r) def{ o Y ily-[lr,o-sup
[y-I </}y-(t)-

tk+l rk+lk-0 k

Of course, for example, the series

X y’ 1(1)
k--0 rk+

are, in the general case, formal power series on the unit circle [zl= 1, but in each case
they define functions

y-(t)- X yg
k+l

k=0 Z

which are analytic for all z, Izl > 1.
Let us note that the space l(r) is the dual space of 1-(r). This will be very

important later on.
Let B, B , be a set of functions in l-(r) with the following properties:
(i) (t)-oo ktk B is equal to at the origin, i.e. q00- (0) 1"k=0
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(ii) for any sequence -{%(t)}k=0, qgk(t)B, Vk, the system

(1) (tk%(t))l__O
forms a quasi-power basis in l(r).

The last statement means that if we define the operator T corresponding to the
sequence= (k(t)}, kB in the following way:

For Vx+(t) xtkl(r) let Tox+ xg
k=0 k=0

then T is a linear continuous operator that effects a one-to-one mapping of l(r) into
itself. In other words, T is an automosm of l(r) for any-{}=0, B, Vk.

We can now formulate the main result of ts paper.
TnEOM 1. Eve sequence- {k(t)}=0, kB, Vk, where B is any set in l(r)

with properties (i) and (), generates a polynomial system

(1) 1 t k(t)dt(2) e -- i=rtk+l(t_z) Izi>r (k-0, 1,2,...),

which is a quasi-power basis in 1- ( r ).
Section contains the proof of Theorem 1. In [}2 we consider a number of

applications of that theorem. For example, we have the following corollary.
COROLLARY 1. Every polynomial system {(z+a,)"}, an R, -l_<an_<l forms a

quasi-power basis in the space of entire functions of exponential type [1; rr/4). Here the
constant 9/4 is sharp.

Here (as usual) [1;rr/4) is the space of entire functions of order at most and of
type less than rr/4 if of order 1. For references concerning polynomial bases, see, for
example, [1], [2], [3] and [4].

1. Proof of Theorem 1. We precede the proof of the theorem with some auxiliary
propositions.

LEIA 1. Under the hypotheses of Theorem 1, the linear continuous operators

T 2 Xktk 2 Xktkqk(t)
k=0 k=0

are uniformly boundedfor V { }, q)g B, Vk.
The proof is obvious, because B is a bounded set in the space l(r) and also

satisfies condition (i). Hence we have

_< sup Ilrll -M< /
pB

From this it is easy to obtain IIT o x+(t)llr<MIIx+(t)llfor Vx+ l-(r) and-(k},
qk B, Vk.

Lv,t 2. Under the hypotheses of Theorem 1, the linear continuous operators Tff ,
V are also uniformly bounded.

Proof. It is sufficient to show that :lm, 0< l/m< +, such that IIZ 11< 1/m for

’- {tpg}=0, tp B, Vk. Let us suppose for simplicity that r- 1. Under this assump-
tion the dual space of l-(1) is the space l(1) of all formal power series y-(t)
Y=oY/t+, IlY-II-SUPklYfI< / o (as described in the Introduction). Let us notice
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that the system biorthogonal to a system (1), namely {tkk(t)), k(O)--1, is always
some polynomial sequence of the form

(p)(O) (pg(O) (p)")(O)
2! n!

o

o o
(n--2)!

O" 0 0 (prt_ 1(0)

2 n n+l

and Qn(l/t)--(Tl)* o t-.-, where (T- )* is the operator conjugate to Tff .
If the family {T-), were not bounded, then the family of conjugate operators

{(T,ff)*), would also be unbounded. By the Banach-Steinhaus theorem there
would exist a fixed element Y6- (t), y- (t) 1o(1) (this space, as mentioned previously, is
the dual space of /iV(l)) and a sequence of operators (T-l)* (the elements of the
sequence belong to the family ((T-)*), V) such that we would have

(3) II(r-l)* oo when n

But (3) implies that there exists a subsequence { 1/t.+ } such that also

(4) (T-’)* o oo when n o.
k"+ tS()

For if (4) does not hold then (3) does not hold, and we have a contradiction.
It is not difficult to deduce from (4) that there are numbers Jk,,, O<jk,,<k, such

that

"1 [:1
(rn-l)* kn’’i "tJndt’)

Now let jk*,,--max{jk} for which (5) is true (maximum over k for each fixed n). If we
consider the structure of the polynomials Q(1/t)-(T-)*(1/t+ 1), we see that j’** is

*always finite and moreover Ojg<k From the relation

we easily obtain

(Tn-l)* tk..

(7;’.-)* t "t .pj,(t) oo.
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But this means that

where kj is the Kronecker symbol. We recall that J’k* is always less than k, and
consequently we have 0--) oo. This contradiction completes the proof of Lemma 2.
LE 3. Under the hypotheses of Theorem 1, for (-((p,}o, q)g B, Vk (B Cl-

(r)) andVx+(t)l(r), we have

mllx*ll, llz x/llr MIIx/llr,
where 0<m_<M< + oo.

We emphasize that the.constants rn and M are the same for all To, ’ (I).
This lemma is an immediate consequence of Lemmas and 2.
Now we can prove Theorem 1. For the sake of simplicity we assume that r- 1.
We introduce an operator So, defined initially only on the basis vectors -k- by

the formula

S,o t,_,=P -[ k-0, 1,2,. .,

where the Pg(1/t), k-0,1,.-., are the polynomials (2) generated by a sequence
(I)-{(pk}=o, (pg B, k. It is easy to see that the operator So can be extended to a
linear continuous operator on the entire space/-(1), mapping/7(1) into itself. We do
this as follows. We have

for any element

k=0 k=0

k-=O

It is evident that the family of operators {So}, Vii), (I)= {), B, Vk is uniformly
bounded. We also notice that the range So o (l-(1)) of each operator So is everywhere
dense in/-(1). Hence we conclude that if there exists a sequence (i)-{k}=o, tpk B,
’k for which the system (2) is not a basis, then there exists

xo(t)- g+,, xo(t)l-(1), Ilxffll- lx l>0
k=O

such that S o x(t) 0, i.e.

k=O

However, from this relation we have

(6) --x+(t),
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where x+(t)--Yk=oX tkqg(t) is some element of l(r). Here k(t)- (qk}, Vffk B, Vk
is a sequence of elements of B; and in (6)-(7) we are to understand that all equations
are to be interpreted in the sense of the metric of the space 1(1).

From (6) we obtain

x-cPk(t) + xk+ tkk(t) =0
k=0 tk+! k=0

and also, Vn, n N,
oo X-Pk(t)

+t xk
+ t’p(t) =0(7) ]

tk_,+,k=O k=O

This means that

n+l oo
+ kX,-fpk(t)tn-k-I +t xk k(t)

k=0 k=0

when n oo.
However, by Lemma 3 we have

+tkqk(t) >--m Ix;l+ Ixlx-tn-k+’Pk(t)+t" Xk
k=0 k=0 k=0 k=0

Vn, n N. But ,k=olX,k I>0 and m>0. Hence we find that the last relation contradicts
(4). This completes the proof of Theorem 1.

2. Some applications. We now turn to some applications of Theorem 1. The space
A(IzI<R) is defined as the space of functions that are analytic in the disk Izl<R, with
the usual topology of uniform convergence on compact subsets K of the disk. It is
known that if the system {ztp(z)}=0 is a quasi-power basis in A(Izl<R) then it is also
a quasi-power basis in every A(Izl<r) Vr, O<r<_R. Moreover, it is also a quasi-power-
basis in every l(r) Vr, 0<r<R. It is also obvious that if {z"tp(z)} is a quasi-power
basis in any l(r), Vr, 0<r<R, then it is simultaneously a quasi-power basis in every
A(Izl<r), Vr, O<r<_R.

From results concerning the Abel-Goncharov problem, it follows that all systems
of the form {ze}=0, a,[-1,1] are quasi-power bases in the space A(Izl<r/4);
and the constant rr/4 is sharp. It is also well known that the same systems, but with
complex a, la=l_< 1, are always quasi-power bases in a(Izl< W), where W=0.7377... is
the so-called Whittaker constant.

Let [1; ) be the space of entire functions of order at most and of type less than
if of order 1. In other words,

ak zk Ilk< }.[1;o) de_..f f(Z)-- -. limsupJak[ o

We now consider the problem of when a polynomial system of the form

(8) {(z+.) }.=o, -l<a.<l
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is a quasi-power basis; these systems were mentioned in the Introduction (see Corollary
1). We have the representation

(Z+Otn)n
f et(z+a’)(9) n! 2rri I--r n+ dt.

If the system (8) is not a basis in the space [1, r/4), then there exists a sequence of
* such that limsup_.lal/-p<r/4 and {a} (0}, for whichcomplex numbers a

we have identically

(10) ag (z/a)
:o" =0

for some sequence {ak}, -1 <ak< 1. By using the representation (9), we can rewrite
(1 O) in the form

fit [ eat’t]e zt * dt-Oak k+l
(11)

2ri I:o t

But from (11) we obtain, identically in the (r) sense,

east, (t),(12) ak k/i-x*k=0

where x+(t)l(r), Yr, #<r<r/4. Then, by Theorem 1, if (12) holds, there are
nonbasic sequences among the systems (z’e"}, -1 <a,< 1. But this contradicts the
results quoted above. Hence the positive part of Corollary is established. Also, the
example

sin -(z-1) +cos (z+ 1)--=0

shows that the constant r/4 in Corollary is sharp. Similar considerations for the
family of polynomial systems

(13) ((z + an)n } ,__0, [anl_< 1,

where a, are complex numbers, let us obtain the following corollary.
COROLLARY 2. The system (13) is a quasi-power basis in the space [1, W), W=

0.7377
In [3] and [4] we previously considered the problem of when systems

are quasi-power bases. Our main results were as follows. The system (14) is a quasi-power
basis in the space 1;1%D, where % is the root closest to the origin of the equation

oo
td- n(n+ 1)/2

’ n! t’-O.
n-0

The system (14) is not a basis in the space [1, [o,[], and thus is not a basis in any space
1, ), >lo,l. We define

f-inf I%[.
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It is known that t2=0.7377..., and it is conjectured that W=t2 (but this is still
unproved). Now. we can easily obtain a proposition which is in some sense a negative
addition to Corollary 2.

COROLLARY 3. Among the polynomial systems (14) there exists a system that is not a
basis in the space 1, and thus also not in any 1, + e) Ve, e> O.

If we return to the beginning of the present article and consider polynomial
systems {P,(1/z)} from a different point of view, we can interpret Theorem as a
proposition concerning the stability of the property of being a basis for generalized
Appell polynomials. Let us recall the definition of these polynomials. One version of
the definition is as follows. Let tp(z) be an element of the space A(Izl< R), q0(z) z 0.
Then

(15) Pn 7 =’/ i=R_etn+l(t--z)

is a system of polynomials. If we now form the Borel transform of (15), i.e.

eztp 7 dt, n-0,1 2,--.(16) A"(z) =-/ I:n

we obtain the classical Appell polynomials (An(z)}=o generated by tp(t). The system
(16) is a quasi-power basis in the space [1;R) if and only if (z) has no zeros in the
disk Izl<R. Now the system (15) is a special case of the systems (2) investigated in the
present paper, and the corresponding sequences (similar to (16)) generated by (2) can
be considered as generalized systems of Appell polynomials.

Now we observe that when -1 <a< 1, there is an identity, in the sense of the
space l(r),

ea,t
=x+(t),(17) a tk+lk=0

where {ak } is a sequence of complex numbers with lim suPk_. oolakl/k- ,r/4, and {ak } is
a sequence of real numbers belonging to the interval 1, ], and x/(t) l-(r). If we
now define

tke.(t)- k--(, n-O, 1,...
k---O

and notice that

_(-1)k

dk(1)k+l k! dt---’ "-[’

then the following results are easily obtained from (17).
I. There exists a linear homogeneous differential equation with polynomial coeffi-

cients

(18)
akek(Otkt) y()(t)-O,

k!
k=O

with limsuPk_oolakl/k=r>,r/4 and --l<txk<l, and degek(t)=k, that has
the solution y(t) 1/t.
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II. There are no linear homogeneous differential equations of type (18) with
limSuPk_.oolakll/g <,r/4 that have the solution y(t)- 1/t.
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ASYMPTOTICS FOR ORTHOGONAL POLYNOMIALS
ASSOCIATED WITH exp(-x4)*

PAUL NEVAI

Abstract. A Plancherel-Rotach type asymptotic expansion is given for the orthogonal polynomials
associated with exp(-x’t).

AMS-MOS subject classification (1980). Primary 42C05

Key words, orthogonal polynomials, asymptotics

Let w(x)-exp(-x4), x, and let p,(x)-y,,x"+..., 3,>0, denote the ortho-
normal polynomials corresponding to w. The properties of these polynomials p have
been reviewed in [4]. In particular, it was pointed out that they satisfy the recurrence
formula

(1) xp-a+ Pn+ +ap_ 1,

n-0, 1,2,... where the recursion coefficients a, can successively be determined from
the equation

(2) n_4a2( 2 + 2+ 2
an+l an an-l),

n- 1,2,. ., a02-0 and a2- F()/F(1/4). Lew and Quarles [3] have found an asymptotic
series for an in (1). We will only use a simplified version of this asymptotic series which
states that

(3) an- -- [1 +24-1n-Z+O(n-4)]

uniformly for n- 1,2,..- It was also shown in [4] that if

(4) ,(x)- 2 + 2an+ an+X2

and

(x4)(5) z(x) =Pn(X)[n(x)] -l/2exp T
then z satisfies the differential equation

(6) z"+fz-O
wheref is defined by

(7) fn(x)--aa2n[4n(X)n_(X)+ l_4a2nX 2 4X4 2X2n(X)-I]
4X6 4X4,(X)-l_ 3X2,(X)-2 + 6X2 + @,(X )-l.

* Received by the editors April 5, 1983. This material is based upon research supported by the National
Science Foundation under grant MCS 81-01720.

Department of Mathematics, Ohio State University, Columbus, Ohio 43210.
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Richard Askey has recently informed me that both (2) and (6) were known to J. Shohat
who published them in [5, p. 407]. My proof of (6) is identical to the one found by
Shohat. Applying an improvement of Liouville-Stekloff’s method in [4], I used the
differential equation (6) to obtain asymptotics for p. Taking (3) into consideration this
asymptotic expansion takes the form

(8) exp(--
{(64) 1/4 rr} ,/8=An-/asin - n3/4x+(12)-l/4nl/4x3-(n -1)- +o(n- ),

n- 1,2,..-, with some positive constant A, and (8) holds uniformly when x belongs to
a fixed interval.

In this paper we will find Plancherel-Rotach type asymptotics for the polynomials
p,. This means that if X, denotes the largest zero of p, and 0<c< 1, then the asymp-
totic expression wil be valid uniformly for Ixl<_cg. Since G. Freud [2] proved that
limX,(4n/3)-l/4-1 (see also [4]), we might as well consider asymptotics for Ixl_<
c(4n/3)/4. One of the advantages of our Plancherel-Rotach type asymptotics is that it
enables us to find the value of the constant A in (8) which turns out to be equal to
12/8rr- /2.
TnOR 1. Let 0<e<rr/2 be fixed and let x-(4n/3)/4cosO. Then the asymptotic

formula

(9)

p (x) -5- 12/8rr-/2n-/a(sinO)-/2

cos[n 12-1(120_ 4 sin 20-sin40) + 02-1- rr4 1] + O(n-9/8)

holds uniformly for n 1,2,... and e<0 <_ ,r- e.
Note that by putting x-0 in (8) and (9), we obtain that A- 121/8’/r-1/2 in (8).
THEOREM 2. If0< e<,r/2 is fixed and x (4n/3)l/4 cos 0, then

n-I
n-3/4 p(x) exp(-x4) 2(12)l/4(3rr)-’sin 0(1 + 2 cos20) + O(n-’)

k=O

holds uniformly for n 1, 2,... and e <_ 0 <_ rr- e.
For fixed values of x, Theorem 2 was proved in [4, Thm. 13]. First we have to

prove three auxiliary propositions.
LE’tA 1. There exists a constant A >0 such that

nrr ) 1/8 -1pn(O)=Acos T n- [l+O(n )].

Proof. Since w is even, p,(0)-0 when n is odd. If n is even, then we can apply the
recurrence formula (1) repeatedly with x-0 to obtain

n/2 n/2

Pn(O) (-1)n/22’0 1-I a2,-I II
k=l k=l
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which we rewrite as

n/2

-1/4]
n/2

1/4]p.(O) (-1) "/2
70 l’I [azk_ l(2k- 11 II [a-2(Zk)

k=l k=l

(n !)’/42-"/4[(n/Z)!]- !/2

and now the lemma follows from (3) and Stirling’s formula.
LEMMA 2. There exists a constant c>0 such that for every O< e<r/2,

lim sup fcn--,o ose<--Ixl(4n/3)-/4<--I
[1 --x2(4n/3) ,/2] p.2(x) exp(-x4 ) dx _<c(1 -cos e).

Proof. While proving [4, Thm. 8], we established the inequality

(o)
n--!

,,-’ E p(x)
k=O

([(>_ 16a4.n -’ Ix[2-’a-’)2+ [1- Ixl2-’a-’] + -[a._,a. 2 p.(x)

+ 16an4n -’ Ix12-’a-’)2+- [1-lxl2-1a-l] +[a2 a-2 1] 2p_,(x)n+l

Z>(n/12)/-Since by (3) a.
2 a-2 1--(2n) -l+O(n-2)>0,an+

an_12a-2_ l__(2n) -! +O(n-2)>_n-1,

and

__>l_(n /4
1- Ixl2-1a" -i a-! (48n2) + O(n-4)>O

for Ixl<_(4n/3)1/4 and n>_n o, we obtain
n-,

>2 _,)p2n(X) (3n)-, 2n-’ . p],(x)_3(1-lxl2 ’a,, Pn(X)
k=O

2 >(n/12)1/2 followsfor Ixl<_(4n/’3)1/4 and n >_n o. Moreover, from

--’>_1 Ixl(4n/3)-’/4>_(1-x2(4n/3)-’/2)/21-1x12 a.
so that

1-x p.(x)<_3,,-’ E p(x.)
k=O

for n>_n o. Now the lemma follows from the inequality of G. Freud [1]

n -! p(x)<_Bn-l/4exp(x4), x
k=0

which holds with an absolute constant B.
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(11)

LEMMA 3. Let 0<e<r/2 be fixed and let g be defined by
2g(0) --5 cos 20--5 cos 40.

Then for the function fn defined by (7) we have

2)’/2sinZOf.(x)- [ng(O)+-] +O(1)

uniformly for e <_ 0 <_ ,r e where x (4n/3)’/4 cos 0.
Proof. It follows from (3) and (4) that

In [l+O(n-2)]+ ( n+’!’12 )
!/2

cos20

[1 + 2C0S20] -! +0(n-3/2),

and therefore by (3)

4a,,2 (1-2xZck.(x)-’)-4x4ck.(x)-’ +6x2

2 -5 4 COS20(1 + 2 COS20) 8 COS40(1 + 2 COS20)-’ + 6 cos20] + O(n

n [1 +2cosZO]+O(n-1/2)

so that

(12) (4n) 1/2
-1 -1sin20[4aZ.,(1--2x2dpn(x) )--4x4dpn(x) +6x2]

Now we simplify

() sin20[ + 2c0s20] + O(1).

2 2 X 4.(13) S- ..( x )ckn_ ,( x ) a.x
Taking (4) into consideration we get

S--x2( 2 +a2+ 2 )+( 2 +2a,,+)(a2+ 2 )an+l n an--I an n an--I

and by (2) and (3)

(14) S-n(4a,) 1x2+ (n+l) ’/2 n ) 1/2

12 (l+O(n-2))+ (l+O(n-2))

T (l+O(n-2))+ 12 (l+O(n-2))

n(4an2)-i 2 n
x +5+0(.- ).
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Combining (3), (13) and (14) we obtain

(15) 4a2n[nqn(x)dOn_l(X)--4anx2--ax4 --4x6

4nx - + 8 - 4x + O(n--1/2)

(3cos0+ 1-4cosO)+O(n-/-)

__4n ) 3/2sin20( + 2 cos2O)2+ O(n-,/2).

Applying (3) we see that

[4n_3] /2sin20 q,,( x )- 3x 2q,.(x) 2] O(1).(16)

Therefore by (7), (12), (15) and (16)

()l/2sin2Ofn(x)--()2sin4g(1 + 2c0s20)2+ -- )sin2/(1 + 2c0s20)+ 0(1)

n - sin20(l+2cos20)+- +0(1)

from which the lemma follows immediately.
Proof of Theorem 1. First we let x =(4n/3)1/4 cos0 in (5) and (6) and define u by

z cosO).(17) U(O)-- ((?)1/4
With this substitution (6) takes the form

(18) Uoo-cotOuo+ sin2Of,(x)u-O.

Now we replace u and 0 in (18) by

(19) v(0) u( 0)[ g(0) + (2n)-1] 1/2 [sin 0]-1/2
and

respectively where g is defined by (11). Then

uo- v,[g(O)+ (2n)-i] 1/2 [sin0 1/2 + V ([sin 0 ]l/2[g(O )+ (2n)-11 1/2 } 0

and

Uoo- v**[g(O) + (2n)-113/2 [sin 01 l/2 + V,go [sin O 1,/2 [g(O)+ (2n)-1]- 1/2

+2v,[g(O )+ (2n)-’1 ([sin 0 1/2 [g(O )’-(2n )-11 1/2 } 0

+v { [sin 0 1/2 [g(0 )+ (2n )- ’] ,/2 }00"
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Since

cot 0[g(0) + (2n)-’] 1/2 [sin 01 i/2

g0[sin 0 ]’/-[g(0) + (2n)-1]- 1/2

+2[g(0) + (2n)-’] { [sin 0 l/2[g(0) + (2rt)- l] 1/2 } 0

we can rewrite (18) in terms of v and, as

l)rr[,(O )+ (2n)-113/2 [sin0 ]1/2---1) { [sin 0 I/2 [g(0 )+ (2.)--1] 1/2 } 00

-v cot 0 { [sin0 t/2[g(0)+ (2n)-t]}0
+(? )l/2sin20(x)[g(O)+(2")-ll-l/2[sinO] 1/2-0,

and, applying Lemma 3, we obtain

(2)
wch holds uniformly for e0-e. It was proved in [4, Thin. 8] that

exp(-x4/Z)]p,(x )] O( n -t/g)

uniformly for eGOG--e. Thus by (3), (4), (5), (11), (17) and (19)

uniformly for e_<0_< rr-e. Therefore we obtain from (21) the equation

(22) O,r+ no O(n-3/8)

uniformly for e<0<rr--e. Considering (22) as a nonhomogeneous second order equa-
tion we can solve it and we get

v(r)-v(O)cosnz+n-’v,(O)sinnz+n-’ O(n-3/8)sin[n(t-r)] dt

so that

(23) v(’r) v(0) cos n " + n-’v(0)sin n " + O( n-"/8)

uniformly for e <0<rr e. By (4), (5), (11), (17) and (19)

(24)

and

v(0) =e.(0),.(0)-/: 4 -13+(2n)

(25) l),r (0) (4g/) 1/4
p(0))n(0) 1/2

Since

!/2

4 --1] -1/2-+ (2n)

pg(O) 4an,(O)p_ !(0)



ASYMPTOTICS FOR ORTHOGONAL POLYNOMIALS 1183

[4, formula (12)], we can simplify (25) to

(26) v(O) --4( 4; ) 1/4
anPn_l(O)dpn(O) 1/2

It follows from (3), (4), (24), (26) and Lemma that

(27)

and

(28)

4 --1] -1/23+ (2n)

4) /2
n n )t)(0)-A 5 (n(0) -1/2 -1/8COS( rr/Z)+O(n 11/8

4 1/2
Cn(O)-/2n 1/8 sin( nr/2)+O(n-11/8 ).

Substituting (27) and (28) into (23), we obtain

4) /2
(29) v() =A - (0) 1/2n-1/8C0S nT"---- -l-O(n -11/8)

uniformly for e <0<,r-e. We can write (29) in terms ofp as

(30) Pn(x)exp -" =A[n(x)/qn(o)]l/ZsinO[g(O)+(2n)-l]-’/2 34 1/2

n-l/8(sinO)-l/2cos n’+-- +O(n-9/8)

uniformly for e<0_<rr- e, where we used the fact that (x)1/2= O(n1/4) which follows
from (3) and (4). Moreover by (3), (4) and (11)

so that (30) becomes

+ O(n-l),

(31) Pn(x)exp -- =An-l/8(sinO) I/2COS n’+-- +O(n- ),

and by (20) the theorem will be proved if we show that A 121/87/’-1/2. First let us
remark that if h is a continuous function, then

where

and

f"-eh ( 0 )cos(2n "+ nr ) dO=if-h(O)[g(O ) + (2n)-1]- lcos(2n .+ nrr ) dr

el=f2[g(t)+(2n)-l] dt

e2=-e[g(t)T(2n)-l]dt.
/2
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Since h and g- are continuous functions of as well for e<0<rr-e, we can apply
Riemann-Lebesgue’s lemma to conclude that

(32)

Now we will prove

(33)
From

lim h ( 0 )cos(2n r+ nr ) d0 0.

A2_< 12/4r-"

fl._<cos,(4,,/3),/4p,,2(x)exp(-x4 ) dx<

and (31) we obtain

1/4f- r)dO<_l +O(n- )A2(rr-2e)12 !/4+A212- cos(2nz+n

and applying (32) with h(O) 1, we get

A2(--2e)12-1/4<l.
Since 0<e<r/2 is arbitrary, inequality (33) follows. The next step is to show

(34) A2 12/4,/r- .
Applying the recurrence formula (1), we obtain

1--(a2n++a2,,)()-’/2=f[1-x2(n) -’/2]pn(x)exp(-x4)dx
so that

(35) 1- ( a2n+ + a2n )
1<-(4n/3)’/4

1- 2
1/2

<-- x p2n(x)exp(-x4)dx.

It follows from the asymptoties (31) that

A12-/4 -sinOdO+A12-

and letting here n and using (32) with h(O)sinO, we obtain

(36) limsup 1-x p(x)exp(-x4}dxNA12-/%/2.
n alxlcose(4n/3)/4

Combining (35) and (36) with (3) and Lemma 2, we see that

and by letting e0, inequaty (34) follows. By (33) and (34) A= 12/%- and since
A >0 by Lemma 1, we have completed the proof of the theorem.



ASYMPTOTICS FOR ORTHOGONAL POLYNOMIALS 1185

Proof of Theorem 2. If x=(4n/3)/4cosO where 0<e <rr/2, then there exist n
and e2 depending on e such that 0<e2<rr/2 and if x=(4(n- 1)/3)/4cos2 and n>n,
then e2<2<rr e2. Simple computation shows that

(37)
Let

(38)

and

(39)

0,- 02 + (4n)-’cot(02) + O(n-2 ).

,= [g(t)+(2n) ]dt
/2

z2 [g( ) + (2( n -1)) l] dt
/2

where g is defined by (11). First we will prove that

n’_ (n- 1)rr(40) n +-- (n-1)’r2+ 2

We have

+O+O(n-).

--! --1r,-z2=f’g(t)dt+ (O,-)(2n) -(02-)(2(n- 1))
0

so that by (37)

z, z2 f’g( ) dt + O( n
"02

and by applying (37) again, we obtain

Hence

’, ’2- (0, 02)g(02) + O(n-2)- (4n)-’cot(02)g(02) + O(n

f2g( ’n"r cot(OE)g(O2) + t)dt+-+O(n ).n-, (n- 1)-2 +--
A somewhat tedious but elementary computation yields

1--cot( O2 )g( 02 ) g( ) dt- 02 "’-01-’"+O(/’/-I)

where we also used (37). Hence (40) follows. Formula (37) also implies

(41) (sin 0, )-l_ (sin 02 )-l + O(n-l).
Using the notation of (38) and (39), we can rewrite the asymptotic formula (9) as

nr] --5/4(42) p2(x)exp(-x4)sinO1 lZl/4r-’n-’/4cos2 nzl+--- +O(n )

and

(43)
2 ) sinO2 12/4rr /4cosE[(n ’2pn_(x)exp(-x4 n- --1) +(n--1)r/2] +O(rt-5/4).
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Applying (40) and (41), we obtain from (43) the asymptotics

(44) 2p;,_(x)exp(-x4)sinO, 12’/rr ’n ’/4cos2[n’r,+nrr/2-O,]+O(n-/4).
Using some trigonometric identities, we can conclude from (42) and (44) that

(4S) [d(x)-2oO,p.(x)p._,(x)+d_,(x)] exp(-x)

12/4r-n-/4sinO +O(n-/4).
During the proof in [4, Thin. 8] we obtained

n--l

(46) p],(x)-4a2,l,,,_,(x)d(x)-4a.x(2a2.,+x2)p.(x)p._,(x)
k=0

2+4a,#,,(x)P2-,(x).
By (3) and (4)

)n-- (X) "" (1 q- 2 C0S201 ) q- O(H-1/2 )
2q-X22an

and, by using (3) and (9), we get from (46) the estimate

n--I

(47) X p(x)--(1 +2COS20I)
k=O

[p(x)- 2 cos0 Pn(x)Pn-(x ) +p_ (x )] + O(n-’/4) exp(X4 ).
Now the theorem follows from (45) and (47).

Note added in proof. If one applies Theorem for fixed values of x, then the
asymptotic formula may be strengthened in a considerable way. Namely, for a #ven
inteal A

p,,(x )exp ( _)x4
12/8r-/n-/8

[(1 +B,(x)n-’/)cos((64/27)’/4xn/4+ |2-1/4x3Hl/4-nr/2)

+ ( x + x

sin((64/27)l/4xn3/4Jr- 12-l/4x3nl/4-- n r/2)] + O(n --9/8)

uniformly for n- 1, 2,... and x A, where
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Similar asymptotic expansions for orthogonal polynomials associated with
exp(-x6) are given by R. Sheen (see [6]).
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ON A SUFFICIENT CONDITION
FOR BEST L-APPROXIMATION*

FRANZ PEHERSTORFER?

Abstract. Let {gl,’" ",gn}, nN, be a Chebyshev-system of continuous functions on I’= [a,b], put
Gn: ={2i% laigilai[ and let ZCI be a set of positive measure.It is known that the conditionft\ztg_< fzlg
for all g G,, implies that 0 is a best LI-approximation from G to every functionfL(l) which vanishes on
a set including Z. In this paper we characterize those sets Z of the form 2.= ![ aj, flj]C I which satisfy the
above condition. The results extend and generalize those of the author [J. Math. Anal. Appl., 84 (1981), pp.
170-177], where the special case Z a, fl] C I is discussed.

1. Introduction and notation. Let (gl,’",gn}, nN, be a Chebyshev system of
continuous functions on l"-[a,b] and put G’-(2i=aig]aR}. For JcI and
hLl(I) let S(h,J) denote the number of strong sign changes of h on J (see [14,
Definition 13.1]). S-(h,J) denotes the number of points of int(J) at which h changes
sign (compare, e.g., [13]). Note that S-(h,J)<S(h,J).

In {}2 of this paper we characterize those sets Z of the form .=1[’ j]’ where
a<_a <ill <a2<..- <al<t<b, which satisfy the condition

f Igl flgl for all g Gn.
"I\z "Z

The results extend and generalize those of the author [11], where the special case
Z [a, fl] CI is discussed. As is well known (see, e.g., [14]) condition (1) implies that 0
is a best L-approximation to every functionfL(I) which vanishes on a set including
Z.

In 3 we study the following problem, first considered by Motzldn and Walsh [6]:
What are necessary conditions on Z for the existence of a function fELl(l) with the
following properties: f vanishes exactly on Z, S(f, 1)_<n- k, k { 1,...,n}, and 0 is a
best Ll-approximation to f from Gn. For the special case Z=[a, fl] cI this problem was
solved (using different methods) by the author in [10].

Finally, in 4, we state a sufficient condition for fLl(I) to have 0 as best
approximation from R’[- 1, + 1], where R’[- 1, + 1] is the family of quotients p/q of
polynomials p of degree_<n by polynomials q of degree_< which are positive on
[-1, +1].

Henceforth a function q is called a sign function on I, if Loo(I) and q0
2"-" a.e.

on I. If hL(I) is such that ytgh=O for all gGn,then we write h-LGn.
2. Characterizations. In this section let Z be of the form

z- 2
j=l

where a<_a<<or2<... <at<t<_b.

LFMMA 1. Let "t + If h\zlgl <’fzlgl for all g G, and ft\zlg*l- fzlg l, then
ft\zgsgng* -’fzgsgng* -Ofor allg Gn, and S-(g*,I\Z)-O.

*Received by the editors August 17, 1981, and in revised form January 27, 1982.
Institut for Mathematik, Urtiversitt Linz, A-4040 LINZ-Auhof, Austria.

1188



SUFFICIENT CONDITION FOR BEST L APPROXIMATION 1189

Proof. Since the proof is a repetition of the arguments used in proving [4, Lemma
4(a) and 4(b)], we omit it.

Trmolus 1. Thefollowing three properties are equivalent:
(1) fz\ zlgl <_ fzlgl for all g Gn

(2) For every sign function q on I with r,-LG and S(q/,Z)<n-1 the following
condition holds: Ifg G is such that sgng=q/a.e, on Z, then sgng= -q/a.e. on

(3) There exist no g* G resp. /(1, oo), such that

fl\zgSgng*-ffzgsgng*-O forall gGn.

Proof. For the implication (1)(2), assume that there exist a sign function q on I
with q/_LG and S(q/,Z)<n- and an dement gG,, such that sgng=q/a.e, on Z and
sgng:/:-q on a subset of positive measure of I\Z. Using the fact that q/_L G,, we
obtain

in denial of (1).
Concerning the implication (2)(3), let us assume that (2) holds and that there

exist a g* G and a 3’ (1, oo), such that

f\zgSgng*-fzgsgng*-O for all g G.

By [12, Lemma 2], see also [2], there exists a sign function q/on I, such that q -sgng*
a.e. on Z and q/_L G. In view of (2) we obtain that q/= sgn g* a.e. on I\ Z. Thus

1 f\zg, sgng’--fzg*-f\zg-*-f\z
g-* sgng*,

which is a contradiction to ,/(1, oo).
For the implication (3)(1), assume that (1) is false. Then there exist a g*G

and a 3’ (1, oo), such that

In view of Lemma the implication is proved.
COROLLARY 1. Suppose that ft\zlg]< fzlgl for allgG. Let q/be a sign function such

that q/2_G and S( q/, Z)<n 1. Then
(a) S-(k,I\Z)=O.
(b) k changes sign at each boundary point of I\Z, which is different from the

endpoints a, b of the interval I.
(c) S-(k,Z)>_n-2+t\z, where z\z=0 ira, bqI\Z and\z= otherwise.
Proof. (a) Assume that k changes sign on I\Z. Then, since S(ff, Z)<_n- 1, there

exists a gG, such that sgng=k a.e. on Z and g has no simple zero on I\ Z. Hence
sgngv - on I\Z which is a contradiction to (2) of Theorem 1.

Simil, one demonstrates (b) and (c).
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In order to show that condition (1) does not hold for a given set Z the following
theorem seems to be very useful.

THEOREM 2. ft\zlg[< fzlgl for all gGn if and only if every sign function p with
p .1_ Gn satisfies S(p Z) >_ n.

Proof. Necessity. Let ft\zlgl< fzlgl for all g G, and assume that there exists a sign
function k, such that ff_l. G and S(,Z)<n-1. Then it follows with the help of
Corollary l(a) and l(b) that there exists a g* G, such that

sgng* a.e. on Z,
t/,- sgng* a.e. on I\Z.

Thus we obtain that

which is a contradiction.
Sufficiency. By (2) of Theorem it follows immediately fz\zlgl<_ fzlM for all gG.

Now let us assume that there exists a g* G, such that ft\zig*l- fzlg*l. Setting

-sgng* on Z,
qo-

sgng* on I\Z,

we obtain from Lemma that .1_G and S(9,Z)<n- 1, which is a contradiction.
COROLLARY 2. Let I\Z Y=(%, fl), a<a <flt<b and suppose that fz\zlgl< fzlgl

for all g Gn. Furthermore let be a sign function on I such that tk 2. Gn and S(, I) n
+ k, where k { 1,. -,2/}. Then there do not exist [(k + 1)/2] intervals (aj,fly), v

{ 1,-..,[(k + 1)/2]},jr { 1,...,1}, which contain two consecutive changes ofsign of.
Proof. Let us assume that there exist [(k + 1)/2] intervals (%; fly) which contain

two consecutive changes of sign of p. Then there exist [(k+ 1)/2] intervals (a, fl)c
(%; fly), which contain exactly two consecutive changes of sign of p. Setting

we obtain that

[(k+ 1)/2]

I\W= X (aj*,j*)
v=l

S(p, W)-S-(p, W)-n- +k-2[(k+ 1)/2] _<n- 1.

Applying Corollary to W it follows that there exists a g, G., such that

which is a contradiction.
Notation. Let Pn, n [0, denote the set of algebraic polynomials of degree equal or

less than n. As usual U denotes the Chebyshev polynomial of second kind of degree n.
Example. Let I=[- 1, + 1], G=P_, I\Z=(a,/31) U(a2,/32), where <a <

/32< 1. Corollary 2 implies the following two facts:
If one of the intervals (a,/), (a2,/2) contains two consecutive zeros of U or

U+ l, then inequality (1) does not hold.
If both intervals (al,/) and (a2,/2) contain two consecutive zeros of U+2 or

U+3, then inequality (1) does not hold.
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LEMMA 3. Let CI,’’’,CnR be given. There exists a function 9L(Z), such that

I’l- a.e. on Z, T/(0, 1], S(dp, Z)<_n-1 and fzgi=ci for i= 1,...,n, if and only if
there exists a sign function on Z, such that S(,Z)<_n and fzgi=cfor 1,. .,n.

Proof. Necessity. Using the facts that (g,"’,gn} is a T-system on I and thus a
T-system on Z and that S(q,Z)<_n- 1, there exists a g* G, such that

rlfzgisgng*-c for i- 1,...,n,

from which it follows (see [3]) that

r/-- max
aiU-

where Ilhllz’- fzlh[ for h L(Z).
.Now in view of [5] there exists an element gn+l U_ C(I), such that (g,...,g,g+ 1}

is a T-system on I. Defining the function. R+I __,R by (d,...,d,,+)- max
aig

we obtain from [3, p. 177], that is continuous. Since the function (1," ",n,’) is not
bounded on g and since (c,...,c,c+)-<l, where c+’-,lfzg+lsgng*, we
deduce from the continuity of (c,...,c,.) that there exists a dn*+l, such that
(cl, c, d*+l)- From [3] it follows again, that there exists an element
such that

n+l )g sgn
, b’gi c
i--I

for i- 1,...,n

and

fzg,+ sgn b.*, g dn*+ l.
i=1

Taking into account the fact that n+l ,S(i=lb g,Z)<n, the assertion follows by putting
t n+l ,sgn(i= b gi).

Sufficiency. We have only to consider the case S(p, Z)= n. Choose g,+ as above
and let v-+ ,,,, be such that k- "+ * *sgn(Xi= bi gi). Setting d,+ fzgn+ 4’, it follows thatz-’i: ’i 5i

ff(c,.- -, c, d,*+ ) 1, which implies the existence of a number TI (0, ], such that

max
ai

aici
i=1

In view of [3] the sufficiency is proved.
THEOP.mM 3. Thefollowing three properties are equivalent:
(1) /\zlgl <- fzlgl for all g G,.
(4) For every sign function q on I\Z with S-(,I\Z)=O there exists a sign

function p on I, such that p=q on I\ Z, p_l. G, and n 2 + 6t\z<_S(p, Z) <_n.

(5) For every sign function q on I\Z with S-(t,I\Z)=O there exists a sign
function p on I, such that p on I\Z and p 2. G,.
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Proof. (1)(4). Let qJ be a sign function on I\ Z. Then (1) implies that 0 is a best
approximation to *, where

[if(x) onI\Z,*(x)-
0 on Z.

By [4, Thm. 1] there exist a 3’ (0, and an element g, G, such that

f\zg-vfzgsgng-0 for allgG.

Hence, in view of Lemma 3, there exist a sign function with -b on I\Z, such that
lG and S(ep, Z)<_n. Furthermore it follows from Corollary 1, that S(p,Z)>_n-2 +
\z.

The implication (4) (5) is trivial.
For the implication (5)(1), assume that (1) is false and that (5) holds. Since (1) is

false, there exist a 3’ (1, o) and a g* G, such that

\zgsgng*--/fzgsgng*-0 for all g Gn

and g* has no change of sign on I\ Z. Thus, in view of (5), there exists a sign function
q on I, such that sgn g* on I\Z and q_l_ Gn, which implies that

which is a contradiction to 7 (1, oo).
Example. Let I= [- 1, + 1] and let

I,n-[O, cos(2n- 1)rr/an] and I2,n-[Cosr/a, cos(n-1)r/an] for n/.

Observing that sgn U4,---sgn U4,-5 on Ii, . and sgn U4,-, =-sgn U4,-5 on I2, ., it
follows from Theorem 3 that

f I1-</ Ipl for allpP4n_6.
l,n U I2, "[ 1, + l]\([l,n U I2,n)

Sign functions which are orthogonal to (trigonometric) polynomials resp. rational
(trigonometric) functions have been characterized by us in [8] and [9].

COROLLARY 3. The following two properties are equivalent:
(1") ft\zlgl_< fzlgl for all g G and fz\zlg*l-fzlg*l.
(5*) (5) holds and there exists a sign function on I with the following properties:

q_L G,, S-(p,I\Z)=O, n-2+t\z<_S-(qg, Z)<_n-1 and changes sign at
each boundary point of I\Z, which is different from the endpoints a,b of the
interval I.

Proof. (1")(5"). That (5) holds follows immediately from Theorem 3. Setting

sgn g* on I\ Z,- -sgng* onZ,

we conclude with the help of Lemma and Corollary 1, that q9 has the above cited
properties.
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(5")(1"). Let g* G, be such that

sgn g*
a.e. on Z,
a.e. on I\Z.

Then, since q_k G,, it follows that ft\zlg*l-fzlg*l. By Theorem 3 the implication is
proved.

In 11 the special cases Z- a,/3 c I resp. Z- I\[a,/3 were considered. From
Corollary 3 of this paper and [10, Lemma 2] one obtains [11, Thms. 2 and 4]. For the
important case Gn P,_ we obtain

COROLLARY 4. Let I-[- 1, + 1] and let <a< fl< 1.
(a) ft\t,#ll <_ fIa,/lPl for all p Pn- if and only if there exists a t 1, + 1), such

that c<_x(t) and fl>-Xn+ l(t), where x(t) (x+ l(t)) is the smallest (greatest) zero of the
polynomial Un+ 2 Un + 2Un_ 1"

(b) ft,/ll< ft\t,ollfor all PGPn- if and only if there exists a t[-1, + 1], such
that [a, fl]C[xj(t),xj+(t)], where xj(t), X+l(t),j { 1,.- .,n}, are two consecutive zeros

of the polynomial U+l 2tU+ tU_ l-

Proof. Let be such a sign function that qod_P,_ and S(p,I)-n+ 1. Then
it follows from [8, Thm. 4] that there exists a t(-1, +1), such that
+--sgn(U,+-2tU,+t2U_) a.e. on/.

(a) Follows now from Corollary 3.
(b) Additionally using the fact that q- --+ sgn U- --+ sgn(U,+ l- 2U + U_l) a.e. on

I, if q +/- P,_ and S(q, I)- n, the assertion follows from Corollary 3.

3. On a problem of Motzkin and Walsh.
Notation. For fL(I) let Z(f)=(x[a,b]lf(x)=O}. Furthermore let/ denote

the Lebesgue measure.
THFORE 4. Let ZCI be such that g(Z)>0.
(a) There exists a function fL(I), such that Z(f)=Z, S(f,I)<_n-1 and 0 is a

best approximation to ffrom G, on I ifand only if mingz6, ft\ zlgl/fzlgl <_ 1.
(b) If there exists a function fLl(I) such that Z(f)=Z, S(f,I)<_n-l-k, k

{0,..-,n-l}, and 0 is a best approximation to ffrom G, on 1, then
min g ._f \z Igl/fztgl <- 1.

Proof. First let us note that fz\zlgl/fzlgl attains its minimum (see [8, p. 1230]).
(a) Necessity. Let g*G be such that sgng* sgnf a.e. on I\ Z. Then it follows

with the aid of [14, Thm. 13-4], that fz\zlg*l< fzlg*l, which implies the statement.
Sufficiency. Since there exists a 3’ (0, 1] and a g* Gn, such that vfzlgl<_ fz\zlg[ for

all g G and Vfzlg*l f\zlg*l, we obtain that

)’fzg sgng*-fi\zgSgng*-0 for all g G.

Putting

g* onI\Z,f- 0 onZ,

the assertion follows from [4, Thm. 1].
(b) The assertion can be demonstrated as in (a).
As a consequence of Theorem 4 we obtain the following result of Motzkin and

Walsh [6].
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COROLLARY 5. Suppose that 0 is a best approximation to fEL(I) from Gn on I,
where (Z(f))>0 and S(f,I)=n- l-k, kE (O,. .,n- 1}. Then

I(Z(f))>_ min
g@Gn_ x@l

Proof. Observing that

ftlgl/tx (Z(f)) max Ig(x)l<ftlgl/’fz Igl
xe/ (f)

for all g E Gn_k,

the assertion follows from Theorem 4(b).
The next corollary shows the connection with the problem considered in the

second section.
COROLLARY 6. Let k E (0,... ,n-1 ) and suppose that fzlgl< fr\zlgl for all gEG

and fzlg*l- f\zlg*l for an element g* E Gn_k. Let W be a proper subset of Z ofpositive
measure. Then there exists no function fELl(l), such that Z(f)= W, S(f,I\W)<_n-
-k and 0 is a best approximation to ffrom Gn on I.

Proof. Since WC Z we get

By Theorem 4(b) the assertion is proved.

4. An application to rational L-approximation. Dunham has shown in [1] that a
functionfL which has 0 as a best L-approximation from R’[- 1, + 1] must vanish
on a set of positive measure. In this section we construct a set Z c1, such that every
functionfL with Z(f) Z has 0 as a best L-approximation from R’[- 1, + 1].

LEMMA 4. Suppose nElxl, n>_2 and let qn+2,d--Un+2-2d2Un+d4Un-2fr dE
(- 1, /1).

(a) Let n be even. Then qn+E,d, dE(-- 1, -[- 1), has no zero in the interval (-cos(n+
2)rr/2(n / 3), cos(n + 2)r/2(n + 3)).

(b) Let n be odd. Then q+2,d, dE(- 1, + 1), has no zero in the intervals (0, cos(n +
1)r/2(n + 3)) and (-cos(n+ 1)r/2(n + 3), 0).

Proof. Simple calculation gives for x=cosir/(n+3), i= 1,.-.,n+2, U+2(x)-
2d2Un(X)+ d4Un_2(x)--( 1)i2d2(1 d 2 cos 2ir/(n + 3))sin 2irr/(n + 3)). Thus we ob-
tain for n even (odd), that q,+2,d, d(-1, + 1)\{0}, has at least one zero in each
interval (-cos(i- 1)r/(n + 3)), -cosirr/(n+ 3)), i- 1,...,n/ 2, in/2+ 2 (ivY(n+
1)/2, (n + 1)/2 + 2) from which the assertion follows.

THEOREM 5. Let nE and assume that fELl([ 1, + 1]).
(a) Let n>_2 be even and let [a, fl]C[-cos(n+ 2)r/2(n + 3), cos(n + 2)w/2(n + 3)].

Suppose that Z(f) 1, a] U fl, ]. Then 0 is a best approximation to f from
R’[- 1, + 1].

(b) Let n>_3 be odd and let [tx, fl]C[0,cos(n+ 1),r/2(n+3)] or [tx, fl] C[-cos(n+
1)rr/2(n+3),0]. Suppose that Z(f)3[-1,tx]U[fl, 1]. Then 0 is a best approxi-
mation to. ffrom R’[- 1, + 1].

Proof. For d(-1 / 1) let G,’- -(p/1-dxlpP). By Theorem 4 of [8] it
follows that for d- (1 t’2 )/d

qd’-- sgn(Un+2-2d2Un+d4Un-2)-l-Gn,:
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Furthermore we obtain from Lemma 4 that %, d(- 1, + 1), has no change of sign on
[a, fl ]. Thus it follows from Theorem 3 that for every a (- 1, + 1)

ft igl f Igl for all g

According to [1, p. 226] the assertion is proved.
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OPTIMAL MONOSPLINES WITH A MAXIMAL NUMBER OF ZEROS*

R. B. BARRAR AND H. L. LOEB:

Abstract. In this paper we obtain general theorems about oscillating families. Both polynomial and
extended totally positive monosplines are included. The results are applied to characterize the unique
monospline of minimal uniform norm that oscillates in a given manner.

Introduction. This article is devoted to the proof of several new results concerning
both polynomial and extended totally positive monosplines which oscillate in a pre-
scribed manner. Among such families we characterize the unique function of minimal
uniform norm. Actually our results are shown to be corollaries of more general theo-
rems about oscillating families. One application of our results is to the problem of
finding an optimal integration formula in L where the formula is to be exact for all
polynomials of a prescribed maximal degree and for a class of splines of given knot
multiplicities 16].

Our results extend the literature in two directions. First, they generalize the
corresponding properties of Chebyshev polynomials [15], and of Chebyshev systems [6].
Second, they generalize the characterization theorem for best uniform monosplines
with multiple nodes and simple zeros to allow for both multiple nodes and multiple
zeros (see [9], [10], [11], [12]).

For the polynomial case our analysis is based on some recent results on interpola-
tion [1]. For totally positive kernels we rely on the results of [13], [14].

Polynomial monosplines. In this section we develop the theory which will enable
us to characterize the oscillating polynomial monospline of least uniform norm. Specifi-
cally consider the set of all monosplines of the form

p-- q mi_

(1) M(x)--foldpp(X,)d+ ai(pi)(x,O)+ aijq(pJ)(x,li)
i=0 i= j:0

where each of the following quantities are fixed;
a) rn is an odd positive integer 1,..-, q,
b) p_>2 is an integer.

Further

i (x_)71 fy y_>0,
q’Pi)(x’)-

i (p- 1)!
withy+- 0, y<0

and the "free knots" {}q= obey the inequalities, 0< <... <q< 1. Setting N=p+
Eqi= l(mi + 1), consider a set of fixed positive integers {ni}= which satisfy, N:Ei: hi.
The basic problem can be phrased in the following manner. Let the open simplex A be
defined as follows:

(2) As- (X--(XI,""" ,Xs)" O<X <’’" <Xs< 1}.

*Received by the editors February 3, 1983, and in revised form June 30, 1983.
Mathematics Department, University of Oregon, Eugene, Oregon 97403.
*The research of this author was supported in part by the Sonderforschungsbereich 72, University of

Bonn.
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Under certain restrictions which will be detailed later, for each x-(x,- ., xs) As
there exists a unique monospline M(., x) of the form (1) which satisfies

(3)
)JM

(Xi,X)--0, j--0, 1,... n 1, i-- 1, ,s

We will employ the notation M(J)(x)-(J/3xJ)M(x,x). Then we seek to characterize
the x* A with the optimal property,

(4) Ilg(. ,x*)ll min [IM(.
xA

where ILt31 max elO, llf(x)l-
As previously intimated a key ingredient in our approach is the following pair of

recent results.
TI-IEOIM (Barrar, Loeb [11). If m=maxl_<i_<qm and n=maxl_<i_<n, then under

the restrictions m,n<_p, there is at most one polynomial monospline of the form (1) which

satisfies (3). With the further restriction that m+ n<_p, there is exactly one monospline
which satisfies (3).

THEOREM 2 (Barrar, Loeb [1 ]). For p >_3, m + n <p- 1, and each x A the corre-
sponding M(-,x) has the feature; If A--(ao,...,ap_l,alO,...,a,,,_,a21,...,aq,,,_l,
,...,q)___Rv is the parameter set for M(x,x)=--M(x,A)=M(x), the NN Jacobian
matrix M(x)/A is nonsingular with

(4’) OM(x)_
0A

DM(xl) DM(Xl)
0A OAN

aM("’ -’)(x, ) OM(., 1)( XI )

OAt 3Av

OM(",-’)(x,)
3A OAN

The following is a useful extension of a result of Micchelli [2].
THEOM 3. For m+ n<_p, there is a uniform bound on the set ofparameters ARN

such that for some x hs,

M(x;A)=M(x;x).
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Proof. Consider (x,.-., xs) A and let

Choose a sequence, {y(V)._ (yV),...,y())}=l, such that 0<yV)< <y(V)< and
y(O) y. By the cited result of Micchelli, there is a uniform bound on the parameter sets
of M(-, y(V)). It follows directly then from Rolle’s theorem and Theorem that M(., y())
converges uniformly to M(., x). Clearly Micchelli’s bound will suffice.

We will consider a more general problem which will have (4) as a special case.
Given a set of fixed positive integers {i}tr.=l and a fixed set of real numbers (dilr+lJi=O

satisfying:
If ei=di-di_ , i- 1,...,r+ 1, then:

(5) ( 1)N--l--2’=Jei>0, i-- 1,.- .,r+ 1,

where N- E,r.= /i.
Then we seek to answer the following questions. Does there exist a x-(x,..-,Xr)

A, and a positive number E such that for some M(x) of the type (1),

(6a) M(xi)-Edi, i-O, 1,. .,r+ l,

(6b) M(J)(xi)-O j= l,. .,lXi, i-1,. .,r,

with x0----0 and x,+ 1? Further, is such a M(x) unique? Clearly (6) is equivalent to

(Va) f;k M,(x)dx_Eek, k-1,...,r+ 1,

(7b) M(’+-i)(xi)-O, j--0,1,-..,#/--1, i--1,...,r,

(7c) M(x)-Edo+ M’(x)dx.

According to Theorem 1, there is a unique M’(x) which satisfies (7b). We designate this
M’(x) as M’(x, x).

For x A set

OM’(x,X)ox ( OM’(x,x)_i }M’(x,x) )X

where of course M’(x,x) has the form (1) with "p" being replaced by "p-1". Thus
M’(x,x) can be represented by a (N-1)-dimensional parameter vector A with the
corresponding (N 1) (N 1) Jacobian matrix 3M’(x)/3A (see (4’)). Let
OM’(x,A)/OA be the (N- 1) vector with the ith component, )M’(x,A)/)Ai, and let
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OM’(x)/Ox be the (N- 1)X r matrix defined by

0M(l) 0Mtl)

(Xl,A)
-0X(xI’A)

(8) 0M’(x)
OM(,) OM()

(Xl,A) -0x-(Xl’A)
OM(l) OM(l)

(x2,A) (x2 A)

OMO,,.) OM(")

0X (x,, A) x-----7- (x,, A)

where the only nonzero elements are

(xi,A) M(’’+ l)(xi,A) (i-- 1,. .,r).

LEMMA 1. For m+ n <--p 2

(9a) OM’(x,x) --OM’(x,A)[OM’(x)]--10Mt(x)0x 0A 0A 0x

(9b) M’(x, x)
OXj OX

(9c)
Ox,-I xi

M’(x’x)
X--Xi

--il[--M(P’,+l)(xi,x)],

where

(9d) sgnMO"+l)(xi,x)-- (- 1)x;=’+’, i,l-- 1,. .,r.

Proof. By Theorem 2, 8M’(x)/3A is nonsingular. (9a) is thus a consequence of the
implicit function theorem. Let/Ji be the member of the natural basis for R" whose th
coordinate is one. Then for 0 _<j_<gi- and 14 i,

X--Xl

lim
h--O h

M(j+ l)(xt x+h ) M(j+ ’)( Xl, X)

0-0
lim O.
n-,0 h
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Next, if 0_<j_<#i-2,

xj axi
M’(x’x

,=,

Finally,

,-
i)x’- Oxi

M’(x, x)

lim
h-.o h

M</+ I)(Xi, x +hi)-M<j+ l)(xi, x)

M<j+ 1>( Xi X -Jl" h8 )--M<j+ ’)( X "Ji- h, x q-h )
lim
h--,o h

lim M<J+2)(h,x-l"hi)-O.
h--*O
h Xi

lim
Ix=x, h--,o h

M(’)(x x+h ) M(’)(x x)

lim
h-o h

MO")(xi, x +hi ) M(gi)( xi-[ h,x d- hi )

_M(g,+l)(xi,x)"

Now a slight generalization of [4, Thm. 6] shows that since M’(x,x) has a full set of
zeros,

(101 sgnM’(x,x)-(-11:a’j, x,_, <x<x (i- 1,... ,r+ 1),

where Xo-0 and Xr+ 1. Hence

sgnM0’,+ ’)(xi, x)- (-- 1) (i-- 1,. .,r).

This completes the proof.
Remark. From (9a), 3M’(x,x)/)x has the form,

p 2

J X "rp x

q

j’)
:

X
(11) "aM’z.." (x,x)-- E a<i) ---g+)(x, 0)+ E , a +!J)(xp , ,) (i-- 1,... ,r).

j--0 t-- j--0

By [5, p. 511], the (N-1)-function which generates 8M’(x,x)/i)x form a totally
positive system [7, p. 4].

Let {v}’=C V where V is a (N- 1)-dimensional extended Chebyshev subspace of
order g=max(#i)/ 1; that is, each nonzero element of V has at most N-2 zeros
counting multiplicities up to order g--1 and VCC’-[O, 1]. For X--(XI,"" ",Xr)CAr,
define

x)dxl,. .,r
i: lj--

where xo--O and Xr+ and

(12b) D(i)-detB i--1,...,r.
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Then [6, Lemma 2] can be expressed in the form
LEMMA 2. If the set offunction {vi}= has the additionalproperties,

dj

vi(xt)--O, j--O, Ii--2, i,l= r,
dxj

d’’-t

dt,_lxVi(X,)--*i,( -1 i,l--1,...,r,

then

sgnDx(i)-[(-1)’+x’=’+tm] [( 1)xS=’xL-j+’’’] (i-1,...,r).

LEMMA 3. Under the hypothesis of Lemma if we let vi(x)=3M’(x,x)/x (i=
1,..., r) in Lemma 2, then

(13) sgnDx(i)-[(-1)’+x,=,+.,] [(-1)x%’x’:J+’"’].
Proof. Assume first that for some (1 N r), Dx(i)= 0. TNs means that there is a

set {b l,. , b } where X=l b)>0 so that if w(x) 5=1 bj3M’(x, x)/3xj then,

(14) w(x)dx-O, j- 1,...,i-1,i+ 1,..-,r+ 1.

For small e>0, let ff_ (x,y) be the Gaussian transform of ,(x,y); that is,

1 e_((x_z)/2,)2dpp_l(z,y)dz.

We let M’(x; e) denote any "monospline" of the form (1) where p(x,z) is replaced by
q_ (x,z) and p byp- 1.

With 0_ i(x, z) Cp_ l(X, z), consider now the system of (N-- 1) nonlinear equa-
tions,

(15) __:--d [M’(x e)]:x,=--O, j-O, 1,. .,/xi-l, 1- ,...,r
dx

in the N- unknowns which are the components of A where e is a parameter. For e= 0
we have a unique solution A(0) by Theorem 1. Further by Theorem 2, the Jacobian at
e-0 is nonsingular. Thus we can invoke the implicit function theorem to secure a
solution A(e) close to A(0) for small e>0. Set M’(x,x; e)=M’(x,A(e); e). From (9) and
(14) it follows that w(x) changes sign in each of the r intervals

(X0,Xl), (Xl,X2),"" ",(Xi--2,Xi--l), (Xi+l,Xi+2),’" ",(Xr,Xr+l).

For small e>0 by (9a), wt(x) X= bjM’(x,x; e)/xj also has this property. By (9b)
w(O(x) has N-1-r additional zeros (including multiplicities) for a total of N--1
zeros. This cannot be since w((x) is a nonzero element of a (N-1)-dimensional
extended Chebyshev system [7, p. 15] (see also (11)). Thus Dx(i)vO (i= 1,...,r). Thus
by continuity for small e>0, sgnDx(i)= sgnDx<*)(i) where Dx(i) is obtained by replac-
ing vj(x) by 3M’(x,x; e)/Oxj (j- 1,...,r) in (12a, b). Since the N- functions which
generate each M’(x,x; e)/xj (note (11) again) form a (N- 1)-dimensional extended
Chebyshev system of all orders, the result follows by (9b, c) and Lemma 2.



1202 R.B. BARRAR AND H. L. LOEB

Now consider for xAs, the implicit system of r/ differential equations,

dE(s)d fx(s) M’(x,x(s))dx -ek ds fk (k-1,...,r+ 1)(16)

in the r+ unknowns, (x(s)=(x(s),.. ",Xr(S)) E(s)}, with the initial conditions
x(0)=x=(x,.. ",Xr) and E(0)--0. Here

(17) fxk M,(x,x)dx=fk k-1,... ,r+ 1.
"Xk --!

From (10) we note that for x(s)Ar,

(18) ekM’(x,x(s))>O, XU.(Xk_l(S),Xk(S))ekfk>O,
Expanding (16) reveals that

k--1,...,r+l.

(19)

= ["xk_(s xk d,
e dE(s)_
k ds --fk (k- 1,. -,r+ 1).

Thus for x(s)Ar, an application of Lemma 3, (18), and Cramer’s rule shows that

N’r+ maxfk(20) ds ,r+ rmne

where the Jacobian of the system (19) is nonsingular.
Using the cited result of Micchelli together with the fact that M’(x,x(s)) has a full

set of zeros when x(s) A yields the fact that the collection of all such functions have
uniformly bounded coefficients. Further by (17) and (18) x(s)A and by integrating
(16),

(21) fx,(s) M,(x,x(s))dx_(l_s)fk+ekE(S ) (k= 1,...,r+ 1).
"x,_i(s)

Since fek> 0, the boundedness of M’(x, x(s)) together with (20) and (21) imply that
for s[0, 1], x(s) Ar.

These facts in consort with a maximal extension analysis [8, Chap. II, Thm. 3.1,
Lemma 3.1] yields the result that the solution to (16) exists over [0, ]. Thus at s 1, the
solution satisfies,

(22) f(’) M’(x,x(1))--ekE(1) (k-1,. .,r+ 1),
aXk--I(l)

and

(23) f M’ x(1)) dx.M(x)-edo+ (x
Xo

Thus (x(1), E(1)) solves the problem posed in (6a) and (6b).
Now for each xAr, let G(x)=(x(1),E(1)); that is, G(x) is the solution to the

system of differential equations (19) with the initial conditions x(0)=x and E(0)=0.
Since the set A is connected and G is continuous over Ar, G(Ar) is connected. Further
if (x, E) is a solution to the nonlinear system defined by (6a, b), as previously remarked
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the corresponding Jacobian Matrix is nonsingular. Hence, if W is the set of all
solutions, each point of W is an isolated point by the implicit function theorem. Next,
if we use (x,E) W as the initial conditions for the system of differential equations, it
is easy to verify that (x(s), E(s)) (x, sE). Thus G(Ar) W and each point of W is an
isolated point; that is, W consists of exactly one point and the solution of (6a), (6b) is
unique.

Using a technique similar to the one employed in (9) one can establish the results
as defined in (6a) and (6b) under the weaker hypothesis that p_> 1. Next, Theorems
and 2 of [6] can be translated into our setting and then applied to (6a) and (6b) to yield.

THEOREM 4. Under the assumption that m+n<_p and p>_l, there is exactly one
monospline of the form (1) satisfying (3) which is of minimal uniform norm. The optimal
monospline M*(x) is completely characterized by the fact that relative to its set of zeros

X*x* (x’,. ., ) CA there is a set ofs + points,

so that

0:t0<t1<. <ts= 1,

IIM*(’, x*)ll-(-1)N-XS=’"JM*(ti,x*), i--O, 1,... ,s,

*<ts-- 1.with 0 to<X <t <x<’-" <x

Extended totally positive monosplines. Consider now a kernel K(x,) which is an
extended totally positive kernel of order N in both x and in (c,d)[a,d’] (see 7, p.
375]). We examine all monosplines of the form (1) where qp(x,) is replaced by K(x,),
the restrictions on "p" are remoVed, and the following new restrictions are added;
a<0< <b, 0< <d’, c<a<b<d’, where the free knots must satisfy

01<2<’’" <q<--d’.

It can be shown using as key ingredients the techniques employed in developing
the results for polynomial monosplines that these results are valid also in this new
setting. The proofs for this new kernel are far less intricate.
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ON SIMPLIFIED ASYMPTOTIC FORMULAS FOR A
CLASS OF MATHIEU FUNCTIONS*

D. NAYLOR

Abstract. This paper considers the asymptotic form of solutions of the equation yc,, u + 2 h cosh 2 x)y
for real values of x and h and large values of u. Attention is focussed on the solution k(x, u) that tends to
zero as x-, oo and for values of u in the half plane Re(u)>0. The basic asymptotic formulas that appear
require the determination of an elliptic integral but, when u is large, it is shown how this integral can be
suitably approximated by elementary functions. An asymptotic formula is derived which gives the large zeros
of the function if(x, u) regarded as a function of u, the quantity x being supposed prescribed and positive.

1. Introduction. In a previous paper [3] the author considered the integral trans-
form defined by the equation

f’(u)=faKu(kr)f(r) drr
where k, a are positive constants and K(kr) denotes the MacDonald type Bessel
function. This transform is useful when the damped wave equation Aw=k2w is ex-
pressed in polar coordinates r, 0 and the domain of interest is the infinite region r>a
bounded internally at r=a. If the boundary of the domain of interest is an elliptic
cylinder rather than a circular one, the natural coordinates to use would be p, o where
kx-2h coshp coso, ky=2h sinhp sino and h is a constant. Separation of the variables
then leads to the pair of equations

F"( p ) ( u2 + 2h2 cosh 2t)F(t ),
G"(o) + (u2 + 2h2 cos 2o)G(o) 0

where u2 is a separation constant.
On rewriting the first of the above equations in a more standard notation, we find

that we are led to consider the basic differential equation

(1) Y,,x-- ( u2+ 2h2 cosh2x)y

where 0_<x< . The solutions of (1) are related to the modified Mathieu functions
M2)(z),j-- 1,2, 3, 4, which satisfy the equation

yzz-(u2-2h2cosh2z)y.

Upon setting z-x+ i,r/2, we find that the preceding equation transforms into (1) so
that solutions of the latter are the functions MJ)(x + irr/2), the notation being that of
[2, p. 165]. The quantity v (the characteristic exponent) is related to the eigenvalue
parameter u2 by a complicated equation which for large values of u can be approxi-
mated by means of the equation [2, p. 125]

(2) u2-v:z+O 7

*Received by the editors September 16, 1982, and in revised form June 1, 1983.
*Department of Applied Mathematics, University of Western Ontario, London, Ontario, Canada N6A
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It is shown in [2, p. 170] that, for fixed v,

(3) M3)(z)=Hl)(Ehcoshz)[1 + O(sechz)],

M4)(z) H2)(2h coshz)[1 + O(sechz)]
as Re(z)-* + oo in any strip IImzl_<constant. In the two preceding formulas HI), Hu(2)
denote the Hankel functions. Since cosh(x+ ir/2)= sinhx,

Hl)(ix) (-- 2i/r )e-i’/EK,,(x ), HE)(ix) 2ei"’/2I(x ) + (2i/rr )e-i"’/EK,,(x ),
it follows that

e-i’/EK(2hsinhx)[1 + O(cosechx)](4) M3) x+-
(ir) [+2ie_i,,,/EK,,(2hsinhx)+2ei,,,/Ei(2hsinhx)](5) M4) x--T

[1 + O(cosechx)]
as x + oo and , fixed.

It follows from (4), (5) khat the equation (1) possesses essentially just one solution
that tends to zero as x oo. This solution is the function M3)(x-Fir/2) which we
denote for brevity as q(x, u). To discuss an integral transform having this function as
kernel, asymptotic formulas are needed that give the behaviour of q(x,u) with the
parameter u--, oo in the half plane Re(u)_>0 and the results are required for unbounded
x_>0. Formulas giving the asymptotic behaviour of the Mathieu function M,,(3)(z) have
been obtained by Sharpies [8], who has applied the theory developed by Olver [4]. The
desired results could in principle be obtained from those of Sharpies by setting z-x
ir/2. Alternatively the formulas in question can be deduced from the results obtained
by Pitts [6], [7], who considered the equation

(6) yx+[X-q(x)]y=O.

Pitts obtains asymptotic forms of the solution of the preceding equation that tends to
zero as x--, oo in the case when the function q(x) satisfies various conditions that are all
fulfilled by the function q(x)= 2h2cosh2x. This choice reduces the equation (6) to the
same form as that of the equation (1). For the problem at hand the formulas developed
by Pitts and Sharpies both required the determination of the integral

(7) (X-2h2 cosh 2t)l/2dt
x0

where 2h2cosh2xo=h and, in our notation, X=-u2. The expression (7) is an elliptic
integral of the second kind. In the next two sections of this paper approximate
expressions for this integral are found which are asymptotic as x or u--, oo, but not
uniformly with respect to h. The formulas giving the behaviour of k(x, u) are derived
first as u--, c in the sector D: largul<--r/2-e, and then as u oo in the sectors D:
r/2--e<_largul<_r/2. The formulas valid in D are expressed entirely in terms of
elementary functions, whilst those applicable in D are expressed in terms of Hankel
functions of order 1/3.

2. Asymptotic torms in the sector D. The formulas giving the asymptotic be-
haviour of k(x, u) as u oo in D are expressed in terms of the variable (x, u) defined
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by the equation

(8) (x, u) =foX(U2 + 2h 2 cosh2t)l/2dt.

The radical appearing in this integral is chosen so that its real part is positive. That this
is possible follows from the fact that Re(u+--ih/2cosh2x )=Re(u)_>0 so that we can
select larg(u+--ih/2cosh2x)l/21-<r/4 and hence larg(u2+2h2cosh2x)/21<-,r/2 as de-
sired. Therefore Re(x,u)_>0 for all x_>0. It is shown by Pitts [7, Lemma 2.3] that for
u D any solution of (1) that is bounded as x oo must reduce to a constant multiple
of that solutiony which possesses the asymptotic form

(9) yl(x,u)-(u2+2h2cosh2x)-l/4e-(x’u)[1 +o(1)],
as x- oo for fixed u. This solution also possesses [7, Lemma 2.1] the property that

(10) y,(x,u)-(uZ+2hZcosh2x)-l/4e-*(x,u)[1-- O(u- 1)]
as u oo in D, uniformly for all x_>0. The solution +(x, u)=M3)(x+ ir/2) introduced
in 1 is a multiple of y. If we write tk(x,u)-c(u)y(x,u), the coefficient c(u) can be
determined by comparing equations (4) and (9), both of which apply when x--, o, and
appearing to the formula[l, p. 139],

(11)
,r

exp(-2h sinhx)[1 +O(e-X)]K,(2h sinhx ) 4h sinhx

It follows that

(12) c(u)-- --ie-’’/2 x-.oolim exp[(x,u)-heX].

To determine c(u) and at the same time obtain the form of (x, u) when u is large, we
appeal to the following formula for the variable (x, u):

(13) (x, u)- (u2+2h2cosh2x)1/2 u log[ u+ (u2 + 2h2 cosh2x) 1/2]
+UX +A(U) + O(u-le-2X).

The function A(u) appearing in this equation does not appear in the final formula for

k(x,u) and so does not need to be determined or estimated. The equation (13) also
holds as u--, oo in the entire half plane Re(u)_>0, and it holds uniformly for all x_>0.

To construct (13), we first use the identity cosh2t=sinh2t+e-2t to form the
equation

u 2 + 2h 2 cosh 2 2h2 sinh 2 + u2 tanh 2 + ( u2 ._ 2h 2 cosh 2 )e- 2 sech 2t.

This equation is divided by (u2+ 2h2cosh2t)1/2 and integrated for O<_t<_x. We obtain
the equation

(14) (x,u)=
2h2sinh2tdt +u2 sinh2tdt

(u2+2h2cosh2t) ’/2 cosh2t(u2+2h2cosh2t)/2

+ e-2t(u2+2h2cosh2t)l/2sech2tdt.
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The first two integrals occurring on the right-hand side of (14) can be evaluated
explicitly. If at the same time, the third integral is expressed as the difference of the two
integrals corresponding to the domains (0, oo) and (x, oo), we find the equation

(15) I(xu)-(uZ+2h2cosh2x)’/2, ulog[u+ (u 9- + 2h2 cosh 2x) 1/2]
Ulog(cosh2x)+Al(U)- e-2t(u2+2h2cosh2t)l/2sech2tdt+

where A(u) is a function of u only. The integral remaining on the right-hand side of
(15) is expressed as the sum of two integrals I and I2 which are defined by the
equations

(16) I,Le-2t[(ug-+2hg-cosh2t)/2-u sech2tdt,

(17) I-u e--’sech2tdt-71og(1 +e-).

The quantity I is readily shown to be O(u-e-2) by appealing to the bounds

( u2 + 2h2csh2t ) l/2- { u+ O( u- e2t )’
O( e’ ),

0-<t-<Re(x)’
Re(xo) <t

where xo is defined by the equation 2h2cosh2xo=-U2. Since lullheXo and this is
O(et)=O(u-e2t) for t_>Re(x0), we see that (u2+2h2cosh2t)l/2-u=O(u-le2t) uni-
formly for all t_>0. Upon inserting this bound into (16), it is seen that I =O(u-e-2x)
as required, so that, after using (17), we find that (15) takes the form

(8 ,(,ul-(u:+2hoh2ll: u log[ u+ (u + h osh

where A(u)=A(u)-(u/2)log2 need not be determined. This proves (13).-
It is easily shown from (18) that

lira [(x,u)-he]=A(u)-ulogh,

so that (12) yields the result

exp[-ivr/2+A(u)-ulogh].

On substituting this expression into g,(x,u)=c(u)y and recalling (10) and (18), we

obtain the required formula

(9

(X U)----i(2)1/2-,r
(u2+2h2cosh2x)

exp
ivr

ux u logh

+ u log ( u+ ( u2 + 2h E cosh 2x)/2 )

-(u2+2h2cosh2x)’/2][1 + O(u-’)]
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as uc in largul_<rr/2--e. This equation, though somewhat complicated, gives the
asymptotic behaviour of the Mathieu function tk(x, u)=M3)(x+ irr/2) entirely in terms
of elementary functions, and it applies uniformly for all x->0.

If x is fixed, the equation (19) simplifies to yield the formula

(20) tk(x, u) i(2)/2,ruexp[--ivr_--------ux+ulog -e [l+O(u )].

3. Asymptotic forms in the sectors D. In this section we consider the asymptotic
formulas that apply in the sectors r/2-e<-largul<-r/2. We consider first the sector
-,r/2<_argu<_-r/2+e and to facilitate the application of the formulas derived by
Pitts, we introduce the new variable v-iu so that O<_argv<e in this domain. The
asymptotic formulas then involve the variable

(21)
x

(v2 2h-cosh2t)J/2dt
Xo

where 2h2 cosh2xo-V, the.value of Imx0 being chosen in the interval 0-<Imx0-<rr/2.
The radical appearing in the integral in (21) is chosen so that its imaginary part is
positive.

The basic solution y2 that is bounded as x c now possesses the asymptotic forms
[7, Lemma 2.3]

(22) Y2 ( I)2 2h2 csh2x)1"(- ) 1’2
nl)3() [ +o(1)]

as x oo for fixed v D, and [7, Lemma 2.2],

as v-, oo in hi, uniformly for x >_ 0.
Alternatively the formulas (22), (23) may if desired be expressed in terms of Airy

functions by means of the standard relations connecting these functions with the Bessel
functions of order 1/2. The resulting formulas are similar to those developed by Sharples
[8]. In comparing the results, however, it must be remembered that the formulas given
by Sharples refer to solutions of the basic differential equation satisfied by the modified
Mathieu functions and that it is necessary to set z--x+icr/2 in his formulas to
reconcile the results.

As in {}2, it is required to obtain an asymptotic formula for the variable ’(x, v)
valid as v oo in D and this can be obtained almost immediately from the formula
(18) for (x, u) already constructed. On beating in mind the definitions (8), (21) we
find, on making the appropriate changes in (18), that

2h - osh2 ) --log +(2-2hcosh2x)1/2

where B(e) is determined by the requirement that ’(xo, e)= 0 and the quantity J(x, ),
which arises from the I term in (18), is defined by the equation
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The bound on I established in 2 shows that J--O(v-le-2x) whenever x is real and
positive. The condition ’(x0, v)=0 leads to the following equation for B(v):

-v]sech2tdt.(26) B(v)--vlogv--VXo--f e-2’[(v2-2h2cosh2t)/

The path of integration in the complex t-plane is taken to consist of (i) the straight line
from x0 to Re(x0) together with (ii) the part of the real axis for which t_> Re(x0). The
contribution of the second such part is (v-le-2x) and this is O(v-3) since vheo.
The integral corresponding to part (i) is taken along a line for which Re(t)= Re(x0)
loglv/hl so that (v2- 2h2 cosh2t)/2= O(v) and e-2t sech2t= O(v-a) thereon. Hence
the integrand is O(v-3) on the path in question and since the length of the latter is
IIm(xo)l---largvl, which is less than e, we see that the corresponding integral is itself
O(v-3). Thus the integral appearing in (26) is O(v-3) so that B(v)= v logv-vxo +
O(v-3). The latter equation reduces further, since the equation v2-2h2cosh2xo im-
plies that hego- v+ O(v-3) and this leads to the equation

(27) B(v) v logh + O(v-3 ).
The equation (24) now gives, for x_>0, the desired formula:

(28) (x,v)-(v2 2h2cosh2x) 1/2 -vlog[v+(v2 2h 2 cosh 2x) 1/2]
+vx + v logh +B,(v) + O(v-e-2)

where Bl(V)-- O(v-3).
In the sector 0_< arg v--<e the function k must reduce to a constant multiple of the

solution Y2 introduced at the beginning of this section. We therefore set k D(v)y2
where the coefficient D(v) is determined by taking the limit as x o. On substituting
the expressions (4), (22) and appealing to the formula (11) and the result, [1, p. 139],

2
exp i._

5ir(29) H)1/2(’)- - -- [1 +O(--l)],

which applies as ’-0 oo in -,r< arg "<2 rr, we find that

(30) D(v) (2) 1/2 [ i,/" ir
lim exp i-hex +_

The limit present in the preceding equation can be found from the expression (28) by
noting that

(v2-2h2cosh2x)l/2-iheX[1 + O(e-2")],
r

lo/., v + ( v2- 2h cosh2x J)1/2/- x + logh +--+ O( e )

for v fixed and x large. It follows that

lim [(x,v)-ihe]-Bl(v) ivr

x-.oo 9.

The insertion of this result into equation (30) leads to the formula

--r exp
2 2 {--- [l/O(v )].
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Hence, by (23), the basic solution D(v)Y2 possesses the asymptotic form

(31) -- (I)2- 2h2 cosh 2x)-I/4exp [ 2 2 " [ /2u l/)3 ( ) -I- O(1) e Im )

as v oo in 0_<argv_<e, uniformly for x_>0. In (30) the variable ’(x,v) is defined by
(28) in which the term Bl(v), being O(v-3), is omitted, since only the leading term in
the asymptotic expansion of tk is sought, and O(v-1) terms are already ignored in the
approximation accepted.

If x is fixed, the equations (31) and (28) simplify to give the formulas

(32)

(33)

for v oo in 0_< arg v-<e. Since the variable " is now large, the Hankel function present
in equation (32) may be replaced by the appropriate asymptotic expression. It is shown
by Pitts [6, Lemma 5.1], that as x varies between 0 and oo, argO" varies over an interval
contained within (-qr, qr/2). If v is real and v2<2h2cosh2x, then arg’=r/2 but if
v2> 2h 2 cosh2x, then argO’= -r. Thus, for v large and positive and x fixed, argO’= -,r.

This is consistent with equation (33), the dominant term on the right-hand side of that
equation being the logarithmic one. For such values of v the asymptotic formula (29) is

inapplicable and it is necessary to appeal to the formulas [9, p. 75]:

H(I)( ze-i,, ) =J(ze-i*r ) + iYw( ze-i r ),
Jw( ze-i" ) e-’W Jw( z ),

ze-’" ) e’W"Y ( z ) 2i cos wqrJw( z ).

After slight reduction it is found that

H}l/)3( ze-i’ ) 2e-i"/6 cos -) Jl/s( z ) sin - Yl/3( z )

On substituting the asymptotic formulas, [1, p. 139],

/21/2 5r
Jl/3(Z) )L--rrzcos z--- [1 +O(z )]

Yl/3(z ) (2) 1/2 5,r] --I--,rz sinz--- [l+O(z )],

which apply as z --, oo in largzl< r, we find that

(34) Hl/)3(ze_i. ) 2e_i,,/6(2)’/2 (r) -1cos z- [l+O(z )]
’if2 ""

On setting " ze-ir in (32) and inserting the formula (34), we obtain the equation

i +O(v ),
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as v o in 0--< arg v--< e, where

(36) z-vlog(.V)-v(x+ 1) / O(v-l).

The final formula for k is therefore

if=2( 2 ) 1/2

rv
expliver2 vr

2 ir]2
cos vlog -v(x+ l)-- +O(v- )

4. The zeros of k(x, u). In this section we consider the asymptotic distribution of
the zeros of the function k(x,u), the quantity x being supposed prescribed and positive.
First it is noted that the zeros in question are purely imaginary. This can be verified by
applying a standard procedure in which the equation (1) is multiplied by the complex
conjugate )7 and integrated for a<_x< oo, the integral of the term fiy,, being trans-
formed by an integration by parts. If y(a)- 0, we find the equation

f  lY lZdx + 2h2falYl2cosh2xdx+ u2flYl2dx-O.
It follows immediately from this equation that the possible values of U2 are negative
and that the corresponding values of u are purely imaginary. The formula (20) which
applies in the sector larg ul-<r/2-e confirms that no zeros can occur in this sector for
large u. Those zeros that are located on the negative imaginary axis of the complex
u-plane and which are of sufficiently large magnitude can be determined with the aid of
(35), since v= iu is positive. Alternatively the Hankel function appearing in (32) could
be expressed in terms of the Airy function and appeal made to the results of Olver [5, p.
367] where the zeros of the latter function are determined. If we follow the former
procedure, we find that the large zeros are given by the approximate formula

where n is a large positive integer. By (36), the values of v are then given by the
equation

vlo ( ) -v(x 
The corresponding zero of the function k(x,u) is obtained from the value of v de-
termined by (37) by applying the formula u--iv.

Acknowledgment. The author wishes to thank the referee for suggestions and
improvements which simplified the final formulas for (x, u), k(x, u) and which ex-
tended their domains of validity.
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EXPANSIONS OF OPERATORS RELATED TO
xD AND THE FRACTIONAL DERIVATIVE*

R. TREMBLAY AND B. J. FUGIRE$

Abstract. The operator

j=l

where {0, 1}, re,n, )NU {0} and %., B C, and where D is the fractional derivative operator, is
expanded in terms of the elementa operator

(zD-(- 1)’w- (1 -y)t+ 1)t Z (’ -2,)w+(l-,),Otz(2, l)w+,t,
where y u {0, 1} d w uC. An explicit expression for the coefficients appearing in these expansions is
obtned. The expsions contn my well-known cases in the literature as special cases. Also, my new
operational formulas are ven, in pticul with the ordina differential operator D and the integral
operator D

Some equivalent relations are also obtned by using two different sets of parameters. An illustration is
given by

1. Introduction. The derivative of a function F(z) with respect to g(z) of arbitrary
order a, where aC in general, is denoted by DF(z) and is called a fractional
derivative.

An extensive "fractional calculus" for the operatorD exists in the literature (see
for a good survey [20]), and many examples of the use of the fractional derivative in
integral [11] and differential [12] equations have also been discussed. Many representa-
tions of this operator have been proposed in the past. The most important ones have
recently been reviewed 16], 17].

Reference [17] contains a large number of selected formulas and theorems concern-
ing the "fractional calculus" such as the Leibniz’s rule for the law of exponents, the
generalized Taylor’s series, etc.

Some of these results have been generalized by R. Tremblay [23], by considering
more general operators constructed with the fractional derivative, namely:

Dza(z"Dza) and -) 1-I ( zD+ otj )rz
j=l

where {0, }, r, aj C and rn, n, r,j NU (0}. Under suitable conditions the validity
of the law of exponents has been shown [23, Thm. 4.3], namely,

D(ztDza) r" Dzfl( zflDf ) O+fl( za+flO/+fl )r,
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and the following operational formula obtained [23, Thm. 4.2]:

D(
z

-8) (zD+ aj)rjzl D(z, _)ol,z(,-o). H [zD+ aj- flOn + i] rj

o--__

Z#O#nD(1-8)(!

where 8, O {0, }. It should be noted that in [23] the proof given is for t)- r, , but the
result remains valid for different ..

The study of this class of operators will be carried out in this paper. First, the
following expansion formula must be proven"

rn nR

H (zD+aj+ I)= 2 C(V).(aM )(zD--(--l)V--(l--Y)t+ l)t,
j-’l t-’0

n,t,

where (A)t-A(A+I)...(A+t-1), t_>l; (A)0-1 R-E2m=t), where t)N, jN,
and ),@ {0, }. The parameters o and the set a= {a,a_,.- ",am}C are independent
of z. The coefficients r),,t;n,) are defined by the hypergeometric form (see [22] for
the definition of the hypergeometfic function),

(I .4) C(V>n(,) (- l)(’-v>t+v m

n,t, t j:l
aj 7n) r2n

(-t’(l++(-1)aM+(1-’)n’rM) 1)."R+’FR (1 ++(--1)vaM-Tn,rM)
Ts contracted notation (A,r) appearing in the C coefficients defined above repre-
sents the sequence (A,r),(A2,r:),...,(Am,rm), in which each symbol (B,p) contains
p terms equal to B. For the case r= for i {1,2,..-,m}, (Am, 1)=A. With this
definition, the contracted notation corresponds to the usual contracted notation A,
representing the sequence A,A2,.. ",Am, wch has been previously defined 18, p. 41 ].

Consequently, by using (1.3) and the operational formula (1.2), the main result of
ts paper involving the fractional defivatNe Dfl is obtained:

(.)

J= t=O

D(l-8>BnzS(l-)Bn(zD-( l)ro-(l--y)/T 1)t
zSBonD(z-)(l-O)#n,

where /3 C; 3’, 8, 0 {0, 1 } and aM-BOn +fiN- represent the set of parameters
{%-BOn+Bi-lll_<i_<n, l<_j<-m}. The other parameters have been previously de-
fined. Of course, the choice of the parameters must be such that the hypergeometric
function is well defined.

In fact, (1.4) contains eight formulas depending on the values assigned to the
parameters 0, 3’ and #.

In 3, the cases where the hypergeometric function in (1.4) can be summed are
investigated for the ordinary differential operator D and the integral operator D-.
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To complete 3 various identities are given by specializing the parameters. It
should also be emphasized that the C coefficients considered here are independent of z.
The case where the coefficients are functions of z will be the subject of a subsequent
paper.

2. Sketch of the prom and some remarks on the C coefficients. As mentioned in
the introduction, the main formula (1.5) will be proved if the operational formula (1.3)
can be proved. To establish the proof of this operational formula, we can proceed by
induction. Another alternative is to operate with each side of (1.3) on x. If there is
equality for s=0, 1,2,3,..., then Carlitz’s theorem [6] guarantees the equivalence of
the operators involved. In carrying out the proof by induction, the principles given in
[23] must be used.

It is interesting to notice the following properties of the C coefficients"

(2.1)

(2.2) CV) t(x o)-C() (aM+(--l) O),t,Rk n,t,R 60)

Also, if m- 1,r -r, w-3,-a-0 in (1.4), we obtain

(2 3) C() (0 0)-- (- 1)t ( --t, (l+n,r)
n,t,r,) t! (n!)r+’Fr

(1,r)

-t-7 (-1) j (/’+1) +2) ...(j+n)
j=0

=A(r)(n,t),

where
nr

(2.4) (D(xD)r)n- X a(r)(rl,t)xtot+n"
t=O

In fact the last equation generalizes Lardner’s formula [15], which is given by (3.5).
These operators have been previously introduced by Carlitz [5]. Other formulas involv-
ing the numbers A)(n,t) can be found in [23]. It should also be noted that (2.3) has
been obtained by using a result developed in [4] and that the At)(n,t) contain as a
special case the Stirling numbers of the second kind.

3. Some special cases. In this section, some special cases of the main result will be
given. They contain a large number of parameters, and by specializing them many new
operational formulas involving the operator D are obtained.

First, we investigate the cases where the hypergeometric function appearing in the
C coefficients can be summed. To the knowledge of the authors, only the Gauss
summation theorem [22, p. 49],

(3.1) 2F( a’bc _r(c)r(c-a-b)
r(c-a)r(c-b)’ Re(c-a-b)>O,

can be applied.
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We begin with the case rn rl in (1.5). Using (3.1), the following expansions are
obtained:

(3.2)

D(I-’)nz’(’-)n(zD-( 1)vo- (1 -y)t+ 1)t
.z#nD(l-)(l-#)n

(3.3)

(Dz-’(zD+ot)z-} "- ’ (_ l)’/(n-t)( n ) (l +w+(-1)’(t-1)-(1-O-T+2TO)n

t--O (1++(-i7(. 1)-(1-O-’l+2"tO)n

D(n-’)Onzn(-’>n(zD-( 1)v- (1-T)t+ 1)tz-nOnD(z8-1)(’-o)n,

where 6,0,3,{0, 1} and 0C. It is interesting to notice that if 8=7=0=a=w=0
then using Boole’s formula [9], [6],

(3.4)
reduces (3.2) and (3.3) to

ztDt--(zD-t+l)t,

n n
zS,.s(3.5) ( DzD)n n -.S

s--0

n
n-s.-. SDS-(3.6) (D-zD)

s=0

whereDf(z) ff(t) dt.
The formula (3.6) has been published by Lardner [15].
Recently, A1-Salam and Ismail [2] have given an equivalent formula of (3.6) for the

finite difference operators A and V. A generalization of (3.5) has also been given by
Osipov 19].

Now, by putting =(-1)v+(a+On)+n-n in (3.2) and o=(-1)(1-a)+
(1-0-3,+ 2vO)n-n in (3.3), all the terms appearing in this expansion vanish except
the last one. Therefore it yields

(3.7) (D’-n(zD+a)zn)"-D(’-n>’zn(-o)"(zD+a-On+ 1)nzn"D(->(-)"

and

(3.8)

The special case a =0 in (3.7) can be found in [23], and the case a 8 =0, 0= has
been previously obtained by Carlitz [5].

Coming back to (1.5) and letting m=2, 3,=ri=r2 1,/3= and o--Otz--On, we
obtain another case and the Gauss summation theorem can be used. Among the 2n +
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terms obtained from the expansion formula, the first n terms vanish and, after a
"sliding" of the index of summation, we obtain

(3.9) (D’-8(zD+a2)(zD+(x,)z8)"- (- l)#-’( n

,-0
t) (1-a2-al)"

D(-)’zn(-)"(zD+a_-On+ 1)n+t
.zOnD(-)(-o)n

and similarly from (1.5) with/3- 1,

(3.10)
n

2 (n) (1Ta,--} D(8-’>OnzS(O-I,n
t=O

-Ono8- )(I-O)n(z.+
where 6, 0 {0, }.

Finally it is interesting to notice that many identities can be obtained with differ-
ent choices of parameters. For instance, by considering the substitutions

(a) #=0==0,=v=l,
(b) 6-0--V-0, fl-1, mm+l, %%-1, r+-0 and a+-l,

we can deduce

(3.11) D (zD+aj) ’) --z-"-I (zD+aj- 1)r(zD 1)z

Also, using (1.1) and (3.11) it it easy to obtain the triple equality

n
--n+l

(3.12) (D(zD)r)n-Dn(znDn)r-z-n-’((zD 1)r+Iz)nz-"+1
These equalities are by no means trivial.

Another example is obtained by respectively putting %--j and %=j where
j { 1,2,. .,m) in (3.11):

(3.13) (zm+2Dm+l) n -z,+1 (zmDm+l n
Z

(3.14) ( z2Om+ lzm )"-- zn+ I(D,+ ,zm )nZ"- 1.

Formally, if m- -2 in (3.14) or (3.15), a known identity previously proposed as a
problem by M. S. Klamkin [13] is rediscovered. This identity is

z__
az f fF(z)(dz)’+P(z),

where P(z) is a polynomial of degree n- 1. It should be noticed that by taking definite
integrals, the P(z) may be ignored.

It should also be pointed out that the formula (1.5) still contains a large number of
particular cases to be studied. Here we have limited ourselves to the cases/3-- --+ 1. To
illustrate that, we can say that the operator (1.5)contains as a particular case the
operator (xrDr)", which was studied a long time ago by Carlitz [3]. Also, the operator
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(xDx) was investigated by A1-Salam and the operator (xk(xD+)) was studied
recently by K. R. Patil and N. R. Thakare [21 ]. Other known cases can be obtained. If
in (1.5) we put fl-k-1, m-1, a l-k, r-1, i-1, -0 and (3.4), we obtain the
expansions (corresponding to the values ,-0 and "t-1) of the operator (z*D) given
by Chak [7]. An interesting use of this operator is made in [24].

We can also obtain the expansion of the operator (x+D) in terms of the operator
Dk used recently by Charalambides [8] and Comtet [10].
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CONVERGENCETHEOREMS FOR MATRIX CONTINUED FRACTIONS*

DAVID A. FIELDt

Abstract. Convergerice theorems are proven for continued fractions of the form K(An/I) and K(I/Bn)
where A,, and B,, are nn matrices and I is the identity matrix. Geometric rules of convergence are
determined for the matrix exponential.

1. Introduction. Since calculations involving matrix valued functions with matrix
arguments are feasible with large computers, such functions have been used in solving
many difficult problems. For example, at General Motors Research Laboratories the
matrix exponential has been involved with the dynamic equations of robot control and
with mathematical models of catalytic converters. In [11] Varga used Pad approxi-
mants, equivalent to continued fraction approximants, of the matrix exponential to
derive and analyze certain discrete approximations to solutions of self-adjoint parabolic
differential equations.

The matrix continued, fraction used by Varga is an example of noncommutative
continued fractions about which not much is known. Few convergence theorems for
noncommutative continued fractions have been published. Two theorems are stated in
[15], where Wynn reviews many aspects of the theory of continued fractions whose
elements do not commute under a multiplication law. In a Banach space, extensions of
Worpitsky’s theorem have been proven by Fair [3], Hayden [4] and Negoescu [6], [7].
Hayden’s and Negoescu’s papers included the Banach space version of g-fractions.
Hayden also proved a twin convergence theorem.

In this paper several convergence theorems for continued fractions whose argu-
ments are n n matrices are proven. These theorems include the complete analogue of
Worpitsky’s theorem, a matrix analogue of a twin convergence theorem proven by
Copp [2] for ordinary continued fractions, and a convergence theorem for continued
fractions of the form K(I/B,). The second section of this paper presents the conver-
gence theorems. A third section concludes this paper with convergence rates for the
matrix exponential. Throughout this paper the norm of a matrix will be denoted by II’ll
and is not restricted to any particular norm.

2. Convergence theorems. The matrix continued fractions under consideration in
the first two theorems in this section are of the form

I A_ A
(2.1) K2=--I+ I+ I+ "’"
where the A’s are nn matrices of complex numbers and I is the nth order identity
matrix. By defining

I Aj Aj+l An-I An(2.2) K ,o-I+ I+ I+ ...+ I+ I’

*Received by the editors November 6, 1981, and in revised form May 30, 1983.
Mathematics Department, General Motors Research Laboratories, Warren, Michigan 48090-9055.
A discussion with the late Professor Karl Rasmussen, Mathematics Department, University of Michi-

gan at Dearborn, of his proof of a matrix Worpitsky theorem (the version in [2]) subsequently led to my
proving these theorems which would have been applied in his research on matrix Riccati equations arising
from scattering functions in physics [6], [7].
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the value of K2 is the limit of the sequence of its nth approximants, (K2, n} whenever
this sequence converges.

The n th approximant K2, can be evaluated in several ways. The backward
recurrence method of evaluation proceeds by multiplying (I+A)-l and A_ l, fol-
lowed by adding I to the product, whereupon the inverse of the sum and A_2 are
multiplied and so on. Since multiplication of matrices is noncommutative, inverses are
usually either always premultiplied, e.g. (I+A)-A_, or always postmultiplied, e.g.
A_ 1(I+A)- , to form pre- or post-continued fractions.

The computationally preferred method of evaluating (2.2) is by using the standard
three-term recurrence relations which are equivalent to the above backward recurrence
even for continued fractions with noncommutative elements, see Wynn [14], [15].
However, in the proofs of the following theorems, where an efficient evaluation of K2, n
is not an issue, the backward recurrence algorithm will be useful in deriving truncation
errors for post-continued fractions.

Crucial to each step in the backward recurrence algorithm is the existence of
inverses. To guarantee the existence of these inverses the following well-known lemmas
will be used. Their proofs are found in [8].

LEMMA 2.1. Ifl[A[[< 1, then (I+A)- exists.
LEMMA 2.2. If IIAII<I, then II(I+A)-III<I/(1-IIAII) and II(I+A)--III <_

IIAII/( -Ilall).
THEOREM 2.3. The matrix continuedfraction in (2.1) converges whenever IIall-<.
Proof. The matrix continued fraction in (2.1) will converge if its sequence of n th

approximants is a Cauchy sequence. The proof will first show the existence of the
inverses needed in the backward recurrence algorithm and then show that the sequence
of approximants (K2, n} is a Cauchy sequence.

Let a-n/2(n+ 1), n_> and define K2,j_l=I, the identity matrix. The following
induction argument shows that IIAg+l,+_lll<a<l, n>_l, so that by Lemma 2.1
the inverses required for the backward recurrence algorithm exist; that is, K,;+_
exists for n_>l. Since Ilaill<1/4 by hypothesis, IIAiKi+,ill-IIhll<a-1/4 and (I+hi)-1

=Ki ierdsts. SimilarlyKi+l =(i+Ai+ )-l erdstsand by Lemma2.2,11AiKi+
1/4(1/’(1--1/4))=a 2 so that KI++ also exists. Therefore K+,+2 exists. Suppose f6r i_>2,
<_j <_ n, [IAK+, +j_ 1[ -< aj< 1, and K,+_ exists. This induction hypothesis implies

that ]]Ai+Ki+z,i+j[]<_aj<l so that by Lemma 2.1, Ki+l,i+j--(I+Ai+lKi+z,i+j)-exists. Thus by Lemma 2.2 [[AiK+,+jl[<_1/4(1/(1-aj))-aj+ < and by Lemma 2.1,
K, +,, exists and the induction is proven.

The above argument not only proves the existence of the inverses used in the
backward recurrence algorithm but also proves the existence of the inverses used in the
remainder of the proof.

The norm of the difference between the (n +p)th and the nth approximants of the
matrix continued fraction in (2.1) can be written as
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Thus,
(2.3)

IIK2,-- K2,
where K+ l,n=--I. Note that IlAiKi+ l, nll<--an_i+ 1" Therefore,

(2.4) [l(I+aiKi+l,.)-lll< 1/(1
and

(2.5)

I]Kn+l,n+p__,[i: ( I+A.+,,K.+2,"+p )-I(,__(I+A.+,K.+2, ,+p ))ii --ap ).
Combining (2.3) with (2.4) and (2.5) yields

p [1 -ln-I 2(i+1) 2(i+p+l)
p+2 i=1 (i+2) i+p+2

p+2 n+l p+n+ n+

Since 2/(n + 1) in (2.6) is independent of p, the sequence of approximants (K2, n} of
the continued fraction in (2.1) is a Cauchy sequence. Not only is the theorem proved,
but (2.6) estimates the error of approximating the continued fraction in (2.1) by its n th
approximant.

In the following theorem, letting p-1/2 in (2.7) sharpens Hayden’s theorem [4, p.
369] so that IIA2-11 need not be uniformly bounded away from 1/4. (2.7) is-in fact the
analogue of Copp’s result [2] (also see [12]) for ordinary continued fractions K(an/1 ).
Copp’s theorem guarantees convergence of K(an/1) if

laz._,l p la2.1 (1 + p

where 0< < 1. On a historical note, Theorem 2.4 is still sharper than Leighton and
Wall’s classic theorem published in 1936 [5] where

and la2.l  .
THEOREM 2.4. Let (An} be a sequence of n n matrices satisfying

(2.7) IIAzn+lll--<p and IIAz-nlll-<l/(l+p)2, n>_l,

where 0<p< 1. Then the matrix continuedfraction in (2.1) converges.
Proof. The backward recurrence algorithm requires the existence of the inverse of

the denominators of arbitrary sections of the continued fraction in (2.1) whose elements
satisfy (2.7). Because the even and odd elements satisfy different constraints, let the
denominators which start with an even element be denoted by

E2j;o-I+A2j and E2j;n--I+A2jK2j+I,2j+n, n>_ 1.
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Let the denominators starting with an odd element be denoted by

X2j+.o=I+A2j+ and X2j+l;,,=I+A2j+K22+l,2j+l+,,, n>_l.

E- and X.+! n exist for all j>l and n >0.An induction argument will show that 2j; n
Two matrix identities will be useful throughout the remainder of the proof.

(I..FB)-I-[B(B-1 -F-I)]- 1- (B-1 -F.I)-IB-I-(I..F.B-I)-IB-I
and

(I+B)-’-[(B-’ +I)B]-I-B-I(B-1 +I)-E!0 exists since (I+A)-A exists by Lemma 2.1. Lemma 2.2 implies that

IIE.loll--& 1/(2#+p2)=a2< 1/t9. Since IIA2j+lll<_o2< 1, xj_;0 also exists by Lemma
2.1.

E-12j;I ( I+A2jXj1+ o )-I (I+ X2j+1;oAjl ) -1 X2j+ I;OA2j-1.- exists by Lemma 2.1 and Lemma 2.2.Since [[X2j+ 1.0all[_<(1 + p2)/(1 + p)2< 1, E2j;
Furthermore,

E_
+p2 + 1o

2 + 0
2

)2-- 2p =a3<--"

Sj’l+ 1;1 also exists since [IA2j+ t(I+A2j+2)-lll<_p2a2 p/(2 +p)< 1.
Suppose forj_>l and l<k<n, IIE2-)l_lll<_a,+l<l/o and X_;_ exists. De-

fine

(1 +p2a,)/(1 +#)2

ai+2= (1 + #2ai)/(1 + # )2’ ao-0, a-l, i_>0,

E-Iand note that ai+2< l/p, i_>0. An induction argument requires proving that I! 2j; ll <
a+2< 1/o and x.l+ . exists for <k<n,j> 1.

(2.8) E-12j;k -(I+AzjXfj+,.k-,) -’ (I+Xzj+, k- IAjl ) -1 X2j+l.k-lAjI.

Xfj._ . k_ exists by the induction hypothesis and

E-’ )Aj’II< + p2at’
2(j+l,;k--2 .-(1+0)2

<1.

Consequently E- exists by the first equality in (2.8) and since ak< l/p, k>2.2j; k
Furthermore

2

[[g-12j; k[[-< (1 +p2at,)/(1 +p
)2 =a,+2<

1/(1 +p) __1
1--(1 +#2a,)/(1 +# 1--1/(I-F-0) P- andTo show the existence of Xj.l+l.k, note that X2j+.k=I+Azj+E2(j+);k_

IIAzj+ IE2(j+ l); k-ll<O2(1/O)-O< and use Lemma 2.1.
To prove that the sequence (K2..} of approximants is a Cauchy sequence, it is

necessary to consider IIK2,.-Kz..+kII, k_> when n and n+k are combinations of odd
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and even approximants. Since all such cases are essentially similar, without loss in
generality, let n be even.

As in the proof of Theorem 2.3,

Kz,.-Kz,.+k-(I+AzK,.)-’Az(K,.+k-K,.)(I+AzK,.+k)-.
Using the identities involving (I+B)- changes this equation to

K2,. -K2, .+k-(I+K,’ A’)-’Kn(K. ,.+k--K, . )K’.+kA’(I+K’.+k1)-1

(I+K’nA2-1 ) (Kl-Kn+k)A,(i+Kl+kA. )
But K3-(I+A3K4,.)- and K3, n+k-(I+A3K4, n+k)- imply

K2, -K2, n+k-(l+K1AI)-’A3(K4 -K., +k)A’(I+K,’ AI)-1
n n ,n n n+k

Continuing these matrix manipulations yields

(2.9)

n/2-
-1 -Ia=, IIA2,+, I1( I+KI a2i )-1

i=1
,n

To obtain an estimate of the fi#t-hand side of (2.9), use the fact that forj- n or n + k,

(2.1o)

+ o=lle 2+ l,; j--2(i+ l)ll + O2a_2,< + p.

By Lemma 2.2 write forj

_,)-, ]/(] +P) _]

Combining (2.7), (2.9) and (2. ]) yields

(2.]2)
(]+o).-"

In (2.]2) use II(I+A)-llaz and II(I+A,K,+ ,,+)-tll-IIE llak+z< ]/P to write

(1+1)(2.13) II,.-,.+ll<

Since the rit-hand side of (2.13) is independent of k and converges to zero as n
increases, {K,.} is a Cauchy sequence and Theorem 2.4 is proved.

Remarks. If n were odd in (2.12), II(I+A.)--(I+A.K.+,.+k)-[I would
read III-(I+A.+K.+2,.+k)-II and the upper lit of the product in (2.9)
would be (n-1)/2. When n is even, (2.13) may be improved by noting that ak=
k/o(k+ +O), k 1, so that from (2.10) and (2.11), forj even

)-, (i +da_,)/( +o )=a_,+<l +2-2i
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Thus when n is even, this inequality allows the multiplication on the fight-hand side of
(2.13) by 4/(n + 2).

In the next theorem the matrix continued fractions correspond to ordinary con-
tinued fractions of the form K(1/b,). For the remainder of this section

I I
(2.14) K------ B + B2+
and

I I I
Kj, . Bj + Bj+ + +B,, n >_j.

The proof of the theorem uses induction but matrix operations are different from those
used in the previous proofs.

THEOREM 2.5. Let (Bn ) be a sequence of n n matrices satisfying

(2.15) IlaLLlll_< and IIB lll_<l- , n_>l where O<a<l.

Then the matrix continuedfraction in (2.14) converges.
Proof. As in the proofs of Theorems 2.3 and 2.4, the existence of the inverses in the

backward recurrence algorithm and that the sequence (gl, n) of n th approximants of
K is a Cauchy sequence are verified.

Using the identities involving (I+B)- in the proof of Theorem 2.3, formally
write

I I(2.16) Ki,i+k-
Oi 2c - Oi+k-2 "Jr- ( Oi+k- "- BLIk ) -1

I I

Bid--... + ai+k_2 + ( I+ a+lk_ a+lk ) a+lk_

-(I+ B/-l( (I+B/_2(/+B+_IB+Ig )- lB/_lk_ )’" ")- iB/--
(I’+- Xi, k)-lBF l- (IJl BFI(I Xi+I,k_I)-IBLII)-IBFI.

It will be shown by induction that all the inverses in (2.16) exist.
By hypothesis, for all i, IIX,II-IIB-*B*II_<(1-)_<1/4 implies that the inner-

most inverse in the nest of inverses in (2.16) exist for all i_> 1. Also for i_> 1, IIX,211
II B/- (I+BtB2)-IBI I1-<(1 a)/(1 a(1 ))< and the next innermost inverse
exists. Now suppose that for all i_> 1, 2<_k<_j, (I+Xi, k_l)- exists and

(2 17) o(1 tx)
1-

where the right-hand side is a(1- a) times the (k-1)th approximant of the ordinary
continued fraction K(a/1), a 1, a=-a(1-a), n_>2. Since the maximum of the
function g(a)-a(1-a), 0<a<l, is 1/4 when a-1/2, Worpitski’s theorem for ordinary
continued fractions (see [12, p. 42]) is applicable to conclude that all the approximants
of K(a,/1) lie in the disk S-(Z: IIZ-111<1) so that IIX,k_lll<_a(1--a)2<1/2. There-
fore

IlX"k]l=llB-l(l+X+l’k-l) lB/-’lll--<(1--x)1-llx+,,k-,ll



1226 DAVID A. FIELD

implies that (I+ X,., k)- exists by Lemma 2.1 and (2.17) holds for II S, k II. In particular
for odd andj even, (2.16) and (2.17) together imply

and

(2.18) IIK  .ll 1-

where the right-hand sides are respectively a and (1- a) times the (p+ 1)th approxi-
mant of the continued fraction K(a,,/1) defined earlier.

To show that {Ki,) is a Cauchy sequence, write

K, .- Kt, ,+k Kt, n( K2, , K2, .+)KI,
=(- 1)n-lKl,nK2, n Kn,nKn+l,n+kKn,n+k Kz, n+tK,n+t,

where K,,,,,-B-. It is easily shown that the fight-hand sides of (2.18) are bounded
respectively by a and (1-a) times the (p+ 1)th the approximant of the ordinary
continued fraction

1/4 1/4 1/4
l-l- l- 1

The nth approximant of this continued fraction is h,,=2n/(n+ 1), n_>2 and h= 1.
Without loss in generality let n be even and write

(2.19)

<4n_l[a(1 _a)lnrt+ rt --.2 n+k+l
n+2 n+l 3 n+k+2

k+l 2k .4a(1--a)
k+2 k+l- n+2

Since the right-hand side of (2.19) is independent of k and converges to zero as n
increases without bound, {K,} is a Cauchy sequence and Theorem 2.5 is proved.

3. The matrix exlmnential. The analysis of continued fraction and Pad6 table
expansions of the matrix exponential was an important portion of Varga’s paper [11]
on parabolic partial differential equations. In that paper the matrix continued fraction
expansion of e, A an n n Hermitian matrix, was given by

(3 1) e 1 A A A A A
I- I+ 2I- 3I+ 21- 5A+ ""’

To utilize (2.6) in the proof of Theorem 2.3, write

(3.2) e,=.__/-A (1/2)A (-1/2-3)A (-1/2.5)A
I+ I+ I+ I+ I+

Then for IIAII 1/4 (A is not necessarily Hermitian),

Ile" gz,.ll 2/( n + ),
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where K2, n is the nth approximant of the matrix continued fraction in (3.2). For
matrices with larger norm use the following expansion easily derived from (3.1) (also
see [1, p. 70]).

A A A A Ae.=Iq
I- 21+ 31- 21+ 51+ """

If A- exists, the above expansion can be written as

I -(1/2)/1 (1/2.3),4 (-/2-3)A (-1/2.5).4(3.3) A-l(e--I)=T- 1+ 1+ 1+ 1+ """
Thus if Ilall_<1/2 and A- exist (2.6) in Theorem 2.3 implies

2(3.4) IlA- ’(e l ) gz, .ll<_ n + l

where K2,, is the nth approximant of the matrix continued fraction in (3.3). Since
IIAIIIIBII>_IIABll, multiplying the inequality in (3.4) by 11-411 yields

Ile -I-Agz’"ll<-2 (n+ 1)
-<
(n+ 1)’

if A- exists and IIAII<1/2.
Acknowledgment. I am grateful to the referee for bringing to my attention refer-

ences [2], [6] and [7], and for many valuable suggestions.
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SOME USEFUL PROPERTIES OF THE HILBERT TRANSFORM*

M. L. GLASSER"
Dedicated to Professor Walter Kohn

Abstract. The Hilbert transform is shown to be invariant under certain rational transformations of the
integration variable. Examples are provided to show how this leads to new transform pairs.

The Hilbert transform of an integrable function F is defined by

f F(x) dx(F(x); y}--- - x-y

where y is real. (All integrals in this note denote the Cauchy principal value at poles of
the integrand.) These transforms occur in a variety of applications and at least one
extensive tabulation is available [1]. In general, Hilbert transforms are difficult to
evaluate analytically as well as numerically. In this note I present two apparently new
relations satisfied by (1) which are remarkable not only for their generality and power
in providing new transform pairs, but also for their elementary character.

In what follows {al,a2,...,a} will denote a sequence of arbitrary positive num-
bers, and {bl,.--,b} an increasing sequence of arbitrary real numbers.

THEOREM 1. For any function F, whose Hilbert transform is defined,

(2) OC(F(,I(X)) y}-(F(x); q,(y)},
where

n-l aj(3) *l(X) =X- X
j=l x--bj"

To appreciate the scope of (2) it suffices to examine one or two examples. Thus,
from 1, Eq. 15.2(11)] with el(X) x x- l, we have immediately (F(x) x(x 2 + a2)- l)

x(xz- 1) } ay e
(4) %

X4 -]" (a2- 2)x2 +
y

y4+ (a2_ 2)y2 +

as can be verified by the tedious process of decomposition into partial fractions. From
[1, Eq. 15.2(38)] we find the formula, whose derivation from scratch is less clear,

(5) {eiaXe-ia/x; y}--ieiaYe-ia/y, a>0.

An interesting corollary is that

{F(l(X)); bg}-0, k= 1,2,...,n-1.

*Received by the editors July 2, 1982, and in revised form April 1, 1983. This work was supported by the
National Science Foundation.

*Department of Mathematics and Computer Science, Clarkson College of Technology, Potsdam, New
York 13676.
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The proof of Theorem is quite simple. A glance at the graph of U--@I(X ) and
elementary calculus shows that this equation, which we rewrite

n-I

(6) G(x)/ II (x-bj)-O,
j=l

where
n--I n

(7) G(x)-u II (x-bj)-f(x)- II (x-xj)
j--I j=l

and f is a polynomial, has n distinct roots x-x(u) which are differentiable functions
of u for < u< oo. We now write

f__
-O "F[tlbl(x)] f__b-o fbb4.2- fb,7(8) I= dx= + +... + dx.

x-y _ x-y

(11)
where

(12)

In the range bj_ <x<bj we set x=x(u) and obtain

n x)(u)
i F u3 du

-oo = xj-y

We have assumed that y does not coincide with any bs. The case where it does can be
recovered by an appropriate limit.However,

S=l
au g6-Y--u-,,ty

wNch concludes the proof.
By a silar argument we find
TnOM 2. For any function F, whose Hilbert transform is defined,

%(r(,:(x)); y)-%(r(x); 0}-%(r(x); ,(y)),

qz(x) aj

j=l x-bj"

For example, from [1, 15.2(38)] with q2(x)= x-1 we see that

(13) {eia/x; y}-i(1-eia/y) (a>--O)

as can be checked directly. A more interesting case is for (12) to be the Mittag-Leffler
representation for a suitable meromorphic function. Thus, noting that

m

(14) x--cot(x-l) -2x X
k (k2’//’2x2-- 1)

N_, oo -- (kr)- -1
k= x-- x+(kr)

we find the surprising relation valid for continuous F possessing a Hilbert transform

1) %{F(-cot-)); e}-0C{F); 0}-%{F(); y-ot(y-’)}.
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Using 1, 15.2(6)] this yields

(16) - (x-y)[x+a-cot(1/x)]
=i

(y-cot(l/y))
Ima>0,

a(y+a-cot(1/y))

whose direct verification is clearly problematical.
These results can be extended to the Stieltjes transform.

Note added in proof. Prof. M. Klamkin has pointed out (private communication)
that these results were described, in somewhat different form, by G. Boole (G. Boole,
On the comparison of transcendents, Phil. Trans. Part III, 1857). Dr. Klarnkin and the
author are in the process of modernizing and exploring the consequences of Boole’s
investigations.
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SOME REMARKS ON ZEROS OF CYLINDER FUNCTIONS*

M. E. MULDOON" AND R. SPIGLER*

Abstract. We prove that the functions Y(v)/J(v) and Y’(v)/J(v) are monotonic for v>0. It follows
that, for 0_<0_<5,r/6, J(x)cosO- Y(x)sinO has no x-zero on O<x<-v and, for r/6 <_ 0 <_ ,r, J,(x)cosO-
Y(x)sin 0 has no x-zero on O<x<_v.

1. Introduction. In some investigations of x-zeros of cylinder functions

(x, O ) --J(x )cos0- Y(x )sin O, v>0,

and of their x-derivatives ’(x, 0), the question arises whether there are such zeros on
the interval 0<x<,. We show here that there are no such zeros of (x,O) in case
0_<0<5,r/6 and no such zeros of (x,O) in case ,r/6<0<r. Similar assertions are
contained implicitly in [4, p. 707, footnote] and in the assertions in [4] concerning
o(n,t), but proofs are not given. It is proved by Sturmian methods in [3, Corollary to
Theorem 2] and is also a consequence of the monotonic character of Y(x)/J(x) as a
function of x, that the x-zeros of C(x,O) decrease as 0 increases, 0<0<,r. Also the
first positive zero of Y(x) exceeds v [6, p. 487], so there is a Oo(v) with r/2 <00(v)<r
such that C(x,0) has no x-zeros on O<x<v when 0<0<0o(V). (See the concluding
remark below). To obtain a result which is independent of v we need to study the
monotonic character of Y(v)/J(v) and its limit as

2. Notation and results. For fixed v_>0 and fixed x>0, let O(x,r) and 02(x,v) be
the unique numbers satisfying 0<0,_(x, v)<r such that (x, 0) and (x, 0), respec-
tively, vanish for 0-01,02. The uniqueness and many of the properties of these func-
tions (with a slightly different notation) have been discussed in [5]. We have

and

0,( x, v ) r/2- arctan[ Y,(x)/J(x )],

Oz( x, v ) r/2 arctan Y(x)/J(x )].
Here we prove the following results.

TI-IeO 1.0(, ,) decreases from r to 5r/6 as , increases on (0, o).
TI-IEOM 2. 02(r, r) increasesfrom 0 to r/6 as v increases on (0, oo).
COaOLLaaY 1. IfO<O<5r/6, there is no x-zero ofC,(x,O) on 0<x<r.
COROLLARY 2. If
COROLLARY 1’. ’-J(v)+ Y(v)<O,
COROLLARY 2’. r-j(
3. Remarks. The assertion in Theorem about the decrease of 0(v,v)-is essen-

tially given by Watson [6, p. 515] and the "end-point" values follow from [5, p. 70, (1.9)

*Received by the editors May 25, 1982, and in revised form October 5, 1982. This research was
supported partially by the Natural Sciences and Engineering Research Council (Canada) and by the Con-
siglio Nazionale delle Ricerche (Italy).
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and (1.10)]. We are able to shorten Watson’s proof slightly. Theorem 2 appears to be
new. Corollaries and 2 imply the assertions of Olver [4] mentioned in the introduc-
tion.

We observe that 0t,2(v,v) represent the values of the parameter 0 such that
CvI(O)--F CtvI(O)--P, respectively, c(O) and c’m(O) being the first positive zeros of
(x, 0) and (x, 0). They can be evaluated by using the graphs of J(v), Y(v),
J(v+ 1), Y(v+ 1) plotted in 1, p. 185]. In order to obtain greater precision, they have
been tabulated in [5, pp. 81-82] for 0.1 _<v_< 10 with step 0.1.

Corollaries and 2 are important in that some results about the x-zeros of (x, 0)
and, more especially, of (x, 0) hold, or are proved, only for those x-zeros which
exceed IvI. This is true, for example, of the result given by Watson [6, p. 488] on
stationary values of cylinder functions and of Dixon’s theorem on the interlacing of
zeros of functions A(x,O)+Bx;(x,O) and C(x,O)+Dx;(x,O) where ADvBC
[6, p. 481]; see also the higher monotonicity results given in [2, Thm. 7.2].

4. Proofs. Watson [6, pp. 444-445, 448, 515] proves the monotonicity assertion in
Theorem by showing that Y(v)/J(v) increases for v> 0, i.e. that

(1) Jv(v)dY(v)/dv- Yv(v)dl(v)/dv>O, >0.

He proves that the left-hand side in (1) is equal to

f( v ) 2/( ,rv ) (4/,r)f0K0(2v sinht)e-2"t dt

and then that f(v)>0, v>0. His argument can be shortened a little by using the
decreasing character of Ko(x) and the elementary inequality sinht> t, t>0, to get

f( v ) > 2/(,rv) (4/,r)foKo(2Vt )e-2vtdt- 2/( ,rv ) 2( rv)-foKo( u)e-udu- 0

on using [6, p. 388, (9)].
The proof of Theorem 2 is, rather surprisingly, easier than that of Theorem 1. We

need to show that

(2)
Now the left-hand side of (2) is equal to

The second term here is seen to be 0 on using [6, p. 76, (6)] or the Bessel equation
directly. On using [6, p. 445, (3)] we see that the first term is

-(4/,r)f0 (cosh 2t- 1)Ko(2vsinht)e-2tdt

which is clearly negative. This completes the proof of Theorem 2.
Now suppose that 0<0_<5,r/6 and that E,(x,O) has an x-zero at x0, 0<x0_<v.

From [5], there is at most one O=Ol(Xo, V) for which this can hold. Since Ol(X,v) is a
decreasing function of x, 0<x<v, we have

01(X0, P ) >01(P, P ) > 5r/6,

the last inequality coming from Theorem 1. This is a contradiction so Corollary is
proved. The case 0=0 is known already [6, p. 485].
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Corollary 2 is proved in a similar way using Theorem 2.
Now E(x,5rr/6) is positive when x(>0) is close to 0. Corollary 1’ is simply a

statement of the fact that it is still positive when x v. (There is no x-zero on (0, v ], by
Corollary 1.) On the other hand E(x, rr/6) is negative when x(>0) is close to 0.
Corollary 2’ says that it is still negative when x v, a fact which follows from Corollary
2.

5. Concluding remark. For a fixed v, v>0, 5rr/6 can be replaced by Ol(V,v)--e in
Corollary and rr/6 can be replaced by 02(v,v)+e in Corollary 2 where e is an
arbitrarily small positive number. This permits us to complement Corollaries and 2 as
follows:

For each fixed v, v>0, (x,O) has exactly one x-zero in (0,v] if and only if
O(v,v)<_O<rr and (x,O) has exactly one x-zero in (0,v] if and only if O<O02(P,P).

Acknowledgment. The authors wish to thank Professor F. W. J. Olver for his
interest and for several helpful comments.
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A NODAL LINE THEOREM FOR THE SLOSHING PROBLEM*

J. R. KUTTLER
Abstract. We show that the nodal lines of the nth sloshing mode do not divide the region into more than

n nodal domains. As a corollary, the first nonzero eignevalue is shown to be simple.

()

The sloshing problem is the eigenvalue problem

Au 0 in R

Ou
hu onT,

On

tgu
=0 onS.

On

Here u may represent the potential of an incompressible fluid in a container with rigid
walls and horizontal free surface [1], [3, Chap. IX]. We consider the two-
dimensional problem where R is the cross-section of a uniform tank or canal. We take
T to be a finite interval on the x-axis and S the rest of the boundary of R (Fig. 1). We
assume that S is smooth and intersects Twith nonzero interior angles.

T

FIG. 1. The sloshing region.

If the eigenvalues of (1) are )k -)k .<)k with associated eigenfunctions
u2, u3, they can be characterized by a minimum principle

(2) k. min

2(Ux + u)dxdy

u2 dx

*Received by the editors January 25, 1983, and in revised form June 1, 1983. This research was sup-
ported by the Naval Sea Systems Command, U. S. Department of the Navy, under contract N00024-83-C-
5301. This paper was typeset at The Johns Hopkins University Applied Physics Laboratory.

’Milton S. Eisenhower Research Center, The Johns Hopkins University Applied Physics Laboratory,
Laurel, Maryland 20707.
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where the minimum is over all continuous and piecewise differentiable functions on R
satisfying

(3) I uu dx O
T

i= 1,2, ,n- 1.

A function minimizing (2) subject to (3) is an eigenfunction u, of (1) associated with
k

The first eigenvalue X is zero with constant associated eigenfunction. All other
eigenvalues are positive, and, because of (3), their eigenfunctions necessarily change
sign on T. We are interested in the character of nodal lines where u, 0.

Note that a nodal line of u must have one end on T, because a nodal line that is
either closed or has both ends on S encloses a subregion on which the function u is
harmonic and vanishes on part of the boundary while its normal derivative vanishes on
the rest of the boundary. Such a function is necessarily zero on the subregion. By the
unique continuation property of harmonic functions ( [2, p. 259 ]) this would force u
to vanish on all of R.

LEMMA. Nodal lines ofu, have one end on Tand one end on S.
Proof. Suppose to the contrary that a nodal line of u, has both ends on T

without intersecting S (Fig. 2). Let R’ be the subregion enclosed by this nodal line.
Define the function 4)1 by

R’ I
\ /

FIG. 2. A nodal line with both ends on T.

(a) (/)
inR’

0 outsideR’

Let i, 2, n, be translates of in the x-direction by distinct values t2, t,
i.e.,

(b) 4i(x,y) 4(x + t, y)

For sufficiently small ti, the functions i all have their support in R and are continuous
and piecewise differentiable. Since they are linearly independent on T, there is a linear
combination

(c) ,I, aO
i=!
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that will satisfy the constraints (3). Since

(d) a- X, onT,

it follows that is a function minimizing (2), and is therefore an eigenfunction, hence
is harmonic on R. But vanishes on a subregion of R, hence by unique continuation
vanishes identically, giving a contradiction.

We now state and prove the main result.
THEOREM. An eigenfunction u, associated with X cannot change signs more than

n I times on T. Its nodal lines divide R into no more than n subdomains.
Proof. Each point of sign change on T is an endpoint of a nodal line which we

have seen must have its other end on S. Moreover, these nodal lines cannot cross, else
there is a nodal line with both ends on S. Thus, the nodal lines of u, divide R into a
number of subregions each hfiving a portion of T as part of its boundary (Fig. 3). We

FIG. 3. Nodal domains ofun.

must show there are no more than n such subregions. Suppose to the contrary that
there are N > n. Call them Rl, RN and define

(e) ffi
inR

outside R;

The ki are continuous and piecewise differentiable on R, and linearly independent on
T. There is a linear combination of n of them

" bi
i=1

that will satisfy the constraints (3). Since

Xn onT,
On

we conclude as in the proof of the lemma that minimizes (2), is thus an eigen-
function, hence is harmonic on R, but vanishes on a subregion of R, and so vanishes
identically, a contradiction.

This proof is modeled on the proof of the famous Courant nodal line theorem for
fixed membranes (see, e.g., [4 ]) "Ve also obtain the following.
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COROLLARY. Thefirst noazero eigenvalue 2 is simple.
Proof. By the theorem, an eigenfunction associated with )2 can change signs at

most once on T. Since it must change signs at least once by (3), it thus changes sign
exactly once. Now, suppose to the contrary that )2 is not simple and has two associated
eigenfunctions u and v, which are linearly independent on T, so we may assume

(4) S uv dx O
T

Now, u and v each have one point on T at which they change sign, and by (4) these
points cannot coincide. Thus, without loss of generality, we may suppose that on T

u(x) < 0 forx < x

u(x) >0 forx>x

v(x) >0 forx<x2

v(x) <0 forx>x2

and Xl < x2. Now, consider the linear combination

f, (x) (1 t)u(x) + tv(x), 0_<t_<l

Notice that for all such

f, (x) > 0 for x < x < x

Now, consider the sets

T [t:f,(x) <0 for somex<xll

T {t:f,(x) <0 for somex>xzl

Clearly, T is a half-open interval [0,tl) and T is a half-open interval (t2,1 ]. There
are two possibilities. If tz < tl ,. then for < < tl, f, (x) changes sign at least
twice on T. If tl <- tz, then for tl <_ <_ t2, ft (X) > 0 on T. But as f1 (x) is an
eigenfunction associated with X2, these are both contradictions.

It is an open question whether or not u changes signs exactly n times on T
and all the eigenvalues are simple.
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