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MULTIPLE BIFURCATION PROBLEMS
OF CODIMENSION TWO*

JOHN GUCKENHEIMER'

Abstract. The term bifurcation in this paper refers to changes in the qualitative structure of any solutions
to a system of ordinary differential equations with a varying parameter. This paper is about multiple
bifurcations for which there is a multiple degeneracy in some feature of the system and a multi-dimensional
parameter in its definition. The most immediate motivation for studying these problems is that they occur in
the mathematical descriptions of many natural phenomena, but their importance extends beyond the fact that
they can be identified in applications. Multiple bifurcations provide both a means of organizing knowledge
about simple bifurcations and a powerful analytical tool for locating complicated dynamical behavior in some
models. An intuitive reason for these features is that near some multiple bifurcations, the effect of nonlinear
interactions is analytically accessible.

1. Introduction. In this section we present a description of the problems studied in
this review and an overview of the methods we use. The basic object of interest is a
system of ordinary differential equations depending upon parameters A

(1.1) x=f(x)=1(x,A).

Here xER", A\ER* and f,: R">R" or f: R"XR"—>R". We shall often represent the
system (1.1) by the vector field x,. The solutions of (1.1) are described by the flow ®,:
R"XR—-R" with ®,(x,#)=x,(¢) being the value at time 7 of the solution to (1.1) with
initial condition x = x,(0). The individual curves x,: R - R" are the orbits or trajectories
of the flow. Our primary attention is devoted to the way in which qualitative properties
of the trajectories depend upon the parameters A. A bifurcation value A, of the parame-
ter A is one for which there are A, in any neighborhood of A, such that the flows @,
and @, are qualitatively different.
An example, here, illustrates these ideas. In the system of equations on R?

(1.2) X =Ax, —x,+x(x2+x2),  x=xHAx,tx,(xP+x3)

the origin is a globally stable equilibrium for A<0. However, when A>0, there is a
periodic trajectory which forms the circle x?+x2=A\. Thus a bifurcation (called the
Hopf bifurcation, cf. [2]) occurs at A=0.

We are interested in two general aspects of a bifurcation problem like (1.2):

(1) To what extent does the geometric structure of the solution set of the system
with parameters change if the system is perturbed? In particular, we want to examine
perturbations which add higher order terms to an expression like (1.2) which is ex-
panded as a Taylor series of an equilibrium.

(2) To what extent can one use the results of power series expansions to deduce the
presence of solutions with complicated asymptotic behavior near an equilibrium? In the
Hopf example (1.2), the Hopf bifurcation theorem (2.2) implies the Taylor expansion of
degree 3 at an equilibrium is usually sufficient information to determine the presence of
limit cycles near the equilibrium. We would like to study analogous problems for which
more complicated dynamical phenomena can occur near an equilibrium, in a way that
is determined qualitatively by a few terms in the Taylor expansion at the equilibrium.
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These two issues are closely related to the concept of structural stability [113]. We
do not attempt here to formulate our results in terms of structural stability, however.
Instead, we focus on particular dynamical features that can be described in each of the
problems we discuss. There have been efforts to develop a more systematic bifurcation
theory within the context of dynamical systems theory, but the fruits of these efforts do
not seem ripe for the kinds of applications discussed here. Nonetheless, our attitude is
motivated by the analogy with problems of singularity theory for smooth maps [126],
where a systematic theory has been developed [84].

The particular bifurcation problems we study are associated with a system (1.1) for
which there is an equilibrium point (x,,A,) (this means f(xy,A,)=0) which is not
hyperbolic. The Jacobian derivative of f with respect to the x variables has zero or pure
imaginary eigenvalues. The cases in which there is a single zero eigenvalue or a single
pair of pure imaginary eigenvalues are well known and reviewed briefly in §2. The cases
with double degeneracy: (1) a two-dimensional nilpotent space, (2) one zero eigenvalue
and a pair of pure imaginary eigenvalues, or (3) two pairs of pure imaginary eigenval-
ues are our principal object of study.

In problems with a double degeneracy at an equilibrium, at least two parameters
are needed to capture all of the qualitative features which are present in perturbations
of the original system. Expressed in terms of Taylor series expansions, we view a
problem with multiple degeneracy in the following way. The vector fields which yield a
certain type of bifurcation problem are those which satisfy special conditions. For
example, the vector fields with a two-dimensional nilpotent subspace at an equilibrium
are those for which P(0)=(dP/d§)(0)=0, where P(£) is the characteristic polynomial
of the Jacobian derivative at the equilibrium. The number of independent conditions
(two in the example) on the Taylor series is the codimension of the set of vector fields
satisfying the special conditions. We also call this the codimension of the bifurcation.
Thus, a vector field defined near an equilibrium with no eigenvalues on the imaginary
axis has codimension zero. The problems addressed in this paper have codimension
two. In addition to the special conditions which determine the type of bifurcation
problem, there will be additional inequalities that the Taylor series is required to
satisfy. In the example of a two-dimensional nilpotent subspace, we require
(d*P/d£*)(0)0, to prevent the occurrence of a three-dimensional nilpotent subspace,
as well as other inequalities that will be specified later.

Given a vector field x with a bifurcation of codimension k, we embed x in a
k-dimensional family x, which is transverse to the set of vector fields satisfying the k
special conditions determining the bifurcation. For example, a two-parameter family x,
transverse to the vector fields with an equilibrium having a two-dimensional nilpotent
space is defined by

(1.3) X=Xy,  X,=A A,

The process of determining these transversal families is discussed in §3. If we are lucky
then a transversal family x, with x,=x will contain all of the qualitative dynamical
features that exist in perturbations of x. (The family (1.3) does not have this property.)
In all cases, inequalities must be imposed upon nonlinear terms in the Taylor expansion
at the equilibrium of x in order to have the desired properties of stability with respect
to perturbations. When one locates a transversal family x, which is stable to perturba-
tions, one says (loosely) by way of analogy with singularity theory that x, is a universal
unfolding of x.
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There are two remarks which we make about this approach to bifurcation prob-
lems. First, the applications of the theory often involve systems which possess a
symmetry. Symmetries of the physical problem should be carried over to its mathemati-
cal description as a bifurcation problem. In discussing stability with respect to per-
turbations, it is necessary to specify whether the perturbation should be restricted to
those which also satisfy the given symmetry. When only symmetric perturbations are
considered, then one obtains a new list of codimension k bifurcations for each new
symmetry group that is studied. We shall consider results obtained for a few very
simple symmetry groups in this paper.

The second remark concerns the relationship between the results described in this
paper and other approaches to bifurcation theory. There are three issues to be consid-
ered: 1) static vs. dynamic bifurcations, 2) the imposition of trivial solutions, and 3) the
presence of a distinguished bifurcation parameter.

(1) One part of the solution of a bifurcation problem is the determination of how
equilibrium solutions depend upon the parameter values. This static problem is a
substantial subject in its own right and is much more amenable to systematic study
(using singularity theory) than the dynamic problem of determining the nonequilibrium
solutions as well. In the static problem one is interested in the zero set of families of
maps f,: R"—R". The qualitative structure of the zero sets is preserved by coordinate
transformations of the form g, =¢, o f, o, with ¢,,¢,: R”"—>R" invertible mappings
depending smoothly on A and subject to the condition that ¢,(0)=0. These coordinate
transformations can be used to make the linear parts of the Taylor expansion at two
equilibria the same if the two Jacobian derivatives have the same rank. On the other
hand a smooth change of coordinates y=¢(x) transforms the differential equation
x=f(x) into y=Dey-1,, f(¢7'(»)). This yields a similarity transformation on the
linear part of the Taylor series at an equilibrium. Thus the eigenvalues of the Jacobian
derivative are unchanged by the type of coordinate change and problems that are
indistinguishable in the static theory appear very different when considered dynami-
cally.

(2) The second issue involved in comparing our results with other approaches to
bifurcation theory involves the hypothesis that there be a “trivial” solution. Perturba-
tion methods frequently assume that there is an equilibrium fixed at 0, and nonzero
solutions with a specified dependence on a small parameter ¢ are sought. Customarily,
the equilibrium at 0 remains an equilibrium for all values of all the parameters in the
problem. In our setting, we can easily treat both the general case and this case in which
there is the constraint that £,(0)=0 for all A.

(3) The issue of a distinguished parameter arises when one replaces individual
vector fields as the basic object of study by one parameter families of vector fields. If
one adopts the latter point of view, then one wants to study all of the perturbations of a
given one-parameter family which has a degenerate bifurcation. With luck, one hopes
that there is a finite dimensional family of one-parameter families of vector fields that
contains all of the qualitative features found in perturbations of the degenerate one-
parameter family. Here there is a two-tier structure in which the single parameter of the
original system is distinguished from the additional parameters in the problem. Asymp-
totic methods usually distinguish a single parameter in terms of which nonzero solu-
tions are expanded.

In this paper we take a definite stand on issues (1) and (3). Dynamic bifurcation
problems without distinguished parameters are studied. This contrasts with the recent
work of Golubitsky and Schaeffer [38] in which static problems with distinguished
parameters are considered.
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Sections 3-5 are organized around the common strategy which can be used to
“solve” bifurcation problems of codimension two. We give here an outline of the steps
in this analysis.

I. The first step in analyzing a bifurcation problem involves the use of smooth
coordinate changes to reduce the arbitrariness in the Taylor expansion of a vector field
with a degenerate equilibrium. The normal form theorem (3.2) of Takens [125] is a
procedure for transforming coordinates near an equilibrium so that the Taylor series in
the transformed variables is particularly simple. This gives us a much smaller collection
of problems whose dynamics have to be explicitly analyzed. The theme, which recurs
later, is that the nonlinear terms of the normal forms control the interaction of the
degenerate modes which are undergoing bifurcation. A second, technical bonus of
applying the normal form theorem to a problem is that is allows one to reduce many of
the dynamical questions for codimension two bifurcations to considerations involving
two dimensional vector fields.

II. The second step in analyzing a bifurcation problem is the computation of a
transversal family containing the normal form of the vector field with a nonhyperbolic
equilibrium. This computation is done in terms of the first degree Taylor expansion at
the equilibrium. Arnold [6] gives a more comprehensive treatment of this aspect of the
analysis.

II1. The third step of the analysis is the determination of the dynamics contained
in these transversal families. We work here with systems obtained by truncating the
normal forms with the terms of a certain degree. Even for these truncated systems,
some aspects of the dynamics are subtle. As remarked above, the truncated normal
forms for codimension two bifurcations at equilibria all separate so that much of the
dynamics can be deduced from a planar subsystem. Some of these planar systems have
periodic solutions and care is required for their study.

IV. We examine structural stability properties of solutions obtained in III for the
planar subsystems of the normal form families. If the phase portraits of these families
are insensitive to perturbations (including the addition of higher order terms in the
Taylor series), then we consider the analysis of the planar flows complete. However, we
do encounter cases in which the normal forms truncated with nonlinear terms of only
one degree lead to individual flows which have a family of periodic solutions. To
remedy this structurally unstable situation, we truncate the normal form at a higher
degree and repeat the analysis of step III. Our treatment here is incomplete in that we
do not evaluate certain integrals. We presume that most choices of the additional
nonlinear terms lead to structurally stable planar families, but the proof of this relies on
additional study of the integrals which we do not evaluate.

V. For systems with imaginary eigenvalues, another difficult step remains before
one has obtained a complete picture of the dynamics of the corresponding bifurcation
problems. This step is the description of the flows in three and four dimensions which
correspond to the planar flows for the reduced systems studied in §§3 and 4. The
reduction was made on the basis that the truncated normal forms have a rotational
symmetry, but the full system may be only approximately symmetric. By using a C*®
change of coordinates, the original system can be made to differ from a symmetric one
by a function which is flat (has zero Taylor series) at the bifurcation point. Section 5
explores the consequences of asymmetry. For quasiperiodic orbits, the asymmetry
introduces small divisor problems which require the apparatus of the KAM
(Kolmogorov—Arnold—Moser) theory for their reduction. There are also questions
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about transversal homoclinic orbits and hyperbolic invariant sets which arise. We refer
the reader to [5] for descriptions of these resonance phenomena.

The results of the analysis are summarized by the planar bifurcation diagrams
located at the end of the paper. These diagrams partition a neighborhood of the origin
in the two-dimensional parameter plane into sectors. Each of these sectors represents a
set of systems which have similar dynamics. Some of the sectors subtend large angles at
the origin, but in some cases there are thin regions with boundaries that approach the
origin tangentially. Each sector boundary is associated with a simpler elementary or
codimension one bifurcation that is described in §2. Some of the boundaries which
involve the resonance phenomena discussed in §5 are in fact “fuzzy.” These fuzzy
boundaries represent small portions of the parameter plane near the bifurcation in
which there are dynamical phenomena that we cannot fully describe.

Section 6 is devoted to four representative examples to which the theory has been
applied.

1. The variational Van der Pol equations [21] include a codimension two bifurca-
tion to which the results of §§3 and 4 can be applied directly. These equations arise in
the study of a sinusoidally forced, weakly-nonlinear oscillator.

2. Following Holmes [56], the motions of an elastic panel in response to a fluid
flow across it can be studied with the techniques in this paper. Explicit calculations
require an initial finite dimensional approximation to the defining system of partial
differential equations.

3. A nonlinear reaction-diffusion problem is discussed for which the normal form
associated with a system with infinite degrees of freedom can be calculated [41]. Apart
from the issue of showing that there is no “hidden” symmetry, this application gives
the first analytic demonstration of “chaotic” solutions to a system of partial differential
equations.

4. Thermohaline convection is a bifurcation problem of fluid mechanics for which
codimension two bifurcations occur and normal forms can be calculated with suitable
boundary conditions [74]. This example also clearly demonstrates the essential role of
center manifolds in the determination of normal forms.

We have attempted to present the results in this paper in a widely accessible form.
Therefore, we have not tried to state the strongest possible structural stability results
for codimension two bifurcations. Instead our goal has been to go as far as a few
systematic methods will take us, indicating in §5 the issues whose resolution requires
more sophisticated techniques. One might hope that these methods could also be
extended to bifurcations of higher codimension, but problems with more degeneracy in
the linear part at an equilibrium require substantial new insights into the calculations of
the qualitative features of three-dimensional flows. Thus, we expect that analysis of
codimension three bifurcations will require methods which go well beyond those used
in this paper.

2. Codimension one. This section is a rapid review of some codimension one (or
elementary) bifurcations of a dynamical system. It provides background for the discus-
sion of codimension two bifurcations in the next three sections. Here we consider a
vector field X, or system of ordinary differential equations x =f,(x) defined on R” with
AER a single parameter. We are interested in the variation of equilibria and periodic
orbits of X, as functions of A. In particular, we initially focus open changes in the
equilibria and periodic orbits of X,. An equilibrium p €ER is a solution of f,( p)=0. A
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periodic orbit is a nonequilibrium trajectory with x,(¢)=x,(0) for some ¢>0. Bifurca-
tions occur when there are changes in the number or stability of equilibria or periodic
orbits of the vector field with varying parameter A.

To obtain a picture of the simplest bifurcations, we must first recall some funda-
mental results about equilibria and periodic orbits which are not bifurcating. If p is an
equilibrium of X,, then the flow of X, near p is studied initially by linearizing X, at p.
One replaces the system of equations X =f,(x) by the linear system £=(Df,( p))¢. If the
n X n matrix Df,(x) has no zero or pure imaginary eigenvalues, then the equilibrium is
called hyperbolic. At a hyperbolic equilibrium, one can write R” as a direct sum of two
invariant subspaces E*, E* such that the spectrum of Df,( p) restricted to E* is in the
right half plane, and the spectrum of Df,( p) restricted to E* is in the left half plane.
Solutions &,(¢) of the linear system which lie in E* tend to the origin as t—» — oo, and
solutions which lie in E* tend to the origin as ¢ — + oo. Other solutions diverge both as
t— —oo and - + c0. The stable manifold theorem [47)] asserts that a similar property is
true for the original vector field X,. There are submanifolds, the stable manifold W* and
unstable manifold W*, invariant under the flow of X, with the property that x,(¢)—p as
t— + oo if x,(0)E€ W* and x,(¢)—p as t— — oo if x,(0) € W*. There is a neighborhood
U of p such that all solutions not in W* or W* leave U both for times >0 and times
t<<0. The tangent spaces of W* and W* at p are E° and E*. Hyperbolic equilibria vary
smoothly with A as do compact subsets of their stable and unstable manifolds.

Bifurcation at an equilibrium requires that the linearized vector field have zero or
pure imaginary eigenvalues. In the simplest situations, these degeneracies of the lineari-
zation lead to the saddle node (or limit point) and Hopf bifurcations, respectively. In
each case, the local structure of the flow near the bifurcating equilibrium p is controlled
by specific nonlinear terms in the Taylor series of f, at p when these are not zero. This
is a common theme for all the bifurcations we study. Another aspect of the analysis of
all the bifurcations we study is that an extension of the stable manifold theorem allows
one to consider dynamical behavior in a low dimensional submanifold of R”. The
center manifold theorem [83] implies that hyperbolic behavior persists in the directions
complementary to the eigenspaces for eigenvalues which lie on the imaginary axis [98].
Thus, for the saddle node and Hopf bifurcations, one need only study one- and
two-dimensional vector fields to understand the dynamics near a general bifurcation of
these types. We note that constraints or symmetries affect the analysis of the saddle
node bifurcation.

Saddle node. The prototype (normal form) for the saddle node bifurcation is the
one-parameter family of vector fields defined by x=A—x2 on R'. Here the flow is
trivial with all solutions x,(¢#)— — o0 when A<0 and ¢—>=+ 00. At A=0, a single equi-
librium appears at x=0. It is stable from the right and unstable from the left. When
A>0, there are two equilibria, one stable and the other unstable. The two equilibria
separate from each other at a rate comparable to YA . The saddle node is shown in Fig.
1. The extent to which these properties are satisfied by the general saddle node
bifurcation is expressed by the following theorem.

THEOREM 2.1. Let X, be a one-parameter family of vector fields on R". Let p be an

equilibrium point for X, | for which the following hypotheses are satisfied.

(SN1) The linearization of X,  at p has a simple eigenvalue 0 with right eigenvector v
and left eigenvector w. The remainder of the spectrum of X, lies off the
imaginary axis.

(SN2) w((3/0A)XA(p;Ay))#0.

(SN3) w(D?X, (P))(v,0)7O0.
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Then there is a smooth curve of equilibria for X, in R" X R which has a quadratic tangency
with the hyperplane R" X (X,). If (x,A) and (x,,\) are two equilibria of X, near (p,A),
then x, and x., are hyperbolic and |dim W*(x,)—dim W*(x,)|= 1. The set of one-parame-
ter families of vector fields satisfying (SN1)—-(SN2) is an open set in the space == C*®(R"
XR,R"). Here quadratic tangency of a curve with a hyperplane means that the second
derivative of the curve does not lie in the hyperplane.

saddle node

transcritical

pitchfork

F1G. 1. Codimension 1 bifurcations of equilibria.

This description of the saddle node bifurcation is inappropriate in settings for
which hypotheses (SN2) and (SN3) cannot be satisfied. Two of these deserve mention
as alternatives to the saddle node bifurcation. In classical bifurcation problems, one
usually has the distinguished trivial equilibrium at the origin which is assumed to exist
for all values of A. Accordingly, hypothesis (SN2) cannot be satisfied at a bifurcation of
the trivial equilibrium. The appropriate condition which replaces (SN2) is that
w((8/0A)(DX,(0;A,))(v))#0 and the prototype for this new kind of bifurcation is the
equation x=Ax—x2. This system describes a transcritical bifurcation in which two
smooth curves of equilibria cross at A=0 and exchange stability there. Within the class
Z of systems which satisfy the constraint f,(0)=0 for all A, transcritical bifurcation of
the trivial equilibrium is typical behavior. If the constraint is dropped then the trans-
critical bifurcation can be perturbed to either a pair of saddle node bifurcations or to
no bifurcation at all. Figure 1 illustrates transcritical bifurcation.

The second alternative to the saddle node involves systems with a simple symme-
try. Examples often arise in which the systems x =f,(x) are equivariant with respect to
a reflection. In a one-dimensional system, this means that f,(x)= —f,(—x) or f, is odd
for all A. For such systems, both (SN2) and (SN3) will fail. The symmetry automati-
cally implies that there is a trivial equilibrium, so (SN2) is once again replaced with the
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condition w((d,/9A)(DX,(0))(v))# 0. The hypothesis (SN3) is replaced by the assump-
tion w(D3X,(0))(v,v,v)#0. The simplest example satisfying these assumptions and the
symmetry condition is x=Ax— x>. The typical bifurcation behavior within the class of
symmetric systems is a pitchfork or symmetric bifurcation in which a curve of nontrivial
equilibria passes through the point of bifurcation (0,A,) with a quadratic tangency to
the plane R” X {A,}. Pitchfork bifurcations can be perturbed to systems with either one
saddle node or three saddle nodes if the symmetry condition is dropped. The theory of
Golubitsky and Schaeffer describes these perturbations, though much of the theory in
this example was understood previously.

The bifurcation diagrams in Fig. 1 show the loci of equilibria in R"XR for these
three different bifurcations involving one zero eigenvalue at an equilibrium. Each
represents structurally stable behavior within different classes of systems. The form of
the prototypical examples comes from the normal form analysis and transversality
considerations discussed in §3.

Hopf bifurcation. The second kind of codimension one bifurcation which involves
an equilibrium p occurs when the linearized vector field at p has a simple pair of pure
imaginary eigenvalues and no other eigenvalues on the imaginary axis. This bifurcation
is called Hopf bifurcation in recognition of E. Hopf’s contribution to its study (see [86]).
The simplest expression of a system with a nondegenerate Hopf bifurcation is given in
polar coordinates by

2.1) F=r(A=r?),  6=1.

From a static point of view, there is no bifurcation of equilibria at A =0. However, the
stability of the equilibrium solution at the origin changes as A changes sign and this is
accompanied by a change in the number-of periodic orbits. The periodic solutions of
(2.1) form the smooth surface defined by A=r? with quadratic tangency to the plane
R2X{0}. See Fig. 2. Computationally, the Hopf bifurcation provides an important
technique for locating periodic solutions of a system. Without having to integrate the
differential equations, the change in stability at the equilibrium signals the occurrence
of periodic orbits and their approximate location near the bifurcation. The following
theorem gives a precise statement of these results.

="

4 A
F1G. 2. Hopf bifurcation.
THEOREM 2.2. Let X, be a one-parameter family of vector fields on R>. Let p(\) be

an equilibrium for X, for which the following hypotheses are satisfied.:
(H1) The linearization of X, at p(\) has a simple pair of complex eigenvalues a(\),
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a(N) with Rea(A ) =0. All other eigenvalues of the linearization of X, at p(\)
have nonzero real parts.

(H2) (d/dM)(Rea(A))#0.

Hypotheses (H1) and (H2) imply that in R"XR there is a smooth two-dimensional
surface o tangent to the eigenspace of a(A ) and a(\) at p(\) which comprises a family
of periodic orbits for the vector fields X,. Moreover o is contained in a three-dimensional
submanifold M of R"XR in which X, can be expressed via polar coordinates on M N
(R"X {A}) in the form

i=r(a\+br*)+ higher order terms, ~ 6=(c+dr?*)+ higher order terms.

Hypotheses (H1) and (H2) imply that neither a nor c is 0 in this representation.

(H3) b+0.

Hypotheses (H1)—(H3) imply that o has quadratic tangency with the hyperplane
R2X{A,} at (p,A,). Near (p,\,), the signs of a and b and the spectrum of the linearized
equations determine the stability of the equilibria p(A\) and the periodic orbits in o.
Systems satisfying (H1)—(H3) form an open set of one-parameter families of vector fields
in C*(R"XR,R").

The Hopf and saddle node bifurcations constitute a complete list of the codimen-
sion one bifurcations of equilibria in general one-parameter families of vector fields.
More degenerate bifurcations can be perturbed to a succession of saddle nodes and
Hopf bifurcations by small C* changes in the family. It is of considerable interest to
determine which successions can occur when a somewhat more degenerate bifurcation
is perturbed. Results of this kind are readily obtained from the analysis of codimension
two bifurcations in the next sections. Before proceeding, however, we need to discuss
other kinds of codimension one bifurcations which do not involve qualitative changes
in equilibria.

For bifurcations of periodic orbits, one has theorems analogous to those stated
above which describe saddle node and (secondary) Hopf bifurcations for periodic
orbits. In addition, there is a new type of bifurcation for periodic orbits, the flip
( periodic doubling or subharmonic) bifurcation. The standard technique for investigat-
ing the stability and bifurcation of periodic orbits of a flow begins by choosing a
cross-section and defining its (Poincaré) return map. The cross-section is a hypersurface
M"~'CR" which is transverse to the vector field and intersects the periodic orbit in
exactly one point p. The return map §: M — M is defined by sending x to the first point
on the trajectory through x which lies in M. The map 6 has p for a fixed point and is
defined in a neighborhood of p in M. The use of the return map reduces many
questions about the periodic orbit to corresponding questions about fixed points of a
system defined for discrete times. For discrete systems there is again a stable manifold
theorem. Here hyperbolicity requires that D@( p) has no eigenvalues of absolute value 1.

The stable manifold theory works as well for discrete time systems as for continu-
ous time systems. Equilibria are replaced by fixed points, and pure imaginary eigenval-
ues are replaced by eigenvalues of modulus 1. We continue to use the notation W*( p)
and W*(p) for the stable and unstable manifolds of a fixed point p for the discrete
system obtained by iterating the map 6: M — M. There are three generic codimension
one bifurcations for fixed points in one-parameter families of discrete systems. These
correspond to eigenvalues +1, —1, and pairs of complex eigenvalues of modulus 1.
Complex eigenvalues which are third or fourth roots of unity are special.

THEOREM 2.3. Let 0,: M—> M be a one-parameter family of smooth maps. When
A=\ assume that 0, has a fixed point p at which the following conditions are satisfied:

(SN1) The derivative D) ( p) of 0, has a simple eigenvalue 1 with right eigenvector
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v and left eigenvector w. The remainder of the spectrum of DO, ( p) lies off the
unit circle.

(SN2) w((38,/9A)(p))#0.

(SN3) w(D6, (p)(v,0))#0.

Then there is a smooth curve of fixed points for 6, in M XR which has quadratic tangency
with the hyperplane M X{A,}. If (x,,A) and (x,,\) are two distinct fixed points near
(PsAg), then |dim W*(x,)—dim W*¥(x,)|=1.

THEOREM 2.4. Let 0,: M— M be a one-parameter family of smooth maps. When
A=A\, assume that \ has a fixed point p at which the following conditions are satisfied:

(SH1) The derivative D8, (p) has a simple eigenvalue —1 with left eigenvector v

and right eigenvector w. The remainder of the spectrum of D8, ( p) lies off the
unit circle.

Hypothesis (SH1) implies that there is a smooth curve x(\) of fixed points of 8, with
x(Ag)=p. Let a()N) be the continuous function such that a(\) is an eigenvalue of
DO,(x(A)) and a(Ay)=—1.

(SH2) (d/dA)(a(Ay))#0.

(SH3) w(D*6%( p)(v,0,0))70.

If hypotheses (SH1)—(SH3) hold, then a curve of periodic orbits of period 2 bifurcates
from (p,A,) in M XR. This curve has quadratic tangency with the hyperplane M X {\,}.

THEOREM 2.5. Let 0,: M — M be a one-parameter family of maps which has a smooth
curve of fixed points x(X). Assume that the derivatives D@,(x(\)) have a continuous
family of simple complex eigenvalues a(X),a(\) such that the following conditions hold:

(H1Y At x(Ao)=p, |a(Ao)|=1 and all other eigenvalues of D@, (p) beside

a(Ag),a(A,) lie off the unit circle.

(H2)' (d/dM)la(A)|#0.

If a'(Ay)#1 for i=3 or 4, then hypotheses (H1) and (H2)' imply that there is a
smooth change of coordinates so that the expression for 8 in polar coordinates in the plane
spanned by the eigenvectors a(A ), &(A ) is

0x(r,¢)=(r(1+a(A—Ay)+br?), ¢+ c+dr?) + higher order terms.

Hypotheses (H1) and (H2) imply that neither a nor ¢ is zero.

(H3Y b+0.

Hypotheses (H1)'-(H3) imply that there is a two-dimensional surface o (not infinitely
differentiable") having quadratic tangency with the hyperplane M X {\,} C M X R which is
invariant for 0: 6(o)=o. If sN(MX{A}) is larger than a point, then it is a simple closed
curve.

Note here that the dynamics of 8 on the invariant curves produced by this theorem
remain to be determined. This involves questions of resonance and small divisors which
we postpone until §5. In addition, the cases a®(Ay)=1 and a*(A,)=1 have strong
resonance for which additional terms enter the special polar coordinate representations
of 6 stated in the theorem [8). These additional terms reflect more complicated behavior
for the typical family having bifurcations with third or fourth roots of unity as
eigenvalues.

The final type of codimension one bifurcation involves a lack of transversality
between the stable and unstable manifolds of equilibria or periodic orbits. Since they
involve trajectories far from these special orbits, they have a more global character than
the bifurcations considered thus far. Nonetheless, saddle connections for two-dimen-
sional flows are an important part of our analysis of codimension two bifurcations of
equilibria. If a trajectory is asymptotic to a single hyperbolic equilibrium or petiodic
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orbit for both t— + o0 and t— — oo, then it is called homoclinic. A nontransversal
intersection of the stable manifold of an equilibrium or periodic orbit with the unstable
manifold of another is a heteroclinic trajectory. The typical lack of transversality which
occurs in codimension one depends upon whether equilibria or periodic orbits are
involved because the dimension counts differ. (For a periodic orbit y, dim W*(y)-+
W¥y)=n+1, allowing the possibility of transversal intersections along a homoclinic
trajectory.) A full discussion of the phenomena involved in the lack of transversality
bifurcations is highly technical and would be out of place in this review. We restrict
ourselves to the one result which will be used in the next section.

THEOREM 2.6 [114]. Let X, be a one-parameter family of vector fields on R? with a
saddle point x(\). Assume that when A=\, there is a trajectory y which tends to
P=x(Ag) as t->= co. If the trace v of DX, (p) is not zero, then there is an €>0 and a
one-parameter family of periodic orbits w(\) for e+Ay>A>A or e— Ao <A<A such that
w(N)—>y as A= \. The stability of the w(\) is determined by t: w(\) is stable if T<<O and
unstable if v>0.

3. Codimension two bifurcations of equilibria 1. Normal forms. Using the codimen-
sion one bifurcations described above as a basic dictionary, let us turn to the analysis of
codimension two bifurcations of equilibria. We consider a two-parameter family X, of
vector fields on R” defined by the equations x=f,(x)=f(x,A) with f,: R"XR" a
smooth map. We shall assume that within a specified class of two-parameter families of
vector fields = there is a value A of A for which X, has a degeneracy more complicated
than those described in the last section. With this assumption, we want to describe as
much as possible about the flows of X, for A near A,. In particular we shall draw
diagrams of the A plane showing regions in which the X, have similar dynamic behavior
and the curves bounding these regions along which various codimension one bifurca-
tions take place. Experimentally based diagrams of this kind can be found in the
literature of fluid dynamics [20], but little emphasis has been placed upon understand-
ing the intersections of curves representing different bifurcations in that context.

THEOREM 3.1. Let == C®(R"XR2,R") be the class of general two-parameter fami-
lies of smooth vector fields. Any two-parameter family of vector fields in = can be
perturbed so that the only bifurcations of equilibria are saddle nodes, Hopf bifurcations, or
one of the following five types:

(1) Xy, has an equilibrium p at which DX, has a simple zero eigenvalue and no other
eigenvalues on the imaginary axis. Hypothesis (SN3) of Theorem 2.1 fails, but a corre-
sponding cubic term is not zero.

(ii) X\, has an equilibrium p at which DX, has a simple pair of pure imaginary
eigenvalues and no other eigenvalues on the imaginary axis. Hypothesis (H3) of Theorem
2.2 fails, but a corresponding fifth degree term is not zero.

(iii) X has an equilibrium p at which DX,  has zero as an eigenvalue of multiplicity
two and no other eigenvalues on the imaginary axis. DX,  is nilpotent of rank 1 on the
generalized eigenspace of zero (i.e., the Jordan canonical form on this subspace is (3))
and higher order conditions specified below are satisfied.

(iv) X,, has an equilibrium p at which DX,  has zero as a simple eigenvalue and a
simple pair of pure imaginary eigenvalues. No other eigenvalues of DX, (p) lie on the
imaginary axis, and higher order conditions specified below are satisfied.

(v) X\, has an equilibrium p at which DX,  has two simple pairs of pure imaginary
eigenvalues and no other eigenvalues on the imaginary axis. Nonresonance conditions and
higher order conditions specified below are satisfied.



12 JOHN GUCKENHEIMER

We shall summarize briefly some of the history of these different bifurcations.
Case (i) is a dynamic version of Thom’s cusp catastrophe [126], and its unfolding is the
same in this context as it is in Thom’s. The degenerate Hopf bifurcation (ii) has been
studied by Takens [122] and Golubitsky and Langford [37]. Each gives a full picture of
the unfolding of a persistent family. The double zero eigenvalue (iii) was analyzed
independently by Takens [124] and Bogdanov [16]. Their work established the ap-
proach to codimension two bifurcation problems adopted here. The bifurcations (iv)
have been studied in various contexts by Keener [69], [70], Langford [77], Guckenheimer
[41], and Holmes [58). The double Hopf bifurcation has been studied only recently and
the work of a number of investigators will undoubtedly appear shortly after this is
written.

In the remainder of this review we shall concentrate upon the analysis of cases (iii),
(iv) and (v) from Theorem 3.1 which involve double degeneracies for the linearized
problems at an equilibrium. For cases (iii) and (iv) we discuss: alternatives which
involve restricting our space of vector fields to satisfy a constraint or symmetry of the
sort discussed in §2 with reference to the saddle node. In many cases, flows near a
codimension two bifurcation are completely determined by considerations involving
planar vector fields, but other cases involve resonance phenomena which are discussed
in §5. To emphasize the common structure of the analysis employed in the different
cases, we shall proceed by applying each step of the strategy outlined in the introduc-
tion to all cases simultaneously. The reader primarily interested in the results which
pertain to a given case can find these presented succinctly in §4 in Figs. 3-9.

The first step involves making smooth coordinate changes which simplify the
expression of our systems as much as possible. The practical meaning of this statement
is that we try to transform to zero as many nonlinear terms as possible in the Taylor
series of the vector field at the point of bifurcation. The procedure for doing so is
inductive, working with terms of successively higher degree in the Taylor series. At each
stage of the calculation one computes the image of a certain linear map that can be
expressed in Lie algebraic terms. Terms in the Taylor series can be changed by addition
of elements lying in the image of the linear map, so coordinate changes are possible in
which the nonlinear terms of the vector field in new coordinates lie in specific comple-
ments to the images of the linear maps. The resulting expressions are called the normal
forms of the vector fields.

Let us describe the procedure of calculating normal forms in more detail. Let X:
R"—R" be a vector field and ¢: R"—R" be a locally defined diffeomorphism which
defines a change of coordinates. The expression of X in the new cooridnates is Y(x)=
Dey-1,( X(¢~'(x))). We are particularly interested in vector fields which have an
equilibrium at the origin and coordinate changes which leave the origin fixed. The
effect of such coordinate changes on the Taylor series of X at the origin can be
computed by expanding both ¢ and X in their Taylor series:

k k
X(X)=§]A,‘(X)+0(k), ¢(x)= 2 P(x)+o(k).

Here A,(x)=27_,4,,(x)d/0x; is a vector field whose coefficients 4, ;(x) are homoge-
neous polynomials of degree / and P, is a vector valued homogeneous polynomial of
degree i.

The linear terms of Y are the linear terms of DX o ¢~ . Since the Taylor series of
¢~ ! begins with P;!, the linear part of Y is P, 4,P;'. We may choose P, so that the
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linear part of the vector field in new coordinates is in Jordan canonical form and then
assume that all further coordinate changes have P, as the identity. To proceed induc-
tively, we assume that />1 is chosen so that P,=P;=--- =P, =0 and P, is the
identity. Then the expression of X and Y will have the same terms of degree smaller
than / and the terms of degree / will differ in an easily computable way. If ¢p(x)=x+
P/(x)+o(l), then ¢~ '(x)=x—P(x)+o0(l) and Dp(x)=id+ DP,(x)+o(/+1). There-
fore, Y has Taylor expansion of degree /

(id+DP,(x))-.ElA,.(x—P,(x))= ; A4;(x)+DPA(x)— 4, ° P(x)+o(l).

i= i=1

Algebraically, this last formula can be expressed by introducing a linear map A:
H,— H, where H, is the vector space of vector valued homogeneous polynomials of
degree /. The map is defined by A,(P;)=DP,A,—A, o P,. If A, and P, are both interpre-
ted as vector fields then this is the adjoint action of 4, on H;: A,(P,) is the Lie bracket
[A4,, P;]. The nice aspect of this calculation is that the degree / terms of X have been
changed in a way which depends linearly on the elements of H,. This allows one to
carry out normal form calculations quite effectively. One lets / increase, thereby induc-
tively changing the terms of X of higher degrees to the desired form. However, one must
be careful in carrying through the procedure with examples to remember that the
coordinate change at stage / will affect higher degree terms of X in a more complicated
nonlinear fashion. The end result of these computations is expressed by the following
normal form theorem.

THEOREM 3.2 [132]. Let X be a vector field on R" with an equilibrium at 0. Denote
DX(0) by L and by H, the space of vector fields on R" whose components are homogeneous
polynomials of degree I. Define the linear map adL: H,— H, by ad L(P)=[L,P]. For
each I>1, let B, be the image of ad L and pick a complementary subspace G,;: H=B,+G,.
Then, for any k> 1, there is a polynomial change of coordinates in R" leaving the origin
fixed, so that the Taylor series of degree k of Dp-Xo ¢~ is Ik C(x)+o(k) with
CEG, for 1<I<k.

Before applying the normal form theorem to bifurcation problems, we recall some
history of the linearization problem for hyperbolic equilibria. This is the problem of
whether there exists an analytic or smooth change of coordinates near an equilibrium
for which the vector field becomes linear. Formally, the solution to this problem
requires that the map ad L: H,— H, in the normal form theorem be surjective for all
I>1. The eigenvalues of ad L acting on H, have the form A, —27_, &;A ;, where the A, A,
are eigenvalues of L and the a; are nonnegative integers whose sum is /. Thus the
formal solution of the linearization problem depends upon the eigenvalues of the
linearized vector field. If all the real parts of the eigenvalues of L have the same sign
and X is analytic, then Poincaré proved convergence of the power series defining the
coordinate change. When L has eigenvalues in both the left and right half planes, then
the convergence question involves small divisors because the sums A, —Z"_, a;A; do not
remain bounded away from zero. Nonetheless, Siegel [108] established convergence of
the formal coordinate change which linearizes X for a set of L whose complement has
Lebesgue measure zero on R"™. Sternberg [118] considered a C* version of this theo-
rem. If smoothness conditions are dropped, then Hartman’s theorem [47] shows that all
vector fields are locally topologically equivalent to a linear vector field. (The kinds of
geometric phenomena which prevent analytic linearization when there are solutions of
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an equation A,—37_;a;A;=0 are evident when one interprets the vector field as a
complex vector field [9].)

The linearization problem introduced above is never solvable at a nonhyperbolic
equilibrium. There will always be />1 for which the maps ad L are not surjective. The
nonlinear terms coming from the complementary subspaces G, in the normal form
theorem play an important role in determining the qualitative structure of the dynamics
of these systems and their perturbations. Applying the normal form theorem to our
bifurcation problems focuses attention on this issue. The relatively small number of
remaining nonlinear terms in the normal forms makes feasible a study of the dynamics
of the general equation with a given linear part. The computations which reduce the
general system to its normal form can be lengthy, but they are straightforward.

For codimension one and two bifurcation problems, there are five choices of L for
which we want to carry out the normal form computations:

(i) L=0onR', L=(0).
(ii) L is skew symmetric on R?, L:(?v —_3))

(iii) L is nilpotent of rank 1 on R?, L= ( 0 1 )

(iv) L is an infinitesimal rotation
onR?,

(v) L acts on R*, being skew

. ) ) w, 0 0 o
symmetric on two invariant L=
thogonal sub 0 0 0w
orthogonal subspaces, 0 0 W, 0

The first two of these cases correspond to the saddle node and Hopf bifurcations,
respectively. The last three correspond to the cases of codimension two bifurcations
from Theorem 3.1.

Cases (ii), (iv) and (v) above involve pure imaginary eigenvalues. It simplifies
matters to complexify the normal form calculations in these cases. Let us illustrate this
process with case (ii), the Hopf theorem calculations. Begin with R? and coordinates
(x,y). If we allow each of x and y to become complex, then we introduce (z,Z) as the
coordinates relative to the basis

1 L N
7(L==5.  FLD)=5=.

The matrix L becomes (% ) in the new coordinates, or L=iw(—z9/9z+29/02).
On H,. the eigenvectors of ad L are the vector fields z/z' /9 /0z and z/z'7/9/9z with
eigenvalues iw(/—2 j=1), respectively. Therefore ad L is surjective on H, if / is even and
has a two-dimensional kernel if / is odd. One choice of complementary subspace is the
plane spanned by (zz)/"P/2z9/9z and (zz)!"VY/%79/9z or the real vectors
(x24+y)=D/2(x9/0x+yd/dy) and (x>+y?)!"D/2(—y3/0x+xd /dy). In polar co-
ordinates these vector fields are r'd/dr and r'~'9,/96. For /=3, this computation

provides the justification for the expressions introduced in the Hopf bifurcation theo-
rem.
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We make an additional remark about the normal form for the Hopf bifurcation
before considering the codimension two problems. Note that the normal form ex-
pressed in polar coordinates has a right-hand side which is independent of the angular
variable (apart from the error term). Thus when the error terms are ignored, the normal
form equations are equivariant with respect to rotations y of the plane. This means that
X(y(x))=DvyX(x). This symmetry allows one to search for periodic orbits by finding
equilibria of the equation for the radial coordinate. A similar reduction here can be
accomplished also by the method of averaging [46] or a Lyapunov—-Schmidt procedure.
From all three of these approaches, the fact that equations have an approximate
circular symmetry allows the effective use of the reduction. The reduced equation for
the radial coordinate has an odd right-hand side, this special form being a remnant of
the circular symmetry. The role of such “internal symmetries” will be important in our
dynamical analysis of codimension two bifurcations, because the normal forms can be
chosen to preserve the rotational symmetries of their linear parts.

Let us now compute the normal form equations for the codimension two bifurca-
tion problems. The results are summarized in §7. For the case of a two-dimensional
nilpotent space, we shall only need to compute the degree two terms of the normal
form. In R?, H, is six-dimensional and adL: H,— H, is computed routinely. With
coordinates (x,,x,), L= x,0/0x,, and adL(x29/9x,)=2x,x,0/09x,,
ad L(x,x,0/0x,)=x30/9x,, adL(x20/9x,)=0, adL(x{9/0x,)=2x,x,3/9x, —
x29/0x,,ad L(x,;x,0,/0x,)=x,x,0,/9x,,ad L(x393,/0x,)=x30/3x,. We conclude that
the image of ad L is four-dimensional with a complementary subspace spanned by
x%0/9x, and x,x,9/0x,. Any vector field X with linear part L can be transformed via
smooth coordinate changes to x,d,/0x,+(ax?+bx,x,)0,/9x,+ O(x]*) for some con-
stants a and b. Linear rescaling of (x,,x,,¢) (which may reverse time) allows us to fix
a=b=1 if each is nonzero. Thus the general bifurcation problem involving a two-di-
mensional nilpotent space is reduced to studying the system of equations

— ¢ =2
X, =x,, X, =x{+xx,

and its perturbations.

The next case on our list is (iv): L is a linear vector field on R* with a pair of pure
imaginary eigenvalues and a zero eigenvalue. With coordinates (x,x,,x;) we may
assume L=w(x,d/0x,—x,09/09x,). By introducing complex coordinates in the (x;,x,)
plane, we write L=iw(—29/0z+29/02) as for the Hopf case described above. In
terms of the coordinates (z,Z,x;), the vector fields with monomial coefficients are
eigenvectors of ad L. We have

. - d
adL(zfz_"xgaﬁz-) =iw(k—j+ 1)(2’2")655;),

, g 0
adL(sz"‘x:’,g—)Z:) =iw(k—j— 1)(212"2’5) and

. 0 _ 0
skl — i Jrkyl ~
adL(z’z x38x3) iw(k j)(ZZ x38x3)'
Thus, the complementary subspaces to ad L in the spaces H,, are spanned by polynomi-

als in zZ and x; multiplied by the vector fields z9,/9z, 29,/9z, and 3/9x;. In particular,
the normal form of degree two expressed in cylindrical coordinates is
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6=w+o(l), rF=arx;+o(2), xX;=bxi+cr’+o(2).

Once again the right-hand sides have 6 dependence only in the remainder terms. We
note also that the cubic terms will play an important role in the analysis of this
bifurcation. The normal form of degree three is given by

6=w+dr’+0(2),
r'=arx3 +er®+frxi+o0(3),
=bx?+cri+grix,+hxi+o(3).

The final computation of normal form we do is for a vector field X having two
pairs of pure imaginary eigenvalues *iw, and *iw, for its linearization at the origin.
We shall use coordinates (x,,y,,X,,y,) for R*. If we complexify each (x,,y,) plane, then
the linear part of X can be expressed as

iw( z|£l+z,aa )+iw2(—226122+z"28122 =L.

Once again the monomial vector fields are eigenvectors of ad L on the spaces H,,

adL(z"zl’"zﬁl_"laig)=[iw,(k —j) +iwy(ky—j,) +8] 2 zf ‘222252%

where 6 =iw, if {=z, and 6= —iw, if £=2,. The complementary subspace to the image
of ad L is spanned by polynomials in (z,Z,) and (z,Zz,) times the vector fields z,9/dz,,
£,0/9z,, z,0/9z, and Z,0/9z,, provided that w,/w, is irrational. If w,/w, is rational,
then extra resonance terms appear in the normal form.

In the nonresonance cases, the normal forms without the error terms are again
separable. With polar coordinates in the (x,,y,) and (x,,y,) planes, the normal forms
of degree k (k odd) become

6,=w,+B,(r2,r; )+o((r,2+r22)(k_n/2), F=rA, (r, s )+o((r,2+r22)k/2),

where A; and B, are polynomials of degree (k—1)/2 with no constant term. The
absence of ¢; dependence in the truncated equations for r, means that this two-dimen-
sional system can be investigated initially and then information about the four-dimen-
sional system inferred from this. An analysis of the resonance cases requires that one
deal initially with equations that do not separate readily so that there is an invariant
planar subsystem, and will not be attempted in this review.

Before passing to the next step in our treatment of codimension two bifurcations,
the computation of unfoldings, we briefly indicate the changes necessary to deal with
systems possessing simple symmetries (in addition to the “internal” symmetries of the
normal forms themselves). If G is a group of symmetries acting on R”, then the vector
fields which are equivariant with respect to G form a subspace of the space of all vector
fields. Accordingly, we can perform the computation of normal forms within the class
of equivariant vector fields by restricting ad L to act on the subspaces of the H, which
are equivariant. One simple case which arises in the applications we consider occurs
when there is a zero eigenvalue and a pair of pure imaginary eigenvalues. If this system
and its perturbations are equivariant with respect to a reflection symmetry in the
direction of the O eigenvalue, then all of the quadratic terms in the normal form
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disappear. The normal form in the class of equivariant vector fields looks much like
that in the case of the pure imaginary eigenvalues, except that one of the angular
variables is missing.

The next step in our analysis involves inserting two-dimensional parameters into
the problems so that we obtain a transversal family to the surface on which the
codimension two bifurcation occurs. For those problems (iii)—(v) of Theorem 3.1 which
have a double degeneracy of their linearizations, we can work in the context of families
of linear vector fields (perhaps with a constant term). There are the three cases (iii)—(v)
to consider, with alternatives for (iii) and (iv) depending upon whether 0 is constrained
to be an equilibrium.

Let us consider first the cases in which 0 is forced to remain an equilibrium. Here
one has the space of linear vector fields on R”, represented by nX n matrices M,. In M,
there is the real algebraic variety V consisting of matrices with eigenvalues having zero
real parts. We want to study L for which there is a submanifold M of V containing L
which has codimension 2 in M,,. In the three cases (iii)—(v), M consists of matrices with
(iii) a 2X 2 nilpotent Jordan block, (iv) a zero eigenvalue and a pair of pure imaginary
eigenvalues, or (v) two distinct pairs of pure imaginary eigenvalues. We may assume
that L is in Jordan normal form in each case, and then easily compute a transversal T
RZ S M"

0 1

=3 1) (L)

0 —-w 0 Ay —w 0
(iV) L':(W 0 0}, T(Ah}\z): w Ay 0

0 0 0 0 0 A,

0 -w 0 0 Ao w 0 0

_|w 0 0 0 R A 0o 0

ML=lg o o —w| TMAITIo o A -

0 0 w 0 0 0 —w A,

In the remaining cases that do not necessarily preserve 0 as an equilibrium, we consider
the space of affine vector fields and the possibility of perturbations without equilibria.
The transversals to the submanifolds M in the space of affine vector fields are

(vi) (T(AI’}‘Z))(i;):(;?_i_)\le),
(vii) (T()\,,Az))();lz) = ?lex.:r_xj
X3 )\2

These transversals are combined with the normal form computations to give us the
two-dimensional families of vector fields whose dynamics we now study.

4. Codimension two bifurcations II. Dynamics. We now turn to the analysis of the
dynamics of the normal form equations. In each of the cases which have a double
degeneracy in their linear part, the normal form equations contain a pair which are
separated from the rest (involving angular variables) when remainder terms are ignored.
Our initial dynamical studies focus upon these planar systems. We begin by finding the
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equilibria of these systems as a function of the parameter and computing their stability.
This portion of the analysis is straightforward and requires mainly that care be taken in
enumerating the various possibilities which arise in the cases with pure imaginary
eigenvalues. The bifurcation diagrams in Figs. 7-13 contain the results of these calcula-
tions in terms of phase portraits superimposed on the bifurcation diagrams in the A
parameter plane. In the A plane there are curves along which saddle node or other
codimension one bifurcations of equilibria take place. The phase diagrams show the
stability of equilibria using a solid circle for sinks, a cross for saddle points and an open
circle for sources. We have not distinguished the difference between sinks and sources
with real eigenvalues (nodes) and complex eigenvalues (foci). The crosses representing
saddles have arrows indicating the directions of stable and unstable manifolds. In some
cases, there are changes from sinks to sources, indicating the presence of Hopf bifurca-
tions and periodic orbits for the two dimensional flows.

The computations themselves which underlie these diagrams can be illustrated by
the case of a double zero eigenvalue. One begins with the system

. . 2
X=Xy, X=AFAx Hx{+xX,.

The equilibria are found by setting %, =x,=0 or x,=0, A, +A,x; +x?+x,x,=0. The
linearization of the equation at an equilibrium is defined by the matrix

L= 0 1
A 22X, tx, x|

Saddle nodes occur when there is a zero eigenvalue at an equilibrium. Eliminating x,
and x, from the three equations X, =x,=det L=0 gives the equation A,2—X%/4=0.
This is the curve of the saddle nodes in Fig. 7. The condition for Hopf bifurcations to
occur is that x, =x,=Trace L=0 together with det L>0. These equations yield x, = x,
=\, =0 together with A,<0. This yields the Hopf curve H of the bifurcation diagram
in Fig. 7.

Note here a distinction between the case of a double zero eigenvalue and the cases
with pure imaginary eigenvalues. In the case of a double zero eigenvalue, the normal
form theorem together with linear rescaling of variables produce a unique equation
whose unfolding was to be studied. In the cases with pure imaginary eigenvalues, these
steps leave one with equations that still contain undetermined coefficients for higher
order terms. For the unfolding families to be persistent, these coefficients must satisfy a
number of inequalities. Several subcases for the dynamics of the equations are present,
and these are determined by the higher order coefficients. In the case of a zero plus
pure imaginary eigenvalues, there are four different subcases at this stage (after allow-
ing for time reversal). In the case of two pairs of pure imaginary eigenvalues, there are
many more subcases. The diagrams illustrate four of these, leaving the reader the task
of enumerating the entire list.

The second part of the dynamical analysis involves finding all the periodic and
homoclinic orbits for the two-dimensional systems. These occur for only some subcases
when there are pure imaginary eigenvalues. The procedure here is more subtle. One
begins by introducing a small parameter § and rescaling so that as §—0, one ap-
proaches an integrable system. This integrable system is interpreted as a blown-up
version of the original codimension two bifurcation. If the integrable system has
periodic orbits, then these can be studied for small § using a variational argument. The
result of this calculation is an estimate of which parameter values correspond to the
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appearance of a periodic orbit of given size and shape. When the estimated function is
a Morse function with nondegenerate critical points, then the dependence of periodic
orbits on parameter values in our two-dimensional problems will be qualitatively the
same. When the function is not monotonic, then multiple limit cycles appear in these
systems. Note, for instance, the pair of limit cycles which occur for a case with a double
zero eigenvalue and a symmetry of rotation by 7.

The rescalings appropriate to each of the three cases are indicated in §7. The limit
systems obtained when =0 are integrable along the curve in the parameter plane for
which there is an equilibrium having pure imaginary eigenvalues. This means that there
is a function H: R2—R constant along the trajectories of the limit equation for these
parameter values. The compact level curves of H which do not contain critical points
form a continuous family of periodic orbits for the vector field. The functions H for the
different cases are recorded in the summary in §7. In the limit §=0, the Hopf
bifurcations have become totally degenerate. Their periodic orbits will approximate the
limit cycles which occur for §>0 small, but a variational calculation involving & is
needed to determine how these limit cycles depend upon the parameters and their
stability. If one carries through this procedure for the Hopf bifurcation itself, then the
limiting vector field obtained for § =0 is linear.

The variational argument for finding limit cycles is based upon the formula
expressing the rate of change of area of a plane region R as it moves with a two-dimen-
sional flow ¢,. An elementary computation shows that

d .
E(areaq OZfRdle,

where X is the vector field of ¢, and div X is the divergence of X. If ¢, has a closed orbit
vy and R is the interior of y, then [divX=0 since the area of ¢,(R) is constant.
Therefore, the vanishing of the divergence is a necessary condition for y to be a closed
orbit of ¢,. We want to apply this formula to the situation in which there is a
one-parameter family of vector fields X; with X, integrable. If R is the interior of a
periodic orbit y of X, then a necessary condition for y to be the limit of a family of
periodic orbits y; for Xj, >0, is that

0 . _
% (Ldles) =0.

The following theorem says that simple zeros for the last integral give sufficient
conditions for the existence of a family of periodic orbits y;.

THEOREM 4.1 [3]. Let X; be a one-parameter family of planar vector fields such that
X has a continuous family of periodic orbits y,. Let R be the interior of v, and define the
function g(s)=(3/08)( fr divXs). If g(s5)=0 and dg(s,)/ds#0, then there is a 6>0
and a continuous family of closed curves By, 8 €[0,8,] such that By=v,, and By is a limit
cycle of Xs for 6>0. If dg(s,)/ds<O0, then B, is stable. If dg(so)/ds>0 then By is
unstable.

We illustrate this last result in one of our bifurcation problems. For the case of a
double zero eigenvalue with rotational symmetry, the divergence integral is given by
8fr(Ay+a, X}), where R_ is the interior of a compact component y of a level curve of
H(X,, X,)=—X2/2+A, X,2/2+a1X4/4 c. For >0, setting this integral equal to 0,
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gives an equation for the approximate value of A, for which y lies near a limit cycle of
the rescaled system

dXx dX.

=%, FEMX+a X +8(A X+ a, XPX,).
The values of A, for which the divergence integral vanishes can be computed explicitly
in terms of complete elliptic integrals. Integrating with respect to X, gives

ay X2+ A, X2 +a, X} /2)ax,
[(2¢+ A, X2 +a, X} /2)ax,

where the limits of integration are roots of the polynomial 2¢+ A, X| +a, X} /2. This
function A,(c) is not monotone in the case A,>0, a, <0, but rather has a single critical
point. There are values of A, for which there are periodic orbits corresponding to two
different values of c¢. At the critical point of A,(c¢), these periodic orbits coalesce with
one another in a saddle node of periodic orbits.

For the bifurcations involving imaginary eigenvalues, the results are more com-
plicated. To begin with, the rescaled limit equations are integrable but not divergence
free. Therefore, the computations are simplified by multiplying the rescaled limit by an
integrating factor which makes them divergence free. The second additional complica-
tion is that there are more terms of order § in the normal forms, and these involve
truncating the normal forms with higher degree than was necessary for our earlier
analysis of equilibria. Thus cubic terms must be retained in the normal form for the
zero—pure imaginary bifurcation, and fifth degree terms must be retained in the normal
form for the double Hopf bifurcation.

In the first of these two cases, the divergence of the cubic terms contains two
coefficients that can be varied. In the second case, the divergence of the fifth degree
terms is a homogeneous quadratic polynomial in (r2,77) and has three coefficients.
One can arrange by the correct choice of coefficients that the function g(s) in Theorem
3.3. is not monotone. When the contributions of these higher order terms are then
balanced against the contribution obtained from a small variation of parameter values,
one obtains multiple limit cycles in the unfolding of the planar normal form equations.
Section 7 includes these divergence integrals. It seems that they cannot usually be
evaluated in closed form. However, genericity arguments suggest that most values of
coefficients will give a Morse function describing the parameter variations necessary to
maintain the different closed level curves of H as periodic orbits. When this happens,
the unfolding behavior of the planar systems will be structurally stable. Further study
of these divergence integrals and the corresponding geometry seems to be of interest.

The final feature of the unfolding behavior of these planar systems involves the
disappearance of the periodic orbits as the parameters are varied. The smallest periodic
orbits are associated with Hopf bifurcations, while the largest are associated with
homoclinic or heteroclinic trajectories. The limit of the periodic orbits as they grow
larger is approximated by level curves of the function H which contain critical points.
For the corresponding integrable vector fields one has closed curves composed of
saddle point equilibria and portions of their stable and unstable manifolds. Thus the
disappearance of the limit cycles in our unfoldings as the periodic orbits grow in size is
associated with their periods becoming unbounded. The limit cycles terminate along a
curve for which one has saddle loop bifurcations of the type described in Theorem 2.6.
In the cases with pure imaginary eigenvalues, internal symmetry of the equations forces
these loops to contain more than one saddle point.

A,=



MULTIPLE BIFURCATION PROBLEMS 21

The following theorem summarizes the two-dimensional dynamic information
which we have obtained thus far.

THEOREM 4.2. Let X, be one of the following two-parameter families of planar vector
fields and = be the class of vector fields satisfying the indicated constraint or symmetry:

(1) y9/0x+ (A, +A,x+x2+xy)3/dy;

(2) y3/0x+ (A, y+A,x+x>+xy)d/dy, 0 remains equilibrium;

(3) y9/0x+ (A, y+A,x=x>+x2y)d /3y, rotational symmetry in ,

4) x(A\, +ay+bx*+cy?)d/0x+ (A, +dx*+ey? +fx’y+gy*)9/dy, reflection

symmetry in x-direction;

(5) x(A\; +ay+bx2+¢p?)d/dx+y(N, +dx? +ey? + fx2y+gy*)0 /9y, reflection

symmetry in x direction +0 remains equilibrium;

(6) x(A; +ax?+by?+cx* +dx2y?+ey*)d/0x+y(A, +fx? +gp? +hx* +ix? +

Jjy*)3/dy, reflection in the x and y directions.

For almost all values of the coefficients (a,b,c,- - -,j) the families (1)—(6) are struct-
urally stable within the class of two-parameter families of vector fields in the indicated
class o, provided that the variational integrals listed in §7 define Morse functions. Dia-
grams for regions of structural stability in the (A|,A,) plane for cases (1)—(5) and selected
cases of (6) are illustrated in Figs. 3-9 (apart from indicating the variation of limit cycles
with parameters where limit cycles occur in a way that depends on two or three coeffi-
cients).

The final results in this section involve the interpretation of cases (4)—(6) of
Theorem 4.2 in terms of codimension two bifurcations which have pure imaginary
eigenvalues. Cases (4) and (5) apply to bifurcations with zero and pure imaginary
eigenvalues, with (5) pertaining to the constrained situation in which 0 always remains
an equilibrium. Here x plays the role of the radial coordinate and y plays the role of the
axial coordinate in a cylindrical coordinate system adapted to the problem. Case (6)
applies both to the double Hopf bifurcation and to the bifurcation with zero and pure
imaginary eigenvalues when there is a reflection symmetry in the direction of the zero
eigenvector.

To draw pictures of the phase portraits corresponding to the two-dimensional
system (4)—(6) of Theorem 4.2, when there are imaginary eigenvalues we must reintro-
duce the angular variables which have been ignored to this point. For the case of one
zero and one pair of pure imaginary eigenvalues, each point in the interior of the right
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F1G. 3. Stability diagram; double zero eigenvalue. (Theorem 4.2(1).)
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F1G. 4. Stability diagram; double zero eigenvalue, trivial equilibrium. (Theorem 4.2(2).)
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FIG. 6. Stability diagram; double zero eigenvalue, symmetry. (Theorem 4.2(3—).)
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FI1G. 7. Stability diagrams, 0+ pure imaginary eigenvalues. (Theorem 4.2(4).)

(x,y) half plane corresponds to a circle in R3. Equilibria of the planar systems which
lie off the y axis represent periodic orbits of the three-dimensional system, and periodic
orbits of the planar system give rise to invariant two-dimensional tori in R?. Of special
interest in the next section will be the three-dimensional flows which correspond to
saddle loops for the two-dimensional flows. For the flow depicted in Fig. 1, one obtains
three-dimensional flows with an invariant set consisting of the surface of a two-dimen-
sional sphere together with a diameter joining two antipodal points. This invariant set
is attracting from the interior of the sphere.

For the double Hopf flows there are two angular coordinates. In the flow of
Theorem 4.2(6), nonzero points on the boundary of the positive quadrant correspond
to circles in R* while points in the interior of the quadrant represent two-dimensional
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F1G. 8. Stability diagrams, 0+ pure imaginary eigenvalues trivial equilibrium. (Theorem 4.2(6).)

tori in R*. These limit cycles of (6) correspond to three-dimensional invariant tori in
R*.

We close this section with a brief discussion of the structural stability of the
unfoldings of codimension two bifurcations deduced from the two-dimensional analysis
described above. If the remainder terms of the normal forms are ignored, then the
normal forms themselves have “internal symmetry”. They are equivariant with respect
to rotations in the plane of a pair of imaginary eigenvalues. If one restricts attention to
classes = of vector fields which possess these rotational symmetries, then the bifurca-
tion diagrams represent persistent unfoldings of the corresponding codimension two
bifurcations in the sense that perturbations of the family have homeomorphic bifurca-
tion diagrams.

THEOREM 4.3. Let E be the class of vector fields in R> which are equivariant with
respect to rotations around the x, axis. Then there is a 1 —1 correspondence between the
universal unfolding of codimension two bifurcations in Z of vector fields with a zero
eigenvalue and a pair of pure imaginary eigenvalues and the persistent unfoldings of
Theorem 4.2(4). If one further restricts = to consist of vector fields with an equilibrium at
the origin or an additional reflectional symmetry, then the correspondence is with Theorem
4.2(5) of Theorem 4.2(6).
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a;;>0, det>0 a,,>0, a;,>0, a,,; <0, a,,<0, det>0

I

e
A

a}1>0, a1,>0, a5,>0,a,,<0 ay;>0,a;,>0, ay; <0, ay, <0, det<0

F1G. 9. Stability diagrams, 2 pairs pure imaginary eigenvalues.

THEOREM 4.4. Let E be the class of vector fields on R* which are equivariant with
respect to rotations in two orthogonal planes. There is a 1 —1 correspondence between the
persistent codimension two unfoldings in = of vector fields with two pairs of pure imaginary
eigenvalues and the persistent families in Theorem 4.2(6).

When the equivariance assumptions in Theorems 4.3 and 4.4 are relaxed, the
dynamic behavior of perturbations of the degenerate vector fields we have been study-
ing can be much more complicated than the phenomena we have considered thus far.
Equivariance forces the flows on invariant tori in the problems to be periodic or
quasiperiodic depending upon the rotation numbers which measure the average rates of
flow around different directions on the torus. Periodic flow on a torus is a highly
unstable phenomenon in the absence of equivariance. Even though the nonequivariant
portion is of arbitrarily high order in the Taylor series of the original vector field (of co
order in a C* context!), the lack of equivariance causes substantial changes in the
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qualitative behavior of unfoldings. Another qualitative change which comes with the
departure from equivariance is the occurrence of transversal homoclinic orbits in some
unfoldings. These dynamic phenomena are the subject of the next section.

5. Codimension two bifurcations III. Resonance phenomena. In §4, we carried
through an essentially complete analysis of persistent codimension two bifurcations of
equilibria for classes of vector fields which possessed angular symmetries. Departures
from angular symmetry are associated with more complex dynamical phenomena than
those discussed in the previous sections. These new dynamical features are the subject
of this section. A thorough discussion of these problems is beyond the scope of this
review and strains the capabilities of the underlying mathematical theory. Therefore, we
shall confine ourselves to a description of the nature of these phenomena without
attempting to give an exhaustive treatment of their qualitative dynamics. Many details
remain to be further elaborated before a fully developed mathematical picture can be
presented.

There are two kinds of new phenomena that we describe. In some of the cases
involving pure imaginary eigenvalues discussed in §4, there were flows which have
invariant tori of two and three dimensions. The internal symmetry properties of the
flows imply that the dynamics of the motion on these tori is either periodic or
quasiperiodic. The basic issue for us is what kinds of new dynamics occur when these
flows are perturbed. The technical questions can be split into ones which involve (1) the
persistence of invariant tori, and (2) the kinds of new qualitative dynamics which occur.
New dynamics may occur either on an invariant torus or may be associated with the
destruction of an invariant torus. Considerable attention has been focussed upon
questions of this sort in relation to “mild turbulence” of fluids and the instabilities of
plasmas. For example, the Ruelle-Takens theory of turbulence [103] is based upon the
observation that the instabilities of periodic or quasiperiodic motion on an invariant
torus of dimension larger than two are incompatible with older theories of turbulence
[76]. This review is an inappropriate place for an extended discussion of these issues of
“chaotic” motion and turbulence, but the reader may wish to pursue their relationship
to the bifurcation phenomena described here.

The persistence of invariant tori with nonsymmetric perturbations can be ap-
proached in two different ways. When the unfolding parameters are included as varia-
bles, the invariant tori in the symmetric unfoldings occur as two parameter families of
invariant tori (of dimension two or three depending upon the problem). Some of these
tori will typically have periodic flow and some will have quasiperiodic flow. Without
symmetry, transversality arguments preclude the existence of nonisolated periodic orbits
in any flow contained within a structurally stable finite dimensional family. Thus, it is
reasonable to ask questions about the persistence of tori in one of the following two
forms:

(a) Does the whole family of invariant tori persist with nonsymmetric perturba-
tions (without regard to the dynamics of these tori)?

(b) Does an individual quasiperiodic invariant torus persist with nonsymmetric
perturbations so that the flow on the perturbed torus remains quasiperiodic?

The analytic techniques for answering these two questions are quite different from
one another and each involves its own complications.

The easiest problem in which question (a) above arises is the Hopf bifurcation of
periodic orbits described in §2. There one is concerned with a family of two-dimen-
sional invariant tori bifurcating from a periodic orbit as a pair of complex eigenvalues
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crosses the unit circle. This family exists, but with only a finite degree of smoothness
which typically decreases with the distance from the bifurcation. The technique used
for proving this uses the idea of a graph transform. The same approach can be used for
at least some of the codimension two bifurcation problems considered here to deduce
the persistence of parts of the families of invariant tori with nonsymmetric perturba-
tions [64].

The graph transform method applies generally to prove the persistence of normally
hyperbolic invariant submanifolds M of a flow. It proceeds by describing a Banach
space E of maps on M whose graphs yield all perturbations of M (with the desired
degree of smoothness and continuity). If  is a perturbation of the flow of ¢ and >0,
then y, maps one perturbation M to another y,( M). If care is used in selecting E and M
is the graph of a small £€E, then \[/,(M ) will also be the graph of an element of E,
denoted () and called the graph transform of . Fixed points of [, near 0EE are
maps whose graphs are invariant manifolds of ¢ near M. To apply the method of graph
transforms one tries to pick E so that the graph transform [, has a hyperbolic fixed
point at 0 € E. Then the implicit function theorem implies that this fixed point is
isolated and varies continuously with perturbations of I;: E— E. In particular, if , is
near ¢,, then I‘\p will have a unique fixed point near zero.

The apphcablhty of the graph transform method requires that assumptions be
made which relate properties of the flow in M to properties of the flow in directions
normal to M. Roughly speaking, constructing a space E of C" maps for which the
technique works requires a hypothesis guaranteeing that if there is an expansion or
contraction of trajectories inside M at the rate exp(At), then all of the normal direc-
tions to M split into those for which the flow is expanding or contracting at a rate more
extreme than exp(rAt). In bifurcation problems having invariant tori, the normal
hyperbolicity depends upon the parameters, and it becomes weaker as one approaches
the collapse of these tori. However, at the same time that the normal hyperbolicity
becomes weaker, the flow on the torus itself approaches periodic/quasiperiodic flow.
The application of the graph transform method requires that one estimate the relative
rates at which these two things are happening. When the normal hyperbolicity becomes
weaker at a slower rate than the flow on the torus approaches periodic/quasiperiodic
flow, then the method works. Iooss and Langford [64] have successfully carried through
these calculations for some of the codimension two bifurcations. They introduce a
number of small parameters and use successive rescalings to pinpoint those tori to
which they apply the technique.

The graph transform method does not enable one to determine the dynamics of
the nonsymmetric flow on the family of perturbed tori. Also it is limited to proving a
finite degree of differentiability for the perturbed tori. At the expense of focussing upon
individual tori and introducing still greater technical complexity, small divisor methods
provide an alternate approach which surmounts these difficulties. This technique is
based upon the work of Siegel, Kolmogorov, Arnold and Moser and is often presented
in terms of hard implicit function theorems. There are a number of excellent references
for this analysis [51], so we do little more than describe the relevant results.

The n-dimensional torus can be regarded as a set of points in R” whose compo-
nents all differ by integers: 7"=R"/Z". A flow on T" defines a flow on R” by means
of this identification. If x(7) is the lifted trajectory of such a flow on R” with x(0)=x,
then lim,_, ,(1/¢)(x(¢) —x(0))=p(x) exists and is called the rotation vector of x(t). The
rotation vector measures the average rate of increase of each angular component of the
torus along the trajectory. If the flow on the torus is quasiperiodic or periodic, then p is
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independent of x. For periodic flows, p=(p,,- - -,p,) is a vector with p,/p; rational for
all i and j. The small divisor methods begin with tori whose rotation vector is strongly
irrational. One wants all of the ratios p;/p; to be irrational numbers which satisfy
arithmetic conditions indicating that linear combinations of the p,/p; with integer
coefficients are poorly approximated by rational numbers. For such a torus T of the
original symmetric flow, one seeks an invariant torus 7' on which the perturbed
nonsymmetric flow is quasiperiodic and still has the same ratios p,/p;. The strategy of
locating T involves finding a smooth coordinate transformation from 7T to 7" which
carries the symmetric vector field on T to a multiple of the nonsymmetric vector field
on T.

Formal expressions for the coordinate transformation from T to T can be com-
puted using Fourier series, but the convergence of these formal expressions is difficult
to prove. They involve small divisors, linear combinations I}, a;p;, with integer coeffi-
cients a;, which appear in the denominators of the Fourier coefficients of the coordi-
nate transformation. Convergence requires hypotheses on how small these divisors can
be in terms of the size of the coefficient vectors (a,,---,a,). In addition to these
arithmetic conditions on rotation vectors, there can be difficulty in achieving the
freedom necessary to solve the equations which give the constant terms in the Fourier
series for the coordinate transformations. In our context, there are two necessary
hypotheses. The first is that there be a whole family of tori in which the rotation
numbers p,/p,,- - +,p,/p, vary in a nonsingular manner. Without this hypothesis per-
turbations of the symmetric family which contain no torus with the original rotation
numbers might be possible. The second hypothesis requires that the tori be normally
hyperbolic. Without this assumption or something which replaces it, perturbations of
the symmetric family which destroy the whole set of invariant tori might be possible.
These two sets of additional hypotheses are satisfied for most choices of higher order
terms of the normal forms in the codimension two bifurcations discussed in this review.
The arithmetic conditions are satisfied by almost all rotation vectors (in the sense of
Lebesgue measure).

One expects those invariant tori for the symmetric problem consisting of periodic
orbits to have their dynamics greatly altered by a nonsymmetric perturbation. If there
is a continuous family of invariant tori, one expects an open dense set of these to have
hyperbolic periodic orbits in the absence of symmetry. Thus quasiperiodic motion is
only to be expected on a nowhere dense set of invariant tori. From this topological
point of view, the typical parameter value in a nonsymmetric family will not yield a
flow with a quasiperiodic invariant torus. Nevertheless, the set of parameter values
which do yield a quasiperiodic invariant torus is likely to have positive Lebesgue
measure in the parameter space. If one picks a parameter value at random (with respect
to Lebesgue measure), then there is a positive probability that it will lie in the (nowhere
dense) set of parameter values for which the corresponding flows have quasiperiodic
invariant tori.

There are additional new dynamical phenomena which occur in nonsymmetric
unfoldings of codimension two bifurcations besides invariant tori with hyperbolic
periodic orbits. In particular, transversal homoclinic orbits appear. These orbits are
generally associated with “chaotic” motion in dynamical systems and with “sensitive
dependence to initial conditions.” Here we shall emphasize the nature of transversal
homoclinic orbits, describe some of the implications of their existence, and explore how
they arise in nonsymmetric unfoldings of some codimension two equilibria. Questions
about the full extent of the limit sets which contain the homoclinic phenomena we
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describe will not be considered. In particular, questions about the stability and struct-
ural stability of these sets are left aside. Once again, there is much scope for additional
work in this area, and our current knowledge is fragmentary.

DEerFINITION. Let vy be a hyperbolic periodic orbit for a flow in R” with stable
manifold W*(y) and unstable manifold W*(y). A homoclinic orbit for y is a trajectory
S CWH¥(y)N W*(y) different from y. If W*(y) and W*(y) intersect transversally along
8, then & is a transversal homoclinic orbit.

Note that dim W*(y)+dim W3(y)=n+1, so that transversal homoclinic orbits
are possible. Note also that the stable manifold theorem implies that the set of vector
fields with transversal homoclinic orbits is an open set in the set of all smooth vector
fields. A basic feature of transversal homoclinic orbits is that they imply the existence
of larger sets of trajectories which have hyperbolicity and recurrence properties. Inside
these sets, there are stable directions along which trajectories approach one another and
unstable directions along which trajectories diverge. This instability within the set leads
to sensitive dependence on initial values and an unpredictability about the long term
behavior of individual trajectories. The prototypes of these hyperbolic invariant sets are
Smale’s horseshoe and the more abstract subshifts of finite type, both expressed in terms
of discrete systems. As usual, one should interpret these models as return maps of a
cross-section to a flow.

We shall describe subshifts of finite type in a manner suitable for application to
our bifurcation problems. Consider a flow ¢,: R"—>R" and a finite number of disjoint
cross-sections R,,---,R,, to ¢,. Each R, will be called a rectangle, and the following
hypotheses are made.

(M1) Each R; has a continuous product structure R,=E*XE; with E* and E;
compact and homeomorphic to disks. Denote by E/(x) the set of y €ER, with the same
E; coordinate as x. E(x) is defined similarly.

(M2) If A: U,R;> U R; is the map which sends x ER, to the first intersection of
{x(1)lr>0} with a rectangle (when this exists), then A(x) €R; implies that A(E/(x))C
E}(A(x)) and A(E/(x))D E/(A(x)).

(M3) There is a metric 4 on U,R; and a constant A>1 with the property that
yEEX(x) implies Ad(x,y)<d(A(x),A(y)) and y € E’(x) implies Ad(A(x),A(y))<
d(x,y).

(M4) There is />0 such that A'(R,)NR;# @ for all i, .

It is far from easy to verify that cross-sections satisfying (M1)-(M4) exist for a
given flow, but the consequences are far reaching. Assuming that there is more than
one rectangle in our collection, we want to examine the set A = {x|4'(x) is defined for
all j€Z)}. This means that x(¢) intersects U ;R an infinite number of times for
t— +oo and t— —oo. We will give the elements of A a convenient description as a
subshift or finite type. This process is called symbolic dynamics and the sets R, satisfying
(M1)-(M4) constitute a Markov partition for A.

If x,y €A are distinct, then (M3) together with the disjointness and compactness
of the R; implies that there is i such that 4'(x) and A'(y) lie in different rectangles.
Therefore x €A is uniquely specified by the sequence {a’ },__oo =a(x) defined by the
property that 4'(x) ER,, . Each a, lies in the index set {1,- - -,m} for the collection of
rectangles and is called the ith address or ith symbol of x. The symbol sequences a(x)
preserve much of the information about the dynamics of ¢, and 4 because applying A
to x corresponds to shifting indices. More precisely, if a=a(x), the symbol sequence of
A(x) is the sequence b with b,=a,;, ,. Thus we can use symbolic dynamics to obtain a
qualitative characterization of the set A and the dynamics of A.
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Define the transition matrix T=(t;,) for (4,R,, - -,R,,) to be the m>Xm matrix
with 2, =0 if R,NA(R,)= @ and ¢, =1 if R,NA(R,)+# &. We denote by ¢ the set of
bi-infinite sequences {a,};i2 _, of the symbols {1,- - -,m} which satisfy 7, , =1 for all

i. If we define a metric on the set of sequences by a(a,b)=32 _ 8271, 8,;0 orlasa
a,=b, or a,#b,, then o is a compact metric space. Together with the shift map o: 6 >0
which shifts indices one unit, o is called the subshift of finite type with transition matrix
T.

THEOREM 5.1. Let ¢,: R"—>R" be a flow which has cross-sections R, --,R,,, with
return map A satisfying (M1)-(M4). Define the transition matrix T=(t;) by t;, =0 or 1
as R,NA(R,) is empty or not. Denote by A the set of points whose trajectories intersect
U R, an infinite number of times as t— o and t— + 00. Then the symbolic dynamics of A
establish a homeomorphism h between A and the subshift of finite type o with transition
matrix T. The homeomorphism h carries A to the shift map 6 =hAh™ .

The essence of this theorem is contained in Smale [112], where he treats the case
m=2 and T=(}}) (the horseshoe). Hypothesis (M2) plays an important role in estab-
lishing that the map 4 is onto, and, consequently, that the set A will be large. We note
also that it is easy to establish a number of interesting dynamical properties for o such
as the existence of dense orbits, the density of periodic orbits, and sensitivity to initial
conditions. These are carried back to the set A by the map 4. Smale [112] also relates
the concepts of subshifts of finite type and transversal homoclinic orbits.

THEOREM 5.2 [112]. If f: M—> M is a smooth invertible map defining a discrete
dynamical system, and if p is a fixed point of f which has a transversal homoclinic orbit,
then there is an iterate f" of f and two sets R, and R, for which (M1)—(M4) are satisfied
by the map A=f".

COROLLARY 5.3. A4 discrete dynamical system f: M — M has a transversal homoclinic
orbit if and only if there is a set A CM such that the symbolic dynamics of f|A form a
subshift of finite type.

We make a few remarks about these results for discrete systems before returning to
continuous flow. First, the sets A which they locate may be contained in larger
invariant sets of the same type. It is unlikely that the construction we have outlined will
determine a maximal invariant set A which is topologically transitive (has a dense
orbit). Whether a maximal topologically transitive set I' is an attractor is an important
practical issue, but it is not easy to determine for examples that a set I' is both an
attractor and that is satisfies the hyperbolicity conditions implicit in (M1)—(M4) (Smale’s
Axiom A). The second remark is that the topology of the sets A identified above is
relatively simple. The disjointness of the R; required in (M1) forces the sets A to be
homeomorphic to Cantor sets. A maximal topologically transitive set I' may have a
much more complicated topological structure, and the definition of Markov partition
must be modified to allow for this possibility.

From the point of view of bifurcation theory for discrete systems, the transition
from a system which has tranversal homoclinic orbits to one which does not is a
complicated story. Our knowledge about this transition is woefully inadequate but
steadily growing. Numerical studies such as those of Hénon [49] find large sets which
behave as attractors, but the only theoretical evidence indicating their existence comes
from the study of one-dimensional mappings. Newhouse [89] has proved some re-
markable results which show that systems having an infinite number of stable periodic
orbits are a persistent feature of the transition to transversal homoclinic behavior.
Finally, we remark that “universality” properties have been found when homoclinic
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behavior first appears through an infinite sequence of flip bifurcations of stable peri-
odic orbits. Feigenbaum [32] first observed these features in the context of one dimen-
sional mappings, but a body of numerical, theoretical and experimental evidence
indicates that they are widespread.

Thus far we have discussed transversal homoclinic behavior in the context of
discrete systems or cross-sections to continuous flows. When a continuous flow admits
a global cross-section (such as in forced oscillation problems), the translation from
discrete geometry to that of the continuous system is relatively straightforward. The
analogue of a subshift of finite type is a special flow and it has the topology of a
solenoid. This is a one dimensional object which locally is the product of an interval
and a Cantor set. As the much studied Lorenz system [80] illustrates, the geometry of
homoclinic phenomena in continuous systems can be quite surprising when there are
equilibria in the flows and global cross-sections do not exist.

The most immediate appearance of transversal homoclinic orbits in codimension
two bifurcation problems does involve equilibria. Theorems 4.3 and 4.4 imply that it is
also a resonance phenomemon in that the only homoclinic orbits in symmetric vector
fields are not transversal. Thus transversal homoclinic orbits only appear in unfoldings
which break symmetries involving the angular variables of the normal forms. We shall
pick one case as an illustration of how the homoclinic behavior can be established. A
systematic theory of the extent of transversal homoclinic behavior in this or other cases
remains incomplete.

Consider the unfolding of a vector field with an equilibrium at which there is a
zero eigenvalue and a pair of pure imaginary eigenvalues. Assume further that the
quadratic terms of the normal form leave us with the following normal form equations
after linear rescaling.

6=w+o(1), r=r(A,+az)+0(2), z=A—z2—r*+0(2)

with @>0. The normal form equations truncated at terms of order two and having
parametric values along the curve A,=0, A,>0 have a flow which has a family of
invariant tori which are level curves of the function H(8,r,z)=ar?/*/2(A,—r*/(a+1)
—22). The curve H=0 consists of the z axis together with the ellipsoid E defined by
A, —r2/(a+1)—z2=0. The points (0,0, =(A,)'/?) are hyperbolic equilibria p . . Here
W¥p,)=E—{p_}and W(p_)=E—{p,}. Both W*(p,)and W*(p_) are rays on
the z axis, overlapping in the segment (p,,p_) interior to E; see Fig. 10. We shall

FI1G. 10. Flow of saddle loops in unfolding of 0 + pure imaginary eigenvalues vector field (a,>0, a;<0,
a4=<0in normal form).
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argue, using a theorem of Sil’nikov [111], that if a<<2 in the normal form equation, then
generic nonsymmetric perturbations of the family represented by the normal form will
have transversal homoclinic orbits.

Consider trajectories near W*( p_, )N W*( p_) for the symmetric flows. If one fixes
A, >0 and varies A, near 0 then these trajectories pass through a transition in which
they change from having bounded forward trajectories which remain inside E and
approach a limit cycle to trajectories which become unbounded with z— — co. This
behavior persists for nonsymmetric perturbations of the family. In nonsymmetric per-
turbations, W*(p )N W*(p_) is usually empty. However, as the parameter A, is
varied W*( p_) itself will undergo the transition described above, and it can only do so
by lying in W*( p_). In other words, there will be a curve in the parameter plane of the
nonsymmetric systems for which p_ has a homoclinic trajectory.

THEOREM 5.4 [111]. Let X be a three-dimensional vector field which has a hyperbolic
equilibrium p _ for which the following hypotheses are satisfied:

(1) The linearization of X at p_ has two complex eigenvalues p,p and one real

eigenvalue A with 0<—Rep<<A.

(2) The equilibrium p_ has a homoclinic trajectory.
Then within the space of C' vector fields satisfying (1) and (2), there is a dense, open set
which has transversal homoclinic orbits.

This theorem of Sil’'nikov can be visualized in terms of Fig. 11. Without leaving the
set of vector fields with a homoclinic trajectory, we may linearize X at p_ by a
perturbation, so we assume that X is linear in a neighborhood of p_. If the eigenvalues
of X at p_ are A,y=iw, the flow of X in cylindrical coordinates is given by
(r(2),0(1),2(2))=(r(0)e, 8(0)+ tw, z(0)e"). Pick two cross-sections to the homoclinic
orbit near p_, the first M, contained in a cylinder r=p and the second M, contained in
a plane z=§. We want to compute the mapping g: M, - M, along trajectories. To do
so, set z(1)=¢ and r(¢) = p exp(yA ~'In(£¢/z(0))) and () =6(0)+wA ™ 'In(£/2(0)). Hence
g is defined on the set of points in M, for which £/z(0)>0 and g(0,z)=
(pexp(yA~'In(¢/z2)), +wA~'In(£¢/z)). Note that a curve parallel to the z axis in M, is
mapped into a logarithmic spiral in M, and that circles of constant (,z) are mapped to
circles of constant (r,z). The condition that 0<y<A implies that dg, ,,(0,1) is un-
bounded at z - 0.

T
\_’/Ml

F1G. 11. Geometry of Sil’nikov theorem.



MULTIPLE BIFURCATION PROBLEMS 33

There is also a mapping h: M,— M, along trajectories. The map 4 is defined in a
neighborhood of r=0 and smooth. The composition 4 ¢ g is a return map for M, which
is defined in a neighborhood of the boundary of the half space £ /z>0. Now let us find
the image of a curve parallel to the z axis under 4 o g. This will be a spiral converging to
the point g=W*(p_)NM,. If x=(p,0,z), the distance from 4 o g(x) to g will be of
the order of z7/*. Thus as x — ¢ along a curve parallel to the z axis, the distance from
X to h o g(z) will become larger than the distance from x to ¢. The rectangle R depicted
in Fig. 12 has horizontal boundaries with z=z,,z,, where z,/z, is slightly larger than
exp(mAw ™). A vertical segment in R is mapped by 4 o g into a spiral segment in which
0 varies by at least m. The values of z, and z, are determined so that this spiral
intersects the annulus in M, defined by z,<z<z, in two components. Choose the
vertical boundaries 8=6,,6, of R so that they fall well outside the two components of
the spiral arc which is the image of the segment z,<<z< z, in the line through g parallel
to the z axis. The image of R will then overlap R in a figure with two components
R|,R, which looks like Smale’s horseshoe. The hyperbolicity estimates required in
property (M3) can be established provided that a certain constant defined by Sil’nikov
does not vanish. Since this argument can be applied to a whole sequence of strips R
which converge to the set z=0, one finds with it a countable collection of subshifts of
finite type, each a Smale horseshoe. These occur in the unfolding of our condimension
two bifurcation.

hg(R)

2

S Y A/ ST N L ]
0 | R

F1G. 12. Smale’s horseshoe in Sil ’nikov theorem.

6. Applications and examples. In this section we shall examine several situations in
which the preceding theory yields a substantial amount of information about problems
which have been considered previously by more classical techniques. We would have
liked to include here a larger array, including newer and more interesting examples
than those which are discussed, but fully developed applications of the theory described
in earlier sections are still limited. Two of the examples point to different kinds of
extensions to the theory which will be necessary for a full analysis of the bifurcations
present within them.

Example 1. Variational equation of Van der Pol. The forced Van der Pol equation
describes an oscillator with one degree of freedom and nonlinear resistance:

(6.1) i=e(1—x?)x+x=bcos(wt).

Experimental evidence during the late 1930’s with electrical circuits led Cartwright and
Littlewood to the first proofs of the existence of transversal homoclinic orbits in
non-Hamiltonian systems of differential equations [22]. Their argument applies to the
Van der Pol equation with large €, where it corresponds to “relaxation oscillations.”
The dynamics of the Van der Pol equations are also of interest when & is small,
particularly when b and (w—1) are of the same order of magnitude as ¢. In this near
resonance case, complicated dynamical phenomena occur.

The nearly resonant case of the Van der Pol equations can be studied by applying
the method of averaging to the equation. After suitable rescaling, the average deviations
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of a trajectory from those of the simple harmonic oscillator (over one forcing period)
are described by the systems of equations

(6.2) u=—ov+u(l—(u?+0?)), o=F+outo(l—(u?+0?)).

The properties of the solutions of these variational equations (6.2) as functions of the
two parameters (o, F') have been studied by Cartwright [21], Gillies [36], and Holmes
and Rand [60]. Apart from minor uncertainties, they give a complete description of the
dynamics of (6.2) for all values of (o, F).

Figure 13 shows a picture of the (o, F) plane with the bifurcation curves located.
Of particular interest are the codimension two points 0,4 and S. At the point 4=
(1/V3 8/4V27) there is a cusp point at which the two curves of saddle node bifurcations
(SN) terminate. At the point 0=(3,1), there is a codimension two bifurcation with a
double zero eigenvalue. Holmes and Rand [60] use the computation of the normal form
of (6.2) and Taken’s analysis of this bifurcation to prove the existence of a curve of
saddle loops (L) terminating at 0 in addition to the curve of directly calculable Hopf
bifurcations (H). The point S is “known” only on the basis of numerical evidence and
corresponds to a saddle node whose unstable manifold forms a loop which is part of
the boundary of the stable manifold.

Hopf

Saddle node L/S

Saddle node

F1G. 13. Stability diagram of Van der Pol variational equations.

The features of (6.2) correspond to the features of the global return map for (6.1)
obtained by integrating (6.1) for time 2a/w. The equation (6.1) is not equivariant in
any apparent way, so one does not expect that there will be resonant effects in relating
the dynamics of (6.2) to those of (6.1). In particular in the region bounded by the
curves H, L and the portion of SN joining 0 to S, (6.2) has a stable limit cycle, and one
expects the corresponding (6.1) to have an invariant two-dimensional torus. The dy-
namics on this two-dimensional torus should exhibit phase locking and entrainment.
Corresponding to the curve L of homoclinic loops for (6.2), one should find transversal
homoclinic solutions for (6.1). Note here that the algebraic calculations which locate the
point 0 in the bifurcation diagram for (6.2) indicate approximate parameter values for
which (6.1) should have transversal homoclinic solutions. See [44] for a more thorough
review of the dynamics of the Van der Pol equations.

Example 2. Panel flutter. The second example we discuss involves the oscillations
of a thin elastic panel which is forced aerodynamically by a flow across the panel. We
assume that all motions of the panel are normal deflections which are constant along
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lines parallel to the two ends of the panel. The ends of the panel are fixed at z=0 and
z=1 and the lateral deflection is described by the function v(z,t), v: [0,1]XR"->R.
The governing equation for the motions is

as+ o = T4k [ (o€t +o [ (0(8)(8)) dg} "+ pv'+[pd 5+5=0

with “*” representing differentiation with respect to ¢ and “’” differentiation with
respect to z. Of the various parameters, p represents the dynamical pressue of the flow
across the plate and I' represents a tensile load within the plate. The remaining
parameters reflect structural characteristics of the plate which we assume to be fixed.
Boundary conditions are v=(0v+av)” =0 (simply supported) or v=0v"=0 (clamped).
This equation is derived by Dowell [29] and has been studied by Holmes [55] and
Holmes and Marsden [59] as an application of the theory of codimension two bifurca-
tions.

The plate equation above is a rather formidable nonlinear partial differential
equation. Even coping with the linearized equation is difficult. We shall use the
example to illustrate the kinds of approximations which can be made to reduce a
problem of this difficulty to manageable proportions without (apparently) throwing
aside the qualitative features of its dynamics. The next example provides a simpler
nonlinear partial differential equation for which a more complete analysis can be given,
but in this one the answers from finite dimensional approximations must suffice for
some calculations. Before describing this calculation, we briefly review the theory which
does give one confidence that the reductions preserve the qualitative structure of the
dynamic motions.

The approach which one adopts is that of trying to identify a suitable function
space on which the plate equation defines a smooth semiflow, in the terminology of
Marsden and McCracken [83]. This involves a set of technical hypotheses which allow
one to prove a good existence theorem. It also provides the basis for an infinite
dimensional center manifold theorem. Marsden [82] presents a recent review of these
topics from the perspective of bifurcation theory. Briefly, the center manifold theorem
applies to a system at an equilibrium p for which there is a §>0 such that all of its
spectrum apart from a finite number of eigenvalues lies to the left of the line Rez= —§
in the complex plane. In this situation, there will be an invariant finite dimensional
manifold M passing through p such that the tangent space to M at p is spanned by the
part of the spectrum which lies on the imaginary axis. If there are no eigenvalues in the
right half plane, then this center manifold M will be attracting in the sense that p has a
neighborhood U such that all solutions which remain inside U tend to M. Thus, one can
study the dynamics of the equation on the center manifold of M where it defines a
finite dimensional vector field.

There is no difficulty in including parameters in the center manifold theorem. If
one begins with a system which has a “trivial” equilibrium (v(z,¢)=0 in the example
here), then one can search for parameter values at which the equilibrium first loses its
stability. By this we mean that all of the spectrum lies in the left half plane apart from a
few eigenvalues on the imaginary axis. The corresponding center manifold M (including
the parameters) then determines the bifurcation structure for the full set of equations
regarded as a flow on the function space. If the normal form on M can be calculated
and the parameterized family on M is persistent within the appropriate class, then the
bifurcation analysis of this normal form can be applied to the example at hand. Apart
from being able to give a complete calculation of the spectrum of the linearized
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problem, this is the program carried out by Holmes and Marsden [59] for the panel
flutter problem.

In lieu of a full analysis of the spectrum, Holmes and Marsden employ a Galerkin
approximation procedure which approximates the problem by a finite dimensional one.
They then carry out calculations with these approximations, proving at the same time
that as large approximations are used, the sequence of approximate solutions does
converge in the function space to the solution of the original problem. Abstractly, the
Galerkin procedure works in the following way. One chooses an orthonormal basis
{w,} for the function space (which is now assumed to have an inner product). Let E, be
the finite dimensional space spanned by the functions w,,- - -,w, and =, the projection
of the function space onto E,. If the original equation is expressed as an ordinary
differential equation on function space dx/dt=f(x), then dx/dt=m, f(x) defines a
vector field on the finite dimensional space E,. This last equation can be expressed as a
system of k ordinary differential equations for the coefficients of the w; along a
trajectory.

To apply the Galerkin procedure to the panel problem, one uses the functions
sinnzz as an orthonormal set. In terms of these, the panel equation can be described as
a second order differential equation for the coefficients. Thus there is a two-dimen-
sional space corresponding to each sinnwz in the Galerkin approximations. Provided
that one retains at least four modes, numerical calculations indicate that the largest
eigenvalues of the linearized problem remain almost unchanged by the addition of
more modes. For reasonable parameter values (a,8,T, p)=(0.005,0.1, —2.2972,112.5),
there is a codimension two bifurcation with a double zero eigenvalue. There is a
symmetry to the panel equations which comes from replacing v with —v. This symme-
try is present in the Galerkin approximations where it takes the form of rotation by 7
in the plane of each mode. Consequently, the normal forms will be those appropriate to
the class of rotationally symmetric vector fields. Holmes computes the coefficients of
the cubic terms of the normal form.

Example 3. Brusselator. The next example which we discuss is the Brusselator [12].
This is a model system of reaction diffusion equations representing the kind of dynami-
cal behavior one suspects (hopes?) plays a role in regulating the formation of patterns
in living organisms. One begins with the following reaction scheme:

A-X, B+X-Y+D, 2X+Y-3X, X-FE.

In this scheme 4, B,D and E are reactants whose concentrations are assumed to be
fixed throughout the reaction. It is the dynamics of the intermediates X and Y which we
want to examine with this assumption. In addition, we assume that the reaction is
taking place in a one-dimensional medium and that X and Y diffuse with diffusion

constants D, and D,. This yields the following system of reaction-diffusion equations
(X,Y):

X _ X, , Y_ Y _,
(6.3) W‘D'a—gz“”’ (B+1)X+4, at—Dza£2XY+BX.

We assume further than the reaction is at equilibrium at the ends of the interval [0, 7],
so that X(0)=X(w)=4 and Y(0)=Y(7)=B/A for all 1=0.

The problem to be solved here is the initial value problem. In particular, we would
like to know what kinds of dynamics are possible at t— oo as a function of the
parameters (A4, B, D,, D,). The problem is very far from a complete solution, but we are
able to give an argument for the existence of transversal homoclinic solutions based
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upon the theory described in this review. As with the forced Van der Pol example, this
argument lacks completeness in that one is unable to prove that there is a hidden
symmetry which would prevent the creation of transversal homoclinic solutions through
resonance effects. Apart from this missing detail, this provides the first existence proof
for transversal homoclinic solutions to a system of autonomous partial differential
equations which does not admit a trivial reduction to a finite dimensional system. The
Brusselator has served as a useful “model” system of partial differential equations, and
its analysis is in the same spirit as that which one hopes to use for a variety of fluid
dynamic problems.

The mathematical principles discussed for the panel problem allow us to apply the
results of finite dimensional bifurcation theory to this infinite dimensional problem.
There is an existence and uniqueness theory for solutions of (6.3) which guarantees that
the equation defines a suitably smooth semiflow on the Banach space CZ[0,7] of C?
functions which satisfy the boundary conditions imposed by (6.3). Thus the center
manifold theorem can be applied, and we shall adopt the attitude that the bifurcation
structure of the problem is adequately described by the finite dimensional theory.

The Brusselator problem has the trivial equilibrium solution x(&,¢)=4, y(§,t)=
B/A. We want to linearize the equations at this equilibrium and determine the spec-
trum of the linearized equations. Introducing

u=X—A, v=Y—-§,
(6.3) becomes
2
(6.4) %=Dl%ﬁ;—+(B—l)u+sz+(—3—u2+2Auv+uzv),
x_ . 9% . (B 5
o1 —Dza—gz Bu Av(2u+2Auv+u v).

If w=(u,v), we write w,=Lw+ Nw where L is the linear part of (6.4). Representing
w=(u,v) as a Fourier series w(t)=27_,w,(t)sinn§, we find that the two-dimensional
spaces spanned by the vector-valued functions w,sinn§ are invariant for L with spec-
trum given by the eigenvalues of

B—1—n?D, A2

E =

n

We want to find parameter values for which all of these eigenvalues have negative real
parts (bounded away from 0) except for a finite number which lie on the imaginary
axis.

We make two observations about the collection of eigenvalues of the matrices E,
as n varies. The first observation is that Tr E,=B—1—A%—n*(D, + D,) is a decreasing
function of n. Consequently, if E, has pure imaginary eigenvalues for n>1, then E,,_,,
has an eigenvalue with positive real part. The second observation is that detE, is a
quadratic function of n? with positive leading coefficient D, D,. Therefore, if E, and E,
have zero eigenvalues and |k —/|> 1, then there is an E, which has negative determinant
and an eigenvalue with positive real part. Thus, when no eigenvalues have positive real
part, the maximum dimension of the eigenspace of the imaginary axis is 4. This
situation results when E, and E, ,, each have a zero eigenvalue for some k> 1, and E,



38 JOHN GUCKENHEIMER

has pure imaginary eigenvalues. We compute the parameter values for which this
maximal degeneracy occurs:

_ D¥M(k+1)*+2Dk(k+1)
1+D,k*(k+1)

D, , A*=D,D,k*(k+1)’, B=1+A42+D,+D,.

When these equations are satisfied, E, has pure imaginary eigenvalues, E, and
E,+1 each have a zero eigenvalue, and all other eigenvalues of the E, have negative
real parts. To see this, note first that the third equation determines that Tr E, =0 and
Tr E, <0 for n>1. Next observe that det E, = 4> +n?(A*D,+ D,— BD,)+n*D,D,. Since
this function is convex, detE,=detE, ,,=0 implies that detE,=0 for all n. The
equation A>+k?(A*D,+ D,—BD,)+k*D,D,=A?+(k+1)*(A?D,+D,—BD,)+(k+
1)*D, D, yields the second equation by eliminating the middle terms and solving for A2
The first equation is then obtained by substituting the values of 42 and B from the last
two equations into the equation det E, =0 and solving for D,.

This most degenerate equilibrium represents a bifurcation of codimension three.
Its unfolding has not been calculated. In lieu of being able to calculate the unfolding
for this codimension three bifurcation, we consider the easier problem of examining its
behavior near an equilibrium in which there is one zero eigenvalue of E,, pure imagin-
ary eigenvalues for E, and all other eigenvalues have negative real parts. If we regard
(A%, B) as being experimental parameters with the diffusion rates (D,, D,) fixed, then
the above conditions become

D,+D,— D,k?

6.5 A2=D, k>
(6:5) > \1+Dk*—D,k?

), B=1+A4?+D+D

subject to the following inequalities on the diffusion rates:

D,+D,—D,k?
1+k*(D,—D,)

2

) (1+(k+1)%(D,—D,))

—(k=1)’Dy(D,+D,)+(k=1)*D,D,>0 forallkeEz.

There are solutions to this system of equations and inequalities with 4, B, D, and D, all
positive.

Let E be the three-dimensional eigenspace of the imaginary axis for the linearized
equations (6.4) and let P: CZ[0,7]— E be the projection onto E. We want to express in
E the equations (PW),=P(Lw+Nw) or w,=Lw+PNw for we€E. These are the
“truncated” equations of (6.3) which give an approximate description of the flow on its
center manifold. To the extent that the Taylor expansions of degree two at the origin of
the truncated equations and the full equations (6.4) agree, we can use the truncated
equations to determine the unfolding of the codimension two equilibrium of (6.4).
These computations are straightforward but somewhat lengthy. The details are not
illuminating, so we merely outline the procedure. More detail can be found in [41].

Denote by X the vector field on E defined by the truncated equations. Recall that
the normal form of X was (w+a,r?)d/00+a,rzd/9r+(asz2+a,r?)d/3z in ap-
propriate cylindrical coordinates. The coefficients (a,,a,,a,) determine the qualitative
structure of the unfolding of this bifurcation. To compute these coefficients requires
several steps:

(1) We find a basis for E so that the linearization of DX(0) represents infinitesimal
rotation about the z axis (with rate w).
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(2) For a vector field with the linear part of X, we identify those expressions which
become the coefficients g, in the normal form.

(3) We determine those terms in N(w) which contribute to the expressions in step
(2) and compute their projections onto the two-dimensional spaces of the form (sin§)w
and (sink&)w.

(4) We compute the coordinates of the projections in step (3) relative to the basis
which extends the basis for E found in step (1) by the second eigenvector of L in E,.
We read off the coefficients in the normal form.

We list the results of this computation:

0 <vYB m
zz-é;: %Z(k“Df—A“)/O sin k¢ dE,
d 2
r? 3 ‘—‘%[B(l+d2D22)—2A2(1+d2D2+d2D1D2)]‘/:sm%smkgdg,
1 .
rz - Z[Bk2D2—A2(A2+k2D2)]fO sink£dg,

v=((42+k2D,)’~4?B) " (4*+k*D,~B),

d?=(A*+A4%D,+D,+D,D,~BD,) .

There are some interesting aspects to these calculations. The trigonometric in-
tegrals above depend strongly on the parity of k. When k is even, they all vanish and
the bifurcation is degenerate. This is due to the invariance of the functions sin2/ on
[0, 7] with respect to the symmetry f(x)— f(7—x). If we restrict attention to the class
of functions which possess this symmetry, then the cubic terms in the Taylor expansion
determine much of the qualitative behavior of the unfolding and the normal form is
then for systems with a reflection geometry. To give a complete analysis of the
bifurcation structure for varying boundary conditions, one needs to determine what
occurs when one allows this symmetry to be broken.

When k is odd, the quadratic coefficients of the normal form do not vanish (for
most allowable values of (D,, D,)) and the unfolding results from §§3-5 can be applied
directly. One question of interest is whether or not there are values of (D,, D,k) which
yield transversal homoclinic orbits in the unfolding (unless there are hidden constraints
which prevent resonance effects). Such values of (D,,D,, k) do exist, indicating the
presence of chaotic solutions to the Brusselator equations. We note that numerical
solutions of the Brusselator have been computed which appear chaotic. These chaotic
solutions are irregular both in time and space.

Example 4. Double diffusive convection. The final example we discuss is a “classi-
cal” fluid mechanics problem: thermohaline convection. Fluid motions exhibit a wide
variety of dynamical phenomena, and fluid mechanics has been a fertile ground for
applications of bifurcation theory. Bifurcation computations involving the Navier—
Stokes equations are difficult unless they begin with steady flows of simple geometry.
Consequently, most of the classical theory deals with the initial bifurcations in which
an instability of a motion described by an explicit formula first occurs as a parameter is
varied. One prospect for the use of more parameters and the computation of multiple
bifurcations is that these provide a means for analytically coping with secondary (and
higher in some cases) bifurcations without doing fluid calculations much more
sophisticated than those which have been done in the past.
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We have selected thermohaline convection as an example to illustrate these points
because the linear calculations explicitly locate codimension two bifurcations and some
work has been done to understand the behavior associated with these. Indeed, we shall
see that bifurcations of both the double zero and double Hopf type occur with some
symmetry in the system for the boundary conditions we employ. Knobloch and Proctor
[74] give an analysis of this problem using perturbation theory methods.

Thermohaline convection is the problem of studying the fluid motions of salt water
due to the buoyancy effects of opposing gradients of heat and salt (or of two other
solutes which affect the fluid density). The different diffusivities of heat and salt lead to
very different instabilities when hot salty water lies above colder fresher water and vice
versa. There is a large body of experimental and numerical observation to compare
with analytic results for this problem. The linear computation of stability as a function
of the steepness of the salt and heat gradients leads to codimension two bifurcations as
we now describe.

A horizontal layer of fluid of depth d has fixed temperatures and salt concentra-
tions on its upper and lower boundaries. One assumes that the fluid is incompressible
and that the buoyant force on the fluid depends linearly on the temperature and salt
concentrations. The resulting equations are

-%o-t—o- vv=%Vp+g(aT—ﬁS)+"V2°’
div(v)=0,

%_7;_._0. vT—w ATf———kva,
%+0.VS—SA7S=1<N25’

with v the fluid velocity vector, T and S the departures of the temperature and salt
concentrations from their steady state distributions, AT and AS the imposed tempera-
ture and solute differences across the fluid layer and w the vertical velocity component.
The remaining constants are the density p, the gravitational constant g, diffusivities k
and k,, kinematic viscosity » and the buoyancy dependency on temperature and
salinity given by a and 8. The pressue p is eliminated from the system by taking the
curl of the Navier-Stokes equation, thereby obtaining the vorticity equation. In the
case of velocity fields which never have a component in the y direction, we can express
the vorticity equation in terms of the stream function y. After rescaling, the system to
be solved is now

(6.6) 0 'vWy—0 (Y, v2Y)=—R;3,T+R .S+ VY,
T+oy—J(¢,T)=V?T,
a!S+ax¢_J(‘P’S):TV2Sa

where J( f,g) is defined to be 3, f3,—d, fd,g. The boundary conditions are y =92y =T
=S=0whenz=0or 1.

The system above has trivial 0 solution, and the linearization at the trivial solution
is obtained by dropping the Jacobian terms from each equation. For the linearized
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system, the normal modes (eigenvectors) are easily determined as functions of the form

4
T
S

where ( p, n, a) satisfy the equation

YoSinmax
(x,z,t)=ef'sinnmz| Tycosmax |,

S,cos Tax

p*+(o+1+1)k?p>+ [(o+7+o'r)k4—7r2072k_2(RT——RS)] P
+o1k®+n%0a*(Rg—TR;)=0,
k*=n2(n*+a?).

One seeks values of R and Rg for which no solutions p of this equation have
positive real parts, but some have zero real parts. Choosing a’=% and n=1, one
obtains the values of p with the smallest maximum real parts. These can appear with
either a pair of pure imaginary eigenvalues, as a zero eigenvalue, or as a zero eigenvalue
of multiplicity two. The last possibility occurs for the special values of R, and R for
which

(o+7+o7)k*—n?0a’k *(R;—Rg)=0,
otk®+an%0a’(Rg—7R;) =0,

(Rs)_ k® (72+t2/o)
Rr] #22(1—7)\1+7/0 |’

These values of the Rayleigh numbers are a good candidate for the application of
our codimension two bifurcation theory. At this point one should compute the normal
form corresponding to this double zero eigenvalue and the transversality conditions for
variations with respect to Rg and R, thereby determining the bifurcation structure.
There is a symmetry in the system (6.6) which comes from simultaneously changing the
signs of ¢, S, T and z. This symmetry forces the normal form of this problem to be one
of type (iii) in Theorem 4.2. Following the perturbation calculations of Knobloch and
Proctor [74], one projects the equations onto a five-dimensional space ¥ which includes
the two-dimensional zero eigenspace W. In the five-dimensional space V, the center
manifold M has quadratic tangency to W. Restricting the equations to M we retain all
of the terms that affect the cubic coefficients in the normal form and obtain an
unfolding of the type indicated in Fig. 9.

We end by illustrating how a small change in the boundary conditions for the
thermohaline problem produces a bifurcation of the double Hopf type, although the
appropriate normal forms have not been computed. The computation of the spectrum
of the linearized problem depends upon the horizontal wave number a. No restrictions
were placed upon a corresponding to the (physically unrealistic) idealization of an
infinite conducting layer. In addition to the difficulties in computing normal forms
which we described above, there are problems in applying the center manifold theorem
because the linearized operator has a continuous spectrum. The applied literature
uniformly avoids this difficulty by examining only disturbances whose horizontal wave-
length a=2'/2 corresponds to the eigenvalues with the largest real parts. One way of
avoiding this second difficulty in applying the theory is to impose periodic boundary

or
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conditions in the x direction. For the normal modes of the linearized equation, this
forces a to be a multiple of the imposed period=m/D with D determining the scale of
the imposed horizontal periodicity. When the function (n%+a?)?/a? has equal values
for a=m/D, a=(m+1)/D with m € Z such that m*<2D?<(m+ 1), then the corre-
sponding modes of the linearized equation can both be pure imaginary and a double
Hopf bifurcation results. The normal form for the example has not been computed, but
it does illustrate that double Hopf bifurcations occur in fluid dynamics problems.

7. Summary.This summary will list normal forms, integrable limits from rescaling
and variational integrals for the various types of bifurcations discussed in this paper.

Codimension one bifurcations.
Saddle node. Simple zero eigenvalue,

x=y+ax*+o0(2).
Transcritical. Simple zero eigenvalue, 0 constrained to be equilibrium,
x=yx+ax*+o0(2).
Pitchfork. Simple zero eigenvalue, reflection symmetry,
x=Ax+ax*+0(3).
Hopf. Simple pair pure imaginary eigenvalues,

6=w+a,r’+o(2), rF=Ar—a,r*+o(3).

Codimension two bifurcations.
Two-dimensional nilpotent space.

X1=x,+0(2),  X,=A+Ax,+a;xi+a,x,x,+0(2).
Rescaling.

x,=82X,, x,=8%X,, 8t=T, A\, =8%A, A,=8%A,.

Integral.
X; X? X}
H(X,,XZ):TZ+A,X2+A2 7‘+a, —3‘~
Variational calculation. Closed curve v in set H=c is approximation to closed
orbit when
X2 X3\ 12
f X,=O=fX1(—c+A|X1+A2-——L+aI——'— dx,.
interior y 2 3

This defines a surface in (A, A,, c) space locating limit positions for periodic
orbits.
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Two-dimensional nilpotent space with O constrained equilibrium.
X=x,+0(2),  x,=Ax;+HAx,Faxita,x;x,+o(2).
Rescaling.

x,=82X,, x,=8X,, 8t=T, N\, =8%A,, A,=8%,.

Integral.
— X2 X2 X3
H(XI,XZ):—’—E—&'{’A] ——-2—'—+a1 "gl‘ .
Variational calculation. If D is compact with H constant on D,
A X,
f (A,+a,X)=0 or ———2'=-f9-——1-.
D /D!
Integral curves.

Two-dimensional nilpotent space with symmetry of rotation by .
%=x,1t0(3),  X,=Ax,+A,x,+ax]+a,xix,+o(3).
Rescaling.
x,=8X,, x,=8X,, 8t=T, A\ =8%A,, A,=8%\,.
Integral.
H(X,,X2)=X722+Al XT'2+a1 -)g{i.

Variational calculation. On the interior D of a compact component of H=¢

fD(A2+a2X12)=0.

Integral curves.

KX )

XL

43



JOHN GUCKENHEIMER

0+ pure imaginary eigenvalue.
b6=w+a,r*+o(2),
F=Nyrtayrxy+(b,r3+byrx3 ) +o(3),
%3=N,+ayxl+a,rt+(byrixy +b,x3) +o(3).

Rescaling for equations in (r,x5).
r=8R, x,=8X,, 8t=T, N\ =8%A,, A,=8%A,.

Integral.

H(R, X3)— 2R”2ﬂ3/az(A +a; X2+ 3"“;2R2).

Variational calculation. On the interior D of a compact component of H=c,

f((A,+(a3_a2b| azbs )R2+(b2 3a 2b4X32)))R—2a3/a2~1=0.
D a; 2‘13 a;

Integral curves.

0+ pure imaginary eigenvalues + reflection symmetry in x, axis.
6=w+a,r’+o0(2),
F=Nr+brxi+b,r3+rP,+0(5),
X3 =Ny x5 +byrix, +byxi+x,0,+0(5).
two pairs of pure imaginary eigenvalues with no resonance.
6,=w,+a,r2+a,r2+0(2),
by=w,+asrt+a,r2+o(2),
f=r(A+b,r2+byr2+P,)+0(5),
h=r(Ay+byri+b,ri+Q,)+0(5).
(Two-dimensional systems for (7,x5), (,,r,) are the same.)

Rescaling for (r,,r,).
=8R,, r,=8R,, 8U=T, A =8%\,, A,=8%A,.
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The integral exists when (b, —b;)b, A, +(b,—b,)b; A, =0,
H(R,,R;)=r{"R%(By+ B R} + B, R3)

with
2b1(b2_b4)
a b,by,— b, b, A, —ay a,,
= d ==, = , =it
(aZ) 2b4(b3—b,) and B, a, B a, B, a
b|b4—b2b3

Variational calculation. On the interior D of a compact component of H=¢
has the form

fD(ylA,+y2r2+e,R‘,‘+82R,2R§+e3R§)R“--‘Raz“=0.

Integral curves.

10 ©
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CAUSTICS IN EXTENDED EUCLIDEAN SPACE*
J. W. BRUCE,! P. J. GIBLIN¥ aND C. G. GIBSONS

Abstract. This paper is one of a series in which the authors investigate genericity properties of caustics by
reflexion from smooth mirrors. Here, the mirror is a smooth surface in R?, and two related problems are
considered: (1) what is the form of the caustic at infinity (the caustic in the “far field”), generically, with a
finite light source; (2) what is the form of the caustic generically when the light source is at infinity? For (1)
both “mirror genericity,” where deformations of the mirror are allowed, and “source genericity,” where only
the source may be moved, are considered. With some assumptions on M it is shown that the caustic can be
made generic in either of these two ways. (In the latter case, only a local result is proved.) For (2), only mirror
genericity is considered, and it is shown that there is an obstruction to proving a result of this kind, caused by
an inherent lack of genericity in wavefronts arising from parallel light reflected from a mirror in R>. It is
proved, however, that for most mirrors in R> with parallel incident light, the part of the caustic lying in a
compact region is generic.

AMS-MOS subject classification (1980). Primary 58C27, 78A05

Key words. caustic, singularity, genericity, optics

Introduction. This paper is devoted to the study of light caustics obtained by
reflexion of a light source in a smooth convex mirror M in R3. Here we consider the
related questions:

(1) What is the form of the caustic at infinity, generically, with finite light source?

(2) What is the form of the caustic generically when the light source is at infinity?

Both questions are of some physical interest. In particular the study of question (1)
is relevant for the appearance of the caustic in the far field, i.e. its appearance when cut
by a distant screen. (Cutting the caustic by a screen is one way, of course, of actually
seeing the caustic.) See §1.

The two questions are related because following [5] and [6] one can see that they
can both be attacked using contact of paraboloids of revolution with the mirror M,
without constructing an intermediate wavefront. (This observation is very useful since it
simplifies the computations.) For question (1) the focus of the paraboloid is the light
source and its axis is the direction of the reflected light. For question (2) the axis will be
the direction of incident light and the focus the corresponding point on the caustic.
However, the two situations are very different when it comes to the genericity ques-
tions. We will as before be considering two basic questions:

(A) Mirror genericity: Is it true that, fixing the light source, for almost any mirror

the corresponding caustic is generic?

(B) Source genericity: Is it true that, fixing the mirror, almost any light source will

give a generic caustic?

Concerning the more interesting question (B) we see that we have a far better
chance of proving source genericity in (1) than in (2). For in question (1) we have a
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three-parameter family of peturbations of the source and we are asking for a two-
parameter family of functions (the height functions on the wavefront) to be generic. In
question (2) we only have a two-parameter family of perturbations of the source (the
different incident directions) and we are asking for a three-parameter family of func-
tions (distance squared function on the wavefront) to be generic. (We have inter-
changed the roles of the axis and focus.)

In §§1 and 2 we obtain some positive results concerning source genericity for the
caustic at infinity. The principal one (Theorem 2.12) states that if the mirror M is
analytic then for almost any position of light source s inside M the caustic at infinity is
locally generic. The corresponding assertion for mirror genericity (for a general smooth
M) already follows from our work in [3] and the theorem of Looijenga which shows
that generic wavefronts give generic caustics at infinity.

In §3 we begin by discussing some problems concerning mirror genericity with
light source at infinity. (The fact that there are problems vindicates again our study of
these questions; genericity results do need to be proved.) We do show (Theorem 3.3)
that, given any compact region K of R*® and incident direction s for the light, for an
open dense set of mirrors that part of the caustic in K is generic. The version of mirror
genericity which asks for a generic compactified caustic in projective 3-space is shown
to fail. Because of these problems, and the complications involved in getting results in
the easier case of finite light source in [4], we do not consider source genericity for
question (2). (Note that it already fails in the plane: see [6].)

1. Caustics and screens. In practice one usually observes light caustics by placing a
screen in the ambient space; the caustic will then appear as a bright curve on the
screen. Thus although for generic wavefronts in R? the caustic has local forms of the
type listed in [5], in practice one observes two-dimensional sections of these local forms.
What form will these sections take? For a generic wavefront and generic screen one will
observe the models associated with a one-dimensional wavefront as in Fig. 1. For if L is
the screen and W the wavefront, then the proof of the genericity of wavefronts given by
Looijenga in [10] (see also [12]) shows that a generic W gives a generic family of
distance squared functions WX L—R and hence a generic Lagrangian or catastrophe

map, with L as control space rather than the whole of R>.

In this paper we wish to prove a different type of result. We claim that choosing a
screen sufficiently far away from the generic wavefront W one should obtain the
generic forms of the diagram above, and the caustic curve on the screen should not
change if we move the screen (i.e. the caustics should be isotopic). In physicists’
terminology we are studying the caustic in the far field. To do this we need to introduce
the family of height functions on W. So consider S={(¢,a) ER XR3: 2+]a||*=1}
and define G: WX S—R by G(x,t,a)=t||x||*—2({a,x)=t||x—at™"||>*—¢""|a||*. This
is the compactification of the distance squared functions discussed in [10] and [12, p.
713]. For t=0 we have the height functions on W. As usual the (extended) caustic is the
set of points (z,a) of S for which G, ,;: W—R has an 4., at some point. (We can
think of this extended caustic as lying in the projective space P3, i.e. S modulo

FI1G. 1
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antipodal points, for G_, _,,= — G, ,.) If 70 a point of the extended caustic corre-
sponds to a point of the usual caustic (i.e. at~ ! is a centre of curvature of W.) However,
the new points of the caustic in S are those on the sphere (at infinity) given by {t=0}.
This is in fact the fold curve of the Gauss map of W (see [2]). The main idea is that this
caustic at infinity is essentially the caustic in the far field, i.e. the caustic cut with say a
spherical screen of sufficiently large radius centered at the origin. The key lemma we
require is:

LEMMA 1.1. For a generic wavefront the sphere {t=0} cuts the natural stratification
of the extended caustic transversally.

Proof. By Looijenga’s transversality result both G and its restriction to WX {r=0}
are generic families of functions for generic W. Thus one generically has strata of type
A,,A; and A,/A, of the extended caustic meeting the sphere {t=0}. To prove that
{t=0} meets the 4,,4; and 4,/A4, strata of S transversally we need the following
rather trivial extension of the standard Thom lemma. Let F: XX Y- Z be smooth and
A CY, BCZ be smooth submanifolds. If F is transverse to B then the restricted map F:
XXA-Z is transverse to B if and only if the projection 7: F~'(B)CXXY-Y is
transverse to 4.

(Proof. This is a local assertion, so near a point a €4 write Y as 4 X A’ with a now
written (a,a’) €A X A’. Write m, for projection of Y onto A’ and consider F: XX A4 XA’
- Z. Now F is transverse to B, so by Thom’s lemma F,.: XX A4 - Z is transverse to B at
(x,a,a’) if and only if the composite

FY(B)Zaxala

is'a submersion at (x,a,a’). This is so if and only if # is transverse to 4 at (x,a,a’)
Q.ED)

We now take X=W), Y=8, A={t=0}, F=,j{G, Z=,J*(W,R) and B the 4,
or A, set (r=1) or A,/A, set (when r=2). For generic W we have , jfG transverse to
the relevant B as well as its restriction to WX {t=0}. So the projection :
(,j¥G)™'(B)~ S is transverse to {t=0}, as required. = Q.E.D.

The relevance of the lemma is as follows. We have a two-sheeted mapping S — {t=
0} > R? defined by (¢,a)— ¢ 'a, with a (one-sided) inverse R*>— S — {t=0} defined by
x=((1+1x)1*)~"/2, x(1+]|x||*)~'/?). Thus the spheres centred at 0 €R> correspond to
the sets £=4, a constant, in S. Since {t=0} meets the extended caustic transversally, so
will =4 for § small, and we will have isotopic caustic curves on all sufficiently large
spheres (with corresponding radius § 72— 1.)

One final crucial observation: in the proof of Lemma 1.1 above we assumed that G
was a generic family. If however we only have G: WX {t=0} >R generic then since
genericity is open we will have G: WX U—-R generic for some suitably small
neighbourhood U of {t=0} provided W is compact. This in fact suffices to prove the
lemma in this case, and make the deductions above. So for caustics in the far field we
need only consider the family of height functions on compact wavefronts . W.

Consequently let us review some facts concerning height functions on smooth
surfaces in R>. (See [2] for details.) A height function in a given direction has an 4.,
singularity at a point p of a surface W in R? if and only if the normal to W at p is in the
given direction and the Gaussian curvature of W at p is zero. Generically only 4,,4,
and A, singularities occur. The 4, singularities occur at points where the rib lines cut
the parabolic curves, and give rise to cusps of the Gauss mapping. Contact of A_, of a
surface with its tangent plane is easily seen to be automatically transverse. For an 4,
point, however, there is a genuine condition to be satisfied.
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As in [5] we shall study the caustic (at infinity this time) via contact between the
mirror and quadrics (in fact paraboloids) of revolution rather than considering height
functions on the wavefront. (We shall only consider local genericity, i.e., we ignore
self-intersections of the caustic.) These two approaches yield the same result; the fact
that contact is preserved on taking orthotomics is proved in [3, §4] and [1], and the
proof that an A, arising from the paraboloids is transverse if and only if that arising
from the corresponding height function is transverse is similar to the proof in [5,
Appendix] for the 4, and D, cases when considering distance squared functions.

Let M be the mirror and let R denote the space of quadratic forms on R> whose
zero-set is a paraboloid of revolution. In §2 we parametrize R by R XR*XR> where
one factor R? gives the focus s, which corresponds to the light source in our work. In
what follows we take s€IntM, the open region of R> inside M. There is a global
contact map

I'' MXR-R

defined by I'(m, Q)= Q(m). What we actually do in §2 is to show that, for some closed
set © of measure zero in IntM, the map I' with s restricted to IntM—Q has jet
extension (as a family of functions on M) transverse to various strata in J* (M,R).
This is done by using a local version y of I' and working case by case. (In fact, for
strata of singularities of corank 2 we show directly that the contact map avoids these
strata (Lemma 2.2).) We can now deduce from Thom’s basic transversality lemma that,
for all s off a set of measure zero in Int M — (or in Int M), the contact mapping with s
held fixed is transverse to these strata. This is equivalent to the corresponding result for
height functions on the orthotomic (thus for 4., and corank 2 the strata are actually
avoided for almost all s), and establishes the genericity of the caustic at infinity for
almost all source positions.

2. Transversality of the contact map. In this section we present detailed computa-
tions concerning the contact of the mirror M with paraboloids of revolution. We write
A for the real vector space of all quadratic functions on R* (i.e. with only constant,
linear and quadratic terms) and R for the subset of those whose zero-sets are paraboloids
of revolution. Note that R is of course closed under multiplication by nonzero scalars.
We wish to show that R is actually a smooth submanifold of 4, and to compute its
tangent space at any point.

A paraboloid of revolution has a focus s=(u,v,w) and a directrix plane. If ¢ is in
the direction of the axis (¢=(p,q,r)#0) then for some kK ER the directrix plane has
the form ¢- a=k, where a=(x,y,z). Then the distances of any point of the paraboloid
of revolution from the focus and the directrix are equal. We always assume that s does
not lie on the directrix plane.

LEMMA 2.1. The equation of the paraboloid of revolution with focus s and directrix
t-a=kis

(*) (k—t-a)’—1*(s—a)’=0.

Here t2=¢-t is the square of the length of ¢, etc. The paraboloid can also be described
as the antiorthotomic of the directrix plane relative to the focus. In our situation the
directrix plane is the tangent plane to the wavefront W, and the focus is either the light
source or the point on the caustic corresponding to light from infinity in the direction
of the axis. Contact between W and its tangent plane is the same as contact between M
and the paraboloid of revolution.
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The left side of () yields an explicit parametrization of R (more precisely of
“half” of R: for every Q €R either Q or —Q, but not both, has the form given), the
parameter space being the open subset of R X R*XR? comprising those points (k,s, )
with 150 and ¢-s# k. We claim that this parametrization has maximal rank 7. If we
differentiate (x) with respect to k,u,v,w respectively we see that the image of the
differential contains k—¢- a, x—u, y—v,z—w: the condition ¢ - sk ensures that these
vectors are linearly independent, so the image of the differential contains 1, x,y, z. If we
now differentiate (*) with respect to p,q,r respectively and disregard linear combina-
tions of 1, x,y,z in the result, we see that

X=x(px+qy+rz)—p(x*+y>+2?),
Y=y(px+qy+rz)—q(x*+y*+z?),
Z=z(px+qy+rz)—r(x*+y*+2z?)

all lie in the image of the differential. One readily checks that X,Y,Z are linearly
independent if and only if 10, which condition is automatically satisfied. Thus R is a
smooth immersed submanifold of 4 of dimension 7 with tangent space spanned by
1,x,y,2,X,Y,Z. In practice we shall be concerned more with the subset R,_, of R,
comprising quadratic functions with zero-set paraboloids of revolution passing through
the origin 0 in R3, and tangent there to the plane z=0. R,_, is likewise a smooth
submanifold of 4, of dimension 4, with tangent space spanned by z, X, Y, Z. In fact, by
the reflexion property for paraboloids of revolution, the reflexion §=(u,v, —w) of the
focus in the plane z =0 must be a scalar multiple of t=( p, g,r), so we can write

X=x(ux+oy—wz)—u(x?+y2+2?),
Y=y(ux+ovy—wz)—o(x*+y?+22),
Z=z(ux+oy—wz)+w(x2+y2+2?).

A trivial calculation based on Lemma 2.1 shows that the unique paraboloid of
revolution

Q=ax*+by?+cz?+2dxy+2eyz+2 fzx+gz

through 0 in R?, tangent to the plane z=0, with focus s=(u,v,w), where w#0, has
coefficients

a=v+w? b=u’+w?, c=ul+0?,
d=—uv, e=uw, f=uw,

g=—4w(u*+v*+w?).

Geometrically, it is more illuminating to write Q= AS — P? where A =u?+ 02+ w2,
S=x*+y*+z>—4wz, P=ux+vy—wz. S represents the sphere through 0 centered at
the point where the z-axis meets the axis of Q, and P represents the plane through the
origin perpendicular to the axis of Q, so a translate of the directrix plane.

Contact of M with paraboloids of revolution. We need to make a few preliminary
comments about the contact of M at a fixed point with paraboloids of revolution. By a
rigid motion of R3 we can suppose the point in question is 0, and that (close to 0) the
surface is given in the Monge form

z=%(x,x2+lc2y2)+C(x,y)+D(x,y)+ cee
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where C,D, .- are binary forms of degrees 3,4,--- and k,,k, are the principal
curvatures at 0. We are concerned only with surfaces M having positive Gaussian
curvature, so we can suppose k, >0, k,>0 and k, =k,. Now let N be an open neighbor-
hood of 0 in R? on which the function z=z(x,y) is defined. We define the contact map
y: NXR - R by the formula

Y(x,y,0)=0(x,y,2(x,y)).

Of course for a fixed Q passing through 0 the germ of this function at 0 represents the
contact [3, §4] of Q with M at 0, and is singular if and only if Q is tangent to z=0 at 0.
For such a paraboloid of revolution

Q=ax*+by*+cz?+2dxy+2eyz+2 fzx+gz

with a,b,c,d,e,f, g expressed (as above) in terms of the coordinates u, v, w of the focus,
the contact germ has initial Taylor expansion

y(x,)=(a+4ir,g)x*+2dxy+(b+1K,8)y*+ - -

We wish to consider in detail-the conditions for y to be transverse to the various
canonical strata in the jet-space: of course, this refers strictly not to y, but to a
corresponding jet-extension into a jet-space J¥(2, 1).

Strata of corank 2. The condition for contact of corank 2 is that the quadratic part
of the germ should be identically zero, i.e.,

0=2d=—2uv,
0=a+ik,g=v+w?—2kw(u’+0v*+w?),

0=b+ir,g=u’+w>—2k,w(u>+0*+w?).

Note that since we are only interested in positions of the source s inside the ovaloid M,
it cannot lie on any tangent plane to M, so we can always assume w#0. When 0 is an
umbilic of M, i.e. k, =k, =« (say), these equations have the unique solution u=0, v=0,
w=1/2k, i.e. the source is the midpoint of the line-segment joining 0 to the unique
centre of principal curvature. And at a nonumbilical point the equations have two real
solutions w=1/2k,, u?=(1/4k,)(1/x,—1/k,) in the principal plane v=0. These
elementary deductions suggest that for almost all positions of the source we should be
able to avoid contact of corank 2. Indeed at each point m €M we have at most two
positions of the source giving rise to contact of corank 2, and as m moves over M we
expect these points to sweep out a surface avoidable by arbitrarily small changes of the
source. The corresponding mental picture on the orthotomic of M is that one is trying
to force all the umbilics off the parabolic curve by small changes in the source.

LEMMA 2.2. There exists a closed set @ CInt M, of Lebesgue measure zero, such that
for every position of the source s off Q there is no paraboloid of revolution with focus s
having contact of corank 2 with M.

Proof. For m& M write ,, for the set of (at most two) positions of the source s for
which a paraboloid of revolution with focus s has corank 2 contact with M at m. Take
Q' (resp. ) to be the union of the sets §,, with m an umbilic (resp. not an umbilic).
Using the local triviality of the normal bundle of M one sees easily that Q' has
Lebesgue measure zero. And that 2" likewise has Lebesgue measure zero follows
exactly the initial part of [5, proof of Prop. (4.7)]. Thus ='UQ” is of Lebesgue
measure zero as well. Moreover Q is closed. Indeed € is the image under the proper
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projection M XR>—R? of the set V of pairs (m,p) with meM, pEQ,, so it suffices to
show V is closed i.e. its complement is open in M XR>. And that is a trivial conse-
quence of the explicit description of 2,, given above. Q.E.D.

Generic strata of corank 1. For any integer k=1 the contact map y: NXR-R
induces a single jet-extension into the jet-space J§(2,1) without constants. Our next
objective is to discuss the transversality of this map to the strata of corank 1, i.e. the
A,-strata. Note that the vector sum of the image of the differential and the tangent
space to the orbit contains the vectors in the Jacobian ideal J,, modulo terms of degree
=k +1: the remaining generators arise by taking the list of tangent vectors to R, and
substituting z=2z(x,y) in each. In particular, the tangent vectors x,y produce the linear
terms in the jet-space, so we need only consider terms of degree =2, and the list of
tangent vectors to R,_,. We start with the generic strata of corank 1.

LEMMA 2.3. The contact map is always transverse to the A -strata for n<3.

Proof. For these strata the Jacobian ideal J, will contain all monomials of degree
>3, so we need only consider x2,xy,y2. Modulo terms of degree >3 we have Z=
w(x?+y?), and the tangent space to the orbit contains

% g_y (a+§ )2+dxy, -;—xg—;EdXZJr(bJr%Kz)xy»
sy gr=(athe)orar, gygl=av+(prha)y

These five vectors span the same space as x2,xy,y? unless a+gk,/2=0, d=0, b+
gK,/2=0: but these are precisely the conditions for contact of corank 2, and the result
follows. Q.E.D.

The A, stratum. This stratum requires a rather detailed analysis. A necessary
preliminary is to observe that the condition for y to be of corank 1 is that at least one
of a+gk, /2, d,b+ gk, /2 should be nonzero, and that

d2:(a+%nlg)(b+%n2g).
Patient manipulation, using the fact that we can always assume w5 0, reduces this to
(%%) dic e w(u? + 02 +w?) = 2{ku? + k0> + (K, + K, )w?} +w=0

defining a circular cubic surface in R3, in fact precisely the first discriminant surface of
[5, §3]. At an umbilic of M, where k, =k, =k (say), this reduces to the sphere u?+v?>+
w2=w/2k, and its tangent plane w=1/2k. This simple fact allows us to make a rather
direct attack on the question of transversality to the A,-orbit at an umbilic of M, i.e.,
we can assume the source lies either on the sphere, or on the plane, and consider each
possibility separately.

LEMMA 2.4. Suppose 0 is an umbilic of M. There are only finitely many points on the
plane w=1/2k where the contact map fails to be transverse to the A ,-orbit.

Proof. For the A -orbit the Jacobian ideal J, contains all monomlals of degree =4,
so we can work modulo such terms. In fact we need only consider x3,x%y,xy2,y> for
then the argument of Lemma 2.3 will produce x2,xy,y? as well. Modulo terms of
degree =4 the tangent vectors to R,_ yield

zE%(x2+y2)+C(x,y)’
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XEuyz—vxy+%(x2+y2),
Ysoxz—uxy+%(x2+y2),
ZE:lc-(x2+y2)+x(ux+vy)(x2+y2).
Now when w=1/2x we have a+3xg= —u?, d= —uv and b+ txg= — 0. Using these

relations we see that, modulo terms of degree =4, the tangent space to the 4,-orbit
contains

1,9y _

1 20Y _ 2 2

X7 a =ux (ux+oy), 7% g, =% (ux+oy),
1 oy 1 9y _

5% a——:uxy(ux+vy), Exya—=vxy(ux+vy),
l 0y ) | a'Y — 0,2

7V 5 =wi(uxtoy), 3y 3y = (ux+vy).

We can assume u#0 or v#0, else the contact is of corank 2 so these vectors span the
space of binary cubics with factor ux+ vy, and we can work modulo such terms. Note
now that from z, X, Y,Z we can construct essentially one linear combination without
quadratic terms, namely

3
x—k2Z=C(x,y)— %—(ux+vy)(x2+y2).

Transversality can only fail if ux + vy is a factor of this, i.e.
(i) C(—v,u)=0.

We require a further condition on u, v which we obtain as follows. The tangent space to
the A,-orbit also contains xdy/dx, ydy/dx,xdy/dy, ydy/dy. By subtracting off
appropriate multiples of X, Y, Z we obtain vectors without quadratic terms in the vector
sum of the tangent space and the image of the differential. Explicitly, we consider
(modulo terms of degree =4, and cubic terms with factor ux+vy)

a0y 2y _UX [ 5 4 9C
X o —uX+uu Z._—4—( +y )+gx—é—
9y _ =W (24,2 aC
Yo% uY+rkuwZ= 4 ( +y )+gy ox’
0y _UX, , 9C
x&)y oX+ruwZ= n (x2+y )+gx5,

Ay Y ) 9C
Y3y oY +ko’Z= (x2+y2)+gp — R

And transversality can only fail if ux + vy is a factor of all four expressions, i.e.,
.. u 5, aC,
(ii) i (u*+0*)+gv o (v, —u)=0,

2
u 2 2 a_C )=
(iii) ) (u*+0*)+gu i (v,—u)=0,
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(iv) ﬁ(u2+vz)+gva—c(v —u)=0
4 day * ’

w2, .2 ¢ =
(v) 4(u +0?)+gu ay(v, u)=0.

When =0, v#0 or u5#0, v=0 a brief calculation verifies that the equations (i) to (v)
have at most two solutions. When u=#0, v 0 the equations (ii), (iv), (v) are redundant,
and we need only consider (i), (iii). (i) represents three (possibly complex) lines through
the origin in the (u,v)-plane. And, as w=1/2« implies g= —(2/x)(u*+0v*+1/4k?),
we see that (iii) represents a circular quartic curve in this plane with a singular point at
the origin. Thus we obtain only finitely many points of intersection with 40, v#0 (in
fact <6) unless the quartic reduces to a line and a cubic, and the line lies in the set
defined by (i). However, simple inspection of the equation of the quartic shows that this
can only happen when the line is u=0, which case we have already dealt with. That
completes the proof of Lemma 2.4. Q.E.D.

LEMMA 2.5. Suppose 0 is an umbilic of M. There are no points on the sphere
u2+0*+w?=w/2k where the contact map fails to be transverse to the A -orbit.

Proof. In principle this proceeds in the same style as that of Lemma 2.4. Again, we
can work modulo terms of degree =4, and need only produce x> x2y,xy?,y3. The
tangent vectors to R,_, produce

zEg(x2+y2)+C(x,y),

X= —y(vx—uy)+%wnx(x2+y2),
YEx(vx—uy)+%WKy(x2+y2),
ZEw(x2+y2)+§(ux+vy)(x2+y2).

When u?+0*+w2=w/2k we have a+ ikg=v% d=—uv, b+ixg=u?, and the tan-
gent space to the A ,-orbit contains

1 20v_ 1. 20 20
X Ay =X (vx—uy), 5% By = —ux*(vx—uy),
L) _ L) _
7% 3y =oxy(vx—wy), 29 3y = uxy(vx—uy),
1,0y _ o 1 287':__ 2( px —
7V g = (xmw), Syt ar = —wH(ox—w).

Either u#0 or v#0, or else we have contact of corank 2, so these vectors span the
space of binary cubics with factor vx —uy, and we can work modulo such terms. From
the vectors z, X, Y,Z we can produce a linear combination with no quadratic terms,
namely

2
wz— %ZEWC(x,y)— %(ux+vy)(x2+y2),
and transversality can only fail when vx —uy is a factor of this, i.e.

(i) %(u2+02)2-—wC(u,v)=0.
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We produce a second condition on u,v as follows. Using the Euler relation we see that
the tangent space to the 4 ,-orbit contains the vector

x % +y g—} =(ox—uy)’+3kw(ux+ovy)(x2+y?)+3gC(x,y).

However, the image of the differential contains
uX+oY=(ox—uy)’+ —%’ﬁ(ux+vy)(x2+y2)
and subtraction produces the vector
%xw( ux+oy)(x*+y?)+3gC(x,y).
Transversality can only fail when vx —uy is a factor of this, i.e.,
(ii) %xw(u2+02)2+3gC(u,v)=0.

Now (i), (ii) give two equations in (u2+02)%,C(u,v), and the determinant of the
coefficients is easily checked to be kw?0. It follows that u=0, v =0, establishing the
result. Q.E.D.

We can sum up our discussion of what happens at an umbilic of M as follows:

LEMMA 2.6. Suppose 0 is an umbilic of M. There are only finitely many positions of
the source s=(u,v,w) for which the contact mapping fails to be transverse to the A, orbit,
all of which lie in the plane w=1/2k.

We turn our attention now to the question of what happens at a nonumbilical
point of M. Our first step is provided by

LEMMA 2.7. Suppose 0 is not an umbilic of M. There are no positions of the source
s=(u,v,w) off the principal planes u=0, v=0 for which the contact mapping fails to be
transverse to the A ;-orbit.

Proof. As in the two previous proofs, we work modulo terms of degree =4, and
need only produce x3, x2y, xy?,y>. We suppose throughout that u0, v#0. Following
the philosophy so far adopted we need to construct a linear combination of z, X, Y, Z
with no quadratic terms. Sheer calculation produces

(1) aw(u?+02)C(x,y) — (kx> +K,y?)( Aux+ Buoy)
where
A=ru’+ 07+ (ky— K )W,
B=ru*+x,0*—(k,— K, )Ww?.

The next step is to produce from x dy/dx, ydy/dx, xdy/dy, ydy/dy a vector with zero
quadratic part, by subtracting off an appropriate linear combination of X, Y, Z. Start-
ing with xdy/dx+ydy/dy this proceeds uniquely and produces the vector

) 38C(x.p) +3(kix? +1, 97 )(4'x +B'y)

where

A'=6uw—pw—ru, B'=6vw—qw—ro.
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The important practical consideration here is that by taking an appropriate linear
combination of (1) and (2) we obtain a binary cubic with factor k,x*+k,y?, namely
this position definite form times the linear form

(3) u( g4 +4w’c)x+v(gB+4w)y.

We can now obtain a definite restriction on u,v,w. Looking at the tangent vectors to
the A,-orbit obtained by multiplying dy/dx, dy/dy by x2,xy,y* we see that we can
work modulo cubic forms with factor

(4) u{(a+4ir,g)x+dy}+o{dx+(b+3ix,8)y}.

Transversality can only fail when the linear forms (3) and (4) are linearly dependent: a
few lines of working reduces this to the condition

(5) KU+ 07+ (k) )wi=w.,

However, the very fact that the contact is of corank 1 imposes a further condition on
(u,v,w), namely that it satisfies the equation (**) of the first discriminant surface: in
view of (5) this can be written as

(6) ul+o*+w?=1/4k,.

Eliminating u, v from (5), (6) we obtain
1 \2
(nz—xl)02+n2( w— 7, ) =0,

1 2
(xl—nz)u2+n,(w— -2'":) =0,

and since k,,k, are distinct and positive, we see that these equations can only be
satisfied when one of u, v is zero. That concludes the proof. Q.E.D.

It remains to discover what happens in the principal planes at a nonumbilical
point of M.

LemMMA 2.8. Suppose 0 is not an umbilic of M. Then, for a position of the source in
one of the principal planes, transversality to the A,-orbit can only fail when 0 is an
A ;-point of M. Moreover, in this case transversality will fail at not more than one point
in each principal plane.

Proof. By symmetry we can suppose u=0, v#0. Following the initial steps in the
proof of the preceding proposition we can produce a linear combination of X, Y, Z with
no quadratic terms, namely

(1) 4owC(x,y) — (k02— kw2 +kw?) y(K,x2+ K, y%).

For contact of corank 1 exactly one of a+3x,g,b+ 3x,g must be #0. The former case
is easily disposed of. Looking at the tangent vectors to the A4,-orbit obtained by
multiplying dy/dx, dy/dy by x2, xp,y* (modulo terms of degree =4), we see that they
span the space of binary cubics with factor x, and we can work modulo such terms. But
then vxdy/dx—2(a+ 3x,g)Y has zero quadratic part, and the coefficient of y* is #0,
so we achieve transversality. It remains to discuss the case b+ fk,g#0. The first
observation to make here is that then necessarily a+ 1x,g=(v*+w?)(1—2kw)=0 so
w=1/2k,, a line in the (v,w)-plane. Secondly, the tangent vectors to the A,-orbit
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obtained by multiplying dy/9x, dy/dy by x2,xy,y? (modulo terms of degree =4) span
the space of binary cubics with factor y, and we can work modulo such terms. In
particular, transversality can only fail when y is a factor of (1), i.e. y is a factor of
C(x,y), which is precisely the condition for 0 to be an A.;-point of M. To obtain a
definite restriction on v we consider the tangent vectors xdy/dx, ydy/dx, xdy/dy,
y0y/dy to the A,-orbit. The first two are zero, modulo terms of degree =4, and cubic
terms with factor y. For each of the latter two we can remove the quadratic terms by
subtracting off appropriate multiples of X,Y,Z. The only positive information is
provided by the vector vxdy/dy+2(b+ 3x,g). The condition for y to be a factor of
this is easily written down. If we agree to write C(x,y)=y(c,x*+c,xy+c;y?), and
bear in mind that w=1/2k,, the condition reduces to

(402+il2) {vcl— &%2)} =0

yielding at most one value of v for which transversality fails. Q.E.D.

We can now put the bits together to establish the main result we need concerning
the A ,-stratum. Unfortunately at this point we need to assume M is analytic. We do not
know whether this assumption can be avoided.

LEMMA 2.9. Assume that M is analytic. Then there exists a closed set & ClInt M, of
Lebesgue zero, such that for every position of the source s off Q the contact map is
transverse to the A 4-orbit.

Proof. For each point mE M there is, by the preceding propositions, a finite set
Q,,CR? of “bad” positions of the source, where the contact map fails to be transverse
to the A,-orbit. Write A for the set of points (m,s) in MXR? with s€Q,,. Let us
assume, temporarily, that 4 is subanalytic. For the properties of subanalytic sets used
below, see [8], [9] or [4, §4]. Observe first that then A necessarily has dimension <2,
since the fibres of the projection M X R>— M, restricted to 4, are finite. Moreover, the
image of A4 under the proper projection M XR>—R will likewise be subanalytic, of
dimension =2, and hence its closure £ will have the same properties. It follows that
has Lebesgue measure zero in R>, and has of course the properties required by the
proposition. Thus it remains to check that A is subanalytic. Evidently, we need only
consider points on M which are umbilics, or A.;-points, each condition defining a
subanalytic subset of M. Then, for each type of point m € M we have simply to observe
that the proofs of the preceding propositions yield the “bad” set 2, explicitly as the
zero set of a finite system of analytic equations.

The A,-strata with n=5. Our final objective in this section is to prove that for
almost all positions of the source s we can avoid nongeneric contact of corank 1.

LEMMA 2.10. Assume that M is analytic. Then for almost all positions of the source s
inside M there is no paraboloid of revolution with focus s having contact of type A s with
M.

Our strategy for proving this result is based on a refinement of the Thom basic
transversality lemma [7] due to Mather [11].

LEMMA 2.11. Let F: AXB— N be a smooth mapping, and P CN a smooth manifold.
Suppose that for all c=(a,b) in AXB either F,: B> N is transverse to P, or the
dimension of ImT _F+ Ty P is strictly greater than that of ImT, F,+ Tg,P: then for
almost all a € A in the sense of Lebesgue measure, F,: B— N is transverse to P.

We now set up the situation to which this result will be applied. Consider the
“global” contact mapping

T:MXR3XRXR*>—R
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given by I'(m,t,¢,5)=Q,(m), where m=(t,k,s) and Q,, is the left-hand side of (*) in
Lemma 2.1. The flighted arrow indicates that the domain of I' is the open subset of
MXR3*XR XR? defined by ¢-s#k and s€IntM. We consider T as a family (T,) of
smooth mappings parametrized by the positions of the source s. Of course locally this is
precisely the contact mapping we have studied in this section. Each I'; induces a smooth
jet extension

(1) JiT MXR3*XR>>J4(M,R)

and it is to this that we apply the Thom—Mather lemma. For this application we shall
need to use the jet-bundle which includes constants in the fibres. The reason for this is
that in essence k adjusts the constant term of Q, and we want to use up the influence of
k on this constant term so that it does not affect others.

Let us note at once that since multiplying k and ¢ by AER, A#0, merely multi-
plies Q. by A%, this cannot affect the contact singularity. It follows that the tangent
vector corresponding to

d 9 a d
p$+q52 FP +k8k

always lies in the tangent space to (for example) an 4 stratum. This effectively reduces
the tangent vectors provided by R*XR from four to three.

Next, we claim that, if Q. has contact of type 4.5 with M at m, then the vector
sum of the image of the differential at (m,t,k) of (1), and the tangent space to the
A . s-stratum has codimension =2. Indeed if we write & for the algebra of germs at m of
smooth functions on M, 9N for its maximal ideal, and Jr, for the Jacobian ideal
generated by the partials of I', with respect to some local ‘coordinates on M, then
om? +Jr, has codimension 5 in 8 On the other hand, as we have noted, at most three
extra mdependent vectors come from R3 X R, so the claim is proved.

Consider now the corresponding mapping

(2) JIT: MXR3*XRXR3>>J4(M,R).

We claim that here the corresponding vector sum has codimension < 1. This needs only
to be checked locally, using the contact map studied earlier in this section. First we
note the crucial fact that 1,x and y are all in the image of the differential of the contact
map, as they were when, using J,, we ignored constant terms. To see this observe that
differentiation with respect to k,p, q,r produces nonzero multiples of

k—px—qy—rz, —u+tx, —oty, —wtz

respectively, where z=2(x,y) as in the earlier parts of this section. A linear combina-
tion of these produces the nonzero constant

k—pu—qo—rw

without any higher terms. It is now clear that we obtain x and y too.

Next, the tangent vectors to the A 5 stratum obtained by multiplying dy/dx and
dy/dy by monomials of degree 3 (and ignoring terms of degree =5) span a subspace of
the space of binary quartics of codimension 1. Augmenting these vectors by a single
vector, we obtain all terms of degree 4 in the jet space, and can work modulo terms of
degree =4.

Let QCIntM be the closed set of measure zero for which one or more of the
transversality arguments of Lemmas 2.4, 2.5, 2.7, 2.8 fail. We shall assume now that
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s &Q; clearly we can still apply the Thom—Mather lemma to Int M — £ and still deduce
that, for all s off a set of measure zero in Int M, the map j{'T, is transverse to 4. 5 (and
hence does not intersect it). Then the arguments of the above four results yield terms of
degree 3 modulo those of degree =4, and then terms of degree 2 modulo those of
degree =3. We use here the fact that 1,x and y are automatically present, so that we
need only, as in the proofs of the four results, consider quadratic and higher terms.

The end result is that Lemma 2.10 follows by an application of the Thom—Mather
lemma, the appropriate submanifold of J* being the 4. s-stratum. Q.E.D.

Putting together Lemmas 2.3, 2.6, 2.9 and 2.10 we obtain:

THEOREM 2.12. Suppose that M is analytic. Then, for all s€IntM off a set of
measure zero, the caustic at infinity is locally generic.

3. Light source at infinity. Here we consider only the question of mirror generic-
ity. The general method used in [3] when the light source was finite was

(a) Given the mirror and source construct a smooth wavefront W.

(b) Deform W slightly to obtain a generic wavefront W”.

(c) Reconstruct a corresponding mirror M’, a slight deformation of M.

When the light source is at infinity, i.e. there is given a direction s for parallel
incident light, we have a choice of incident wavefronts. Namely, we can choose for
“incident wavefront” any plane L given by x-a=p, where a is a unit vector in the
incident direction and B is some real number. (Note that the same L will serve for light
in the directions a and —a.) We reconstruct the wavefront W in much the same way as
we did for the case of a finite source (see Fig.2). Corresponding to each point m of the
mirror there is a (unique) point x on L with the normal to L at x passing through m.
We then reflect x in the tangent plane to M at m to obtain the corresponding point g of
W. Of course W depends, as did L, on 8. A short computation shows that W is the
locus

(M g=m+(B—m-a)a—2((B—m-a)(a-n))n

where n is the unit normal to M at m (note that n and —n give same gq). We suppose
that a and B are selected so that B—p-a>0 for all m on M, so that M lies wholly on
one side of L.

F1G. 2

LeMMA 3.1. (a) If the tangent plane to M at m does not contain the incident direction
s (i.e. if a-n#0) then W is immersed at q provided B is sufficiently large (depending on
m).

(b) If the tangent plane to M at p does contain s then W is immersed at q.
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Proof. (a) Differentiating (1) with respect to coordinates u,, u, on M we obtain

ggzg—;”-—(g—;” -a)a—Z{( - -a)(a-n)+(p—m-a)(a-%)}n

1 1

~2((B-m-a)(an) 5o

The condition for the 9g/du; to be linearly dependent is therefore a quadratic equation
in B where the coefficient of 8 is zero if and only if

on -
(a W)n+(a n)—-—O i=1,2,

are linearly dependent. However, M has nonzero Gaussian curvature at m, so that n,
on/du, and dn/du, are linearly independent there, and by hypothesis a-n is nonzero.
Hence the coefficient of 82 cannot be zero, and for a given m the vectors dg,/0u; will be
linearly independent for all sufficiently large .

(b) When a-n=0 the expression for dg/0u, reduces to

o= (i e)eafeomale- )

Let b be a unit vector perpendicular to a and n. Then
dq om an
au,.‘(a b)b 2{(,8 m- a)( ui)}n.

Consequently W fails to be immersed precisely when

m V(B ) a_m.b) KL
ou, du, )= du, aul
(recall that B—m-a is nonzero). Choose coordinates so that b=0m/0u,, a=dm/0u,

(both evaluated at m), so the above reduces to (0n/du,)-(dm/du,)=0. Finally the
Gaussian curvature of M at m is

(ﬁi.ﬁm)(_"_’a.ﬁm)_(a_" 3&)2

ou, Ou; |\ du, Ou, du, du,

which is therefore <0. This contradiction shows that W is always immersed at g.
Q.E.D.

The problem with using this lemma to construct a wavefront W is that, given M
and the incident direction s, we cannot choose a fixed B so large that the resulting W is
immersed everywhere. No single B will work for all points of M away from the profile
curve on M in the direction s (i.e. the set of points of M at which the tangent plane
contains the direction s), since the sufficiently large value of 8 in Lemma 3.1(a) tends
to infinity as m approaches the curve.

As a simple illustration take a circle in the plane and a line not meeting the circle

(Fig. 3) Carrying out the wavefront construction in the plane, with the circle as mirror
and the line as incident wavefront, we obtain the curve illustrated (Fig. 3), which
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inevitably has a node. Rotating the figure we obtain a mirror M in R*® and incident

wavefront L for which the constructed wavefront W will have a cone-like point of
nonimmersion, no matter how distant L is from M.

Fi1G. 3

We now show that there is a genuine obstruction to carrying out the proof of
mirror genericity (see Fig. 4).

LEMMA 3.2. Let m be a point on the profile of the mirror M for the incident direction
s. If q is the corresponding point of W then there is one centre of curvature where the

corresponding sphere has A, contact and one principal curvature zero, W having A,
contact with its tangent plane.

—_— z

= L M,
Y D V4

FiG. 4
Proof. Write M at 0=m locally as

z=f(x,y)=Ax*+2uxy+vy*+0(3).

Note that A and » are both nonzero, for otherwise the Gaussian curvature of M at 0 is

=0. We can then take a=(1,0,0). Using the parametrization of W given by (1) above
we find

a=B—-2B—x)(£2)(1+£2+£2) ",
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B=y=2B=x)f f,(1+/2+£?) ",
0=f+2(B—x)f(1+f2+£2) .
Hence

q,=B—8BNx*— 16BApxy —8Bu’y>+ 0(3),
q,=y+0(2),
g;=4BAx+4Bpy+0(2).

Consequently 0 € M corresponds to (3,0,0) on W, and near this point W has equation
x=B—z%/2B+higher terms in x,y,z. Thus the principal curvatures of W are —1/8
and 0 and one centre of curvature is at the origin, i.e. at the point p € M.

The distance squared function from 0 to W close to (8,0,0) is

gt + a3 +qi=p>+y*—8BNx>+¢(x,y)

where ¢ involves only terms above the diagonal joining x* and y? in the Newton

polygon of y2—8B8A2x3. Since A0 the distance squared function does indeed have an
A, at the point (8,0,0) of W. The height function on W at this point in the incident
direction is ¢,, which has quadratic term —8B(Ax+py)?. Substituting x=u—pA "'y
we get quadratic term —88A%u? but no term in y>. So, at (8,0,0), W does have 4_,
contact with its tangent plane. Q.E.D.

Thus one part of the caustic corresponding to points of the profile is well behaved.
This is analogous to the plane case, where, with parallel incident light, a point m of M
where the tangent is in the incident direction always gives a nonsingular point of the
caustic, situated at the same point m.

However, generically the profile will be a smooth curve (in fact always since our
mirrors have positive Gaussian curvature) and, since each point gives an 4., for the
height function on W, this part of the caustic at infinity is never generic. (Generically
A 5 will occur only for isolated points.) Thus independently of M and the incident light
direction the caustic is nongeneric at infinity, and the proof of mirror genericity
sketched out at the beginning of §3 must fail. Putting it another way, we cannot expect
to start with M, construct W, deform W to W’ and reconstruct M’ from W”, since only
wavefronts W with the nongeneric behaviour at infinity discussed above can arise from
actual mirrors. There is a built-in lack of genericity for wavefronts arising from parallel
light reflected from a mirror in R>.

Despite this we are able to prove a weaker result.

THEOREM 3.3. Let K be a compact region in R® and s an incident light direction.
Then, for an open dense set of embeddings of the 2-sphere S* as a convex mirror in R>,
that part of the caustic within K is generic.

Proof. Openness is clear; we have only to prove density. Given M and s construct a
wavefront W using a value of 8 large enough to ensure that M lies wholly on one side
of the incident wavefront L. Now choose an open neighbourhood U of the profile of M
relative to s, as follows. For each point m of the profile, one point of the caustic is at m
and is an 4, (by Lemma 3.2)—hence automatically transverse. So in some neighbour-
hood U of the profile each point m’ will give one centre of curvature of W near to the
profile, and it will be a transverse 4,. By shrinking U if necessary we can ensure that all
of the centres of curvature of W inside K arise either from the transverse 4,’s corre-
sponding to points in U or from points of M— U.
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Now increase B if necessary so that the construction for the wavefront gives a
smooth point g for each p in M — U. (Recall that the bad values of B8 for each point p
are the roots of a quadratic equation whose coefficients depend smoothly on m and
whose B2 coefficient is nonzero away from the profile.) This will not disturb the
property of the previous paragraph; consider the resulting wavefront W. We now use
Looijenga’s results ([10], [12, p. 712]) to deform W slightly to get a generic wavefront

—generic, that is, for distance squared functions from points in K. We can do this
in such a way that W’ coincides with W at points of W corresponding to UCM.
(Strictly speaking, in order to make W’ smooth we shall have to work with a pair of
neighbourhoods U; C U of the profile.)

We now wish to recover a new mirror M’ from W”. Clearly we want M’ to coincide
with M on U; how do we construct the other part? Let g be a point on the wavefront
W. The corresponding point m on M is given by F(m,v,,v,)=0 where

F(m,v,,0,)=m—q—(B—m-a)N

where N is the unit normal fo the wavefront at g (in Fig. 2 the distance from m to x is
B—m-a, and is equal to the distance from m to g). Here v,, v, are local coordinates on
W, so that g and N are functions of v,,v,. Now F=0 is a set of linear equations for m
and there is a unique solution if and only if the three vectors e;+a,; N are independent.
(Here ¢,=(1,0,0), etc., and a=(a,,a,,a;).) If these vectors were dependent, then for
some nonzero A=(A,,A,,A;) we would have 3A,(e;+a,;N)=0, which gives A= —(A-
a)N, so A-a=—(A-a)(N-a). But A\-a#0 so N-a=—1 and since N and a are unit
vectors N= —a, so that m—q=(B8—p-a)a.

When W is constructed from a mirror M then (writing as before n for the unit
normal to M), comparing the last equation with (1) we have (8—m-a)(a-n)=0, so
that a-n=0, i.e., m is on the profile of M for the incident direction. Consequently we
can smoothly reconstruct an M’ from W’ provided we have not perturbed W too much
to obtain W’; away from U C M we will have a-n#0.

Finally, will the parametrization m(v,,v,) of the reconstructed mirror be an
immersion? Differentiating F=0 with respect to v; we obtain

dm _9dq _ (9m (R NON _
dv; v, +( dv, )N (B=m-a) ov,
Assuming A dm/dv, =0dm/dv, for some A ER we have
Adq_i_aq —(B=m- )( N 8N) 0.
av,

It is now a straightforward matter to show that m is actually a centre of curvature of W
at g. (For example one can choose coordinates so that Wis {(v,,v,,f(v;,v,))} locally,
with f(v,,0,)= 1Kx,0}+ tk,02+ O(3). Then

0 8N

For =(—%10.0), =(0,~x,,0)
at v, =v,=0 and m(0)=(0,0,m,) where m,=B—m(0)-a0. The above equation then
gives k,=1/mj;.)

Hence we are only in trouble if m is a centre of curvature of W at g, i.e. light rays
reflected from M at m focus at m. But this is absurd, especially when the incident rays
are parallel. (One easily obtains a formal contradiction by considering the distance
squared function from m to W at q.)
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Thus perturbing W slightly to W’ we can recover M’ as a smooth mirror, since the
condition for m to be an immersion is necessarily open and is satisfied, as we have just
seen, by M. This completes the proof. Q.E.D.
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REPEATED RESONANCE AND HOMOCLINIC BIFURCATION
IN A PERIODICALLY FORCED FAMILY OF OSCILLATORS*

BERNIE GREENSPAN' aAnND PHILIP HOLMES¥

Abstract. We use global perturbation techniques originally due to Melnikov [1963] to study the bifurca-
tion behavior exhibited by a family of nonlinear oscillators subject to periodic forcing. We concentrate on the
case in which the unforced systems possess a one-parameter family of periodic orbits limiting on a homoclinic
orbit.

1. Introduction. Many physical problems are modelled as single degree of freedom
nonlinear oscillators subject to external periodic forcing. The books of Andronov, Vitt
and Khaikin [1966] or Hayashi [1964], [1975] provide examples from mechanics and
electrical circuit theory. Such oscillators without external time-dependent perturbations
may be studied by phase plane techniques, and their typical behaviors are therefore
fairly well understood (cf. Andronov et al. [1971],[1973]). However, the presence of
external forcing greatly complicates the situation, and classical analyses (using,for
example, averaging or perturbation methods) have generally been limited to the case of
weak nonlinearity (cf. Nayfeh and Mook [1978]).

In earlier work (Holmes [1979],[1980], Moon and Holmes [1979], Greenspan and
Holmes [1981]) we were able to overcome this limitation by studying small perturba-
tions of strongly nonlinear, integrable systems. In the present paper we make use of
these techniques to study a problem in which, as a parameter is varied, repeated
resonances of successively higher and higher orders occur, culminating in “subharmon-
ics of infinite order” and homoclinic orbits. Specifically, our main example is the
nonlinear oscillator

(1.1) j—y+y3 =ey2y—8y+ycost,

where ¢,8 and y are (small) parameters. The corresponding unperturbed (Hamiltonian)
system is

(1.2) j=y+y*=0,

with Hamiltonian

DA S A

(1.3) H(y,y)=% =5+,
which is completely integrable and whose solutions may be expressed in terms of
elliptic functions and, in the homoclinic limit on H( y,y)=0, hyperbolic functions.

Equation (1.1) without periodic forcing (y=0) was studied by Holmes and Rand
[1980] and shown to exhibit planar homoclinic bifurcations as the parameters ¢ and 8
are varied. Results of Takens [1974] involving a singular “blowing up” change of
coordinates were used to do this. In the present paper these results are recovered more
directly by Melnikov’s method (Melnikov [1963], Greenspan and Holmes [1981]) and
we are also able to treat the periodically forced case.

*Received by the editors May 7, 1982, and in revised form January 4, 1983.

f Department of Mathematics, Vanderbilt University, Nashville, Tennessee 37235.

#Department of Theoretical and Applied Mechanics and Center for Applied Mathematics, Cornell
University, Ithaca, New York 14853.
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Equation (1.1), without periodic forcing, occurs as a model for panel flutter in a
steady supersonic air flow (Holmes [1977], Holmes and Marsden [1978], Holmes [1981]).
Periodic perturbation of the pressure differential across the panel would give rise to an
additional time-dependent term such as ycost (cf. Dowell [1966]). Our example is,
therefore, not without physical interest.

The paper is arranged as follows: In §2 we review Melnikov’s method and state the
main results. In §3 we present a preliminary example to illustrate the main ideas and to
point out a characteristic difficulty which often arises in such analyses. Moreover, this
example displays all the typical behavior found in each resonance band of our main
example. We prove a theorem (Theorem 3.1) giving a fairly complete description of an
autonomous averaged system close to the full system, and from this obtain partial
results on the Poincaré map of the latter. In §4, we turn to our main example. We show
that, for fixed y and <1, as § is increased a countable sequence of bifurcations occurs
in which subharmonic motions of successively higher periods 2#m are created and
destroyed until ultimately, for a critical value § =8(o0), for any y>0 and & sufficiently
small we have countably many subharmonic orbits coexisting in a thickened “figure of
eight” neighborhood of the level curve H(y,y)=0 of the unperturbed Hamiltonian
system (1.2)-(1.3). The closure of the unstable manifolds of these orbits forms a
complicated attracting set, which we briefly describe.

Related work on global bifurcations of two-dimensional diffeomorphisms with
attracting invariant closed curves has been done by Takens [1974], Arnold [1977],
Aronson et al. [1980], [1982], but in the former cases these authors concentrated on the
resonances encountered in the neighborhood of a Hopf bifurcation. Here we are more
concerned with passage through resonance and the analogue of the planar homo-
clinic bifurcation in which a periodic orbit vanishes as its period becomes infinite.

The papers of Aronson et al. are more directly relevant here and we shall see that
the generic (time periodic) perturbations of our results on the averaged equation give
rise to a Poincaré map displaying essentially the same features found by these authors
in their numerical work.

2. Global perturbations on integrable systems: Melnikov’s method. In this section
we briefly review the analytical techniques to be used below. For more details, and
proofs of the theorems, see Greenspan and Holmes [1983] or Guckenheimer and
Holmes [1983]. We note that Chow, Hale and Mallet-Paret [1980] have obtained similar
results by different methods.

We consider systems of the form

(2.1) i=f(x)+eg(x,1), x=(%)eRr?
where
f:(fl(x)) g_:(gl(x’t))
f2(x) ’ gz(x’t)

are sufficiently smooth (C’,r=2) and bounded on bounded sets and g is T-periodic in
t. For simplicity we assume that the unperturbed system is Hamiltonian: f,=%4, f,=
— 3% The non-Hamiltonian case is considered by Melnikov [1963] and Holmes [1980a}.
Specific assumptions on the unperturbed flow are (cf. Fig. 1):

Al. For e=0, (2.1) possesses a homoclinic orbit ¢°(¢) to a hyperbolic saddle point

Po-
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A2. Let T%={¢°#)[tER}U{p,}. The interior of I'° is filled with a continuous
family of periodic orbits g%(¢), « €(—1,0). Letting d(x, ['°)=inf gerdx—ql we
have lim ,_, osup,cg d(¢%(¢), T°)=0.

A3. Let ha=H(q%(t)) and T, be the period of ¢°(¢). Then T, is a differentiable
function of 4, and dT,/dh,>0 inside T°.

We note that A2 and A3 imply that 7, » co monotonically as «— 0. Many of the results
to follow can be proved under less restrictive assumptions.

Since g is T-periodic, the extended (x,¢) phase space of (2.1) is the product
R2XS', where S! is the circle of length T. Associated with (2.1) we have a Poincaré
map P'o defined on a (global) cross section =‘o={(x,?)[t=t,}. P!> is obtained by
following solutions of (2.1) based on X’ to their next intersection with =, cf. Chil-
lingworth [1976]. Thus the unperturbed Poincaré map Py° is simply the time 7 map of
the unperturbed flow of % =f(x). Fixed points and periodic cycles of period m of P'
correspond to T-periodic motions and mT-periodic subharmonics of (2.1) respectively,
and stability types correspond. In what follows we are effectively using regular per-
turbation theory to approximate P,c based on our knowledge of Pj° from the integrable
unperturbed problem. (The general theory tells us that any two Poincaré maps P!, P/
are diffeomorphic, and consequently we will sometimes drop the superscript ¢,.)

it

@)
Py

F1G. 1. The unperturbed system.

We first consider bifurcations from the homoclinic orbit ¢°(¢) as e increases. In
this connection it is important to establish perturbation results for the fixed point p, of
the Poincaré map and its invariant manifolds.

LEMMA 2.1. Under the above assumptions, for € sufficiently small (2.1) has a unique
hyperbolic periodic orbit y2(t)=p,+ O(¢). Correspondingly, the Poincaré map P! has a
unique hyperbolic saddle point plo=p,+ O(g). Moreover, the local stable and unstable
manifolds W3, (v,), Wis(Y.) of the perturbed periodic orbit are C" close to those of the
unperturbed periodic orbit pyX S, and orbits qS(t,t,), q'(t,t,) lying in the global mani-
folds W*(y,), W*(v,) and based on =" can be expressed as follows, with uniform validity
in the indicated time intervals:

(2.2) q:(2,10)=q%(1—10) +eqi(1,1) + O(e?),  1€[1g, 00),
q:(1,10) =q°(1=15) +eqi(t,4,) + O(e?),  t€(—00,1,].
As described in Greenspan and Holmes [1983], the distance d(¢,) between the

manifolds W*(p,), W*(p,) of the perturbed fixed point p,=y,NZ‘ of the map p° is
well approximated by the Melnikov function M(t,):

(2.3) (1) =-20)

ey )
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Here M(t,) is given by the simple formula
o0

(2.4) M) =" f(a°(1)) Ag(g°(¢), t+10)
- 0

where the wedge product is defined as aAb=a,b,—a,b,. We then have the following:

THEOREM 2.2. If M(t,) has simple zeros and maxima and minima of O(1), then, for
e>0 sufficiently small, W*( pl*) and W*( pl) intersect transversely. If M(t,) remains
bounded away from zero then W*( plo) N\ W*( plo)= .

COROLLARY 2.3. Consider the parameterized family x=f(x)+eg(x,t;p), pER and
let hypotheses A1-A3 hold. Suppose that the Melnikov function M(t,, 1) has a quadratic
zero M(7,p,,)=(0M/3to)(7,p,)=0 but (9*°M /3t3)(7,1,) 70 and (IM /3p)(7,p,)#O0.
Then pg=p,+ O(e) is a bifurcation value for which quadratic homoclinic tangencies occur
in the family of systems.

We remark that, if g=g(x) is not explicitly time-dependent, then we have, using
Green’s theorem,

@) [ @O ra(e°)d=[" (fig—hs)d
=/(g2(uo,vo)do—g,(uo,vo)ﬁo) dt

=| traceDg(x)dx.
intT
Thus the formula obtained in Andronov et al. [1971] is a special (planar) case of the
more general Melnikov function which describes the “splitting” of the separatrices.
We now turn to the periodic orbits g%(¢) within T'°. To study these we need the
subharmonic Melnikov function. Letting ¢*(¢—¢,) be a periodic orbit of period mT/n,
with m and n relatively prime, we set

(26) 7/ (10)= " f(a* (D) Aa(g7(1). 1+ o) .

THEOREM 2.4. If M™/"(t,) has simple zeros and maxima and minima of O(1), and
dT,/dh,#0, then for 0<e<g(n), (2.1) has a subharmonic orbit of period mT. If n=1
then the result is uniformly valid in 0<e<g;=¢(1).

COROLLARY 2.5. Consider the parametrized family % =f(x)+eg(x,t;p), pER, and
let hypotheses A1-A3 hold. Suppose that M™/"(t,,pn) has a quadratic zero M™/"=
IM™/"/3t,=0, 3*°M™/"/3t5, IM™/" /30 at p=p,. Then p,, ,,=p,+O0(¢) is a
bifurcation value at which saddle-nodes occur.

The final result is a generalization of one obtained by Chow, Hale and Mallet-Paret
[1980]. It implies that the homoclinic bifurcation is the limit of a countable sequence of
subharmonic saddle-node bifurcations.

THEOREM 2.6. Let M™/(t,)=M™(t,). Then

(2.7) lim M"(1)=M(1,).

The existence and bifurcation results summarized above are supplemented by a
perturbation method which enables us to compute the global structure of the perturbed
Poincaré¢ map P}°, and to determine how the sets of subharmonics and homoclinic

orbits are related. Our starting point is Melnikov [1963,§7], although we have some-
what modified his transformations.
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Since the unperturbed system is Hamiltonian, a symplectic change of coordinates
to action angle variables can be found in the interior of I'%:

(2.8) I1=1(u,0),  0=0(u,v).
Under this change of coordinates (2.1) becomes
. al al def
(2.9) i= e(a aitas gz) = F(1,8,1),
a0 a0

. def

0=0(1)+e( 5,81+ 30.82) £ G(1,6,0)
where Q(1*)=3%(1*)=2m/T, is the angular frequency of the unperturbed orbit ¢*(¢)
with action I*=1(q*). We now consider small perturbations of a resonant orbit
T,="T. Letting
(2.10) I=1°+eh,

0=0(1)+6= (20 )16 Z v+,

we obtain
(2.11) h=\e F(I*,Q%+¢,t) +eF (I*,Q%+,t)h+ O(£/?),
” a 2
=/§Q’(Ia)h+e(G(I“,Q“t+¢,t)+w)+0(e3/2),

where ’ denotes ;. Here we have expanded in Taylor series and used the fact that
Q’'+#0, since dT, /dh,+0. Since

9l ol OdH 1 a7 1

(2.12) W e ™ woan

(2.11) can be rewritten as
(213) =ik ge( 4 Ong( 4+ ) +el PO @+ 0,00 + 0,
28 LYY
¢=ﬁﬂ’([“)h+e[9—(gi+G(I“,sz“t+¢,z)] +0(e¥?).

Provided that Q'(1*) is bounded, for ve sufficiently small, the averaging theorem (cf.
Hale [1963]) can be applied to the leading term of (2.13) to yield

e mTfm £(g* (1)) Ng(g*(1),t+6/9Q") dt

or

(2.14) = e = M'"/"(g’a), &=\ (I%)h.

Under the averaging theorem, the hyperbolic or elliptic fixed points of (2.14) corre-
spond to small periodic motions of (2.11) and hence to subharmonics of order m/n of
(2.1). 1t is, of course, no coincidence that a necessary and sufficient condition for the

2mn
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existence of such fixed points is that the Melnikov function M™/" have simple zeros
and that @'(1*)#0 (dT, /dh,+0). We note, however, that in approaching a homoclinic
orbit, Q'(1*) typically grows without bound, and, in contrast to the uniform validity of
Theorems 2.2-2.6, the averaged results become invalid in this region.

We note that (2.14) is a structurally unstable Hamiltonian system with Hamilto-
nian

(2.15) =k (B~ v3).

where V(¢)=(1/27n)[M™/ "(¢/Q%)d¢, and thus to determine the stability and the
global behavior of orbits of the unperturbed system near the resonant orbit g%, we must
investigate the terms of O(e). Thus, second order averaging is necessary (cf. Holmes
and Holmes [1981]). Letting fAg=(1/27n)M™/"(¢/Q*)+ F($,t) where F has period
T and zero mean, the averaging transformation is

(2.16) h=hte [F(o,t)dt,  ¢=9,

where the antiderivative is defined up to a r-independent term generally taken to be
zero. Using (2.16), (2.11) becomes

(2.17)
. 1 A - - T
— m/n a v( Ta Qa O ’ 3/2
h=\e 5 M (/2 )+e(F(I ,Q%+¢,t)h Qa¢detQh)+0(e ),

. 77,2 _ .
¢=¢§9’h+e(92h +G(I“,9“t+¢,t)+9'det)+0(e3/2).

Since F has zero mean (it is simply a sum of Fourier components), [F and & [F
also have zero mean and on a second application of averaging to the O(e) terms of
(2.17) we obtain (dropping the bars)

(2.18) =z 2—71mM’”/”(¢/Q"‘)+eF’(¢)h+0(e3/2),

"p2
(i>=\/Esz'h+e(92h +G(¢))+O(e3/2),

where -1;, G are the averages of F’ and G. As Morosov [1973] notes, this second order
averaging generally suffices to determine the stability of the fixed points and hence of
the bifurcating subharmonics, at least for £’ < oo and e sufficiently small. However, as
we shall see in our application in §§3 and 4, one can sometimes also obtain global
information on the Poincaré map by considering the time 7 flow maps of the averaged
systems (2.18) in the neighborhood of each resonant and nonresonant periodic orbit.
These results on the full Poincaré map P follow from application of the averaging
theorem (Hale [1969]). In other situations, the T-periodic terms in the O(&) components
of (2.17) are of crucial importance in establishing the global structure of solutions of
the system, and averaging leads to qualitatively incorrect results (cf. Holmes
[1979],[1980]). We shall meet both situations in the examples which follow.

3. An example of a single passage through resonance: the nonlinear harmonic
oscillator. The computations necessary for application of the Melnikov theory outlined
above, while not conceptually difficult, are often tedious, and the main ideas tend to be
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obscured by lengthy computations with special functions. In this section, therefore, we
present a simple example in which all functions are trigonometric and all transforma-
tions can be made explicitly. Moreover, this example exhibits all the behavior found in
each resonance band in our main example, to follow in §4.

We consider the system

(3.1) u=v(Q—(u>+0?)) +e(du—u(u?+0*)+yucost),
o=—u(Q—(u?+0?)) +e(dv—ov(u?+0?)),

where  is a fixed parameter, § and y vary and 0<e<1 is a (small) scaling parameter.
We first make the transformation to standard action angle coordinates:

(3.2) u=\2Isind, ov=\2Icos#,
to obtain
(3.3) I=¢[281—41%+2vIsin*f cost],

6=9—2I+e[ysinfcosfcost].

The period T(I') of the orbits of the unperturbed system is given by

2

(34) T= (Q—-—ZI) )

and the unperturbed phase plane is filled with periodic orbits (apart from the circle
I=% /2 which is filled with degenerate fixed points); see Fig. 2.

v

1=9/2

F1G. 2. The unperturbed nonlinear harmonic oscillator.

First consider the case y=0 (no external forcing). It is easy to see that the
dissipation parameter & acts as follows. For §=<0 all the closed orbits of Fig. 2 are
broken and there is a unique, globally stable sink at the origin, while for §>0 there is a
unique stable, hyperbolic periodic orbit given by

_ 8
(353) I= 5 ’
with period
(3.5b) 7(8)= 2"

Q-6
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The Poincaré map associated with (3.3) therefore has an attracting invariant circle on
which the rotation number is rational if 7(8)/27=p/q, p,qEZ, and otherwise irra-
tional. (When § =8, T(§) is infinite and we have an attracting circle of degenerate fixed
points.)

We now study the passage through resonance of subharmonics of order two; that
is, we shall be concerned with the case in which §~Q— 1, so that T(§)~4, and y+0.
We therefore consider bifurcations from the resonant orbit given by

w2 1
(3.6) I=r"=3-.
The general theory leads us to expect the bifurcation of a finite set of points of period
two in the Poincaré map. Here, where the perturbation calculations are straightforward,
we are able to check this directly and also obtain more subtle, global information.
Following (2.10), we let

_Q 1 _t
(3.7) I=3 Z+\/;h, 6=>+9,
so that (3.3) becomes, after some trignometrical expansion:

(3.82) }i=\/;[8w—w2+lze(cost+Eln—zgsinb—&szgi(l+c082t))]

2

sin2¢
2

+e[26—4w+y(cost+ sin2¢— E’%ﬁ(l +cos2t))] +4€*/2h?,

(3.8b) ¢=-— \/;2h+e[-}(c052¢sin2t+sin2¢(l +c0521))] ,

where w=Q—1.
To average the first order (O(ve)) terms we use the transformation (cf. (2.16))

(3.9) h=i?+\/;122f(cost+ sm22¢ sin2¢— co;2¢ cos2t) dt, =9,

where the bracketed term F(o, ?) is the oscillating part of the leading term of (3.8a). We
have the antiderivative

(3.10) fﬁ(a,:)dz=(sim—-sl‘%"icoszt—“’—iz—?sinzt),

and thus, applying the transformation (3.9), (3.8a, b) become (cf. (2.17)):
(3.11) h= \/Ew[ﬁ—w— %cosZ&]

Sm22¢ sin2¢— 39%2—4)(1 —cos2t))

+s[28—4w+y(cost+

_Yw( cos22qb cos2t— sm22¢ sin2t)] h+0(e/%),

b= —\/;2h+e[%(cos2;f>sin2t+sin2<7>(l +cos2t))

—Yw(sint— sm42¢ cos2t— 30—842—¢sin2t)] +0(e7?).
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We note that a direct calculation of the Melnikov function from (3.1) yields M(zy)=
27w[8—w— % cost,], which, upon setting 1(,=¢/2*=2¢ and dividing by 27, as in
(2.14), yields the leading term of (3.11). L -

Averaging the O(¢) terms, (implicitly) using a second transformation (4,¢)— (4, ¢)
and dropping the double bars, and rescaling time by a factor v¢ we obtain

(3.12) ﬁ=w[8—w—- 7}cos2q>] +\/;[28—4w— -;—0032¢]h+0(e),

b= ~2h+\/2[{-sin2¢]+o(s).

The remainder of this section is devoted to an analysis of the autonomous aver-
aged system (3.12) and a discussion of the implications for the Poincaré map of the full
system (3.8a,b) or (3.1)-(3.3). Throughout, w is fixed, ¢ is a fixed and sufficiently small
parameter, and § and y are allowed to vary.

THEOREM 3.1. The bifurcations set and phase portraits of the autonomous averaged
system (3.12) in the neighborhood of the resonant band h=0 (1= /2 — %) are homeomor-
phic to those shown in Figs. 3 and 4. In particular:

(i) Two pairs of fixed points exist within the region bounded by the lines AO, DO
given by y= 48— w)+ O(&); if §<2w these are saddles and sinks (if §>2w, saddles
and sources). These fixed points coalesce in saddle-node bifurcations on AO, DO.

(ii) There are two curves BE, CE lying within O(Je) of the line § =w and meeting
AO, DO at the points E,F. A further curve GH connects BE, CF and curves EI, JF join
this curve as shown. Outside the region BEIJFC the phase portrait has a smooth invariant
closed curve, within EOF this curve contains the four fixed points. Within BEIJFC no
such curve exists. The curve becomes nondifferentiable and vanishes in saddle-connection
(homoclinic) bifurcations on BEI, JFC and on 1J the sinks change from nodes to spirals,
also leading to a loss of differentiability. Approaching EIJF from below the curve succes-
sively loses degrees of differentiability.

F1G. 3. The bifurcation set for (3.12). For a detailed description of the region near E, F, see the proof of
Lemma 3.4.
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F1G. 4b. Bifurcation phase portraits. Invariant closed curve shown as heavy line.
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Proof of Theorem 3.1.
Assertion (i). First consider the truncated system (3.12) with O(y€) terms removed.
This is a Hamiltonian system with Hamiltonian

(3.13) ‘JC(h,q>)=h2+w(8—-w)¢—-l%o-sians,

which has two saddles and two centers at (h,¢)=(0, } cos ™ '(4(8 — w)/v)) if y>4|6 — w|.
Thus we obtain the approximate saddle-node bifurcation curves y= *4(8—w). We
next linearize the full system, including O(/€) terms, to obtain the matrix

\/;(28—4w— %cosZ«p) l(‘,—;f’-sin2<1>+ \/;yhsin2¢
(3.14) A= ‘/;Y
-2 ——Co0s2¢
2

Noting that trace 4 =Ve(20 —4w)<0 if §<2w, we obtain the stability results of
assertion (i) in the theorem. Also, provided § # 2w, by Bendixson’s criterion no closed
orbits exist in the planar flow of (3.12), although a unique closed curve does exist upon
identification of ¢ =0 with ¢ =2« (cf. assertion (ii),_and see below). Finally, the phase
portraits in regions O, @, @, ®, ® and on @ and follow from straight-
forward consideration of the level curves of JC(h,¢) and the perturbations due to the
O(ye) terms on solution curves, eigenvalues and eigenvectors.

Assertion (ii). This is proved in two stages. We first fix y and d~w, taking 6 =w+
Ve A, and perturb the truncated Hamiltonian system (3.13) by adding the O(/€) terms:

(3.15) ii=—14“—’cos2¢+,/2[wA—(2w+—‘zﬁcosqu)h]+o(e),

b= —2h+\/;-}sin2¢+ 0(e).

When v& =0, (3.15) has a homoclinic cycle connecting the saddle points at (h,¢)=
(0,37 /4), (0,77 /4) and formed by the level curve J=yw/8 of the Hamiltonian

(3.16) T}C(h,q>)=h2—l§3sin2q>.
The four branches of this cycle are conveniently given by solutions based at the points
(h,9)=(= Y& /2,7/4), (+‘/T(o‘/2 57 /4). Denoting one such branch by (h(2), (1))

we can investigate whether it is broken or not for V& #0 by computing the Melnikov
function as in §2. Here the perturbation is time independent, and we have

(3.17) M(A)= f { cos2¢s1n2¢+2h[wA 2w+ 2cos2<1> h”
Noting that A(7) and sin2¢(r) are even while cos 26(7) is odd, (3.17) may be sim-

plified to
(3.18) M(8)= [~ [ea—20k]2kdr= [ "lwA—20h]do,
— 00 a
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where @ and b take the values 37/4 and 7m/4. Using h*=(yw/8)(1+sin2¢)=
(yw/4)cos?y, where ¢ =¢ —m /4, we obtain

(3.19) M(A):f"ﬂ[:mwmcosﬂ dy=TreA+2wve,
7/2

for the upper and lower branches of 3=y« /8 respectively.

A similar computation, involving integration from ¢ =0 to 27 or 2 to 0 along an
unperturbed orbit with energy 3(>vyw/8 shows that for each value of A<2/yw /7
precisely one such orbit is preserved below the resonance band, while for A>2 & /7
one such orbit is preserved above it. In the original coordinates, these are smooth limit
cycles lying in the annulus centered at I=Q/2—; (h=0). The topology of the (h,¢)
phase space of (3.16) is important here, since, viewed as a planar system, there are no
closed orbits! These limit cycles persist as § moves away from 6 =w, as an examination
of (3.12) shows, since for sufficiently large values of || the term

s[28—4w— 1 cosZ¢] h

becomes important, leading to a net upward trend of solutions for h<0 if §<w and a
net downward trend for £>0 if §>w. Finally, setting §=w+/eA=w=*2 /Y0 /7 we
obtain estimates of the saddle connection bifurcation curves BE, CF. Note, however,
that this estimate is only valid for fixed vy, since as y— 0 the term v& (26 —4w)A of (3.12)
becomes greater than the “leading” term (yw/4)cos2¢. To complete the proof of
assertion (ii) we now address this point.

We state several lemmas, which together complete the proof. These lemmas are
proved at the end of the section.

LEMMA 3.2. For y=0, §<2w (3.12) has a smooth normally hyperbolic attracting
invariant closed curve h~w(8—w)/Ve (4w —28).

By the persistence theory for such normally hyperbolic manifolds (Hirsch, Pugh and
Shub [1977)), this curve must persist for v sufficiently small.

LEMMA 3.3. For y>4|8 — | and v sufficiently small the invariant curve contains two
saddles and two sinks and is composed of the union of these fixed points with the unstable
manifolds of the saddles.

LEMMA 3.4. There are two unique points (y*,8%)=(E,F) near the curves y=
*+4(8—w) for which the invariant closed curve degenerates into two nondifferentiable
saddle-node connections as shown in phase portraits é

LEMMA 3.5. The sinks existing within the region y>4|8 — w| are nodes below a curve

b

given by y~ \/ 16(8—w)* +&%0* and foci above this curve.
LEMMA 3.6. Two curves EI, JF connect the points E,F with the curve Yy
~ \/ 16(8— w)2+e2¢.>4 For parameter values on these curves the unstable manifolds of the

saddle points make connections with the strong stable manifolds of the sinks, providing a
nondifferentiable closed curve, as shown in the phase portraits ,

These lemmas together complete the proof of assertion (ii), and their proofs, which
follow, provide more details on the phase portraits of Figs. 4a and b. We note that
results similar to the present ones were obtained by Levi, Hoppensteadt and Miranker
[1978] in a study of bifurcations of the discrete sine-Gordon equation

é=v, o0=—sing—ov+]

under variation of dissipation, o, and driving current, I.
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Proof of Lemma 3.2. Setting y=0 in (3.12) we find that A= w(8—w)/Ve (4w —28)
is filled with degenerate saddle-nodes whose stable manifolds are a family of lines A
=VeQw—8)¢ + const. foliating the (h,¢) phase space. Moreover, solutions approach
h=w(8—w)/Ve(dw—28) like e @20 ]

Proof of Lemma 3.3. Letting y=4/e " and § =w+ /e A, (3.12) becomes

(3.20) h=1e (A—T cos2¢—2wh)+O(e),

6=—2h+0(e).
It is easy to check that, for I'>|8| (y>4J8 — w|), (3.20) has sinks and saddles as specified,
which coalesce pairwise in saddle-nodes when A= =T. To prove that the unstable

manifolds of the saddles form a smooth invariant curve, we consider the eigenvalues
and eigenvectors of the linearized problem, with matrix

(3.21) A=[—2/Ew 2\/;sin2¢]'
-2 0

Setting I'sin2¢= =y I'2—A? (I'cos2¢=A) for sinks and saddles respectively, we ob-
tain eigenvectors and eigenvalues as follows:

(3.22)  sinks: Npp=—fewt) e~ a/e(T—42)
e’[‘2=(—)\ﬂ’2,2);

saddles: }\‘1’2=—\/;wt\/ew2+4 e(I?—4%)
elc,Z:(—Acl,Z’z)'

As T,A-0, My°—>0, N}°> —2/ew and the eigenvectors tend to (0,1) and (Ve w, 1)
respectively. Moreover, the lines 4= /e w(¢—c) are invariant stable manifolds for the
fixed points (h,¢)=(0,c). For sufficiently small I',A, the stable manifolds of the
surviving fixed points (4,$)=(0, 3 cos~'(A/T)) must lie close to h=y& w(¢—¢) and
hence cannot recross =0 but must lie as in phase portrait @) of Fig. 4a. This implies
that the unstable manifold of each saddle must limit in the two sinks, and, moreover,
must do so tangent to the slow eigenvector (—Aj},2), providing the required smooth
curve. O

Proof of Lemma 3.4. Set y~4(8—w), so that (3.12) has a pair of saddle-nodes at
(h,9)~(0,0), (0,7). From the proof of assertion (i), and in particular consideration of
the truncated Hamiltonian system, for sufficiently large y solutions in both branches of
the stable manifold of each saddle node lie in /<0 as r— — oo, while solutions in the
center manifolds lie in A>0 as t— + co. Thus, the left-hand branch of each center
manifold lies above the right-hand branch of each stable manifold (phase portrait

, Fig. 4b.). Conversely, for sufficiently small y we will show that the center mani-
fold lies below the stable manifold, so that there must be at least one point (y*,8%)
where the manifolds coincide as specified. Finally, we will show that this point is
unique, thus establishing the bifurcation structures on DFO. Those on AEO (y~
—4(6~w)) follow in an analogous manner.
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We set A=T in (3.20):

(3.23) h=1e (T(1—cos2¢)—2wh) +O(e),
6=—2h+0(¢).

Since the vector field is #-periodic in ¢ we need only consider the interval ¢ €[0,7].
From (3.23), for I'=0 the stable manifold of (0,0) in the interval is given by the graph
h=ye wo, and thus, for I sufficiently small this manifold intersects the line ¢ =7 above
the fixed point (0, 7). A straighforward consideration of the vector field of (3.23) shows
that solutions leaving (0,7) in the left-hand branch of the center manifold of (0,7)
must remain in the interval [0, 7] below the stable manifold of (0,0). All such solutions
must therefore limit in the point (0,0). Moreover, they must do so along one of the
(nonunique) right-hand branches of the center manifold of this point. Since any center
manifold for this analytic system is C* for all k, any union of such center manifolds,
joined at (0,) and (0, 0), must also be C* for all k. Such a union provides the required
smooth attracting invariant curve. See Fig. 5.

F1G. 5. The center manifold for A=T.

To complete the proof of Lemma 3.4 it suffices to show that the upper (right-hand)
branch of the stable manifold of (0,0) moves down monotonically as I increases, so
that there is precisely one value, I'*, for which it connects (0,0) and (0,7), as in
portrait &) of Fig. 4b.

Let this manifold on the interval (0, 7] be given by the graph A=h(¢). Choose T}
small, so that k. (¢)>0 on (0,7] as in the proof of Lemma 3.3. Let I',>T,. Then, since
everywhere the I, vector field (3.23) has a greater vertical component than the T', vector
field, any solution based on hr, and integrated backward for I, must enter the region
below hr, and continue to lie in it. Thus the curve hr, forward asymptotic to (0, 0), lies
below hr.- A similar argument shows that if hrl intersects h=0 at ¢=¢, €(0,7), then
hr, intersects h=0 at some ¢=¢,<¢,; see Fig. 6. a

h
L hr,

the I, Field

/70 / / L *

FIG. 6. The behavior of hr(¢) with T,
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Proof of Lemma 3.5. The eigenvalues X, of the sinks given in (3.22) become
complex on the curve

(3.24) e2w*=16¢(T'2—A?).
Setting y=4ve I, §=w + € A in (3.30) we obtain

(3.25) r=V16(8—0) +e%*

as claimed. Crossing this parameter curve, the invariant closed curve changes from C'!
to C°(see Remark 3.1). O

Proof of Lemma 3.6. The proof of this result is essentially the same as that of
Lemma 3.4. O

Remark. The precise degree of differentiability of the smooth closed curve which
exists below the bifurcation curve EIJF is determined by the ratio of the eigenvalues of
the sinks:

X, few+ \ﬂzwz—4 e(Ir?—A?)

$

! \/;w—-\[ew2—4 e(I'2—A?)

a.

Using linear theory near either of the sinks, it is easy to see that the two pieces of the
closed curve meeting at a sink are approximated, in the canonical local coordinate
system, by y=c|xI*, x<0, and y=c,|x|*, x=0, for some constants c,, c¢,. Letting n(a)
denote the integer part of a, we see that all derivatives up to and including the nth are
continuous at the sink, and hence that the curve changes from C” to C""! near the

parameter value
2
y= 16(8—w)2+( 4n 2) ewt .
(n+1)

Note that, for n=1, we recover the C! to C° value of (3.25).

We now consider the implications of Theorem 3.1 for the full, time-dependent
system (3.8) or, equivalently (3.1), (3.3). Under the conditions of the averaging theorem
(Hale [1969]), hyperbolic fixed points of (3.12) correspond to points of period two for
the Poincaré map of (3.1), (3.3) in the neighborhood of the unperturbed resonant orbit
I=Q/2— 1. Similarly the hyperbolic limit cycles of (3.12) correspond to smooth hyper-
bolic invariant closed curves of the map. Such closed curves may contain higher order
subharmonic or dense orbits, depending on the rotation number, but this more delicate
behavior is not revealed by our O(¢) analysis.

Except on the curves BEI and JFC the phase portraits are all either structurally
stable or exhibit saddle-node bifurcations of codimension one. Therefore, since the
Poincaré map of the full system is close to the flow map of the autonomous system for
£ 0 and sufficiently small, this behavior persists for the full system in the sense that its
Poincaré map is diffeomorphic to the time 2/e 7 flow map of (3.12), via the change of
coordinates (3.7). In particular, invariant curves of this map are diffeomorphic to
solution curves of (3.12) and the saddle separatrices of the latter are diffeomorphic to
the stable and unstable manifolds of the map. However, on BEI and JFC pairs of
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separatrices coincide, and this behavior is nongeneric for one-parameter families of
maps, in which we expect, at worst, quadratic tangencies of manifolds (cf. Newhouse
[1980]).

To check this in a specific case (on BE, CF) we restore the terms to (3.12) which
were removed in the second averaging process and consider the periodically perturbed
system (3.11), with 8 =w+ £ A, as above. After rescaling time as in (3.12), we have

(3.26) h=-— xfcosi?,(p—l-\/z[wA— {Zw—y(c—l- szzd)s— 008224) (1 +c))

—yw(cos2¢c—sin 2¢s)}h] ,

o= —2h+\/;[—}(cos2¢s+sin2¢(l +c))—yw(s— Sm42¢c—- COZZ¢S)],

where ¢ denotes cos(2¢/ve) and s denotes sin(2¢/ve ). Computing the (time-dependent)
Melnikov function by integrating along the unperturbed heteroclinic branches
(h(2),d(2)) as before, we obtain

(3.27) M(t5,A)~+7mwA+2w)yw — [K(y,w)s_3/2e_ﬂ/‘/;]sin(2t0/\/;) + 0( %e_ﬂ/"‘;) ,
as ¢~ 0, where 8= /Y& /4 and K is O(1).

Since the oscillating part of M is exponentially small in Ve, it does not immediately
follow that, if M has simple zeros, then the true distance function d(¢,)= Ve M(¢,,A)+
O(e) also has simple zeros (cf. (2.3)). However, the constant part of d(t,) certainly
vanishes near A= *2 /yw /m, since d(t,) depends continuously on A, and the leading
O(/e) term has a simple zero with respect to A at =2 /y& /7. Thus, choosing §~w=*
2 /eyw /m such that d(¢,) has zero mean, and assuming that d(¢,) is analytic in v, w and
e (cf. Melnikov [1963]), we can conclude that, since at least one term of the oscillating
part of d(¢,) in (3.33) has simple zeros, there is an open set of y,w, e values for which
d(t,) also has simple zeros. It follows that the stable and unstable manifolds of the
period two saddles in the Poincaré map intersect transversally with exponentially small
oscillations in exponentially small neighborhoods of the “averaged” heteroclinic bifur-
cation points 8 =w=*m/eyw /2. Moreover, on the boundaries of these regions the
manifolds have quadratic tangencies, in view of Corollary 2.3. We illustrate this in Fig.
7a for the case ~w—2/eYw /. Similar splitting of the coincident manifolds of phase
portraits E, F, EI and JF can also be expected to occur. These results agree with the
generic case.

For more information and general results on exponentially small Melnikov func-
tions and their implications, see Marsden and Holmes [1983].

We note that the behavior proven to occur for the system within the resonance
region AOD, together with the partially conjectural results on homoclinic tangencies
and transverse homoclinic orbits near BEI and JFC, is in agreement with the detailed
computer observations of Aronson et al. [1980], [1982]. In particular, our computations
suggest that, on the curves 40 and DO, away from the points E, F, simple saddle-node
bifurcations occur as in the portraits R R R of Fig. 4b, and the rich
homoclinic behavior detected by Aronson et al., if it all occurs in the present case, must
be confined to a narrow band near the curves BEI and JFC. In Fig. 7b we conjecture a
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generic bifurcation diagram for the full Poincaré map, the letters and roman and arabic
numerals on this figure correspond to the notation of Aronson et al. [1981], [1982], and
we note that our results agree with their analysis and numerical computations. (cf.
Aronson et al. [1982, Figs. 9.1-9.4)).

FI1G. 7a. Passage through homoclinic bifurcations for the Poincaré map near the curve BE. (cf. Aronson’s
cases 6, f and 5 respectively).

S=w

FI1G. Tb. A generic bifurcation set for the Poincaré map; only one side is shown. The letters and roman and
arabic numerals refer to the cases classified by Aronson et al. [1980], [1982).

Summarizing our results, we have

THEOREM 3.7. The bifurcation set and associated invariant manifolds for the Poincaré
map of (3.1)-(3.3), in the neighborhood of I=R/2— +, are diffeomorphic to those de-
scribed in Theorem 3.1 for the autonomous averaged system (3.12), with the following
exception: Exponentially close (with respect to Ve) to the curve BEIJFC of Fig. 3 more
complex global behavior involving transverse homoclinic orbits and quadratic tangencies
will occur in the generic case.

Using the Smale-Birkhoff homoclinic theorem (Smale [1963],[1967]), and New-
house’s [1979],[1980] results, we can therefore conclude that,in the generic case in a
sufficiently small neighborhood of BEIJFC, the Poincaré map has countably many
unstable periodic orbits of arbitrarily long periods, uncountably many bounded non-
periodic motions, and for a residual subset of parameter values, countably many stable
periodic orbits. However, note that the stable period-two sinks will probably be the
only “observable” attractors throughout the region bounded by the curve AOD.
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4. An example of repeated resonance and homoclinic bifurcation. We now return
to the example outlined in §1. Letting § = &8, y =&Y, we have the system
(4.1) a=v, o=u—u+e(uPv—8v+7 cost).

The unperturbed system (¢=0) has the phase portrait sketched in Fig. 8. We shall
study perturbations from the family of periodic orbits (u*,v*) given by the elliptic
functions with modulus k € (0, 1):

(4.2) uk(1)= kaz dn(\/z_’7,k),

oo Bl

which limit on the center (1,0) as k— 0, and on the homoclinic orbit

(4.3) u'(1)=\2secht,  ©v'(1)=—\2sechrtanhz,

as k— 1. These orbits are based at points (y2/(2—k?),0). A similar family exists
within the left-hand half plane and periodic orbits encircling all three fixed points can
also be given in terms of elliptic functions. For more details, see Greenspan [1981],
Greenspan and Holmes [1983], and for general information on elliptic functions, see
Byrd and Friedman [1971]. The period of the orbit (u*,v*) is

(4.9) T(k):Zf’ﬁ(k)L =22—K2K(k),

W) 2h+u—ut/2

where u™ =(1=y/1+4h)'/2, where h=H(k) is the Hamiltonian energy defined below,
and where K(k) is the complete elliptic integral of the first kind. The unperturbed
Hamiltonian of (4.1) can also be expressed as a monotonically increasing function of k&
for k€ (0, 1):

1ch2 uk2

k4 2__
(4.5) H(uk,py=0 4 v k]

=H(k).

2 T T: (2_k2)2

F1G. 8. The unperturbed Duffing equation.
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Note that H(k) €(— %,0) for the two families of orbits (u*,0%). Also we have

dT/dk
dH /dk

(4.6) dT/dH= >0 for ke (0,1),

and dT/dH - oo as k— 1. Hence assumptions A1-A3 of §2 are all satisfied, with the
homoclinic orbit (u',v") playing the role of ¢°.
We first compute the Melnikov function M(z,) for the homoclinic orbit:

(4.7) M(1))= / o (1) (w'(£))*01(1) — 50! () + cos(t+1,)] de
=4/ sech*stanh?rdt—26 foo sech? t tanh? ¢ dt
— 00 — 00
-h/f?fw sechztanhzcos(z+1¢,)dt
— o0

=—}% 48 \/—wysech(z)sinto.

Here the final integral is computed by the method of residues. Thus, by Theorem 2.2

and Corollary 2.3, if
16—200 cosh( )
15/2 7

transverse homoclinic orbits exist near the level curve H(u,v)=0, and quadratic homo-
clinic tangencies occur on curves near

(4.9) y (1615;0:) h(%)

We next compute the subharmonic Melnikov function M™/"(t,) of (2.6), selecting
the unique resonant orbit within the right-hand homoclinic loop with period

(4.10) T(k(m.n)) =2/2~k(m,n)* K(k(m.n))= 22"

We obtain

(4.8) y>

b

STE

.<

M™/"(8,y,ty)=J,(m,n)—8J,(m,n)—¥J,(m,n)sint,,

where

(11)  R(mn)=2[" u2H(k)+u—ut/2 du
u (k)

:—85—[2(k4+k’2)E(k)+k'2(k2—2)K(k)](2—k2)_5/2,

Jz(m,n)=2fli(::)\/2H(k)+u2—-u4/2 du

[(2 k? VE(k)— 2k’2K(k)](2 k2 )" 3/2
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with

u*(k)=[1=/1+4H(k) |,

and

0, n¥#1,
J3(m’n):{ﬁwsech(mﬂK’(k)/K(k)), n=1.

Here k=k(m,n), E is the complete elliptic integral of the second kind, K'(k)=K(k’) is
the complementary complete elliptic integral of the first kind and k’=y1—k? is the
complementary elliptic modulus. These integrals were evaluated using formulae and
recursion relations found in Byrd and Friedman [1971].

Now, while J, is only defined for k=k(m,n), J, and J, are defined for all k€(0, 1).
Replacing J;(m,n) by Ji(k) for all k€(0, 1) we can compute the following limits:

limJ,(k)=14, limJ,(0)=0, limJ(k)=1, limJ,(0)=0;

while
lim J1(k) =1,
k-0 \ Jy(k)

and

(4.12) lim Jy(m, 1)=\/§wsech(§).

Thus we verify that M™/! - M, as expected from Theorem 2.6. Moreover, we find that
Ji(k) and J,(k) increase monotonically from 0 to their respective limits as k increases
from 0 to 1 (cf. Carr [1981, Chap. 4)).

We now define the resonance ratio §(k) as

Ji(k
(4.13) «§(k)=J;Ek;,
and, when k=k(m, 1), we write 5(k(m, 1)) as
- Ji(m,1
(4.14) § (Mz%.

LEMMA 4.1. There exists 0= k<1 such that 8(k) decreases monotonically for k<k<1.
Hence for m sufficiently large 8(m) decreases monotonically with increasing m, limiting on
8(0)=4%, so that a countable sequence of resonance ratios accumlates on this point from
above.

Proof. A direct (if tedious) computation using (4.11) shows that
(4.15)  Ji(k) I (k) =Ty (k)5 (k)

:1—15’(2_k2)—1[80(2"k2)E2(k)—l60k’2K(k)E(k)

—32(k*+k"?)K(k)E(k)+16k’>(2—k?)K2(k)].
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As k-1, we have the asymptotic behavior k’=y1—k? -0, E(k)—1 and
K(k)~In(4/k’)— 0. Hence all terms in this expression remain bounded except
—32(k*+k"?)K(k), which approaches —oo. Thus, for k sufficiently close to 1 (m
sufficiently large) we have 8'(k)=(J] J,—J,J3)/J2<0. But from (4.4)-(4.6) we see that
the period T(k) of the unperturbed orbits increases monotonically with k, or, con-
versely, that k(m, 1) increases monotonically with m. It follows that 8(m)=4(k(m, 1))
decreases monotonically with m, as claimed. In fact, a numerical evaluation reveals that
the expression (4.15) is negative for all k €(0, 1), and so we can take k=0. O

Remark 4.1. Carr [1981] obtained this lemma along with other results without
computing J; and J, directly.

These results imply that the sequence of approximate saddle-node subharmonic
bifurcation values

(4.16a) §= iJl(m,}a)(::-{z)(m, 1)

accumulate on the homoclinic bifurcation curves (4.9). Each pair of lines (4.16a) forms
the boundary of a resonance sector like that of §3, meeting the & axis at the point
o(m)=Jy(m,1)/J,(m,1). (Since Jy(m,n)=0 for n#1 we are only concerned with
resonances of order m/1.) As in the proof of Lemma 4.1, it can be checked that
J,(m,1)/J3(m,1) increases for sufficiently large m as m— oo (J;J;—J,J;>0), so that
the higher order resonance sectors become progressively narrower (cf. Greenspan [1981]).

7
1f ANy ¥ ¢ 3
0 S(o)  §3) 8(2) 3(1) 1
45

FIG. 9. The countable sequence of resonance regions (not to scale). Here §=¢§, Y=¢Y.

We illustrate these bifurcation curves in Fig. 9. However, we note that, while the
existence results for subharmonics are uniformly valid for 0<e<g¢, (¢, is independent
of m,cf. Theorem 2.4), the bifurcation curves generally vary with . In fact, from
Corollary 2.5 and recalling that ey=y, ¢5=4, the approximate condition of (4.16a)
should be replaced by

(4.16b) YZile(m,Jiz;le;(m,l)

+e2C(8,m, ),
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where ¢, =C(8,m,e)=<c, is uniformly bounded. (Here ¥ plays the role of p in that
corollary,and & is regarded as fixed.) Thus we cannot guarantee that the true bifurca-
tion curves accumulate uniformly in & as m — oo, as illustrated in Fig. 9. However, since
the actual resonance regions are e-close to the approximate regions illustrated, we can
conclude that there are values of v,8,¢6>0 for which countably many subharmonic
coexist. (For example, pick y=¢, § =4¢/5 and £>0.) In particular, we note that the
resonance sectors do not shrink to zero as m— oo.

To study the interior structure of each resonance sector we must compute the O(¢)
terms of (2.18). In the present case, rescaling time as in (3.11) we have

h= 5 M7(me)+ e F(9)h,

Q”(I"')h2

(4.17)
<i>=9'(1'")h+¢§(——2—+0(¢) ,

where M'”(m¢)=J,(k)—«S—Jz(k)—7J3(k)sinm¢, k=k(m,1) and Q'(I"™) can be calcu-
lated as

—722—k?)[(2—k?)E(k)—2kK (k)]
2k*k"?K3(k) ’

(4.18) @(Im)=

We note that, as m— o0, k— 1 and @'(/™)— oo, in fact

e27rm

)
m3

(4.19) Q(Im)~

so that the averaged equations (4.17) are not uniformly valid in m, since v¢ must be
taken successively smaller as £'(/™) increases with m.

Now for m< oo the second order term Q”(1™) is a (negative) constant which need
not be computed explicitly (in the example of §3, 2" =0), but we do need the averaged
functions

(4.20)
=7 d 1 2om 1 ) _ _
’ I _ N gl .
F(4) oI 2emJy  Q(T) V(I’o)[U (1,6)v(1,6)—8V(1,0) YCOSt] t=s
and

—— 1 [27m a0 m m Sl rm _
G(8)=5— [ T)I—/[U2(1 L)V (I™,0)—8V(I™,60)+7 cost] dt_i(m 1y

where §=Q(I")t+¢=t/m+¢ and U,V are determined by the action angle trans-
formation. Here some results due to Greenspan [1981] which we now summarize are
useful.
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Derivatives of the symplectic action angle transformation (U, V') - (I(u,v),8(u,v))

and its inverse (1,0)— (U(1,8), V(1,8)) are related via their matrices of partial deriva-
tives:

Iu I; _]__ .~Q) L) _ LG Lé
ST (i I A P
since det[,ﬁ: ,,’:]= — 1. Thus we have 6,= — U, and using this, we may rewrite (4.20) as
(4.22)
27m —_ 1 2mm
F(8)= 52— [T(E(o)+E@))dr, G(8)= 5 [T7(G,(6)+Gyl(9)) dt
where
(4.23) Fy(q)):—g-( Y (1, 0)cost) :
oI\ Q(1) .
_0(_ 1 12 2 _ &2 )
1()= 37| gipy oo -
3 2 2 2 )
R(®)= 37| gy @ ov oo

E

="

G,(#)=~ 37 (1.8)7 cost

69)=— Lo ur oo -

where 0=t/m+¢.
We first claim that the averaging transformations (cf. §2) can be chosen so that

(4.24) F($)+ —(G (¢))=0

This follows from the fact that, when the perturbation term e(u’v—8v) is absent in
(4.1), both the perturbed system and the truncated averaged system (4.17) are Hamilto-
nian. For details, see Greenspan [1981].

We next claim that G4(¢) is in fact independent of ¢. To see this, note that in

(425)  Gy(¢)= z,rmfozm %(IJ(I’"—M)

~[U2(I"‘, ;;— +¢)V(I'”, ’-;- +¢) ——a"V(I'", % +¢)] dt,

the change of variables s=¢/m+¢ removes explicit ¢ dependence in the integrand,
while leaving the limits unchanged, due to the fact that all functions are 27 m-periodic
in ¢. Similarly, Fy(¢) is independent of ¢. Thus G5 and F; are constants in any specific
resonance order calculation.
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As in the example of §3, the fixed points of (4.17) lie near (h,$)=(0,), where ¢ is
a root of M™(m¢)=0, and their stability types are determined by the matrix 4 of the
linearization of (4.17). In particular, from the discussion above, we have

(4.26)
trace4 = \/—e- W

e o

= 2am 81{9(11) fsz(I’ 7;' * )

-[U2 I, % +¢) V(I, % +¢) - V(I, % +¢)]dt}

©-

I=r"

e (3 1\ 3a - ok OH
= 27Tm{al(ﬂ(l))[J,(k) 84, (k)] + (Q(I))ﬁ[fl(k)—sh(k)]a—f,ﬁ} .
e QI < , s 0y] 9K
T 2am {_ 92(1"') [Jl(k)_812(k)] +[Jl(k)_812(k)]5ﬁ I=I’”}
:2‘[_87’{—,"9'(1»')[11(1()—&2(/()]+ﬁ(z—TI‘z) [Jf(k)—%’(k)]},
k=k(m,1).

At resonance 6 =38(m)=J,(k(m, 1)) /Jy(k(m, 1)), and this reduces to

Ve (a—k2\ . J(k)JE(k)
477m( k )[J'(k)_ Lk) |

which, in view of (4.15), is a negative constant. Thus the fixed points are saddles or
sinks, as in §3. Away from resonance, we have J; —8J,<0 below resonance (6>8(m))
and J, — 8J,>0 above resonance (§<8(m)). Thus, since @’ <0, we have trace 4 <0 for
all §>8(m), but traced can change sign for §<&(m). This is precisely as in §3, where
we found that the fixed points are saddles and sinks for 8<2w but saddles and sources
for §>2w. (In the present example, § decreases as we pass to successively longer period
resonant orbits, rather than increasing as in the example of §3).
From the above discussion, and writing J;(m, 1) as J,(m), (4.17) becomes

(4.27) h— [Jl(m) 81,(m)—¥J,(m)sinm¢|

+e | w(m)(J,(m)—8L,(m)—¥J(m)sinme)

dam

n _1___(Z__Elfi)3(Jl'(m)—-6_12’(m)—7J3’(m)sinm¢)]h,

b= Q(m)h-i—\/_

)hz—v(w(m)13(m) +_1_(Z;kk_2)3‘,5(m))

-mcosm¢+K,(m)—8—K2(m)],
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where w(m)=—(m/27)Q'(m)>0, Q' (m)=Q'(I")<0 and Q”, K,, K, are constants,
whose precise values we shall not require. Apart from the presence of these constants
and the term ©”h%/2 in the second component, (4.27) is, term by term, equivalent to
(3.12). We are therefore able to conclude that the system governing the averaged
behavior in a single resonance band in the present problem behaves just as does the
model problem of §3. In particular, the delicate analysis necessary near each bifurca-
tion point (8,y)=(8(m),0) is effected by writing

(4.28) §=8 (m)+JeA=Jy(m)/I(m)+ed,  §=\eT,

so that (4.27) becomes

(4.29) W=\e [— %( Jy(m)A+TJ,(m)sinme)

| 2 ) 5y AW )= (m) )

4am

+0(e),

¢:sz'(m)h+Jz[“'—'g’"—)h2+Kl(m)—5K2(m)]+o(e).

Equation (4.29) is the analogue of (3.20), and an analysis of its phase portraits yields
analogues of Lemmas 3.2-3.6:

LEMMA 4.2. For y=0, (4.27) has a smooth normally hyperbolic attracting invariant
closed curve given by

Ji(m) —8Jy(m)

1

(4.30) h~ . )
2mfe w(m)(Jl(m)—s'Jz(m))+z,—,;(—2;k'f—) (Jf(m)——fz'(m))]

This curve persists for y sufficiently small.

LeMMA 4.3. For ¥>|(J(m)—98J,(m))/Jy(m)| and ¥ sufficiently small the invariant
curve contains m saddles and m sinks and is composed of the union of these fixed points
with the unstable manifolds of the saddles. _

_ LemMA 4.4. There are unique points (¥,,,8,,) on the curves y==((J,(m)—
8J,(m))/Jy(m)) at which the invariant curve degenerates into a set of m nondifferentiable
saddle-node connections. _

LEMMA 4.5. There is a curve C, within the sector Y=|(J(m)—8J,(m))/J(m)| and
within O(J€) of its boundary below which the sinks are nodes and above which they are
foci.

LEMMA 4.6. Two curves G connect the points (7, ,8,;) with C,. For parameter
values on these curves the unstable manifolds of the saddle points make connections with
the strong stable manifolds of the sinks, providing a nondifferentiable closed curve.

The proofs of these results proceed just as do those of Lemmas 3.2-3.6. The
presence of the additional terms in (4.27) and (4.29) in comparison with (3.12) and
(3.20), respectively, introduces no new qualitative features.

As in §3, we therefore obtain a theorem on bifurcations of the autonomous
averaged system for the order m resonance band entirely analogous to Theorem 3.1.
Rather than stating this result, we recall that just as in the former case, the “gross”
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behavior carries over the Poincaré map for the full system, and we have the following
final results:

THEOREM 4.7 (existence of subharmonics). For 0<e<e, and for parameter values
within each resonance sector bounded by the curves Y= =((J,(m)—38Jy(m))/J;(m)) the
Poincaré map of (4.1) has precisely 2m periodic points of period m, m of which are
saddles. This result is uniform in the sense that €, is a (small) constant independent of m.

We remark that, for values of § sufficiently close to 8(c0)=4%, and ¥>0, this
implies that countably many pairs of subharmonics of arbitrarily high period coexist,
since the resonance sectors overlap and accumulate on the homoclinic bifurcation
curves (4.9).

The stability results are more delicate:

THEOREM 4.8 (stability and global behavior). For 0<e<e(m), where e(m)—0 as
m— oo, the global structure of the bifurcation set and Poincaré map for (4.1) are diffeo-
morphic within each resonance band to those of the model problem of §3 (Theorems 3.1, 3.8
and Figs. 3, 4), with the following changes:

(i) There are 2m points of period m, rather than 4 of period 2,

(ii) m of these points are saddles and m sinks for 8>8(m) and m are saddles and m

sources for o< 8—s(m), where

l(ﬂ‘—z)31(m)—m2sz'(m)f(m)

o2\ ) '

(431) fi(m)= 1 (2——k2)3_/, 2 .
>\ 7| B(m)—m*@(m)J,(m)

Also, as in Theorem 3.8,

(iii) Within each sector there are curves analogous to BEIJFC of Fig. 3. Transverse
homoclinic orbits and quadratic tangencies will occur for parameters exponentially close
(with respect to V&) to these curves in the generic case.

We recall that the nonuniform validity of the results of Theorem 4.8 are due to the
fact that the derivative &'(1™) in (4.17) grows without limit as m — co.

We remark that the results of Greenspan [1981] and Greenspan and Holmes [1983]
on perturbations of periodic motions outside the level curve H(u,v)=0, together with
the results of Carr [1981], demonstrate that a second sequence of resonance sectors
bounded by lines of the form

(4.32)

y:i(e.f,(m)—&fz(m) +0()

Jy(m)

accumulate on the homoclinic bifurcation sector from below. These sectors meet the 8
axis at points 8(m)—4,/5~ as m— oo. Result analogous to Theorems 4.7-4.8 can be
stated for these subharmonics and their bifurcations.

We close with some comments on the attracting set for the case S~8(00)=4%. It is
not difficult to check that, for y=0 and 8~% and 0<e<e, sufficiently small, (4.1)
possesses a double (figure of eight) attracting homoclinic orbit. This follows directly
from the Melnikov theory, which shows that for § near 8(c0)=(J,(k)/Jy(k))|,_, =%
the figure of eight level curve H(u,v)=0 is preserved, and a calculation of the trace of
the linearized vectorfield at the saddle points (#,v)=(0,0): yielding —e&d. A theorem of
Andronov et al. [1966] on planar systems then implies that the homoclinic orbits attract
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nearby solutions, so that the Poincaré map of (4.1) with y=0 takes a “thickened figure
of eight”: U, bounded, say, by the level curves H= *a, into its interior:

Cl(P(U))CU.

The attracting set is then defined as

A=C1( N P"(U)),

n=0

where Cl denotes closure. We note that, since the vector field is dissipative near the
unperturbed saddle loop, the Poincaré map contracts areas and A therefore has zero
Lesbesgue measure. For y=0, A4 is simply the union of the two homoclinic orbits and
the saddle point. We now have _

THEOREM 4.9. For 0<e<g, sufficiently small and 8 =%+ O(&), one may select y>0
such that the attracting set A of (4.1) contains horseshoes and hence contains a countable
set of saddle type periodic points of arbitrarily high period and an uncountable set of
bounded nonperiodic orbits. Moreover, while A may contain finite or countable sets of
stable periodic orbits, none of their periods are less than some integer N(Y), and N(Y)— oo
as y—0.

Remark 4.2. The attracting set does not qualify as a nice attractor (or a strange
attractor) since it may not contain a dense orbit. However, since the stable orbits can
be made to have arbitrarily high period (for small ¥) they will be effectively unobserva-
ble in any numerical study and one will see “ pseudochaos”.

Proof. The Melnikov computations given above, together with Theorem 2.2, show
that for all y>0 and §=4%, there exists an g, such that for e<g, the Poincaré map P,
has transverse homoclinic orbits. It follows by the standard arguments of the Smale-
Birkhoff homoclinic theorem that some iterate P,* of P, has horseshoes, i.e. P has an
invariant cantor set A™ on which P is conjugate to a shift on two symbols. See Smale
[1963], [1967]); Moser [1972], or Guckenheimer and Holmes [1983] for details. This
proves the first part of the theorem.

Now as Newhouse [1974], [1979], [1980] pointed out, transversal homoclinic orbits
can coexist with homoclinic tangencies, wild hyperbolic sets and their attendant stable
periodic orbits. In fact the stable sinks we find in each resonance sector for finite m
correspond to (some of) Newhouse’s sinks. However, we can guarantee that as y— 0 for
8 =%+ O(¢) the periods of any such sinks N(¥) - co. This is proved as follows.

First set Y=0 in (4.1) to obtain an autonomous planar system. From the computa-
tions of (4.11) or the theorems of Carr [1981, Chap. 4], we see that the homoclinic figure
of eight loop is preserved if § lies on a curve given by

(4.33) § =g—+ O(e)

(cf. Corollary (2.3)). Choose & accordingly and now let ¥ vary. Our computations show
that, for any finite ¥ and sufficiently small ¢, countably many subharmonics coexist (cf.
(4.16a-b),(4.32),and Theorem 2.6). However, as ¥ — 0 the values of m for which (4.16)
and (4.32) are satisfied approach infinity. Hence saddle-node bifurcations occur in
which orbits of successively higher periods N(Y) coalesce and vanish (cf. Fig. 9). It
follows that, for any specified integer N, we can choose values of ¥, § and €>0 such
that no periodic orbits of period m<N exist. O
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It is a reasonable conjecture that A=CI(W*(p)), i.e. A is the closure of the
unstable manifold of the unique saddle point (u#,0)=(0,0)+ O(ey) for the perturbed
Poincaré map. More details on attractors of this type appear in Holmes and Whitley
[1983a,b].
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ON THE GLOBAL CONVERGENCE OF THE TODA LATTICE
FOR REAL NORMAL MATRICES AND ITS APPLICATIONS
TO THE EIGENVALUE PROBLEM*

MOODY T. cHU'

Abstract. The asymptotic behavior of the Toda lattice, when acting on real normal matrices, is studied. It
is shown that the solution flow eventually converges to a diagonal block form where for a real eigenvalue the
associated block is of size 1X1 with that eigenvalue as its element and for complex-conjugate pairs of
eigenvalues the associated block is of size 2X2 with the real part as its diagonal elements and the (negative)
imaginary part as its off-diagonal elements. This result generalizes the well-known asymptotic behavior of
Jacobi matrices and is consistent with that from the QR-algorithm.

1. Introduction. Recently the dynamic flow of a special system of differential
equations, known as the Toda lattice, has been found to be closely related to the
important QR-algorithm [1], [2], [4], [7]. Roughly speaking, the QR-algorithm can be
shown to be the time-1 mapping of the solution to the Toda lattice. Specifically, if we
consider the following dynamic system for matrices in R">*":;

(1.1) X=[X,T,X]=X-T[ X—-T,X- X

where II,X=X"—X"T and X~ is the strictly lower triangular part of X, then the
following properties concerning the solution flow X(¢) with initial data X, at t=0 can
be derived from the general results presented in the previous paper [1].

LemMA 1.1. The solution X(t) is given by

(12) X(1)=0*(1) X,0(1),
where Q(t) solves the initial value problem
(1.3) 0=0-I,X, Q0)=I.

Indeed Q(¢) is exactly the unitary matrix involved in the QR-decomposition [3], [6] of
the matrix e'*o, namely

(1.4) e*=0Q(1)R(1)

where R(?) is an upper triangular matrix with real nonnegative diagonal elements.
LEMMA 1.2. For k=0, =1, =2, - -, suppose the matrix e*® has the QR-decomposi-

tion

(1.5) eX(k):Q(k)R(k)_
Then

(1.6) e XUkt = R ()

Observe that, by (1.2), the trajectory X(¢) is bounded in R"*", so its w-limit set is
nonempty, compact and connected. We are interested in finding this set. A special case,
when X, is a Jacobi matrix (and hence when X, is a real symmetric matrix by a
standard tridiagonalization algorithm), has been studied extensively by a number of
authors [2], [4], [7]. In fact, based on the continuous dependence of the initial data for

*Received by the editors December 7, 1982.
TDepartmc:nt of Mathematics, North Carolina State University, Raleigh, North Carolina 27650.
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the system (1.1) and a well-known theorem [5], [6] in the numerical analysis concerning
the convergence of the QR-algorithm, we have the following generalization [1].

THEOREM 1. If the matrix X,ER"™" has real distinct eigenvalues {A\;>\,>--- >
A}, then the Toda flow X(t) converges to an upper triangular matrix with the eigenvalues
appearing on the diagonal " the descending order.

In this paper we want to study the behavior of this flow when complex-conjugate
pairs of eigenvalues occur. As is shown in [1], for an arbitrary (nonnormal) 2X2
matrix, the appearance of such a pair of eigenvalues will result in a periodic (in fact,a
circular) portrait in the phase plane and thus X(¢) has no convergence at all. It is
natural, therefore, to restrict ourselves in the study of the normal matrices first.

We begin in the next section with some preliminary facts. Especially, we point out
the differential system which governs the dynamics of the corresponding eigenvectors
of the flow X(z). It turns out this system is much easier to handle than the system (1.1)
itself. In §3 we discuss how eigenvalues affect eigenvectors and, hence, the entire flow
X(t) by the inverse algorithm. Although we only analyze two situations there, they
seem to be generic enough to get general conclusions.

2. Preliminary facts. It is obvious, from Lemma 1.1, that normality is preserved
along the flow provided that X, is a normal matrix. It is also known that there exists a
unitary matrix U, such that

2.1) Xy= U TUy,

where T is a diagonal matrix with eigenvalues as its elements. Without loss of generality
we shall assume these elements are arranged in such a way that

(2.2) ReA,=ReA,=--- =Re},,

and that whenever there are complex-conjugate pairs, they are adjacent to each other.
By (1.2), it follows that

(2.3) X(t)=U*(t)TU(2)
where

(2.4) U(1)=0,0(2).
Notice that, by (1.3), U(?) satisfies the differential system
(2.5) U=U-TI,X.

We shall assume X, is an upper Hessenberg matrix. Then the following lemma [1]
guarantees the preservation of this structure along the entire flow. Recall that this
useful property is also enjoyed by the classical QR-algorithm.

LEMMA 2.1. If X is an upper Hessenberg matrix, so is X=X, IT, X1

Let us denote the matrix U(?) in (2.4) by U(t)=[u,(?)," - -,u,(t)] where u,;(¢) is the
ith column of U(#). Then by (2.3) we have

X1 X12 X1n
X1 X; .

(2‘6) [uh“"un] x32 . E :T[ul,“"un]'
| 0 xn,n—l xnn_




100 MOODY T. CHU

So the following equality holds for each k=1, - -, n.

k+1
(2.7) 2 xyu;="Tuy,
i=1

where it is understood that u,,,=0. Since all the vectors u; are mutually orthogonal,
we know that for all 1<i<nand 1<j<n
(2.8) x,.j=<u,.,Tuj>,

where (-, -} is the inner product in C".
From (2.5), (2.6) and (2.8), it is not hard to see now that
LEMMA 2.2. For i=1,- - -, n, the vector u,(t) satisfies the differential system

i
(2.9) ;= Tu;— 2y, Tug yu;— (g, Ty Yuyy.
=1
In particular, the first column u,(t) of U(t) satisfies the equation

(2.10) u=Tu,— (uy, Tu, Yu,.

Direct substitution also shows that
LEMMA 2.3. The solution to (2.9) is given explicitly by

e™u,(0)
le™u,0), .

We note that the ith component u,,(¢) of u, is given by

(2.11) u(t)=

oMt

2v1/2
"_leMu /
=1 o

where u;, is the complex conjugate of the first component of the ith eigenvector of X,.
The following useful inverse algorithm [S] turns out to be very important.

THEOREM 2.1. Suppose B is an unreduced upper Hessenberg matrix with positive
subdiagonal elements and Q is a unitary matrix, then Q and B are uniquely determined by
the first column of Q, provided A is given and B= Q*AQ.

For our application, observe that the subdiagonal elements of X(¢) can never
change signs along the positive orbit. If we assume, without loss, that X, not only is an
upper Hessenberg matrix but also is unreduced to begin with, then from (2.6), (2.10)
and the above theorem, we know that X(¢) and U(¢) are completely determined. The
detailed analysis is presented in the next section.

Uip

(2.12) uy(t)=

3. Convergence of X(¢). First of all we should explain the meaning of convergence
used in our context. Strictly speaking, convergence would be taken to mean the
convergence of the flow X(¢) to some limit matrix. In our context, however, we mean
convergence under deflations, i.e. we are concerned about the convergence of a subma-
trix obtained by deflation, as soon as the subdiagonal element is negligible, to another
submatrix. The precise meaning will become clear later and indeed, as will be seen also,
these two notions of convergence are essentially the same when the Toda lattice is
acting on normal matrices.
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For the simplicity of discussion, we shall make one more generic assumption,
namely u,,70 whenever we need it and that X, is nonsingular. We shall also use the
notation “ — ” to mean “converges to.”

LEMMA 3.1. If the eigenvalues in (2.2) are such that

(3.1) ReA,;=A,>Re),=--- =Re],,
then
(3.2) x(8)->A, xy(t)>0 and x,(t)-0

for every 2<k=nas t— 0.
Proof. 1t is clear from (2.12) that as ¢t — oo,

u

(33) up>—2 and u,(t)-0

: |so

for all i=2. Let us adopt the following notation in its intuitive sense:

(3.4) lim u,(r)=4,.

t— 00

Then we have, from (2.8),
(3:5) x(2)=(uy, Tuy) ~>{ay, T ) =X,
and, from (2.7),

(3.6) |x20() =11 Tw, — x|, > || Tty — Ay | ,= 0.
Observe that, by (2.8) and (3.6),

(3.7) x1(8) = (uuy, Tuy ) — i, Ayt >0
implies

(3.8) u(1) >0

where ~ means the complex conjugate. Therefore,

(3.9) x12(2) = (uy, Tuy ) = (T*uy,uy ) = Myl uy, 0.
Indeed, for every k>2, it is always true that

(3.10) Xa(1) = (e, Tuy Y =0, Ny,
implies

(3.11) u,(1)-0.

Therefore,

(3.12) x . (8)=(uy, Tu ) = (T*uy, uy ) > Ny uy, —0.

In other words, if condition (3.1) is satisfied, then as ¢t — oo
A, 0 0 0 O

0

X()~f o

0
0

OO M M
(=R I ]
Mo M
Ll o
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where “x” represents either a nonzero element or an uncertain position.

Apparently when this convergence phenomenon happens, one is tempted to per-
form the deflation and to proceed the computation on the submatrix. We would like to
point out, however, that those uncertain positions are really not entirely uncertain (they
are uncertain simply because we don’t care to include the analysis in Lemma 3.1). As a
matter of fact, from (2.9), we know that for each k=2, the eigenvector u, is governed
by

k
(3.13) u=Tu= 2]<ui’Tuk>ui—<uk’Tuk—l>uk—l’

i=

whereas, from (3.8), (3.9), (3.11) and (3.12), we see that the vector #, EC"~!, governed
by

k

X i~ ~ = ~ ~ - ~

=T, — <“i,T“k>“i“<“k’Tuk—1>“k—1’
i=2

where T is obtained from T by deleting the first row and column, would describe the
behavior of u, as well when ¢ is large enough. Therefore, those uncertain positions are
actually converging according to either Lemma 3.1, with A, being replaced by A,, or the
next lemma, with A, and A, being replaced by A, and A,. It is in this sense that we
mean convergence.

LEMMA 3.2. If the eigenvalues in (2.2) are such that

(3.14) ReA,=ReA,>Rel;=--- =Re],
and if A\, =a+ib with b#0, then as t » o0, we have

xp(1)=a, xy,(t)—a, x5,(1)-0,

(3.15) x31(£) = (sgn x5, (0))6],  x,5(2)— — (sgnx,,(0))[8],
and for all k=3
(3.16) X(1) =0, xg(1)=0.

Proof. 1t is clear again from (2.12) that as - oo,

ety e uy,

(3.17) u“(t)ﬁ{|ulo|2'|'|uzo|2}l/2 , uz](t)ﬁ{|“|o|2‘*'|“20|2}1/2
and for all i=3,
(3.18) a(t)=0.

Notice that u,,(#) and u,,(¢) do not converge at all. But we still use the notation (3.17)
to indicate how they behave when ¢ becomes large. Since X, is a real matrix, it must be
that u,,=1u,,. Therefore

n

2 Y g\[A 12
(3.19) xll(t):'(ul’Tul): 2 Mugl =(a+ib)|ay,| +(a—ib)|a,| =a.
i=1

i=

Thus
(3.20) %1 ()[=1Tuy — x\uy ||, - || Ta) — ait, |=b
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implies that
(3.21) X, (t)>=b

where the sign of this limit is the same as that of x,,(0) since x,,(#) can never change
signs. Since b0, it follows, assuming x,,(¢)— b, from the fact

T —

(3.22) uy=— X0t
X21

that
(3.23) up()—=iuy (1), uyp(t) =iuy(t), u(1)-0
for all i=3. So by (2.8), we know
(3.24) xp(t)=(uy, Tuy ) ~a
and
(3.25) x12(8)=(uy, Tup ) > —b.
By (2.7), simple calculation also shows
(3.26) |52 ()|= M1 Tuy = x 100y — X915 ||, ~ (| T, + b2y — aid, || = 0.
We now claim for all k=3, as t— o0
(3:27) u(1)=0,  uy(1)-0.
Indeed this fact follows from solving the following system of equations
(3.28) (e, Tuy ) =0, (uy, Tup ) =0,
or equivalently
(3.29) ay(a+ib)ay, +ay(a—ib)a, =0,

Therefore, for all k=3,

(3.30) x(8) = (uy, Tuy Y = {T*uy,uy ) >(T*0, 8, ) =0,

(3.31) X (1) =y, Tuy ) = (T*up,uy ) > (T*uy,u, ) =0.
In summary, this lemma states that if condition (3.14) holds, then

a —b 0 0 O

b a 0 0 O

X(1)»10 0 x x x

0 0 x x x

0 0 0 x x

where again “x” represents uncertain positions.

Finally we note that for the case b=0 (multiple eigenvalues), similar results (a
2X2 diagonal block) still can be obtained. Even for the nongeneric case when ReA, =
ReA,=ReA;=ReA,, an argument analogous to Lemma 3.2 can still show the conver-
gence. It is interesting to see the asymptotic behavior of the general flow [1]

(3.32) X=[X,11,(G(x))]
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where G(z) is an analytic function defined on an open set containing the spectrum on
X,- The analysis, nevertheless, is much harder than (1.1) since we don’t have a system
as nice as (2.9) and we are still working on it.
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ON THE WIDTH OF THE INSTABILITY
INTERVALS OF THE MATHIEU EQUATION*

HARRY HOCHSTADT'

Abstract. It is shown that the widths of the instability intervals of the Mathieu equation are asymptoti-

cally given by
2m 4
—w__lio(£)]
4"[(m—1)] m

Recently the asymptotic widths of the instability intervals of the Mathieu equation
have been determined by Avran and Simon [1] as well as Harrell [2]. The purpose of
this note is to provide a rather simple method for the calculation of these widths. To do
s0, some formulas developed in the book by Meixner and Schaefke [3] will be used, and
for convenience their notation will be used.

The Mathieu equation is

(1) y"+(A—2h%*cos2z)y=0.

The eigenvalues of the periodic spectrum fall into four classes, as follows:

4y y' )=y (7/2)=0, (a3},
(1n) y'(0)=y(7/2)=0,  {az,41},
(1) y(0)=y’ (7/2)=0, {241}
(Iv) y(0)=y(7/2)=0,  {b,,}

These eigenvalues can be ordered as follows ([3],p. 119): a,<b,<a,<b,<a,<b;<a,
<... provided h>>0. One can easily show that for large n, a,,=(2n)?, b,,=(2n)?
ay,1=2n+1)% b,,,,=(@2n+ 1) The widths of the instability intervals are given by
b,—a,, and we shall demonstrate that for large k we have

8h2k

(2) bk—akém.

To derive (2) we shall make use of the continued fractions which the eigenvalues
satisfy. Corresponding to the four cases we have [3,p. 118]

1)) A—(@n)—— " AT
A—(@2n—2)* == A—4— A
h* h*

(2n+2)°—A— (2n+4)>—A—--"

*Received by the editors April 19, 1982. This work was supported by the National Science Foundation
under grant MCS-8103373.
Polytechnic Institute of New York, Brooklyn, New York 11201.
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4 4
(11) A—(@n+1p—— M
A—Q2n—1) == A—1—h
—h* h
C@n+32—A—(@n+5P-A—-"
4 4
(111) >\—(2n+1)2——h—2 h—2
A—(2n—1)2 == A—1+h
—h* h*
C(@n+3)P—A—(2n+5) —A—+"
h h*
v A—(2n)*—
(1) ( A—(2n—2)*—--—A—4
h* h*

 @n+2P A= @n+al-A—--

(I)-(IV) are transcendental equations, whose solutions are a,,, a,,,1, b2ps1s Dops
respectively.

To estimate the above continued fractions we recall the following facts. Suppose
we consider the following continued fraction:

Al A2 A3
(3) E+§;+§;+

and let p, /q, denote the k th convergent, where
4 »=4,, p,=4\B,, ¢q,=B,, ¢,=BB,+4,.
Then p, and g, satisfy the following recurrence formulas,

Poi1 =By Pyt A, 1 Pus
Gni1 =B, 19,t A1 9p—1s

(5)
with the initial condition given in (4). From (5) one can easily deduce that

k
Pr_Pr—1_ (=1 +leAi

6
© 9k Pr-1 .
An explicit solution for the g, can be found, as follows. Let
(7) ‘In:Ble"'B,,U,,.
Then
lJn—l n—1 0 1 Ak+l (O 0) (1
- B B . >
® (Un ) kl;Il (0 1)+BkBk+1 1 0 1), n=1.

To calculate b,, we return to the continued fraction (IV) and let

A= —h*
B,=A—(2(r—k))’

4,

—h?
(9) . ) k=1,2,---
B,=(2(r+k)) —7\}

}k=1,2,-~r-—1,
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Then we can rewrite the continued fraction (IV) in the form
~ 00 ~ ~
(10) }\_(zr)2+l’r—|:&+ 3 (Pik+m+l_ljk+m).
49—1 9% =0 \ h+m+1  Dk+m

To estimate the sum in (10) we note that A=(2r)? and B,=4k(k+r). Use of (6), (7),
(8) shows that

(11)

ﬁk+m+l _ﬁk+m _ _h4(k+m+l) __h4(k+m+1)

Geamer Gkam  Getme1Gkem [4k+'"(k+m)!(k+m+2r)!
r!

]2[4(k+m+1+2r)]

Equation (10) can therefore be estimated by

pr—l p~r h4(r+ b )
12 A—(2r 2+—-=T+0( .
(12) e 7s ré
Similarly a,, can be estimated from (I), with the 4,, B,, 4,, B, as defined in (9)
and also

(13) A,=—2h%, B=A\.
Then we find
Doy 2h4r p"r ( RA+D )
14 A—(Qr) P+l 22 =Sy .
( ) ( ) 9,1 q:9-—1 q, r6'

b,, is a solution of (12) and a,, a solution of (14). A comparison shows that the
asymptotic developments of a,, and b,, will agree up to terms of O(h*"/q,q,_,). Then
it follows that, with

B =A—(2(r—k)) =4k(2r—k),

4r 4r 4
(15) by, —a, =2 o 2k [1+o(”—2)].
49— 2 2r=1)1]? r

A similar analysis using the continued fractions for a,, ., and b,, ., finally shows
that

(16) b.—a L[HO(—’%)].

"alm-PL T \m
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FACTORED PRODUCT EXPANSIONS OF
SOLUTIONS OF NONLINEAR DIFFERENTIAL EQUATIONS*

STANLY STEINBERG'

Abstract. Lie transformations are used to represent solutions of initial value problems for systems of
nonlinear ordinary differential equations as exponentials of first order linear partial differential operators.
These exponentials are then expanded using an analog of the usual exponential identities. This expansion is
called the factored product expansion. Such expansions have been found useful in the study of magnetic and
optical lenses.

1. Introduction. In this paper we will discuss factored product expansions. of solu-
tions of initial value problems for systems of nonlinear ordinary differential equations,
that is, for problems of the form

2 y0)=10),  ¥(0)=y.
Here

y= o),

y()=(n(1).22(2), - (1)),

f)=(H(P)s - 1(2)),

where n is a positive integer, ¢ and y; are real parameters and y,(¢) and f;(y) are real
analytic functions with

f(0)=0.

We associate with the initial value problem the first order linear partial differential
operator

=S 9
L—Elf}(y)ayj

and then use Lie transformations (which are sometimes called Lie series) to write the
solution of the initial value problem in the form

y(t)=e'ty.

Because f( y) is analytic we can use a power series expansion to write

where each L, is a linear first order partial differential operator with homogeneous
polynomial coefficients, and where the degree of homogeneity of the coefficients of L,
is k.

*Received by the editors April 16, 1982, and in revised form September 23, 1982. This work was
partially supported by the National Science Foundation under grant MCS-8102683.

TDepartment of Mathematics and Statistics, University of New Mexico, Albuquerque, New Mexico
87131.
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A natural generalization of the exponential identities to this situation gives an
infinite product expansion

e'LitLlytLyt )= pFoFpF;. .,

where, again, F, is a linear first order partial differential operator with degree k
homogeneous polynomial coefficients. It is this last formula that we call the factored
product expansion. This formula is closely related to the noncommuting exponential
identities frequently called Baker—Campbell-Hausdorff formulas.

The Baker—Campbell-Hausdorff formulas have a long history and have important
applications in the study of Lie groups [7]. The applications we have in mind are quite
different from Lie group applications and, to our knowledge, first appeared in the
papers of Dragt et al. [1]-[5]. These papers use factored product expansions to study
magnetic and optical lens systems in a Hamiltonian mechanics setting.

Our main result, Theorem 1 of §4, gives a procedure for calculating all of the
exponents in a factored product expansion. This result is a generalization of Dragt and
Finn [1,Thm. 2 and Lemma 6] to a non-Hamiltonian setting. More importantly, our
method of proof is different from that of Dragt and Finn. This new method of proof
allows us to obtain some new results on the degree of approximation given by truncated
factored product expansions that should be useful in applications. We also note that
our results are easily specialized to the Hamiltonian setting.

This paper is organized as follows. In §2 we give a brief summary of the properties
of Lie transformations in a non-Hamiltonian setting. In this paper we use the name Lie
transformation to describe the transformation generated by the exponential of a first
order linear partial differential operator and the name Lie series to denote the power
series definition of the Lie transformation. Other works sometimes use this terminology
differently. We do not include any proofs because, with the exception of the noncom-
muting exponential identities, the proofs are elementary and can be found in the
literature [1]-[6], [8], [9]. The results on noncommuting exponential identities follow
from our results in §3. An expository account, with proofs, of these results on Lie
transformations and series along with extensive references to literature on the theory
and applications of Lie transformations can be found in Steinberg [8].

In §3 we give some preliminary results and in §4 we give the main result on
factored product expansions along with some new corollaries on the degree of ap-
proximation given by truncated expansions.

2. Lie transformations. Here, for the convenience of the reader, we state the basic
properties of Lie transformations. As we noted in the introduction, other accounts can
be found in the literature. A Lie transformation is an exponential of a first order linear
analytic partial differential operator in n variables.

M=

L= f/(y)Dp Dj:—a—’

j=0 j

where f(y) is an analytic function near y=0. A Lie transformation is then given by
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The right-hand side of the last equation is called a Lie series. The action of the Lie
transformation on a function g( y), analytic near y=0, is given by

eg(y)= EOL:L—!Zg(yF g%(f(y)'D)"g(y)-

Properties. We assume that f(y), g(y) and A(y) are analytic functions near y =0,
that @ and b are real constants, that ¢(¢) is a smooth real valued function and that L is
as above.

1) Convergence.

eg(y)

is a well defined analytic function of y and ¢ for y and ¢ small enough.
2) Time derivative.

4 =g/ (1) L= Ok (1)L,
3) Linearity.
e'“(ag+bh)=ae'lg+be' h.
4) Product preservation.
e'(gh)=(e"g)(e'"h).
5) Composition.
e'g(y)=g(ey).

We now suppose that P is another first order differential operator and define
successive commutators by

[L9 ']OPZP,
[L,-]'P=LP-PL,
[L,-1"P=[L,-]""'[L,P], n=l.

6) Similarity.
[oo] tn
e'tpe~t=e1p= ZOH[L, -]"P.
":

7) Function multiplier.
e'lge 'th=(e'g)h.
8) Noncommuting exponential identities.

27(2) 373) 474 515
et(L+P):etLetPet L e’ L e’ L e’ L> .

57) _A1@ 313 _ 212
=...e'L7% 1Lt LYy tLetPetL’

2@ 4 B3
etLetP:etL+tP+t W+ w + ...,
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where

L®=—1[L,P], w®=1[L,P],

and so forth. Here each L*) and W are k-fold commutators of L and P.
9) Differential equation property. If

y(t)=ety,
then

Y (0O)=f(y(1),  »0)=y.

3. Preliminary results. In this section we will derive a formula for the derivative of
an exponential of a time-dependent operator. Both this formula and the applications of
this formula use operators that are defined as analytic functions of first order differen-
tial operators or as -analytic functions of commutator operators. We define these
operators using infinite series. Because we use only formal series properties of these
expressions, we will not worry about the convergence of the series. We note that the
formula we derive in this section can be used to derive the noncommuting exponential
identities of the previous section.

Let

[o o]
A(z)= Y a,z*
k=0
be analytic near z=0 and assume that L is an operator. Then

[o o]
A(L)= Y a, L~

k=0
As we said before, we consider the series as a formal expression. However, if we know
all of the eigenvectors and eigenvalues of L, then this information can be used to
calculate A(L) in terms of 4 applied to the eigenvalues of L. If the coefficients a,
decrease like 7y, then it is possible to show that A(L) is well defined for first order
differential operators of the type we are discussing. In addition, if L is a bounded
operator and the power series of A(z) has a finite radius of convergence, then it can be
shown that A(zL) is well defined for sufficiently small scaler ¢.

We have already met one example:

A(z)=e".
In the next proposition we will use
_e*—1
A(z)= -
In the next section we will use
A(z)= .
()=

It is easy to see that the last A(z) is singular at i2«, and consequently the power series
of this function has a radius of convergence equal to 2«. Thus it seems unlikely that the
series for A( L) will converge for operators of the type we are considering. We also note
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that we will apply our formulas when the commutator operator [L, -] is used in place
of the operator L, and thus compute A([L, - ]).

The next well-known result is key to our computations.

PROPOSITION 1. If L(t) is a linear first order differential operator with coefficients
that are analytic in both t and y, then

d Lm_e[ ®,-1—1 1—e~[LO),- ]

A TN (L), @

Proof. Set L=L(t), L’=dL(t)/dt and then compute:

L/(t)eL(t) — L(l)

d , d %Lk %1% e
— :—2-.:2__2LleLkml
dr a k! 2 kY 2
) © 1 et
— 2 2 _k_'LmLIL m
m=0 k=m+

_ § § m'J' rm LJ

(m+j+1)! m! T

m=0 j=0
However,
m'j' m
—_— 1—7)d
(m+j+1)! fo (1=rYdr,
SO
d o (Vs a- U, ell1—1
Gl [lerlpe0NLgr= (eIl ' grel=5—"""]/¢
/o fo [L,]

Replacing 7 by 1 —17 in the above integrals gives the second form of the result.

4. Main results. Our main result is the following:
THEOREM 1. If

o0
L=3 L,,
k=1
where L, is a first order differential operator with homogeneous polynomial coefficients of
degree k, then

el = FDp PN Fx1). . .

where Fi(t) is a first order differential operator with homogeneous polynomial coefficients
of degree k. The equality is meant in the sense of formal series.

Proof. Before we begin the proof we note that if L; and L, are first order partial
differential operators with homogeneous polynomial coefficients of degree given by
their subscripts, then

[Lj’Lk] =L -1

Here we mean that L, , is another first order partial differential operator with
homogeneous polynomial coefficients of degree given by the subscript j+k—1. Note
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that if j=1 then commutation by L; does not increase the degree of homogeneity of the
coefficients of L,. This relationship between the commutator and the degree of homo-
geneity of the coefficients is a central aspect in our calculations.

Differentiate the proposed identity with respects to ¢:

The inverse of the proposed identity is given by

e_lL_—; PP e—FSe_FZeFFl'
Multiply the derivative of the proposed identity on the right by this to obtain

__e[plv‘]—l

L= F+ef &l h
[FH ] : [F29 ] 2
(Rl
-I—eF'eFZe Fle Fe™F
[F, -] 7
+ .
(R 1 (Pl
_ el lF,’+eF el 1 ”
[F, -] [£, -]
+e[F|-']e[F2v‘]£‘;]__lF3’
(5, -]
4 ...

To make the coefficient of the linear expressions in y zero, we need

Fi(0)= e[:lf)t)l_]l I

An obvious solution for this equation is
F(t)=tL,.

We now proceed to set the coefficient of higher powers of y equal to zero. Set
RM=L, and then for k=2 define

/
R(k):e_[Fk—I"](R(k—l)___ [Fk‘]’.] F,:__I ,
e[Fk—ls']-—l

"’ — k
F,=Rp.
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Here R(¥) means the terms of degree j in R™), and F, is determined by integration.
Some care must be used in evaluating the formula for R,. When k=1, the formulas
involve [L,, - ]. In this case we note that this commutator is a linear mapping on the
space of first order linear partial differential operators with degree kK homogeneous
coefficients, and that this space is finite dimensional. Consequently functions of [L,, -]
can be computed using spectral theory on finite dimensional spaces. When k> 1, the
powers series definitions of e” and z/(e”— 1) are used to compute functions of [L,, - ].
Things are set up so that

RO=E21 ppg o1
[F, -] [F_,, -]

and then our choice for F, gives
R¥P=0, I1sj<k,

which completes the proof.
Remark. 1If in Theorem 1 we replace ¢ by —¢ and take the inverse of the resulting
identity, then we obtain

e'L: cee e"FJ(_')e_FZ(_’)e—FI(_t).

We note that, in general, it will not be possible to compute the expressions exp(F})
or exp([ F, -]) in closed form or to do the necessary integrals in closed form. In such a
case F, may be determined using truncated power series in ¢, say through terms of
order m. The only thing that changes in the above proof is that all equations then mean
that the first m+ 1 terms of the power series in ¢ agree.

The next result estimates the error made when factored product expansions are
used to approximate solutions of ordinary differential equations.

COROLLARY 1. If

y(t)=e'ty

and

yk(t):eFl(‘)er('). .. eFk(‘)y’
then

k+1

[y(6) =y(2)[=Cylellyl

for some constant C,.

Proof. Because Lie transformations yield well defined analytic functions, both y(¢)
and y,(¢) are analytic functions of 7 and y. Thus we need to show that all terms in the
power series of y(t)—y,(t) of order lower than given in the estimate are zero. This is
exactly what the previous theorem does.

In another paper [9], we have given examples in one space dimension that show the
above estimates are the best possible. We note that in this elementary setting it is
possible to compute all of the needed expressions in closed form. As we stated above, it
is not possible, in general, to compute exp(L,) or exp([L,, -]) in closed form. In view
of this, the next result is useful in applications.
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COROLLARY 2. Given m>0, it is possible, using only power series techniques, to
determine y,(t) so that

m+1 k+1
() =y()=K,ylld™ + Cplelly]
for some constants K, and C,..
Proof. In the previous theorem use power series techniques to determine Fj,
1<j=<k through terms of order 1™ and then use the power series to determine exp(£;)
through terms of order ¢” and then write

yk(t)_—_eFler. coefk,

5. Comments. It is our belief that the factored product expansions are generically
divergent. Another way to say this is that the constants C, in Corollary 1 will, in
general, grow as k becomes large. The growth of the constants C, was confirmed by
some of the numerical experiments done for [9]. As stated before, the error estimate
given in Corollary 1 is best possible for the class of equations being considered [9].
However, in some special circumstances the errors may oscillate, giving better results
than our estimates indicate.
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ASYMPTOTIC INTEGRATION OF PERTURBED LINEAR
DIFFERENTIAL EQUATIONS UNDER CONDITIONS
INVOLVING ORDINARY INTEGRAL CONVERGENCE*

JAROMIR $IMSA

Abstract. In this paper, we consider asymptotic integration of nth order linear differential equations with
constant coefficients, modified by the addition of small functions. The integral smallness of the perturbation
functions is expressed in terms of ordinary convergence instead of the classic conditions which require
absolute integrability. The proof of our result is based on the Banach contraction principle.

1. Introduction. Statement of the result. We consider the scalar linear differential
equation
(1.1 x™+[a+p()]x"V+ -+ +[a,_ +p, ()] +[a,+p,(1)] x=0,
where a, are complex numbers and p,(¢) are continuous complex-valued functions
defined on the half-line 0 <¢<oco.

A classical asymptotic theorem (see Hartman [2, Thm. 17.2]) gives asymptotic

estimates for a fundamental system of solutions of (1.1): if the functions |p,(¢)|¢? are
integrable on [0, co) for some g=0 and if the real parts of roots A ; of the equation

(1.2) N4agN '+ - +a, A+a,=0
are distinct, then there exist n solutions x (¢) of (1.1) such that
(1.3) x}")(t)=(}\’;+o(t“'))exp(>\jt), 0<k<n—1 ast-oo0.

In this paper we shall obtain a similar result under the weaker assumptions that
the integrals

(1.4) foopk(t)t"dt

converge (possibly not absolutely) and that the roots of (1.2) are distinct. The case

A, =A,=---=A,=0 has been discussed by Trench [3].
Furthermore, instead of (1.4) we shall consider more general integrals
2O

with nonnegative constants p and q.
We now state our result.
THEOREM 1. Suppose (1.2) has distinct roots Ay,A,,- - ,\,. Let the complex-valued
functions p (t) be continuous on [ 0, c0) and satisfy the following conditions:
@ [P ()ldr<oo;
(ii) the integrals

foopk(t)exp{(p-i-iﬁ)t}t"dt, 1<k=n,

where p and q are nonnegative constants, converge ( perhaps conditionally) for
B=0 and also for all B=B;,,=Im(A;—A,,) satisfying Re(A,— X)) =p;

* Received by the editors July 24, 1981, and in revised form July 7, 1982.
¥ Department of Mathematical Analysis, J. E. Purkyné University, Janatkovo nam. 2a, 662 95 Brno,
Czechoslovakia.
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(iii) if p=0 and 0=<q<1 in (ii), then

[o o] o0
f t“’/ pi(s)s%ds|di<oo, 2<k=n.
t
Then (1.1) has n solutions x(t),- - -, x,(t) such that
(1.5) xj(.")(t)=(}\’j.+o(e_p’t“’))exp(7\jt), 0<k<n-—1.

This theorem contains a result concerning perturbations of the nonoscillatory
equation x” —x =0 (Trench [3]) as a special case.

2. Preparatory estimates. In the proof of Theorem 1 we shall use the following

lemma.
LeMMA 1. Let h(t) be a complex-valued continuous function integrable ( perhaps
conditionally) on the half-line [ ¢, ), where t,>0. Denote

H(t)=sup

n=t

Then the function h(t)t™ 9 is integrable for all =0 and

, =

[ n(s)ds

n

(2.1) [7n(s)smeas=2m (), iz,
t
Further, let K(t) be a continuously differentiable complex-valued function satisfying
(2.2) |K(t)|=Kye*t™ 1
and
(2.3) K'(1)|<K et

on [ty, ), where K, K|, a 70 and q=0 are real constants.
(i) If a<<0, then the integral of K(t)h(t) converges and

(2.4) ’ftooK(s)h(s)ds

(ii) If a>0, then

<(Ko+la| 'K, H(t)e 179,  ty<i<co.

(2.5)
j;tK(s)h(s)ds S[(K0+°‘—lKl)taqH(to)t"exp{ a(toz—f) }
1o+t

+2"a"K,H( )+K0H(t)]e“'t“’ for ty<t<oco.

2
Proof. Denote

H,(t)=f’°°h(s)ds.

Integrating by parts yields
t
f"h(s)s—"ds= —S—"Hl(s)‘: *ft'qs—""Hl(s)ds.
t t
Since H(t)—0 as t— oo and
[e ] [e ]
[ lasem () ds=H(r) [ a0 ds,
t t

the integral of A(t)¢™ 7 converges and satisfies (2.1).
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Assuming now a function K(¢) to have the properties stated in the hypotheses, we
can write

2.6) [ 'K(s)h(s)ds= =K (), ()] + [*K () i) s
and
(2.7) |[KD(1)H\(1)|<KH(t)e*t™9,  1=t,, j=0,1.

If a <0, then (2.7) implies that
0 0 —1
(2.8) [ K (s)H (s)| ds<K\H(1)™7 [ e ds=K|a| " H(1)e170.
t t

By (2.6)-(2.8), /* K(t)h(t)d! converges and (2.4) holds.
If a>0, let T=(ty+¢)/2. From (2.7),

@9)  [1K(s)H(s)|ds=["|K (s Hi(s)] ds+ 1K () Ei(s)] ds

<KH(to)i5* 1 e ds+K,H(T)T7 [* e ds
— 00

— 00

=a" 'K, [159H(ty) e+ H(T )T %e*].

By (2.6) with t=1¢, and ¢, =1, (2.7) and (2.9) the inequality (2.5) is valid for f,<t<oco.
This completes the proof of Lemma 1.

Remark 1. If K(t) satisfies (2.2) and (2.3) with a =0, then, in general, the inequal-
ity (2.4) is useless. In this case,

(2.10) MOOK(s)h(s)ds ds,

<IK(|[“h(s)ds|+ [ 1K (5)

/wh(v)dv

because of (2.6). However, it is now necessary to show that the integral on the right of
(2.10) converges.

Remark 2. The right-hand sides of (2.4) and (2.5) can be written as
(K0+Kl)m(t0’ t,a’q)eatt—q’

where the function m(¢,?,a,q) is independent of K(¢),

(2.11) lim m(ty,2,a,q)=0,  £,>0
t— 00

and

(2.12) lim supm(ty,t,a,q9)=0.

fo= ™ (=4,

These properties of m(t,,t,a,q) are the only ones which will be used in the proof of
Theorem 1.

The proof of (2.11) and (2.12) is easy. Indeed, if a<0, then m(¢,,t,a,9)=
(1+|a|"")H(t), and the relations are valid. If «>0, then

ty—1t
’"(’0”’“"1)5(1+a“‘)ta"H(to)t"exp{'a(—°2 )}

1o+t
+2qa“‘H( 02 )+H(t), 1=1,.
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Obviously, it is sufficient to verify (2.12) for the function
m(ty,1)=tg 'H(ty)t7exp{a(ty—1)/2},  a>0.

We shall show that

(2.13) supm(ty,t) <29H(1y)(1+2%; M),  1t,>0,

=1,

where M is an upper bound of e~ *t7 on [0, o). Observe that m(t,,¢)<27H(t,) for
to<t=<2t,. Further, t(t—ty,) " '=<2 for t=2t,. For such a ¢,

m(to,1) =295 "H(t,) t(t—1,) " e sN_(,_,.) 2
<2%59H(t,)-27- M.
Consequently, (2.13) is valid.

3. Proof of Theorem 1. To avoid unnecessary subscripts, we let r be a fixed
integer (1=<r=<n) throughout the proof. We shall show that under the conditions of
Theorem 1, there is a solution x =x, of (1.1) satisfying (1.5) with j=r.

If £,>0, let U[¢,, ) be the space of all functions u(¢) in C"™ [ ¢,, 00) satisfying

(3.1 u(t)exp(—A,t)=0(e *t79), 0<k=n—1, ast- 0.
Then U[¢,, o) is a Banach space with respect to the norm
n—1

(3.2) lul=sup 3 |u®(¢)exp(—A,t)|eP2e.

1=ty k=0

In the following, assume that t=¢,. From (3.2) and the identity
(u®(2) exp(=A, 1)) = (u**D(1) =N ,u®(1)) exp(—A, 1),

we find that

(3.3) |u®(t)exp(—=A,t)|<|ulle™*t™7  (0<k=n—1),
and
(3.4) |(u®(t)exp(=N,0))|=(1+ N ))llufle=?t7  (0<k=n—2)
ifueU[t,, ).

For convenience, let
(3.5) Lj(t)Zf' 2 Nk (s)exp(A,—A))sds  (1=j=n),
and fork=1

t — .

(36 Lulul(n)=[ puls)exp(-As)uO(s)ds  (1=).k=n),
where

ty if ReA,<ReA,—p,
fo;= o if ReA;=ReA,—p.

LEMMA 2. Under the hypotheses of Theorem 1, the functions Li(t), L;[u](t) are
defined on [ t,, o) and satisfy the inequalities

(3.7) ILj(t)|£mj0(t0,t)t"’exp{(Re?\,—Re)\j—p)t} ,
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and
(3.8) L, [u](8)|<llullm ;(5,2)t Texp{(Re,— ReX,—p)t}

for every uin U[ty, 00) and 1=<j, k=<n. Here the functions m ;(t,t) are independent of u
and satisfy

(3.9) lim m;,(15,1)=0,  £,>0,
t— 00

and

(3.10) lim supm (t5,1)=0.

1= 00 y=y,

Proof. If ReA ;#Rel,—p, let

n
h(t)= 3 N7 p,(1)e*t?,
and k=1

K;(t)=t"%exp{(A,—A,—p)t}.

By condition (ii) of Theorem 1, [®h(t)dt converges. Obviously the function K ()
satisfies (2.2) and (2.3) on [#y, 00), with a=ReA,—ReA,;—p#0, K,=1 and K,=
A, —X\,;—p|+gty . From Lemma 1 and Remark 2, the integral

Lj(t)=‘/;tKj(s)h(s)ds

converges and satisfies (3.7), with m (,,¢) satisfying (3.9) and (3.10). If ReA ,=ReA,
—p, we can apply Lemma 1 to the integral

L(1)= fwh (s)s™9ds,

where

n

n(0)= 3 X7 pn)ep{(A, =)o,

because, by condition (ii), /* & ,;(¢)dt converges. This proves (3.7).
Now (3.3) with k=n— 1 implies that
o ¢] -1 o ¢] _
S Ipi(s)exp(=,)u=(s)| ds=lul [ Ip,(5)]s~“exp{ (Re, —Red,—p)s} ds
(o]
<[lule*exp{(ReX,~ReX,=p)} [ |pi(s)|ds

if ReA ;= —p+ReA,, which shows that L;[u](¢) is defined and (3.8) holds for k=1.

(Here we need assumption (i) of Theorem 1.) If ReA , <—p+ReA,, let T=(z,+1)/2.
From (3.3) withk=n—1,

fttlp,(s)exp(—)\js)u(”_‘)(s)l ds
0
=fT|p,(s)exp(—>\js)u("")(s)l ds+ft|p|(s) exp(—)\js)u(””')(s)| ds
t T
T
<[lultg *exp{(ReX,~ReX,=p)T} [ |p\(s)]|ds
0

+|lullT~9exp{ (ReX,—ReX,—p)t} f;]p,(s)l ds, u€U[ty, ).
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Therefore (3.8) with k=1 holds if

to—'t

_ o0 [>e]
m;(t,1)=tg "t"exp{(Re}\r——Re}\j—p) } f lpl(s)|ds+2"f |p(s)] ds.
9 (to+1)/2
(The properties (3.9) and (3.10) of such a function m;,(¢,¢) were proved at the end of
§2.)
Now, let k be a fixed integer, 2<k=n. Let h(¢)=p,(t)t%e** and K(1)=
1~ 9exp{ —(}\j+p)t}u‘""‘)(t). Then K(t) € C'[#, %) and, by (3.3) and (3.4),

(3.11) |K,(1)|<l|ul) exp(a,t)r=24
and
(3.12) |K;(£)|=Mlul| exp(e, )72,

where a; =ReX,—ReX,—2p<ReX,—Re\,—pand M=1+ |+, —\;—p|+4gt5 . To
prove (3.8), we can also apply Lemma 1 to the integral

Li[u)(r)=[ K (s)h(s)ds,

the number a#0 in (2.2) and (2.3) is given by

ReA,—ReA;—p if ReA,—ReA;—p#0,
) -, if ReA,—ReA,—p=0 and p>0.

In fact, from (3.11) and (3.12), (2.2) and (2.3) are valid for K,=||u||t;? and K,=
Mi|u||ty 9, since a; <a.

It remains to prove (3.8) in the case where ReA;=ReA, and p=0. Using (2.10), we
obtain

(3.13) |ij[u](t)|=’j;oon(s)h(s)ds

[~
<[l (o) |+ Ml [5724|()] s,
where

H,(t)=j;wh(s)ds=j;wpk(s)s"ds.

Inequality (3.13) shows that (3.8) holds if the integral on the right-hand side (3.13)
converges and

t"fws"z"IH,(s)| ds—>0 ast-oo.
t
If 0=g¢<1, the last assertion follows from condition (iii) of Theorem 1. If g=1, we may
apply Hospital’s rule:
f‘oo s_2q|1{l(s)| dS =1lim t—‘quHl(t)l —
79 (qt—q—l)
This completes the proof of Lemma 2.

lim
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Returning to the proof of Theorem 1, we define the operator T by

(3.14) T[ul()=— 3 cexp(A,)5[ul(0).
where /=
(3.15) Ij[u](t)=Lj(t)+k§1ij[u](t), 1<j<n.

Here L(t), L;[u](¢) are the same as before (see (3.5) and (3.6)) and the numbers c,
satisfy the system

n
k_|0 if0<k=n—2,
(3.16) 2N 1 ==t

By Lemma 2, the functions I;[u](¢) are defined on [ ¢, o) for every u € U[¢,, 0)
and

(3.17) |Ij[u](t)|s(1+||u||)mj(t0,t)t“’exp{(Re)\,—Re}\j~p)t}, 1<j<n.

For any elements i, # in U[¢,, ),

(3.18)

|\ La)(0) L al(n)|=

élL,k[a—ﬁl(t)

<|la—alm;(t,1)t %exp{(ReX,~ReX,—p)t},  1<j<n,

where the functions m (¢, ) in (3.17) and (3.18) are independent of u and

(3.19) xl—i.l?o m;(15,1)=0,  1,>0,
and
(3.20) lim supm (z,,1)=0.

o™ =y,

Consequently, I,[u] € C'[t,, o0) and, by (3.5) and (3.6),
(20 [Ld)=Li(0)+ S Lilul)=exp(-A1) S p(0)x0(0),
k=1 k=1

where x(¢) =exp(A, 1)+ u(?).
From (3.14), (3.16), (3.21) and induction,

(3.22) T®OTu](t)=— é e;Xexp(N 1) L[ul(r)  (0<k=n-—1)
and

(3.23) T(”)[u](t)+Ié]pk(t)x(”_"’(t)=— é c,)\’j'.exp(}\jt)lj[u](t).

From (3.17) and (3.22),
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G2) [Tl ep(AN+HD) T JeXpn (.00
j:

0<k<n—1, ucU[ty,»).

Thus T'[u] is in U[t,, ) for every u€ U[1,, ) (see the definition (3.1) and property
(3.20) of m (#,,1)). From (3.18) and (3.22),

(T [a)(r) ~T®[a)(r)) exp(=N0)|<lla—dl| I |eNe|m,(t0,8)e>77,
J=1
and so, by the definition (3.2) of the norm in U] ¢,, o),

\Tla)-Tlall<la—dl sp S S |eNehm(10.1)

1=ty k=0 j=1

for arbitrary functions i, 4 in U[¢,, o). By (3.20), there is a ;>0 such that

n—1 n
sup >, > lcj}\’j.lmj(to,t)< 1.
1zty k=0 j=1
For such a ¢, the operator T is a contraction mapping of the space U[?,, ») into

itself. According to the Banach contraction principle ({1, p. 11]), there exists u, such
that T[u,]=u,, i.e., T[u,](t)=u/t) for t,<t<oo. From this identity and (3.21)—(3.23)
it follows that x,(z) =exp(A,?)+u,(¢) is a solution of (1.1) on [¢,, o). This solution can
be extended to [0, 00). Using (3.19) and (3.24) with u=u,=T[u,] we find that this
solution satisfies (1.5) with j=r. This completes the proof of Theorem 1.
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BOUNDARY VALUE PROBLEMS FOR
AN nTH ORDER LINEAR DIFFERENCE EQUATION*

ALLAN C. PETERSONT

Abstract. We are concerned with boundary value problems for the nth order linear difference equation
Pu(m)=2_oa,(m)u(m+j)=0, where a,(m)=1 and ag(m)#0. We give necessary conditions for the
coefficients a;(m) for Pu(m)=0 to be (/,n—/)-disconjugate. The Green’s functions for (/,n—/)-boundary
value problems, 1=</<n—1, are also considered.

Key words. linear difference equation, boundary value problem, disconjugate, Green’s function

We are concerned with the nth order linear difference equation

(1) Pu(m)= Y a,(m)u(m+;)=0, mel,
=0

where the coefficients are defined on either the finite “interval” I=[q,b]={a,a+

-,b}, a and b integers, or the infinite “interval” I=[a, 0)={a,a+1,---}, a an
integer. We assume a,,(m)=1 and ay(m)+0 for m € I. Solutions for (1) are defined on
I", where I"=[a,b+n] when I=[a,b], and I"=1 when I=[a, ). A lot of notation
used in this paper is the same as used by Hartman in [1].

We now introduce an adjoint difference equation [3, p. 289] of (1). To this end we
first define quasi differences D, z(m) as follows. If z(m) is defined on I”, then

Dyz(m)=z(m), mel".

a,(m)
ao(m)

) D z(m)=D,_,z(m+1)+—5—z2(m), meI"*

for 1 <k=n. It can easily be shown that

(3 Dyz(m)= g ao(—_i_))

for 0=<k=n. We then define the adjoint operator P* and adjoint difference equation
by the equation

4) P*z(m)=D,z(m)=0.

By use of (3) with kK =n we could also write this as (see [3, p. 289])
—(m+j)

5 P*z(m S AR

(5) (m)= g )

If u(m) and z(m) are defined on I”, then as usual, the Lagrange bracket of z(m)
and u(m) is defined by

z(m+j)

z(m+j)=0.

(6) {z;u}=ni D,z(m)u(m+k), mel'.
k=0

*Received by the editors February 16, 1982, and in revised form August 10, 1982.
"Department of Mathematics and Statistics, University of Nebraska, Lincoln, Nebraska 68588.
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If u(m) is defined on ", then we define the usual difference operator A by
Au(m)=u(m+1)—u(m), melr" .

If u(m) and z(m) are defined on I", then by operating on both sides of (6) by A, it
is easy to obtain the Lagrange identity

(7) —;0((’::1)) Pu(m)+u(m~+n)P*z(m)=A{z;u}, meEl

For each p,0<p=n—1, define u,(m,t) to be, for each fixed ¢ €1, the solution of
(1) satisfying the initial conditions

u,(t+k,1)=8,,,  k=0,--,n—1,

where §,, is the Kronecker delta. Similarly, let z,(m,?), for each fixed t€1, be the
solution of (4) satisfying the initial conditions

Dyz,(t,t)=8,,, k=0,--,n—1.

By the Lagrange identity (7), we get that for fixed s,s€1 {z,(m,s);u (m,t)} is con-
stant in I'. Hence

{zp(m,s);uq(m,t)}|m=s= {zp(m,s); uq(m,t)}|m=,.
It follows easily from this that

(8) u(s+p,t)=D,z,(t,s), O0=<p,q=n—1, s,t€L

These are very important formulas. (See [4(6)] for the analogous results.)
Let u,(m),- - -,u,(m) be functions defined on 7”. Then as in [1] we define

ul(m) “k(m)
Wluy, - u,)(m)= ul(m"{j.l) “k(m'-i'-'l)
ul(m+k—l) uk(m+k—l)

formel" ' % 1<k=<n.

We can assume that our difference equation (1) is defined on (— 0, 00) = {integers}
by defining a;(m)=a;(a), m=<a and a,(b) for m=b. This will be assumed whenever
necessary in the remainder of this paper.

It is easy to use (8) to derive

THEOREM 1.

W[“O(m’t)" o »uk—l(m»t)]|m=s+n—k: W[Zn—k(m»s)" ' 'azn—l(m*s)]|m=t
for k=1,--- n.
COROLLARY 2. Assume t+n—1<s. The difference equation Pu(m)=0 has a non-
trivial solution u(m) with
u(t+j)=0, j=k, --,n—1,
u(s+j)=0, j

Il

n—k,---n—1,
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iff the adjoint equation P*z(m)=0 has a nontrivial solution z(m) with

z(t+j)=0, j
z(s+j)=0, j

0, ,k—1,
0, ,n—k—1.

A solution u(m) of (1) is said to have a zero at r&I" provided u(¢)=0. We say
that u(m) has a generalized zero (see [1]) at ¢, provided u(¢)=0 when =4 and, when
t>a, either u(¢)=0 or there is an integer k, 1 <k <t—a, such that (— 1)*u(t—k)u(t)>0,
and, if k>1, u(¢t—k+1)=--- =u(t—1)=0. A solution u(m) will be said to have a
(k,n—k)-pair of zeros in I" provided u has zeros at #,1+1,---,1+k—1, followed by
n—k generalized zeros at s,s+1,---,s+n—k—1, where ast<t+k—1<s<s+n—k
—1=<b+n. We will say that (1) is (k,n— k)-disconjugate on I", provided no nontrivial
solution has a (k,n— k)-pair of zeros in I". We say that (1) is disconjugate on 1" if no
nontrivial solution of (1) has n generalized zeros on I".

In the following result we do not assume (1) is disconjugate on I”. With this in
mind compare the following result with [1, Thm. 5.2].

THEOREM 3. Assume I=[a,b] and that (1) is (I,n—[)-disconjugate on I" for a fixed
le{l,---,n—1}. Then

a,(m) aq(m) e gy(m)
(9) (_l)k(n+1) o, (m+1) a,(m+1) a1+k—2(’”) >0
o pir(mtk—1) o (mtk=1) ... a(mt+tk—1)

formelI'"*(I°=1) for k=1,- -, card I. (Here a;(m)=0 for j>n or j<0.)
Proof. We prove (9) by induction on k. For k=1 we want to show that

(—1)" o (m)>0, mel.
If we assume not, then there is an m, €1 such that
(=" ay(my)=<0.
Let u be the solution of (1) such that

u(my+j)=0, jE{0,---,n}—{l},
u(my+1)=1.

By use of (1) evaluated at m, we get that
u(my+n)=—a(my)u(my+1)=—a(m).

Since u(my+I1+1)="--- =u(my+n—1)=0, and

n+i+1

(=1)""u(my+Du(my+n)=(-1) a,(my)=0,
u(m) has a generalized zero at m,+n. Hence u has an (/,n—/) pair of zeros at
my<my+ [+ 1, which is a contradiction. Hence (—1)"'a,(m)>0 for me 1.

Assume k>1 and the inequalities (9) are true with k replaced by 1,2,-- - k— 1.
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Assume
a(my) e ey (mg)
D= o (mo+1) oy (met1) —0.
o (metk—=1) ... a(mytk—1)

Then there are constants 4,,- - -, 4,, not all zero, such that

(10) a,(my) A, +ap(my)A, +oot gy (mg)A,=0,
a,_y(my+ 1)A|+0‘/(’"0+1)A2 +-oot 0‘1+k~2(m0+1)Ak:0,

o1 (mgtk—1)4, +--+  a(myt+k—1)A4,=0.

We consider the two cases /+k<n and /4 k>n. We will show that both cases lead to a
contradiction.
First assume /+ k=<n. In this case let u(m) be the solution of (1) such that
(11) u(my+j)=0, 0o=sj=<Ii—-1,
(12) u(mo+i+j)=4,,,, 0<j=<k—1,

and if [+k<n,
u(my+l+k—1+j)=0, 0<jsn—I—k.

Note that u(m) is a nontrivial solution, as not all 4,,- - -, 4, are zero.
Using the first equation in (10), Pu(my)=0, (11) and (12) yields
u(my+n)=0.

Proceeding in this fashion we finally get, using the k th equation in (10), Pu(m,+k—1)
=0, (11) and (12), that

u(my+n+k—1)=0.

But then u(m) is a nontrivial solution of (1) with an (/, n—1I)-pair of zeros at my<m,+
[+ k, which is a contradiction.
Now assume /+ k>n. In this case let u(m) be the solution of (1) satisfying

(13) u(my+j)=0, 0o=j=<I—1,
(14) u(moy+i+j)=4,,,, 0=j=n—lL
In this case (10) becomes
(15)
a,(my)4, +o At a,(mg)d, =0,
ot

o (my+1)4, o, (my+ 1A, +a,(my+1)4,_,,,=0,

o, 1 (my+l+tk—n—1)4, + -+ a,(my+I+k—n—1)4,=0,
a, (my+I+k—n)A, +--+ a,_(myti+k—n)4,=0,

o, (my+k—1)A4, +--+ a(myt+k—1)4,=0.
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Using Pu(m,)=0, (13) and (14), we get the equation
a(mg)Ad,+ - +a,_(mg)A,_ . +a,(my)u(my+n)=0.
Combining this with the first equation in (15), we get that

an(mO)[u(m0+n)—An—l+l] =0.
Hence
u(mo+n)=4, ..
Similarly, using Pu(m,+1)=0, (13), (14) and the second equation in (15), we get that

u(my+tn+1)=4, ,.,.

Proceeding in this manner we finally get, using Pu(m,+/+k—n—1)=0, (13), (14) and
the (/+k—n)th equation in (15), that

u(my+Il+k—1)=4,.
Since at least one of A4,,---,4, is nonzero, we now know that u(m) is a nontrivial
solution of (1).

Using Pu(my+1+k—n)=0, (13), (14) and the (/+k—n+1)st equation in (15),
we get that

u(my+1+k)=0.
Finally, using Pu(m,+k—1)=0, (13), (14) and the kth equation in (15), we get that
u(my+n+k—1)=0.

But then u(m) is a nontrivial solution of (1) with an (/,n—/)-pair of zeros at my<<m,+
I+ k, which is a contradiction. Hence D 0.
If we assume (9) is not valid, then there is a m, € I'~* such that

(_ l)k(n+1)D

a,(mo) a,+|(m0) s apg—(mg)
E(——l)k("+1) o (mo+1) o, (mg+1) o agao(met]) <0.
al~k+l(m0+k_1) al-k+2(m0+k_1) a,(m0+k—l)

Let u(m) be the solution of (1) satisfying the boundary conditions
u(my+j)=0, 0o<j=<I—1,

u(my+1+k+j)=0, 0<jsn—1I1-2,
u(my+n+k—1)=1.
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Evaluating (1) at my, my+1,- - -,my+k—1 respectively, we are lead to the equa-
tions

a,(mo)u(mo-l-l)+a,+l(m0)u(m0+l+ 1)
+ ot (my)u(mo+I+k—1)=0,
a,_(my+Du(my+1)+a,(my+1)u(my+1+1)
+ - dap e (my+ Du(my+1+k—1)=0,

o (motk—Du(my+1)+a,_ (my+k—1Du(my+I1+1)
+ - ta(mytk—Du(my+Ii+k—1)=—1.

Solving for u(my+1+k—1), we get that

- a,(mg) g —a(mg)
u(m0+l+k—1)=T . .
o o mytk=2) ... a(my+k—2)
Hence
(=) "u(my+1+k—1)
(_1)(k—l)(n+l) “/(mo) 0‘1+k—2(m0)
R "
@ jiomotk=2) -+ o (motk—2)

so u has a generalized zero at m,+k—1. Hence u(m) is a nontrivial solution of (1)
which has an (I/,n—[)-pair of zeros at my<m,+ I+ k, which contradicts the (/,n—1)-
disconjugacy of (1) on I". Hence

(__ l)k("+l)D>0,

and the proof is complete. O
Let U(m,») be the Cauchy function (see [1]) for (1). That is, for each fixed
vEla,b], U(m,») is the solution of (1) satisfying

U(V+j,V):O, j=1,--',n—1,
U(v+n,v)=1.

THEOREM 4. if we assume (1) is (k,n— k)-disconjugate on ["=[a,b+n] for a fixed
k,1=<k=<n—1, then the Green’s function G,(m,v) for the problem

Pu(m)=f(m),
u(a+j)=0, 0<j<k—1,
u(b+n—j)=0, 0<j<n—k—1
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exists. It is defined on 1" X I and can be expressed in the form:

0 u,(m,a) o u,_(m,a)
tk+1 k41 -
(16) Gk(m,v)=—1!)- Ub+k+1,v) u(b+k+1,a) u, (b+k l,a),
U(b+n,v) u(b+n,a) -+ u,_(b+n,a)

for m=v, and for m>vp

U(m,») u(m,a) o u,y(m,a)
+k+ k41
(17) Gk(m,v)=% Ub+k+1,v) u(b+k+1,a) un_,(b+k+1,a),
U(b+n,v) u(b+n,a) -+ u,_(b+n,a)
where
u(b+k—1,a) -+ u, (b+k—1,a)
D: RPN - S
u(b+n,a) «o- u, (b+n,a)

and u;(m,a) are defined as before (8).

Proof. The proof of the existence is elementary and will be omitted. We will show
that the Green’s function G,(m,») is given by (16) and (17). The Green’s function
G,(m,») is characterized (see [1,p. 20]) by PG, (m,»)=3§,,, for (m,p)E1"XI, where
d,,, is the Kronecker delta, and where v(m)= G, (m,») satisfies the boundary condi-
tions

(18) o(a+j)=0, 0<j<k—1,
(19) o(b+n—j)=0, 0<jsn—k—1.

Define G(m,v) on I" X I by the right-hand side of (16) for m=<w, and by the right-hand
side of (17) when »<<m. It suffices to show G(m,r) satisfies the above properties that
characterize G(m,»).

Assume throughout this paragraph that mE€[a,a+k—1]. We now show that
v(m)=G(m,r) satisfies the boundary conditions (18). If m =, then by (16) we get that
G(m,v)=0. If v<m, then by (17)

. U(m,v) 0 (|
G(m,v)=— ‘
U(b+n,v) wulb+n,a) -+ u,_(b+tn,r)

Butasv<m=a+k—1, so Uim,r)=0 in the above determinant. So again G(m,»)=0.
Hence v(m)= G(m,») satisfies (18).

Now assume me&[b+k+1,b+n]. Then m>p, and it follows from (17) that
G(m,v)=0. Hence v(m)=G(m,r) satisfies (19).

It remains to be shown that PG(m,»)=§,, for (mpv)EI"XI. If m>p, then
PG(m,v)=0 follows easily from (17). Similarly, if a=m<wy—n+1, then PG(m,»)=0
follows easily from (16).
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Assume a<v—n+1=<m<uw. Using (16) and (17), we get that

17om 0 aj(m)uk(m+j’a) aj(m)un(m+j’a)
PG(m,v)=— 3
D
=0lU(b+n,v) u(b+n,a) <o+ u,(b+tn,a)
, . a(m)U(m+j,p) .- a(m)u,_ (m+j,a)
+3 PP “ee
/=rmmtH U(btn,v) u,_\(b+n,a)

Using Um+/,v)=0,j=v—m+1,-- -, n, we get that

0 Pu,(m,a) -+ Pu,_(m,a)
PG(mv)= =0.

Ub+n,v) wulb+tn,a) --- wu, (b+n,a)
Finally, consider the case m =». Using (16) and (17) it is easy to see that
0 ag(W)u(v,a) - ag(v)u,_\(v,a)

PG(V,V)—-_—'I—
Ub+n,v) u(b+n,a) coou,_(b+n,a)

“O(V)U(V,V) o ao(”)“n—l(”aa)

> .
U(b+n,v) co+ u,_(b+n,a)

PU(v,v) «+- Pu,_(v,a)
+ e oo .
Ub+n,y) -+ wu,_(b+n,a)
Since the last determinant is zero, and U(»,»)= —(1/ay(?)),
PG(v,v)=1.

DEFINITION. Let 1=p<n—1. We say that Pu(m)=0 is p,-disconjugate on I”,
provided there is no nontrivial solution of Pu(m)=0 such that u(a+;)=0,0=<;<p—1,
and u(m) has n—p generalized zeros in [a+p,b+n].

For results concerning p,-disconjugacy for differential equations, see [5].

Notation. Assume u,,- - -,u, are functions defined on some interval J, and p(j) €J,
1<j=<k. Then set

w(p() o ulp(1)
D(p(1),- - u(k))= “l(.“’(.z)) “k(.ﬁf(.z)).

u(p(k)) - ulp(k))
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THEOREM 5. Suppose that (1) is p,_,~disconjugate on 1". Let u,(m), 1<j<k, be a
solution of (1) such that u(a+1)=0,0=<I<n—j—1and (—1)’"'uj(a+n—j)>0. Then

Dk(l"“)»' : 'nu'(k))>0
foratn—k=p(1)<--- <u(k)=b+n. In particular
w l(m)=W(uy, - ,u,)(m)>0

foratn—k=m=b+n—k+1.

If one reads the proof of [1, Prop. 5.2], it is easy to see how to prove this result. In
the proof of Prop. 5.2 it need not be true that ¢, #0 as claimed, because it is possible
that uy(1)=a+n—k+ 1. This is easy to correct.

Acknowledgment. The author would like to thank L. Jackson and the referee for
their help with this paper.
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EIGENVALUES OF ANALYTIC KERNELS*
G. LITTLE' anp J. B. READE'

Abstract. It is shown that the eigenvalues of an analytic kernel on a finite interval go to zero at least as
fast as R~ " for some fixed R<<1. The best possible value of R is related to the domain of analyticity of the
kernel. The method is to apply the Weyl-Courant minimax principle to the tail of the Chebyshev expansion
for the kernel. An example involving Legendre polynomials is given for which R is critical.

Key words. eigenvalue, integral equation

Introduction. Let E; denote the ellipse with foci at =1 and semi-axis sum R>1.
We prove the following theorem.

If K(x,t)=K(t,x)E€C[—1,1]% and for each tE[—1,1] there is an analytic con-
tinuation to K(z,t) for z inside Ey, which is uniformly bounded in z,t in this range, and if
the operator

1
Tf(x)= [ K(x.0)f(r)d
has eigenvalues
N e S R

then \,=O(R™").

This improves on the estimate O(R~"/*) obtained by Hille and Tamarkin in 1931
using infinite determinants. Our method is to use Chebyshev polynomials to approxi-
mate K(x,t) on [—1,1]? by a kernel of finite rank, and to relate the operator norm of
the difference kernel to the nth eigenvalue of K(x,?) by means of the Weyl-Courant
minimax principle. We give an example to show our estimate is best possible by nth
powers.

1. The Weyl-Courant minimax principle.
LemMmA 1. If T is any compact symmetric operator on a Hilbert space H with
eigenvalues

N e e ERE

and if S is any operator of rank =n, then
IT=S[=I\, 441

Proof. Let (¢,) be orthonormal eigenfunctions corresponding to (A,). Then we can
choose

=19, tap,t - T, 9,4

*Received by the editors June 2, 1982.
TDepartment of Mathematics, The University, Manchester, England M13 9PL.
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with ||¢||=1 such that S¢=0. Therefore

2 2 2
”(T_S)‘f’” :||T¢|| :”>‘1“1¢’|+7\2“2¢2+ T +)\n+1an+|¢n+1”

2 2 2
:P\lal| +|A20‘2l +--- +|7\n+1an+1l
2 2 2 2
=\, (l“ll o)+ o e, )
2
:lxn+l| .

The lemma follows.

2. Chebyshev expansions. Let T,(cosf)=cosnf denote the nth Chebyshev poly-
nomial.

LEMMA 2. If f(z) is analytic inside Eg, then f(z) has an expansion in Chebyshev
polynomials

f(z)=%ao+§a"n(z)

valid for z inside E. If f(2) is bounded inside Eg, then a,= O(R™").

Proof. For z inside E, we have z=%(w+w™') where R™'<|w|<R. Therefore
2f(3(w+w™1)) is analytic for all w satisfying R™'<|w|<R, and so has a Laurent
expansion

2f(%(w+w_')) = § aw"

- 00

valid in this range, where
a :iff(l(w+w"))w_"_'dw,
"o C 2

C being any contour lying in R~'<|w|<R which circulates the origin once positively.
Clearlya_,=a,, and so

[oe] [o0]
2f(%(w+w"')) :a0+2a,,(w"+w_")=a0+22an7:,(%(w-l—w“'))
1 1
for all R™'<|w|<R. Hence
1 [o0]
f(z):5a0+2an7:1(z)
1

for all z inside Eg. Taking C to be the circle with center at the origin and radius r
satisfying R~ '<r<R, we have

la,|<2Mr™",
where M =sup|f(z)| over z inside E. Hence, if we let r > R, we obtain

la,|<2MR".
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3. Proof of the theorem. By Lemma 2 we have
1 [e o]
K(x.0)=5ay(1)+Za,(1)T,(x)
1

for all x,s€[—1, 1], where a,(t)=O(R™") uniformly in . Taking the contour C of the
proof of Lemma 2 to be the unit circle, we obtain

_l 7 —inf
an(t)——ﬂf_”K(cosé?,t)e de,
which shows that a,(¢) € C[—1, 1]. Therefore, if we define
1 h
Sn(x,t)=§ao(t)+20k(t)Tk(X),
1

we have a continuous kernel of rank <n+1. Also

K (x,1) = $,(x. )= gakum(x) - 33 la(0)]= ?IO(R—ﬂ:ow—").

Hence by Lemma 1, we have A, ,=O(R™"), which gives the result.
4. Legendre polynomials. Let

1 4"

denote the nth Legendre polynomial.
LEMMA 3. |P(z)|=R" for z EEy.
Proof. For z € E, we have z=1(w+w~") where |w|=R. Therefore

_p(l - )_1 ”(1 SN SO ) v
Pn(z)—P,,(z(w+w ) _Wfo 2(w—i-w )+2(w w)cos¢ | do,
by Laplace’s integral. (See [2, p. 312].) Now

B(w—l—w")—k%(w-—w")cosd)

1 1
o L —lg2 b
wCos 2¢+w sin 2¢‘
<Rcoszlq>+R_' sin21¢
- 2 2
<R( os21 +sin2—1— ) =R
C 2 o} > ¢ | =R.
Hence
1 T
< n = R"
(P2l [ R"dg=R".
COROLLARY. The estimate of the theorem cannot be improved to O(R™'*®") for any
e>0.

Proof. Consider

K(x,t)—‘—?n‘2R_"Pn(x)Pn(t).



136 G. LITTLE AND J. B. READE

K(x,1) satisfies the hypotheses of the theorem and has eigenvalues

-1
)\n=(n+—;:) n’R7".
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EIGENVALUES OF POSITIVE DEFINITE KERNELS II*
3. B. READE'

Abstract. We prove what we conjectured in our earlier paper of the same title [SIAM J. Math. Anal,, 14
(1983), pp. 152-157), that the eigenvalues of any p times continuously differentiable positive definite kernel
are o(1/nP* ). The method is the same as we used to prove the case p=1 except that we now approximate
the kernel by trigonometric polynomials obtained from certain combinations of Jackson kernels.

1. Introduction. Suppose that the real kernel K(x,t) has continuous pth order
partial derivatives and is 27-periodic in x, ¢. Suppose also that K(x,¢) is symmetric and
positive definite, so that the operator

Tf(x)=% fjﬂK(x,t)f(t)dt

on the Hilbert space L?[—, 7] has positive eigenvalues (A,) which can be arranged in
a decreasing sequence converging to zero. We show

1
>\"_0( n?*! )
as n— oo.

We give the details for the case p=2. The generalisation to p>2 involves no
essentially new ideas. The method can also be applied when p=1, though the proof in
[1] is considerably simpler.

2. C? functions. We say the function of one variable f(x)EC? if f(x) has a
continuous second derivative.
LEMMA 1. If f(x) € C? is 2w-periodic, then

£ ((xH2h) +(x=2h) =3 (J(x+h) +f(x = 1)) +£(x) =o(?)

uniformly in x as h— 0.
Proof. Given £>0, choose § >0 such that

() =f"(y)l<e

whenever |x —y|<8. Then, by the second mean value theorem, we have
1 2
5 (F(x+2h) +f(x=2h)) =5 (f(x+h) +f(x—h)) +/(x)

=S R7 (ot 200, + (= 2h8,) — " (x-+ hy) =" (x—h,)|

for some 0<4,, 6,, 6,, 6,<1,
2

£ 2
<3sh

for all |n|<é/2.
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3. Jackson kernels. Let

3 sin*(nt/2)
n(2n2+1) sin*(z/2)

J(1)=

be the nth Jackson kernel. The fact that

sin(nt/2) _ "il (n—[k)e™

sinz(t/Z) k=—n+1
shows that J,(¢) is a trigonometric polynomial of degree 2n—2, and also that
1 7
Ef_ﬂJn(t)dt— 1.

LEMMA 2.
f_”wtan(t) dt= 0( % ) .
Proof.
[ 00,

since sin¢>2¢/x for all 0<t<w /2,

—nm u2

nm gin?
=7r4nf sin®(u/2) du,
putting u=nt,
=0(n).

LeEMMA 3. For any symmetric 2a-periodic continuous kernel K(x,1),

f:r f:r K(x,2x—t)Jn(x*t)dxdt=f” fﬂ K(x,t)J(x—t)dxdt,

-—mt —m

fﬂ /W K(x,3x—2t)Jn(x—t)dxdt=fW fﬂ K(x,2t—x)J,(x—t)dxdt

=" [ K(e.0)H(x—1)dxar,
where

Hn(t) = 2 aZkeik‘
k

J ()= a,e™ .
K

Proof.

2x+m

fjﬂK(x,Zx—t)Jn(x—t)dt=/2 K(x,u)J,(u—x)du,

X—m
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putting u=2x—t¢,

=[_ K(x,0)J,(x—1)dt,

since K(x,t) is 2m-periodic, which gives the first identity. Using the same substitution
we have

2x+w

fﬂ K(x,3x—2t)Jn(x—t)dt=f K(x,2u—x)J,(u—x)du
- 2x—m

=fw K(x,2t—x)J (x—1t)dt,

which gives the first half of the second identity. To prove the second half of the second
identity we observe firstly that, if k is odd,

/W K(x,2t—x)e* dt= ~f2"K(x,2u—x)ei"“du,
. o

putting u=t¢+mx,
= ~f K(x,2t—x)e* dt
.—_O’

whilst, if & is even,

f K(x»2t‘x)eik'dt=%fzw_x K(x,u)e*@+x/2 gy

- —27—x
putting u=2¢—x,
=[" K(x,t)e /24,
Therefore
f_:/_ﬂwK(x,2t—x)ei"("")dxdt=0,
if k odd,

T
=/Wf K(x,t)e*=)/2dx dr,
—-—a¥ —m
if k even. Hence

fﬂ /W K(x,2t—x)J,,(x—t)dxdt=2akfﬂ fﬂ K(x,2t—x)e* > dx dt
—at T k —a¥ —T

= 3 akfﬂ fﬂ K(x,t)e'* =072 gx dt

k even A

=" [ Ko#(x-i)axa.
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LEMMA 4. If R, is the operator on L*[—m, ] with kernel
4 1
§Jn(x—t) §Hn(x t)

then R, <1, the identity operator.
Proof. 1t is sufficient to prove that the Fourier coefficients of

4 1
(-3 H1)
are all <1. If ¢, is the kth Fourier coefficient, then

= L[4 _1 — ikt
I—c,=1 2ﬂf_w(31,,(t) 3H,,(t))e dt

_ 1 A k) —Zikt)
—21,'[—"],,(0(1 e e dt

_ 1 ikt/2 _ —ikt/2}4
=2 _"J,,(t)(e e )dt

=4 it Kt
=3, f_".ln(t)sm > dt

=0.

4. Proof of the result in case p=2. If S is the positive square root of T, then the
operator SR, S is symmetric and has a continuous kernel (see [1]). Also

SR,S<T

and so, by Mercer’s theorem (see [1]), T— SR, S has trace norm
I7- 5B, Sl =5- [ K(x xdr—— " [ K(x t)(iJ(x—t)—ly(x—t))dxdt
n tr 2,”. — ’ 47,2 el —m ’ 3 n 3 n
1 o 4 1
_4W2f_"f—"(K(x,x) 3K(x,t)+§K(x,2t—-x))Jn(x—t)dxdt
1 (1
=mf~"f_w(E(K(x,Zt—x)+K(x,3x—2t))
2
—E(K(x,t)+K(x,2x—t))+K(x,x))]n(x—t)dxdt
1 (1
—_—mf_r/;"(E(K(x,x-—Zu)+K(x,x+2u))
—%(K(x,x—u)+K(x,x+u))+K(x,x))Jn(u)dxdu,

putting ¥ = x — ¢ and using the periodicity of K(x,?),

:4—;—2-/:' /_" uo(x,u)J (u)dxdu,
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where ¢(x, u) is continuous and vanishes when ¥=0, by Lemma 1,
1 7T T 5
=-——7f f uo(x,u)J,(u)dxdu,
27 J—av0

since ¢(x,u) is even in u. Given £>0, choose §>0 such that [p(x,u)|<<e whenever
|u|<8. Then

;717[_" /:uch(x,u)Jn(u)dxdu

<$ fjﬂﬁsuZJn(u) dx du

_€& (8,
—WLan(u)du

where A is an absolute constant, by Lemma 2.

—2% f_ﬂ /‘:u%(x, u)J (u)dxdu

M 7,
= [slu J(u)du,

where M =max|¢(x, )|,

- 2
- M f u“du
an(2n?+1) /s sin*(u/2)
< €
n?
for all n= some N. Therefore
(A+1)e
"T—SRnS"tr<_n2_

for all n=N, and so

1
I17-5R, Sl =o( = )

as n— oo. However, SR, S has rank <4n—3, and so, by the Weyl-Courant minimax
principle for trace norms (see [1]), we have

5 e )

4n—2 n

1
M=o ).
n 0’13

5. The case p=3. The proof we have given for p=2 readily generalises to p=3.
One has to use higher order Jackson kernels,

sin??(nt/2)
" sin??(1/2)

which gives

J,.(1)=4,
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where 4, is such that

1 T
ﬁf_ﬂJpn(I)dt— 1.

The generalisation of Lemma 1 needed is
2
100+ 3 280/ () st =) =)
for 2w-periodic f€ C”. For R, one takes the operator with kernel
14
Y 2e 2p _
2§ o )/ (2 et

where

pnr(t) 2 a ke’kt
if

Ja(t) =2 ae™.
k
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ANALYTIC PROPERTIES OF ARITHMETIC SUMS ARISING
IN THE THEORY OF THE CLASSICAL THETA-FUNCTIONS*

BRUCE C. BERNDT' AND LARRY A. GOLDBERG ¥

Abstract. In the transformation formulae for the logarithms of the classical theta-functions, there arise
certain arithmetic sums that are analogous to Dedekind sums. In this paper, analytic properties of these
arithmetic sums are established. In particular, reciprocity theorems are proved and representations as finite
trigonometric sums are given. Moreover, certain infinite series and certain doubly infinite series are evaluated
in closed form in terms of these arithmetic sums.

It is well known that the classical Dedekind sums s(k,k) first arose in the
transformation formulae of the logarithm of the Dedekind eta-function n(z). (For an
elaboration of this connection and for basic properties of Dedekind sums, consult the
monograph of Rademacher and Grosswald [17].) In contrast to Logn(z), the loga-
rithms of the classical theta-functions 9,(0,q), #5(0,¢) and 9,(0,¢) have scarcely been
studied. (We use the notation of Whittaker and Watson [19, Chapt. 21] for the theta-
functions.) In [5] and [8] we derived the transformation formulae for Log4®,(0,q),
n=2,3,4. There are, in fact, 9 distinct transformation formulae depending upon pari-
ties of certain coefficients a,b,c and d in the modular transformation(az+b)/(cz+d).
Arising in the transformation formulae are 6 different arithmetic sums, which are thus
analogues of s(h, k). If h and k are integers with k>0, these 6 sums are defined by

(1) S(h,k):ki](_1)f+l+lhf/k1,
i=1
s,(h,k)= ﬁ (—1)hirH)

28]

Pu————

oyl

0= ()]

J

s co([4)
=3 ()

k—1 )
si(hk)="3 (—)"7H,

SS(h’k):é, (_1)j+[hj/kl((7fc._)).

Here, as usual, [x] denotes the greatest integer not exceeding x, and ((x))=0 or
x—[x]—4, according as x is or is not an integer, respectively.

Rademacher [15], [16, pp. 578-584] briefly studied Log,(0,9), n=2,3,4. How-
ever, his approach was via the Dedekind eta-function, and so the sums defined above
were not discerned by Rademacher. Some of these sums, or variants thereof, are

* Received by the editors February 15, 1982.
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mentioned in a paper of Hardy [11, pp. 121-123], [12, pp. 390-392], where reciprocity
theorems are stated without proofs. However, Hardy did not observe the connections
between his sums and theta-functions.

The sums S(h, k) and s;(h,k) arise in the theory of r(n), the number of represen-
tations of n as the sum of s squares. Hardy has established exact formulas for r,(n),
5=<n=<8, and asymptotic formulas for s>8, an account of which may be found in
Knopp’s book [13, Chapt. 5]. Employing the sums mentioned above, Goldberg [10] has
shown that a substantial simplification in Hardy’s proof can be effected. These sums
also arise in the study of the Fourier coefficients of the reciprocals of #,(0,9), n=2,3,4
[9].

In this paper, however, we are primarily concerned with analytic properties of
S(h,k) and s,(h,k), 1=n=<S5. First, we shall establish infinite trigonometric series
representations for S(h,k) and s,(h,k). Viewed in another way, we evaluate certain
infinite series in closed form in terms of S(h,k) and s,(h, k). Secondly, these infinite
series representations are employed in deriving representations of S(4,k) and s,(h,k)
as finite trigonometric sums. Thirdly, it is shown that either type of representation can
be utilized to establish reciprocity theorems for our sums. Fourthly, we sum certain
nonabsolutely convergent double series in terms of S(h,k) or s,(h,k). We then use
reciprocity theorems to determine the “error” made in inverting the order of summa-
tion.

THEOREM 1. Let h and k denote relatively prime integers with k>0. If h+k is odd,
then

431 7h(2n—1)
@) s(h=7 3 zn_ltan( 24 )
if h is even and k is odd, then
2 o 1 7h(2n—1)
3) shi)==2 3 oot D
2n—1%0 (mod k)
if h is odd and k is even, then
1 b 1 whn
4) sy(hk)=—5— 'El ;tan(—ic——),
2n=0 (mod k)
if k is odd, then
1 31 ahn
(5) 53(h,k)—'ﬂ‘n§l;tan("7(—)a
if his odd, then
431 wh(2n—1)).
©) slhk)=7 2 2n—1°°‘( 2k )
and if h and k are odd, then
) 2 1 ah(2n—1)
@) s5(h,k)——; ; 2n_ltan( % )

2n—1=0 ( mod k)
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Proof. We prove (2). If we employ in (1) the well-known Fourier expansion

_ x4 S sin(2n—1)m7x
(=1) T 2 2n—1 ~°

n=1

where x is not an integer, we find that

(8) S(hk)=-2 2 — 2 (—1)si (M)

If m=2n—1)h,2n—12Z0 (modk), and h and k are of opposite parity, an elementary
calculation gives

9) Iig:(—l)jsin(wTW)z—tan(Z—rZ-).

Substituting (9) into (8), we establish (2) immediately.
To prove (3), we first observe that

sy(h,k)=1 21( )74
j 1

when h is even. The remainder of the proof is now quite similar to that of (2).
Likewise, the proof of (6) is similar to that of (2).
To prove (7), we first show that

(k)= 2 — 1)/

when h and k are odd. Now proceed as in the proofs above.
We sketch the proof of (4). Since 4 is odd and k is even, we find that

(10) sz(h,k)—% g l)jj((%)).
We next recall that
() (()=—7 3 ),

Using (11) in (10) and proceeding as in the proof of (2), we easily complete the proof of
4).

The proof of (5) is like that of (4) and utilizes (11).

A similar representation for s(h,k) was established by Rademacher [14], [16, pp.
26-36] and rediscovered in [3].

We next establish analogues of a familiar representation of s(k,k) as a finite
trigonometric sum [17, p. 18].

THEOREM 2. Let h and k be coprime integers with k>0. If h+k is odd, then

12) S(h’k)_% é (wh(2211'(—1))cot( 7r(22jk—1));
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if h is even and k is odd, then

1 k 7h(2j—1) ('/7(2j——1)).
(13) si(hk)=— 57 ;l cot( L )ot =),
j=/=(k+l)/2
if h is odd and k is even, then
1 k! awhj AW
(14) sy(hk)=— 7 En tan(—,;—)cot(7),
Jj#k/2
if k is odd, then
1 k! hj '/7])
(15) s3(h,k)—Tkj§ltm(T)cot(k ;
if h is odd, then
1 & wh(2j—1) (W(Z]—l))
(16) s4(h,k)—-,€l§lcot( =) cor T2,
and if h and k are odd, then
1 X ﬂh(2j-l)) (W(Zj—l))
(17) s3(h k)= En tan(———Zk cot{ WAL=,
JjFEk+1)/2

Proof. We establish (12). From (2),

- 7rh(2n—1))
s(hk)=2 3 zn_ltan( n=l).

n=-o00

Now let n=rk+j, ~00o<r<oo, 1 <j<k. After some elementary simplification, we find
that

1 & Th(2j—1)| !
S(h,k)—;r—k-zlta( 2Jk ),;.w r+(2j-1)/2k)’

where the inner sum is to be interpreted symmetrically. If we now employ the familiar
partial fraction decomposition for 7 cot(wx) on the right side above, we deduce (12) at
once.

The proofs of (13)-(17) follow precisely along the same lines as the proof of (12),
and so we omit them.

Either Theorem 1 or 2 may be employed with contour integration to establish
reciprocity theorems for S(h,k) and s,(h,k), 1=n=<5. We shall use Theorem 1 to
prove the reciprocity formulas of Theorem 3. The proofs utilizing Theorem 2 are very
much akin to a corresponding proof of the reciprocity theorem for s(4,k) found in
Rademacher and Grosswald’s book [17, pp. 21, 22].

THEOREM 3. Let h and k be coprime, positive integers. Then if h+ k is odd,

(18) S(h,k)+S(k,h)=1;
if h and k are odd, then

(19) ss(h )+ 55k, ) =5 =5
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if h is even, then

1 1(1 k),
(20) si(h k)= 2s(k,h) =3 2(hk+h),
if k is odd, then

1) 2s5(h, k) —s(k,h)=1—7

Proof. Let Cy, denote a positively oriented circle of radius R, 1 =N <0, centered
at the origin. We assume that the radii R, increase to oo and are chosen so that the
poles of tan(whz)tan(wkz) are at a distance from C, greater than some fixed positive
number for all N. Let

1 dz
=5~ fC Ntan(vrhz) tan(mkz) <.

Now on 0<#<, tan(Re'®) tends to i boundedly, and on 7<6 <2, tan(Re'®) tends to
—i boundedly, as R tends to c. Hence, a short calculation shows that

lim I,=—1.

(22) Jim I,

The integrand of I, has simple poles at z=(Q2m—1)/(2h), —co <m< o0, and at z=
2n—1)/(2k), —00 <n<oo. The residues are easily found to be

_ 2 ta ('nk(2m—1)) e
2@m=1) n ok , —o<m<oo,
and
. tan( 'nh(2n—1)) —pe
7(2n—1) 2% )0 TSI
respectively. Hence, by the residue theorem,
(23) Iy=- 2 > 5 1_1 tan( 7rk(22r2— D )
T 2m-1/@hi<Ry “™
2 1 7h(2n—1)
7 2 2n—1 ta“( 2k )

IQn—1)/Qk)<Ry

Letting N tend to oo in (23) and combining the result with (22), we find that

%) — 0 —
_=_4 1 tan(ﬂk(2m 1))_4 o 2nl—1tan(7rh(2n 1))’
=1

wma 2m—1 2h 7 < 2k
which is equivalent to (18) by Theorem 1.

Proofs of (19)-(21) can be given along the same lines as the proof of (18). The
calculations in the proofs of (19) and (20) are slightly more difficult because the
integrands have double poles as well as simple poles.

The reciprocity theorems (18), (20) and (21) were first discovered by Berndt [5],
while (19) was initially observed by Goldberg [8]. Elementary proofs of (18), (20) and
(21) have been given by Apostol and Vu [1]. All of these reciprocity formulas are, in
fact, special cases of ““three-term relations” that have been established by Goldberg [8].
We remark that either of the two methods of contour integration to which we referred
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above can be extended to produce three-term relations. Three-term relations for Dede-
kind sums have been proved via contour integration in [4]. Further generalizations of
(18) can be found in [6] and [7].
Let h and k denote coprime, positive integers. Define
(o 2] 00
1

L,(h,k)= N
" (2».2'1) k;é(f Ik (2m—1)k)*—((2n—1)h)
Ly(h,k)= 2 2 1

Dokt @y @mk)*—(2n—1)h)*’

Ly(h,k)= 2 E 1
(2m—I|) k#?h ((2m_l)k) —(Znh)

In the next theorem, we shall evaluate these conditionally convergent double series in
terms of the sums S(h, k) and s,(h, k), 1 =n<5. In Berndt’s paper [2], similar series are
evaluated in terms of Dedekind sums. We could use the same method here. However,
we shall use a suggestion communicated to us by Sczech [18], instead.

THEOREM 4. Let (h,k)=1 with h,k>0. Then

( ——S(h,k) if h+kis odd,
@) Lkk)=] ‘65"
8hks5(h k)+32h2k2 if h and k are odd,
( 2
——s,(h,k)+—— ifhis odd,
(25) Ly(h k)= T g !
ANK)=
1 s
18hks'(h k)+l6h2(1+2—k—2) if h is even,
—53(h,k) ifkis odd,
8hk 3
(26) Ly(h,k)=1{ %

T (h k)+——172—- ifk i
a2 B R if k is even.

Proof. We shall prove only (25). The proofs of (24) and (26) follow along the same
lines and, in some instances, are simpler.

Suppose first that 4 is odd. Then 2mk+ (2n—1)h for each pair m,n of integers.
Thus,

Ly(h k)= 3 { S ‘ - 1 }

8k? 21 |m=—ee m>— {(2n—1)h/(2k)}*> {(2n—1)h/(2k))

7T oo 1 7h(2n—1) el 1
=—— 3 cot( ) —
4hk a1 2n—1 2k 24K nzl (2n_1)

=— s4(h k)+

16hk 16h2°

by (6).
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Next, assume that 4 is even and write

o0 o] l

27 Lzh,k':- 2 2
@ L= 3 e e

n=1
2n—1=0 (mod k)

o0 o0 1
+ > s - .
21— 120 (mod k) 2mk = @n—1)h (2mi)"=((2n—1)k)
=8,+85,,
say.
By the same argument as in the first case,
" S 1 7h(2n—1)
28 ==
( ) SI 4hk n§ 2n_ l Cot( 2k )
2n—1=0 (mod k)
o0
tE 3
2h n= 2n— l)

2n— IEO(modk)

LS 1 1§ 1
8hk slh,k)+>23 {E, @2n—1)7 K> E. (2n—1)2}

1
8hk '(h R+ 1612 (I_P)

In S,,set2n—1=Q2j— 1)k, 1<j<oo, to get

) s=L- 3 3 !
29) S,=
27 a2 =1 m=1 m*={(2j—1)h/2)?
mse(zj—l)h
1 ® ® 1 1
- L3 { 5 N
8k2 = e m —{(2ji-Dh2Y ((2j—1 2
omio gy m=me {27 =DA2Y {(2)=Dh/2)
13 1 1K 1
an’k? Sy (2j-1)° 207K 2\ (25-1)°
_ 372
32h%k2

Putting (28) and (29) in (27), we complete the proof.
COROLLARY 5. Let h and k denote coprime, positive integers. Then

2
7

(31) Ly(h, )+ Lk i) =10

Proof. To prove (30), combine the reciprocity theorems (18) and (19) with the
evaluations (24). Similarly, to establish (31), combine the reciprocity formulas (20) and
(21) with the evaluations (25) and (26).
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Equalities (30) and (31) imply that the order of summation in L,(h,k), 1=n=3,
may not be inverted. Moreover, (30) and (31) indicate precisely the “error” made in
such an inversion. Thus, interchanging m and n in L(k, ) and Ly(k,h), we find that,
respectively,

o0 [o2] 1

g1 2 ((2m—-l)k) —((2n—-1)h)

@m—1) kae(zn

- § § 1 7
B0 ety (@m= D) = (@n=1)h)’ ~Tehk

and

D R D T e Se——
A=l b, (2mk)’—((2n—1)n)’ sz on=h, (2mk)*—((2n—1)n)* 16kk
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BANDWIDTH VERSUS TIME CONCENTRATION:
THE HEISENBERG-PAULI-WEYL INEQUALITY*

MICHAEL G. COWLING' AND JOHN F. PRICE*

Abstract. The main result is that for quite general weight functions v, w

I la=K(llof o+ lIwflla)

for all tempered distributions f for which, roughly speaking, the right side makes sense, where 1=<p, g=<o0, K
is a constant independent of £, and f is the Fourier transform of f. As a corollary, if 6, $=0 satisfy >1/p*
and ¢>1/¢*, where t¥ =21/(t—2), there exists K=K (p, q,0,¢) such that

0 W=k (1<t + 1A%A], )
for all f. In this case the inequality is equivalent to ||f||, < Ka ™ *(1—a)*~ '|||x|"ﬂ|;||| y|¢f||:,_“ where a satisfies
a(0—1/p")=(1—a)($—1/9*). Hence it generalizes the classical uncertainty principle inequality (which is
the case p=¢=2 and §=¢=1) and an inequality due to Hirschman (the case p=¢=2 and ,¢$>0). Also (1)
is trivially true when #=0 and p=2 or $=0 and ¢=2 and it is shown that it is not possible apart from these
three cases.

One of the approaches to the main inequality is as follows: Suppose s,¢€[1,2] and E, F are subsets of R
of finite measure. For all f€ L?

1/t

b= (fpreoras) "+ (fpoors) )

where K=K(s, t, E, F) is independent of f and ’ denotes complementation.

1. Introduction. Let L?, 1 =p=o0, denote the usual Lebesgue spaces of complex-
valued functions over the real line R; denote their respective norms by ||-||,. The
Fourier transform f of f in L' is defined by f(y)=[f(x)e™2"*’dx. (Unless indicated
otherwise, [ - - - dx will always denote Lebesgue integration over R.) The Fourier trans-
form of fin L?, 1 <p<2, as a function in L?’ will also be denoted by f. (Throughout p’
will be the usual conjugate exponent of p.) The starting point for this paper is the
well-known inequality

(1.1) Ixfllo- [pfl= @) " Ifle  FEL2

This inequality is of fundamental importance in quantum mechanics. In this case it
is usual to normalize f so that ||f]|,=1; as such it represents the state of a one-dimen-
sional system. Proceeding with this interpretation, the first and second norms in (1.1)
represent the standard deviations of the position and momentum observables (assuming
they both have mean zero). In this way the inequality becomes the mathematical
formulation of the quantum mechanical uncertainty principle first described by Heisen-
berg [9] in 1927. (The precise version (1.1) appears in Weyl [18, p. 77] where it is
attributed to Pauli.)

Recently Fefferman and Phong [6] have given an application to the theory of
partial differential equations.

The inequality is also of considerable importance in signal analysis [3], [13], [16]
where it is sometimes referred to as the bandwidth theorem. Its role in this area is to
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give precision to the statement that for signals of equal strengths (that is, equal
L?-norms), the more a signal is “concentrated” in time, the more its band is “dispersed”,
and vice versa. This interpretation seems to have been first pointed out by Gabor [7].

One drawback when attempting to apply the result in this area is that it only
provides a reciprocity relation between time and frequency concentration for functions
that decrease fairly rapidly to zero at infinity. With this in mind we investigate
inequalities of the form (1.1) but with ||of||, and Iwfll ; replacing the norms on the
right, where v and w are nonnegative measurable functions. The general nature of our
results is best seen by restricting the main theorems to the case where v,w: x > |x’.
For example, from Lemma 2.1 and Theorem 5.1 we have

THEOREM 1.1. Suppose 1 <p=< 00 and 0<0<oo. Then there exists K such that

(12) Ila=k|ix’f], 1’7,

for all fin L* provided 0>1/p* =(p—2)/2p. Otherwise no such inequality is possible
(apart from §=0 and p =2 in which case both sides are equal with K=1).

In the sequel it turns out to be more fruitful to analyze a modification of the above
form, namely

(1.3) Il=K(lofll, +wflla),  fEL

In many cases this is equivalent to the corresponding “multiplicative” inequality as
evidenced by Lemma 2.1. However, with the latter type we can go even further and
show that no assumptions need be placed on the weights (and hence on f and its
Fourier transform) in a neighbourhood of the origin (Corollaries 2.3 and 2.4). This
further illustrates the direct relationship between the asymptotic behaviour of a func-
tion and the local smoothness of its transform.

When 6=1 and p=2, inequality (1.2) is just the classical case (1.1). When p=2
and 0<#< o0, (1.2) is due to Hirschman [11]. To complete this introduction we outline
a proof (of a mild extension) of the classical inequality.

THEOREM 1.2. If 1 <p<2 and f€ L? is nonzero, then

1712 <4=llxl 17l »

with equality if and only if p=2 and f is a constant multiple of exp(kx?*) with k<0.
Proof. 1t is enough to consider f in the Schwarz space S. Since 2wiyf=(f")", the
right side becomes 2||xf || ,|\(f)"|l ,- Hence

amlxflolyfl =2 [1xf | dx=[x(1f2) dx= [ |fI"ax,

as required, where the first step is the Hausdorff-Young inequality followed by Holder’s
inequality.

If p=2, it is easily seen that the constant is attained when and only when f as
described in the statement. A similar analysis of the inequalities in the preceding
paragraph when 1 <p<2 shows that in this case the inequality is always strict. O

Better constants. The sharp form of the Hausdorff-Young inequality (due to
Babenko and to Beckner [1]) asserts that when 1<p<2 and k,=(p'/?/p"/?)'/?,
||f||p =k,||f|l, for all fin L? with equality if and only if f is as in Theorem 1.2. If this
is used in the proof of Theorem 1.2, the inequality becomes

Iflla=ak xf |7,
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However it is still the case that this inequality is always strict when 1<p<2 although it
is likely that the constant given is not best possible.

In the sequel the constants we obtain are, in general, probably far from best
possible. Hence any improvement due to using the sharp form of the Hausdorff-Young
inequality is unlikely to be significant so we only use the classical form.

A useful reference for the classical inequality (1.1) and related results is Dym and
McKean [4]. A family of inequalities related to those described in the abstract have
been developed in [15] and used to estimate quantum mechanical Hamiltonians.

2. Some inequalities with weights. We shall be interested in inequalities relating
1112, |||x|0f||p and || |y|"’f||q. Inequalities of the form

9 “ oyl —a
(2.1) I l=k] %l £]| NIy 7lq
for all f€ L? can only be true if the following relation between a, p, q,6 and ¢ holds:
(2.2) a(6—1/p*)=(1—a)(¢—1/q%).

For otherwise, by replacing f by its “normalized dilate” D, f, where D, f(x)=
A~'2f(x/\), and simplifying the expressions obtained, we may deduce that

T e M IR e Ce e T

for all A in R™. This is false unless the left-hand side is 0 or the right-hand side is + co.
Nevertheless, it is possible to relate ||f]|, to |||x/f| »and Al o in a different way, which
seems more appropriate. We shall consider inequalities of the form

(2.3) Ifla=Ka(1=a) ~*{|xl’A], + | 151°7],)

for all fin L. If (2.2) is verified, then (2.3) is equivalent to (2.1), while if (2.2) does not
hold, we still obtain some information. The scope of Lemma 2.1 (below) is to show that
(2.1) and (2.3) are equivalent if (2.2) holds. This ties our work to that of Hirschman
[11], who treated the case where p=2, with the multiplicative inequality.

We shall actually work in the more general context of inequalities of the form

(2.4) Ifla=c{llofl,+|willy} for all fe LX(R),

and our first theorem about these follows Lemma 2.1.
LEMMA 2.1. Suppose that 1 <p,q= oo, that 0=0,¢< oo, that 0<a<1, and that (2.2)
holds. Then the following inequalities are equivalent (where in each case f ranges over L?):

(i) L [ N T

(i Il =x{a]lx’1],+ 1 =)|y*7],}

(i) IAe=Kac(t=a)' = {[Ixl’s], +[11*71,}

(iv) Ifla=Ka(1=a)' (8"~ Ix’A], + 8~ yI*7],}
foralldinR™.

Proof. The general inequality, for a in (0,1) and a,hin R,
a®p' *<aa+(1—a)b
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shows that (i) implies (ii). Next, if (ii) holds, then by replacing f by D, f as in the
discussion after (2.2), we find that, for all fin L2,

1=K {71l A, + (1= an ==/ ).
Choosing A such that
a}\o—l/p‘* =aa(1 _a)(l—a),

we obtain (iii). Replacing f by D, f in (iii), and setting 8' ~* equal to X~ '/7* proves (iv).
Finally, if (iv) holds, then we minimize the right-hand side by choosing

=(albl'Al,)(a=ai1],).
and obtain (i). ]

Before we state Theorem 2.2, we recall some of the results of Slepian and Pollak
[14] and of Landau and Pollak [12]. Let I be the interval [—§,4], and suppose that f is
a nonzero L2-function supported in I;. Then f extends to an entire function in the
complex plane. Plancherel’s formula tells us that

(/dJ’|f(J’)|2)l/2= (fdx|f(x)|2)l/2,

but since f cannot vanish on any set of positive measure,

(i) " <( fasseor)

The above mentioned authors quantify this inequality: they prove that there is a
function y: R* — (0, 1) such that

@) ([linr) " =xta fasscor)

for all fin L? which vanish off I;. They show that y?(8e) is the largest eigenvalue of the
integral equation

sin(2re[x—w])
7[x—w]

In what follows &’ is the space of tempered distributions; it is the dual of S, the
space of rapidly decreasing, infinitely differentiable functions. Also whenever 1 <p = co,
p’ denotes its usual conjugate.

THEOREM 2.2. Let f be in &', let 8 and € be positive real numbers, and let s and t be in
[1,2]. Suppose that outside the interval I, f is given by an L*-function, and that outside 1,,
fis given by an L'-function. Then f is in L*. Moreover, if

. ) 1/t

-( dxlf(x>r) oo
I} ,
I =4+ 28y« [ B+ () 8],

A(x)= f, A(w) dw.

then
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where
o=1/s—1/2, v=1/t—1/2, 0=17/(c+7),
a=[1-y(8¢)’] '[(28)"B+v(8¢)(2¢) 4]

and

B=[1-v(8e)’] '[(2¢) 4 +v(8¢)(28)"B].

Proof. The proof splits into two stages. First, we show that f and f are given by
locally square integrable functions, and deduce that f-x,; and fx 5, are square integra-
ble. (x  is the characteristic function of E.) Then we estimate the L?-norm of f.

It is possible to write f as the sum of a compactly-supported distribution and an
L*-function. Then f is the sum of a smooth function and an L*-function, so f is locally
square integrable. Similarly, f is the sum of a smooth function and an L"-function and
so is locally square integrable.

Let C and D be the numbers given by the rules

1/2

Cc= (j;sdxlf(x)lz)l/z, D= (fledylf“(y)|2)

Now f=fx;,+f Xz 50 [=(F"x;,) +(F-x5) and f-x, =(Fx1,) X1+ x5) X1
Therefore

1/2

Ds(fledyl(f.xla)‘(y)f)V2+(fledyl(f-x:g)A(y)r)

A\ 1S
=x(@o)lF x4 o’ | [ olx) O |

<v(8)C+(2¢)°[If- x|

S’

by the inequality (2.5), Holder’s inequality, and the Hausdorff -Young theorem. Simi-
larly,
|t'

C=<v(8¢)D+(28)"

f‘Xl;

Eliminating D, then C, we obtain the inequalities

(2.6) c=[1-v(8¢)’][(2¢)°4v(8¢) +(28)"B],
(2.7) D=[1—v(8¢)*][(28)"By(8e) + (2¢)°4].

Now we show that fis in L? and estimate its norm. First of all, fis in L*, and

sy 1/s
)

as s 1/s as s.
={@o) I xil,+ 4} = {@8) o+ a}

(28) A= {1 xll +
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Similarly, f lies in L', and

29) I7l:={(2e)" D"+ )"

The Hausdorff-Young theorem implies that f is in L*(R), and
1Al =071

Holder’s inequality now allows us to conclude that fis in L?(R), and

0, q1—0 8y 21 —0
U= AN <0

with @ as in the enunciation of the theorem. The inequalities (2.6)—(2.9), together with
this last inequality, yield the desired conclusion. O

We now present various corollaries of this result. The first of these, Corollary 2.3,
is very general, while the second, Corollary 2.4, refers to weights of the form |x|* It is
very hard to work with the estimate of Theorem 2.2, and it is not a good estimate, so we
shall not bother to keep track of constants in the rest of this section. In what follows, K
is a number, independent of the function f involved, which may vary from line to line,
and may depend on other parameters.

To state Corollary 2.3 we need a further definition. A (measurable) function v:
R —-R™ will be said to be (E,p)-adapted for some measurable set E in R if C(v, E, p),
given by the formulae

(2.10) C(v,E,p)——-esssup{v(x)—l: x€E'} if1=p=2,
e\
(2.11) C(v,E,p)-_—(f o(x)? dx) if2<p<oo,
-
is finite.

COROLLARY 2.3. Suppose that 1<p,q=< 0, that 0<8,e< 0, and that v: R—>R™" is
(I3, p)-adapted while w: R—>R™ is (I,,q)-adapted. Let f be a tempered distribution which
is given by a locally integrable function off I and whose Fourier transform is given by a
locally integrable function off I.. Then, for some constant K,

W=k (llof-xl, + W x2],)-

In particular, f € L? whenever the right side is finite.
Proof. If 1=p=<2, then

/p

(o) "ol f_asococor |

while if p=2, then

[ftrer) "= geoeer ) ([ iecorcar)

8

by Holder’s inequality (with the obvious modification if p = c0). The hypotheses of the
corollary therefore imply those of Theorem 2.2 with s equal to min( p,2) and ¢ equal to
min(q, 2). 0
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COROLLARY 2.4. Suppose that 1<p,q=< oo, and that 0<0,¢<o0. If 6>1/p* and
6>1/q*, then the following inequality holds:

W=k (|1 F-xa],+ 7))

This may be interpreted as follows: if f is a distribution for which the right-hand side makes
sense and is finite, then f is in L* and the inequality holds.

Proof. The function x—|xf’ is (8,p)-adapted for some positive 8 if and only if
6>1/p*. Thus if the right-hand side of the inequality is finite, we are in the situation
dealt with in Corollary 2.3 and Theorem 2.2. The only problem is the evaluation of the
constant. O

3. More inequalities. In this section we obtain the central inequality under condi-
tions which are in part more general and in part more restrictive than those assumed
for Corollary 2.3. The main difference is that the intervals I; and I, are replaced by
arbitrary sets E|, E, of finite measure. (This will also be done in §4 but here we shall be
able to obtain estimates of the constant.) Corollary 2.3 required no a priori assumptions
on f and f on Iy and I, respectively, which amounted to allowing the weights to vanish
on those sets. In Theorem 3.4 below we do require the weights to satisfy certain mild
conditions on E, and E,. In view of the counterexample described in the last section,
the hypotheses of Corollary 2.3 and Theorem 3.5 are quite reasonable.

The “bootstrap” methods of this section consist of repeated applications of the
Holder and Hausdorff-Young inequalities, separately applied on E,E, and their
complements. They are well-suited to keeping track of the relevant constants.

Throughout E, and E, will be sets of finite measure, their measures being denoted
by m, and m,, respectively. Whenever the weights u;; R->R™* (i=1,2) are (E,,q;)-
adapted, define b, and b, by

m;‘/"r"u,“xﬁ" if 1=¢,=<2,
(3.1) b,= *
"ul—lei”q.” 1f2<q1S00,

and similarly for b,.
LEMMA 3.1. Let uz R—>R™ (i=1,2) be (E,,q;)-adapted. Suppose further that the
numbers

(3.2) alzmlz/zllul—lXEl"qp az=m¥/2||u5‘x52||q,z
are finite. Then there is a constant K such that

(3.3) If <K (llwy fllg, + 2 £ll,)

for all tempered distributions f such that f and its Fourier transform are given by locally
integrable functions. In particular, f € L? whenever the right side of (3.3) is finite.

Constants. As we shall see, this inequality is a consequence of the following: Let
A, =uy fll,, and 4,=|lu, fll .- If 1=¢q,, ¢,=2, then

(3.4) fl=<[mYob,d,+mi /4" (ay+b,) ;) [m3 /o (a,+b,) 4, +ml/4Fb, 4,]' "
where 3 =t/q,+(1—1t)/q5, while if 1<g, <00 and 2<g, < o0, then
(3.5) Il2=(a,+b,)4,+b,4,.
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When 2<gq,, ¢,=< 0, (3.5) can be replaced by
(3.6) [£l.<b,4,+(ay+b,)4,.

Proof. With f as in the statement of the lemma, assume that 4, and 4, as defined
in previous paragraph are finite. (Otherwise there is nothing to prove.) Our first step is
to estimate f locally (that is, on E,) by showing that

(3.7) IIfXEzll2S(al+bl)Al'

(Since f and f are measurable, all the integrals in the proof are defined and so, by
reversing the order of the steps, we see that f€ L2,)

Since f=/x g, +fx5p [=(fXz) +(fxg;) andso

(38) IIfxE2||zs( /. zl(fxE.)Alzdy)'/2+ ( [ J0xe) 2dy)1/2.

Denote the latter two integrals by I, and I, respectively. Holder’s inequality applied
twice and the Hausdorff-Young inequality once yield

n=mly | (7xs,) L =m 2 Wxe =m? [ Gla(x)u(x) " dv=a,.
1
Assume now 1=¢q,<2:

Izsmgl/q'*"(fXE;)A”q,'sm;l/q?"fXE;"q, =b4,.

On the other hand, if 2<g, < o0,

Izsu(fXE;)A = "fXE;”zsuf“lXE;”z,

Choose r=q,/2€(1,]. Hence 2r=q, and 2r'=2q,/(q,—2)=q;* so, once again,
I,=<b,A,. When used in (3.8), these estimates for I, and I, establish (3.7), as required.

Our methods now differ for the three cases (3.4), (3.5) and (3.6). First assume
1=q,, ¢,=<2; (3.7) is used to estimate |f]| 4, as follows:

WP lo=<Fxel,, + 1P x8e)l,, =3V | Fx s, |, +mi 4¥by 4,

<m; "% (a,+b))A,+m\/ b, A,.

—1
u X gl

A similar inequality holds for ||f}|, with the subscripts 1 and 2 interchanged. This
allows the final estimate for ||f]|, to be obtained. In fact, it is possible to estimate /]|,
with ¢, =p=gq}:

t 1—t
IAl=<Ilflallflles wherel/p=t/q,+(1—1)/q;
t apl—t
S"f"‘ll”f" q2
s[m'z/"'“b,A,+m,"/"'#(a2+b2)A2] '[m;'/"?(al +b,)4, +m',/"§b2A2] e
This yields (3.4) which in turn results in (3.3) with

K=max{m5/"'*bl,ml—'/"f(a2+b2),m'|/"fb2,m;'/"f(a,+b1)}.
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Now suppose that 2=<g,<co. Arguing as in the second estimate for I, ||fx gll=
b, 4,. Combining this with (3.7) shows that

I£1l.= ||f"2S"fXE2”2+ ||fXE’2||25(al +b,)A4,+b,4,,

which is (3.5). To obtain (3.3), take K=max{a,+b,,b,}. In the case where both
q17q2€(2’°°]’

[fl;<min{(a,+b,)A4,+b,A4,,(a,+b,)4,+b A4},

which completes the proof. O

The following lemma provides the transition from the previous lemma to the main
result of the section, Theorem 3.3, by showing that, roughly speaking, the inequality
remains valid when the weights are replaced by higher powers of themselves. Its proof
is a simple application of Holder’s inequality.

LEMMA 3.2. Let p,q,B satisfy 1<p, g< o0, g7 00, 0<B<p/q and (q—2)/Bq=
(p—2)/p. Then

By i1 =B
IwPolla=<lwolzlol

for any measurable function ¢.
Powers of weights. Suppose that

A=K (Wl + [wETl, )-

By taking ¢ to be f, then f, in the preceding lemma we have

B B \1/B
A=K 2 (I £l [ 1)
provided the exponents satisfy 0<B<min{p,/q,,p,/49,}, 9,7 and (g,—2)/Bq,=
(pi—2)/p; for i=1,2. On the other hand, if we have the multiplicative version of

the inequality, namely

1A= KW w87,

then under the conditions just described

I£l.<K"#|w, f||p|"w2f

The first case forms the basis for the proof of Theorem 3.3 and the second for its
corollary given in Remark 3.4. Before this, however, we illustrate the ideas with the
simplest case, namely p, =p,=2.

The case p,=p,=2. When p,=p,=21in 3.2, ¢,=¢,=2 and B&€(0, 1). In combina-
tion with results Theorem 1.2 and Lemma 2.1, this yields

1712 = (4 ) IxI” A 171" /]

for all fin L? and a=1. As a point of comparison, the argument used by Hirschman
[11] (with the sharp form of the Hausdorff-Young inequality [1]) shows that

I lo=H| 1" |1y 7]

where H, =2ae(8/e)*(T'(1/2a)/2a)**. Hirschman’s constant is better than ours and
as a— 00, H,~a(8/e)*~a(2.94)*.

P2

2

2
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THEOREM 3.3. Let E|,E, be measurable subsets of R with finite measures. Let
P1,P2E€[1, 0] and suppose that the weights w;:R ->R™* (i=1,2) are (E,,p,)-adapted. If
also there exists >0 such that

(3.9) f w0 dx < oo,
E,

then there are constants K, >0, such that

B \1/B
Ile=K (I, £l + w71, )

for all tempered distributions f such that f and its transform are given by locally integrable
functions.

Proof. The proof varies slightly among the three cases (i) 1=<p,, p,=<2, (ii) 2=<p,,
p,=<oo0 and (iii) 1=p,<2<p,=c0. Since the third case contains all the features of the
first two, it alone will be proved. Suppose we have 8, g, and ¢, satisfying

(3.10) 0<B=6/q,
(3.11) (qi"z)/BCIi:(Pi'z)/Pn
(3.12) B<p/4:»  ¢<c.

for i=1,2. From (3.9) and (3.10)
B/8
ol =mie-2se( [ wtax ) <oo

Since >0, (3.11) shows that 1=<g,<2 and 2<g,=<oo. Hence wf is (E,,q,)-adapted
since w, is (E,,p,)-adapted. Also (3.11) shows that wf is (E,,q,)-adapted since w, is
(E,,p,)-adapted. Thus Lemma 3.1 applies with the conclusion that

M=K, ([Iwfllg, +wEFll.)

for fin L% Application of the ideas following Lemma 3.2 based on (3.11) and (3.12)
leads to the required inequality with K=K /A,

It remains to find 8,4, and g, satisfying (3.10) to (3.12). Since ep,/(1 —€)( p;,—2),
ep,/(2—e)(p;,—2) and ep,/( p,—2) all tend to 0 as e 0, we may choose ¢;,&, €(0, 1) so
that

&P &0

(3.13) 2—p)(1=¢) (p,—2)(1—¢,) <0,
£1D) _ E2D0)

(3.14) 2—e)2=p)) (Q+e)(p—2)°

(3.15) 2’8'1171’ p2£i2<1‘

Denote the number in (3.14) by 8 and define g, =2 —¢, and g, =2+¢,. Direct substitu-
tions show that (3.13), (3.14) and (3.15) imply (3.10), (3.11) and (3.12) respectively, as
required.

The only difference for the first two cases described at the beginning of the proof
is that whenever p, (or p,) equals 2, then g, (or g,) is given the same value. (See the
discussion below Lemma 3.2.) [
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Remark 3.4. When working with the weights w,(x)=|x{’, w,(y)=|yf’ with 6,$=0,
we can use Lemma 2.1 to transform the additive version of the inequality (3.3) to the
multiplicative version. Hence the argument in the second part of the paragraph follow-
ing Lemma 3.2 is now applicable. For these weights (3.9) is automatically satisfied
when E,=E,=[—1,1]. Also in this case w, is (E,,p)-adapted provided §>1/p* and
w, is (E,,q)-adapted provided ¢>1/¢g*. Assuming these conditions, arguing as in the
proof of Theorem 3.3, but based on the multiplicative version of Lemma 3.1, and
applying Lemma 2.1 once more leads to

Ile=&([|1x’A],+[n1*A],)
just as in Corollary 2.4.

4. A priori inequalities. In this section we prove some a priori inequalities for
L*(R)-functions which generalise the results of §§2 and 3. More precisely, we prove
that if E and F are sets of finite measure, if 1<p, g<o0, and if v and w are weights
which are respectively (E, p)- and (F, q)-adapted, then, for some constant K,

(4.1) Il =K (lofxzl,+ [wix )

for all f in L?(R). We are unable to give any estimate whatever for the constant K.
Examples of tempered distributions f for which the right side of (4.1) is finite, even
zero, but for which € L? are given in [19].

The proof of the a priori inequality (4.1) is based on the argument of §2, together
with a more general version of the results of Pollak and Slepian [14] and Landau and
Pollak [12]. We give this generalisation first, which is based on the following result due
to Benedicks [2].

PROPOSITION 4.1. If f€ LX), supp(f) CE, supp(f) CF, and m(E)+m(F)<oo,
then f=0.

THEOREM 4.2. Let E and F be subsets of R of finite measure. There exists a number
Y(E, F)<1 such that

1/2

(vl <ve.p( fircors)

for all f in L*(R) whose supports are contained in E.
Proof. Consider the operator T on L? given by the formula

Tf=XE'-6}_I(XF(fXE)A),

where ! denotes the inverse Fourier transform. This operator is compact and of
positive type. (To see that it is compact, note that the kernel of the integral operator

=5 (xr(fxg))

belongs to L2(R X R).)

The operator norm of T is at most 1, so T admits a spectral decomposition with
eigenvalues in [0, 1]. Let y(E, F)? be the largest eigenvalue. If y(E, F) were equal to 1,
then there would exist a nonzero function f such that

(Tr.0) =11,
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that is, such that

[lxen =171
Since for all g we have

~ 2 2
[Gxcse) ) dr=lxesll
(with equality only if supp((x )" ) C F) and

2 2
Ix zgll,=llgll>,

(with equality only if supp(g)C E), the existence of such an f would contradict Pro-
position 4.1. Thus y(E, F)<1. Further, if f=x . f, then

[ a=(Tr.0) =¥ E.FYIALL

as required. O
THEOREM 4.3. Let f be in L*(R), let s and t be in [1,2), let E and F be sets of finite
measure, and let

a=|faror|”, =] [ationr]”
Then

Iflo=[4s+m(E)°w]™ [ B+m(F)"g]" """,
where

o=1/s—1/2, r=1/t—1/2, 6=r1/(o+7),

a=[1-y(E,F)’| '[m(E) B+y(E,F)m(F)’4],

B=[1—v(E,FY] '[m(F) 4+y(E,F)m(E)"B].

Proof. The proof is but part of the proof of Theorem 2.2, and we omit it. O

COROLLARY 4.4. Suppose that 1 <p, q< oo, that E and F are subsets of R of finite
measure, and that v:R —>R™" is (E,p)-adapted while w:R —>R™* is (F,q)-adapted. There
exists a constant K such that

I l=K(llofx g ll, + wix #|l4)

for all f in LA(R).

Proof. The corollary follows from Theorem 4.3 just as Corollary 2.3 follows from
Theorem 2.2. O

It would be interesting to study further the constants y(E,F). Superficially it
appears that y(E, F)<y(m(E)m(F)/4), where the y function on the right side is that
considered by Pollak and Slepian [14] and Landau and Pollak [12].

5. Counterexamples. In this section we show that conditions similar to those
assumed in Theorems 2.2 and 3.3 are necessary to establish the relevant inequalities.
Throughout v and w are measurable functions fromR to R ™.
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COUNTEREXAMPLE 1. Suppose continuous v,w satisfy v(x), w(x)—0 as x— oco. If
0<p, q= o0 there is no constant K such that
)

(5.1) 7l =<K (llefll, + 1w/l
for all fin L.

Proof. Choose nonzero f in § For each n€Z™" define f,: x > exp(2winx)f(x—n).
Then |If, [l =I1l, while [of, I . [W},ll,~0 as n>c0. O

COUNTEREXAMPLE I1. Given 1 <p, q=< oo, suppose v, w satisfy

(5.2) "X[O,A]U”pzo(x/z) asA— o0,

(5.3) w is of polynomial order as x - oo,
or vice versa. Then there is no constant K such that

(5.4) 17l1>= Kllorl,- i,

for all fin L.

Proof. The proof is based on the familiar Rudin-Shapiro construction. Choose
nonzero f in & with support in [0, 1]. Let f,=g,=f and define sequences (f,), (g,) via
the inductive step

Jerr=ht T 81 =S~ T8y
for k€Z™ where 7,h: x> h(x—a). Evidently
(5.5) 15l =2"721f 2,
(5.6) ”0./;1”11S”f”oO“X[O,Z"]D”p'

The critical property of the sequence (f,) is |f,|]<2"*"/?f] which follows from the
identity |f,? +|g, > =2"""|f* (see [10, (37.19)]). Hence

(5.7) |wf,

=20

g
Suppose (5.4) is valid for all fin L?. From (5.3), (5.5), (5.6) and (5.7),

2"Sconst.||x[0‘2n]o||p~2"/2,

which contradicts (5.2). O

Remark. 1f we drop condition (5.3) and assume that the weights v, w are “rapidly
increasing”, then for fairly general functions f, (5.1) and (5.4) are valid in the trivial
sense that either ||vf]|, or il 4=, or f=0. Hardy’s theorem ([8], see also [4, pp.
155-158]) gives us one example of this type of result: Suppose that

o(x)=4-exp(ax®),  w(y)=B-exp(By?)

for |x|, |y| sufficiently large where 4, B,a, 8>0. If f satisfies ||vf]|,,, [wAll., < oo, then
f=0, or f is a constant multiple of exp(—ax?), or there are infinitely many such
functions fin $ according as a8>72, aB=m> or af<m>.

In [19] we give the following extension: Suppose that v, w are as above and at least
one of p,q€[1, o] is finite. If af==2, then the only fin &’ satisfying ||vf]| |wf]|q< 00

)|
p
is f=0, while if a8 <7? there are infinitely many such functions in .
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Discussion. In the remainder of the section we are concerned with the inequality

(5.9) =k (1A, +1°7],

for all fin L2. Apart from the situation described in Corollary 2.4 or Remark 3.4, this
inequality is also valid, but now in a trivial way, when p=2 and =0 or ¢=2 and
¢=0. The following three counterexamples show that there are no other cases in which
(5.8) is possible. As usual, we suppose p,q €[], o] and ,¢=0.

COUNTEREXAMPLE 11, If 0<1/p* and ¢+#1/q*, or vice versa, then (5.8) is not
possible.

Proof. Assume that (5.8) is valid for all f in L? with 6<1/p* and ¢#1/q%.
Substitute D, f, for f, where D, f is the normalized dilate defined by D, f(x)=
A V2f(x/\) (see §2) and f, is as defined in the proof of Counterexample II. Then
27/2 < const. (N~ 1/P*n(@+1/p) 4 \~9+1/4*27/2) and hence

1 SConst.((Z”}\)(a—]/p*)+}\""’+ ‘/"*).

If —¢+1/¢g* <0, take A\=2" and if —¢+1/g* >0, take A=(2/3)". In either case we
get a contradiction by letting n - cc.

COUNTEREXAMPLE II1. If 0=1/p* with 2<p<oo and $71/q%, or vice versa, no
inequality of the form (5.8) is possible.

Proof. When 8=1/p*, replacement of f in (5.8) with D, f gives

i<k (|ixt’ 1], +A7# 75" |11, )

for all A>0. But this requires

(5.9) I71.=K]lx'A],

whenever ¢ 1/q*. Define f, by f,(x)=x"'/? on [1,n] and 0 otherwise. Substitution in
(5.9) results in (logn)'/2<K(logn)'/? for all n (with the obvious modification when
p=00), an impossibility if 2<p=oco. O

COUNTEREXAMPLE IV. Suppose 0=1/p* with 2<p=<oo and $=1/q* with 2<q=<
0. Then (5.8) is not possible.

Proof. Choose y € C*(R) satisfying y(x)=0 for x=<0, y(x)=1 for x=1 and
0<y=1. Also choose a € C*(R) satisfying a(x)=2+x for x<1, a(x)=x for x=10,
and x<a(x)=<2+x for all x. For each ¢>0 define

2(») =9yl (1og (a(lyl))) P,

From Theorem 1 of Wainger [17] (with k=1, /=0, y=14 and b(y)=(log(a(y)))~'/?),
f(x)=lim,_o, % 'g(x) is defined for all x#0 and is infinitely differentiable apart
from x =0. Furthermore, this theorem shows that as x —» 0

£ ~Ix ™ (1og(a(1/1x1))) "~ 121 1og(ll) T2

and, since f€L', that f(y)=v(yDly|~"/*(log(a(y])))"'/2 It is routine to check that
IAl,» Iy 11l < 0o when 8=1/p*, 2<p=co and $=1/¢%, 2<g=o0 and yet ||f],=
o0, which contradicts (5.8). (In fact, lIx’fl,<oo when §>1/p* or §=1/p* and
2<p=<oo, and ||y|*fll,<oc when ¢$<1/¢¥ or ¢=<1/g* and 2<g=oo. Hence this
function also provides a counterexample in these cases. It uses, however, more powerful
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machinery than counterexamples II’ and III. Also note that the case p=¢g=o0 and

0=¢=1 is easily disposed of by the function f:x—|x|”!/2 since its (distributional)

Fourier transform is itself.) O

As indicated in the discussion below Counterexample II, when we put together the
above bits and pieces we get the completion of the result started in Corollary 2.4 and
34.

THEOREM 5.1. Suppose p,q E[1, ] and 8,$=0. There exists a constant K such that

1=k (|’f],+ Jr1*7],)

for all tempered distributions f with the property that f and f are locally integrable
functions if and only if 6>1/p* and $>1/q* or (p,0)=(2,0) or (¢,$)=(2,0).
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CHEBYSHEYV SYSTEMS OF MINIMAL DEGREE*

B. L. GRANOVSKY' anD ELI PASSOW ¥

Abstract. Let F={f}].o be a set of continuous functions on [a,b], and let F*={f, [} ,=o. We

determine conditions on F which are necessary and sufficient for the set F* to be a Chebyshev system on
[a, b] consisting of exactly 2n+ 1 distinct functions. The results have applications in the field of experimental
design.

1. Introduction. In many problems of mathematical statistics and probability the
matrix of moments, M(§), occurs. Here M(§)=|m, I} o, m;;= [xfi(x)f(x)&(dx),
where {f;}, i=0,1,---,n, is a set of n+ 1 linearly independent continuous functions on
a compact space, X, and £ is a probability measure on X. In particular, in the theory of
least-squares and experimental design such matrices are called information matrices or
design matrices, and the measures £ are called experimental designs.

One of the questions arising in this field is to find a solution £ for the problem of
moments m, (§)=m}; (m}; are given), with the minimum number of points of support.
(For the statistical significance of this problem and related results see [1, Ch. 10].) The
solution clearly depends upon properties of the set of functions {f, f;}} ;~o, in particular
whether this set forms a Chebyshev system. (A set {u,}/- of continuous functions on X
is a Chebyshev system on X if every nontrivial “polynomial” 27_,C,u,(x) has at most n
zeros on X. We call n+1 the degree of the Chebyshev system.) In this paper we give
necessary and sufficient conditions on the set {f}i_, so that the set {f,f}] - is a
Chebyshev system of minimal degree.

2. Preliminary results. Let »(U) be the number of distinct elements of the set U.
Let U=U,={u,}}—, be a set of real numbers and denote by U*= Uy the set of all
possible products of two elements of U,; that is, U*= Uy = {u,u;}! ;_,. Our first result
tells when »(U¥) is minimal.

LemMa 1. Suppose u;#0, i=0,1,---,n, and lu]#u), i,j=0,1,---,n, i#j. Then
v(U¥)=2n+ 1, with equality if and only if the set U, is of the form U,= {wu*}:_,, where
w and u are some real numbers such that u,w#0, ju]# 1.

Proof. The sufficiency is obvious and we prove the necessity by induction. The
assertion is trivial for n=0, so assume it is true for n— 1. Without loss of generality,
assume that jug|<|u)|<--- <Ju,|. Then Uy=Uy_, U {u,u,}i_. Now |u,_,u,| and u? are
larger than the absolute values of all the terms of U¥_; and, by the induction hypothe-
sis, »(U¥_)=2n—1. Hence, »(U¥)=v(U¥_,)+2=2n+ 1, which proves the first part of
the assertion. Now suppose that »(U¥)=2n+ 1. Then the above inequality implies that
v(U¥_|) must equal 2n—1. Thus, by the second part of the induction hypothesis,
U, = {wu*};_} and, hence, U*_, = {w?u*}3" 2. Tt is only left to show that u,, too is of
the desired form. Observe first that without loss of generality we can assume that |u|> 1.
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(For if 0<[y|<l,then @#=u"' and @=wu""' will generate the same set U,_,=
{wu*}1Z1.) So according to the assumed order of the elements of U,, we have u, = wu*,
k=0,1,---,n—1. Now consider uyu, which is distinct from u,_,u, and u? and, hence,
must coincide with some element of U*_,. Thus u,u, =w?u’ for some 0<j<2n—2, and
from this it follows that u,=wu* for some n<k=<2n—2 (k=n because otherwise u,
would belong to U,_,).

We now claim that j=n. For suppose that j=rn+ 1. Then the products u,_,u,,
u,_,u, and u2 would fail to be elements of U}_,, so that U* would have at least three
more elements than U} , has. But we showed earlier that »(U¥)=»(U}_,)+ 2. There-
fore, j=n, u,=wu”, and the proof is complete.

We would now like to apply Lemma 1 to a set of functions. We wish to show that
under appropriate hypotheses the set of all possible products of functions {f,,f;," - -,f,}
consists of 2n+1 distinct functions if and only if f,.k(x)=w(x)[u(x)]", k=0,1,---,n,
for some permutation {i,} of {0, 1,---,n}. The obvious approach is to apply Lemma 1
point by point to define the functions w(x) and u(x). The potential difficulty is that
Lemma 1 guarantees only that some rearrangement of {ug,u;,* - -,u,} forms a geomet-
ric progression, and it is possible that different rearrangements hold at different points.
This could be the case if the relationships which hold between the products (of the
values of the functions) which reduce the number of these products to 2n+1 differ at
different points. If, however, we insist that the same relationships hold at each point—
that is, if we demand that the relationships hold between the functions—then this
difficulty will not arise, as is shown in the next lemma.

LEMMA 2. Let U,={uy,uy," - - u,}, V,={vg,v,"*+,v,} be two sets of real numbers
as in Lemma 1, and suppose v(U¥)=2n+1. Suppose that identical relationships hold
between the elements of Uy and Vy'; that is, u;u;=u,u, ( for some i,j,k,l) if and only if
v,0;=v,0,. Then there exists a permutation {i,},—o of {0,1,---,n} such that simulta-
neously u, =wu* and v, =t*, k=0,1,---,n.

Proof. From Lemma 1 it follows that U,= {wu*}i_, and V,={t*}i_,. Without
loss of generality assume that u, =wu*, k=0,1,---,n, so that, in particular, u,u, =
Uy, k=1,2,---,n. Thus the same relationships must hold for the corresponding
elements of V,, that is, vyv,=v,0,_, k=1,2,- - -,n, and it follows from these relation-
ships that vk=vo(v,/vo)", k=1,2,---,n. Thus vk“—“tv", k=0,1,---,n, where t=v, and
u=uv,/v;.

Remark. Note in Lemma 1 that the order of the terms {|u,|};—, determines the
order of the terms in the geometric progression {wu*}}_,. From Lemma 2 we see that
if the products {u;u;} and {v;v;} satisfy identical relationships, then the order of the
terms |v| will either be identical to that of |u| or exactly reversed; that is, if |u, |<|u, |<
s <|uy |, then either v, |<|v; |<- - - <|v; | or |v; |>[v; |> - - - >|v; |.

3. The main results. Let F={f,,f,,---.f,} be a set of continuous functions on
[a,b], let F*={f f;}] /=, and suppose that f,(x)=w(x)(u(x))*, k=0,1,- - -,n. Then F*
will be of the form F* = {w?(x)( u(x))¥}2n,, so that »( F*)<2n+ 1. (In certain degener-
ate cases it is possible that v(F*)<<2n+1.) Our next theorem is a converse to this
result.

THEOREM 1. Let F={fy,f,,---.f,} be a set of continuous functions on [a,b). Let
T={x€[a,b]: fi(x)#O0, |LCOF|f(x), i,j=0,1,--+,n,i#j} and suppose that T, the
closure of T, is equal to [a,b]. If v(F*)=2n+1, then F={w(x)(u(x))*}i—o, where
w(x)ECla,b] and w(x)#0, x €T, while u(x)#0, lu(x)|# 1, x €T, and u(x) is continu-
ous on [a,b), except possibly where w(x)=0.
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Proof. Since v(F*)=2n+ 1, certain identities of the form f, f,=/, f, exist. Let xE T,
u,=fi(x), k=0,1,---,n, and let U,={uy,u,," - -,u,}. Then »(U¥)=2n+1, so that, by
Lemma 1, there exist w=w(x)7#0, u=u(x)7#0, [u(x)|# 1, and a permutation i, =i,(x),
k=0,1,---,n, of {0,1,- - -,n}, such that u,.k=wu", k=0,1,---,n. If y is any other point
of T and if we let v,=f(y), then v;v;=v,v, if and only if uu;=u,u, Hence, by
Lemma 2, the v’s form a geometric progression in the same order as the u’s. Since x
and y are arbitrary in 7, it follows that ]‘ik(x)zw(x)(u(x))", k=0,1,---,n,forall x€T.
In particular, f; (x)=w(x), x €T, and because of the continuity of f,(x) on [a,b]=T,
w(x) coincides with f (x) on [a,b]. Thus w is continuous on [a,b]. Now u(x)=
fi(x)/w(x) holds for all xE€T, where both f,(x) and w(x) are continuous on [a,b].
Therefore, u(x) is also continuous on [a, b], except possibly where w(x)=0.

THEOREM 2. Let F={f,.f,,* - -.f,} be a set of continuous functions on [a,b). Then all
distinct functions of the set F*={f,f}! _, form a Chebyshev system of minimal degree
2n+1 on [a,b] if and only if F is of the form F={w(x)(u(x))*}Yi_,, where w(x) and
u(x) are continuous functions on [a, b), satisfying

(i) w(x)#0, x €[a,b];

(ii) u(x) is monotone on [a, b].

Proof. Assume that all distinct functions comprising F* form a Chebyshev system
of degree 2n+ 1. We show first that the functions in F are linearly independent. Note
that each f,, k=0,1,---,n, must have a finite number of distinct zeros, for otherwise
F* would not be a Chebyshev system. From this and the fact that {f,}_, are distinct
continuous functions, it follows that for any fixed k=0,1,---,n, the functions f, f,
i=0,1,---,n, are distinct. Let 3X7_,a;f(x) be a nontrivial polynomial. Then
fi(x)Zioa, f(x)=Z!_oa, f(x)f(x) is a nontrivial polynomial formed from distinct
functions f; f, EF*, i=0,1,- - -,n. Hence 2_a, f;,(x)f,(x) has at most 2n distinct zeros,
so that 27_,a; fi(x) has a finite number of distinct zeros. Hence F is a linearly
independent set of functions.

We now show that F is actually a Chebyshev system of degree n. Let p(x)=
27_ob, f(x) be a nontrivial polynomial with r distinct zeros on [a,b], at x;, x,," -, x,.
We will show that r=<n. Construct a nontrivial polynomial g(x)=Z2!_c; f.(x) having n
distinct zeros on [a,b], all of them different from x,, x,, - -,x,. Then p(x)q(x) is a
nontrivial polynomial formed from linear combinations of the functions f; f,€ F*, so
that, according to our assumption on F*, the total number of distinct zeros of pq
cannot exceed 2n. Thus r+n=<2n, so that r=n. But p is an arbitrary polynomial, so
that F is a Chebyshev system of degree n on [a, b].

It follows from this that the complement of the set T in Theorem 1 is a finite set,
since no function f; € F can vanish at more than » points, and no two functions |f}, |f],
where f;, f;E F, can agree at more than 2n points. Thus T'=[a, b], so that by Theorem 1,
the system F is of the form F={wu*}?_,. It remains only to show that the functions
w=w(x) and u=u(x) satisfy conditions (i) and (ii).

Suppose that w(x,)=0 for some x,E[a,b). Then all of the functions w(x)[u(x)],
k=0,1,---,n vanish at x,, so that any polynomial, p(x), formed from these functions
will also vanish at x,. Now let p(x) be a nontrivial polynomial having » distinct zeros
in [a,b], all different from x,. Then p will have n+1 distinct zeros on [a,b], so that
F={wu*}!_, is not a Chebyshev system. This proves the necessity of (i), and from this,
by Theorem 1, it follows that u(x) is continuous on [a,b]. Suppose now that x,,
Xp,* -+, X, are n+ 1 distinct points in [a, b], and consider the system of linear equations

n
w(xi) E ak[u(xi)]k=0, i=0,1,---,n.
k=0
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If u(x) is not monotone on [a,b], then there exist x;, x, in [a,b], x;7x;, for which
u(x;)=u(x,). But then the jth equation of this linear system will be a multiple of the
Ith equation, so that the determinant of this system will vanish. Hence, the system has a
nontrivial solution, so that F is not a Chebyshev system, contradicting our earlier
findings, and completing the proof of the necessity of the conditions. The sufficiency is
evident from the above analysis.

COROLLARY. Let 0=¢,<t,<--- <t, be a set of integers and let F={x'+}} _,. Then
F*={x"ix"1}} ;_o is a Chebyshev system of degree 2n+1 on [—1,1] if and only if t,=kt,
k=0,1,---,n, where t is an odd integer.

Proof. By Theorem 2 it is necessary and sufficient that x'%=w(x)[u(x)]*, k=
0,1,---,n, where w(x) and u(x) satisfy conditions (i) and (ii) of that theorem. Thus,
w(x)=x', u(x)=x""', and it follows that the conditions (i) and (ii) are satisfied if
and only if #,=0 and ¢, =1 is odd, since x* is monotone on [—1,1] if and only if ¢ is
odd.

Remark. From Theorem 2 it follows that for F* to be a Chebyshev system of the
minimal degree 2n+1 it is necessary that F be a Chebyshev system of degree n. If F is
as in the Corollary then, by [2], it is a Chebyshev system of degree n if and only if 7,=0
and ¢t,, k=1,2,---,n, are alternately odd and even. The result of the corollary is that
among the sequences {z,} of [2] only those which are of the form 7,=0, 7, =k, t odd,
provide the desired property of F*.
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A NOTE ON HUDSON’S THEOREM ABOUT
FUNCTIONS WITH NONNEGATIVE WIGNER DISTRIBUTIONS*

A.J. E. M. JANSSEN'

Abstract. We show that a (generalized) function f has a nonnegative Wigner distribution W( f,f) if and
only if fis a Gauss function (possibly degenerate). We prove, more generally, that the convolution of W( f,f)
with certain Gauss functions is nonnegative if and only if f is of the special type mentioned. As a consequence
we have that the only (generalized) functions whose Wigner distributions are concentrated on a curve of a
particular type are delta functions or exponentials exp(—7at?+ 278t +y) with a, 8, y complex, Re a=0. The
main tool used is Moyal’s formula for the Wigner distribution together with Bargmann’s integral transform.

1. Introduction. For f€ L*(R), the Wigner distribution W( f,f) of fis defined as

(1.1) W(x,y;f,f)=f_ooooe“2”iy’f(x+%t')f(x—%t)dt, (xER, yER).

It is known that W( f,f) is a continuous, bounded, real-valued function that may take
negative values. The Wigner distribution was introduced by Wigner [15] as a device that
allows one to express quantum mechanical expectation values in the same form as the
averages of classical statistical mechanics. By means of the Wigner distribution one can
describe Weyl’s correspondence [7], [14] in the following elegant form (see for this e.g.
[4]). If a: R?> R is an observable, then the expectation value of a in the state f is given
by

(12) [[axy)W(x.y; £.) dxdy,

i.e., instead of substituting a particular point (x,,y,) of the phase plane in a (as one
does in classical mechanics), one integrates a against the “density function” W( f,f).
More recently there has been considerable interest in the Wigner distribution as a tool
for signal analysts to describe a signal in time and frequency simultaneously (cf. [3],
[5]). In both quantum mechanics and signal analysis one likes to interpret W( f,f) as a
density function of two variables. Such an interpretation is awkward, since W(f,f)
may take negative values as already said. Nevertheless, there is a fairly extensive list of
positivity properties of the Wigner distribution (cf. [3], [11]). These properties express
that certain averages of the Wigner distribution are nonnegative. A typical example is:
for any f€ L2(R) (cf. [2]),

(1.3) f/exp(—2778(x—a)2—27Ty(y—b)2)W(x,y;f,f)dxdyZO,

for all >0, y>0,a€R, bER where dy=<1.

It is convenient to allow in this note certain generalized functions f which we shall
describe in §2. We shall show that if f#0 has a Wigner distribution that is nonnegative
everywhere (in a generalized sense), then f is necessarily of the form

(1.4) f(t)=exp(—mat?*+2aBt—7y),
or
(1.5) f(1)=as,(1),
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where a, 8, v, a, d are complex numbers with Rea=0. If we restrict to € L*(R), this is
known as Hudson’s theorem [8]. The f’s in (1.4) are what we call Gabor functions
(although this name is usually reserved for the case that « is real and positive). We have
for the fin (1.4), by calculation,

(1.6)
2 \'/? 2 2
W(x,y;f,f)=(~Re—a) exp(—2~rrRey+2ﬂ(ReB) /Rea—27(x—ReB/Rea) Rea

—27(y+xIma—ImB)’/Rea),
if Rea>0, and
(1.7) W(x,y; f.f)=exp(—27Rey+4nrxReB)8(y—ImB+xIma),

if Rea=0. And for the fin (1.5), we have
(18) W(x,y; f.f)=d] exp(47yIma)8,(x—Rea).

We shall show more generally that if §y>1, and (1.3) is nonnegative for all a and b,
then f must be of the form (1.4) or (1.5). This result shows that Gabor functions and
delta functions are fairly isolated objects in this kind of time-frequency analysis. As an
application we show that if W( f,f) is concentrated on a curve of a certain type, then f
must be of the form (1.4) (with Rea=0) or (1.5).

The key argument, due to Hudson (cf. [8)), is the observation that for y=8=1, the
expression (1.3) can be written as exp(—m(a?+b?))|G(a—ib)?, where G is an entire
function of order 2 (Bargmann transform of f). Now, f€ L%(R), W( f,f)=0 everywhere
implies that G (a—ib)+#0 for all a and b (unless f=0). And Hadamard’s theorem can
be used to show that G, and hence f, has a special form. Since we also want to discuss
f’s which are not necessarily square integrable, we consider in §2 the Bargmann
transform in some detail for f’s in a convenient set of generalized functions.

2. Preliminaries. A convenient theory of generalized functions for discussing the
Wigner distribution was elaborated by De Bruijn (cf. [4]); we describe it here briefly.
We don’t want to use Schwartz’ theory of tempered distributions since this theory has
the disadvantage that functions like f(¢)=exp(¢) and f(¢#)=4§,(¢) cannot be considered.
Also, the theory used in this note arises naturally in the context of the Bargmann
transform which will be used later on. Our test function space S consists of all entire
functions f for which there are 4 >0, B>0 such that f(x +iy)= O(exp(—nAx*+ 7By?)).
This space can be identified with the Gelfand-Shilov space S,/3 (cf. [6], [9]). We may
describe S as the set of all f€ L?(R) for which ( f,y,)= O(exp(—na)) for some a>0.
Here 4, are the Hermite functions, given by

(2.1)

\[/,,(x)=(—1)"21/4(4W)—n/2(n!)—1/2e,,x2( d

dx
we have Hy,=(n+3)y,, where H=(x>—1/4n%(d?/dx?*))w is the Hermite operator.
We denote the dual of S by $*: an FES* is an antilinear continuous functional on S.

We have (F,y,)= O(exp(na)) for all >0, if FES*. Yet another way to describe S and
S* is by means of the Bargmann transform (cf. [2], [12]): for FES* we let

(22) (BF)(z)=e""/*(F,g;)  (z€C),

) e—21rx2 (xeR,n-_-O’l’...);



172 A.J.E. M. JANSSEN
where, for weC,
(2.3) g, (1)=2"%exp(—n(t—w)’)  (1€C).

We note that (By, )(z)=(z/7)"/Vn!. Now B maps S(S*) one-to-one onto the set of all
entire functions of order 2, type <w/2 (order 2, type <= /2). For details we refer to
[12].

It is important to note that

(2.4) (F,Gl(a,b))=exp(—%(a2+b2))(BF)(a—ib) (a€ER, bER),
where G,(a,b) denotes for y>0, aER, bER the Gabor function,

5\ 1/4 )
(2.5) Gy(a,b)(t)=(7) exp(—my~'(t—a)’+2mibt—miab)  (1ER),

whose Wigner distribution is given by

(2.6)  WwW(x,y; G,(a,b), Gy(a,b)) =2cxp(—27ry“'(x—a)2—27ry(y—-b)2)

(xER,yER).

We further have
(2.7)

=21/ -2 (11_—_“ 2, 2mBz (o 2 —1)
(BF)(z)=2"*(1+a) ““exp T 2™ T 1% e m(v—B*(1+a) ) (zecC),
and
2.8 BF)(z)=2"*dexp -—l'rrzz+27raz—-7ra2 (zeC),

2

where F is the f of (1.4) and (1.5) respectively. We conclude that if P(z)=az2+bz+c
with |a|<7/2, bEC, cEC, then there is exactly one F of the form (1.4) or (1.5) such
that (BF)(z)=exp(P(z)).

We shall also need the operator e~ *¥ which can be defined on S and S* for
Rea=0. We have

(2.9) B(e *"F)(z)=e **(BF)(ze™*)  (z€C),

for FES* (cf. [2], [12]). For a>0, e~ *" is De Bruijn’s smoothing operator N, (cf. [4]);
the kernel K, of N, is given by
-

sinh a

(2.10) Ka(z,t)‘—‘(sinha)—l/zexp( ((22+t2)cosha—22t)) (zER, tER).

The Wigner distribution can also be defined for FE€ S*; it thus becomes a gener-
alized function of two variables. An important formula is due to Moyal (cf. [4]): if
FeS* feS, then

(2.11) (W(E,F), W(£.1)=|(F.N).
Note now that (1.3) follows from (2.6) and (2.11) in case § =y~ .
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We shall also use the formula
(2.12)

W(x,y; N,f,N,f)=(2sinha) " 'exp(—27(x2+y?)tanha)

'ffexp( —2vrcotha((z—x/cosha)2+ (w——y/cosha)z))
W(z,w; f,f)dzdw

for x ER, y €R,; this is just another way to write [4, Thm. 16.1]. Here fE S, but it is
easy to extend (2.12) so that it holds for FES* (cf. [10], where things like these are
treated in detail).

3. The main result. In [9], a generalized function ® of 2 variables is called non-
negative (®=0), if (®,¢)=0 for every nonnegative test function ¢ of two variables. It
can be shown from the Riesz representation theorem (also cf. [9, App. 4]) that for such
a ® there is a unique Borel measure p, on R, such that

ffexp(—vre(xz+y2))duq,(x,y)<oo for all e>0,

and such that (®,¢)=//@(x,y)dpe(x,y) for all test functions ¢. This notion of
nonnegativity agrees with the familiar notion of nonnegativity, a.e., if ® is an ordinary
function.

THEOREM 1. Let FE S*, and assume that W(F, F)=0. Then F is of the form (1.4) or
(1.5).

Proof. Let ® := W(F, F), and assume that F50. This implies by (2.11) that ®+0,
whence pg#0. We conclude from (2.11) and (2.6) that

(3.1)  |(F.G\(a,b)] =(W(F,F), W(G\(a,b), G\(a,b)))

=ffexp(—2'/7(x—a)2—2W(y—b)2)dﬂq>(x’)’)>0’

for allaER, bER. That is, (F, G,(a,b))#0 for all aER, b ER. We see from (2.4) that
(BF) (z)#0 for all z€C. Since BF is an entire function of order 2, type <= /2, we
conclude that BF is of the form (BF)(z)=exp(P(z)), where P(z)=az?+bz+c, with
la|=w /2. Hence, by (2.7) and (2.8), and injectivity of B, F is of the form (1.4) or (1.5).
This completes the proof. O

As an incidental note we remark that with a similar method one can show the
following . Assume that FE€ S* has a radially symmetric Wigner distribution. Then F is
a multiple of a Hermite function v,,. Here we call a generalized function ® of two
variables radially symmetric if (®,¢ o U;)=(®, ¢) for all test functions ¢ and all 0 ER,
where (¢ © Uy)(x,y)=@(xcosf+ ysinf, —xsinf+ycos@) for (x,y) ER?. For the proof
one observes that, by radial symmetry of W(F, F) and W(G(0,0), G,(0,0)) and (3.1),
the expression |( F, G,(a,b))P only depends on a%+b2. This implies that | BF)(z)| only
depends on |z|, whence, by the maximum modules principle, (BF )(z)=cz" for some
c€C,n=0,1,--. Hence F=dy, for some d€C. Also see [11], [13], where it is proved
that

W(x,y; ¥, ) =2(—1)"exp(—27(x*+y?)) L, (47(x>+y?)),

with L, the nth Laguerre polynomial.
It is fairly easy to generalize the previous theorem as follows.
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THEOREM 2. Let FES*, 6>0, y>0, 8y>1, and assume that F is not of the form
(1.4) or (1.5). Then the convolution of W(F,F) with exp(—2n6x*—2myy?) takes nega-
tive values.

Proof. We see from (2.9) that N, F is not of the form (1.4) or (1.5) if «>0. Hence,
by the previous theorem, W(N,F,N,F) takes negative values. Then (2.12) shows that
the convolution of W(F,F) and exp(— 27 cotha(x%+y?)) takes negative values. This
proves the theorem in case y =8 =coth a.

In general we can express, by a transformation of variables and (3.2) below, the
convolution of exp(—2m8x2—2wyy?) and W(F,F) at the point (a,b), as the inner
product of exp(—2mp((x—ae)?+(y—be ')?)) and W(Z.F,Z F). Here p=(8y)'/?,
¢=(8/v)"/* and Z, is the operator defined by (Z,f)(¢)=¢~'/2f(¢"'t) for fES, and
extended in the obvious way (cf. [10, 1.15]) to S*. We use here that for fES, xER,
YER,

(3.2) W(e 'x,e; f.f)=W(x,y; Z.f, Z.f ),

a formula that can be generalized straightforwardly so as to hold for f€ $* as well. It is
clear that if F is not of the form (1.4) or (1.5), then neither is Z_F. Since we can find an
a>0 such that p=cotha, we conclude from the special case already treated that the
proof is complete. O

4. An application. It is believed that the only curve a Wigner distribution can be
concentrated on is a straight line'; this is true only if certain restrictions on the curve
are imposed (cf. the examples at the end of this section). We shall give a proof for the
following simple case. Let C be a continuously differentiable curve in the plane with
parametrization y: R —R?2, where we assume that [y’(¢)|>0 for all t. Assume that for
all t, ER there is a straight line / passing through y(¢,), but not tangent to C, such that
there is ¢>0, §>0, with the property that the distance between y(s) and /=g, if
lv(s)—v(2,)|=9. This condition is satisfied, e.g., if C is the graph of a continuously
differentiable function defined on R. Now let FES* be a function whose Wigner
distribution is concentrated on C in the following sense: there is a continuous function
h: C-R, such that h(y(2))= O(exp(ely(?)P)) for all >0, and

(a.1) W(EF), @)= hr( Doy (1)lae

for all test functions ¢ of two variables. We shall show that this implies that F is of the
form (1.4) (with Rea=0) or (1.5), so that, in particular, C is a straight line. To this end
let y(¢,)=(a,b) be a point on C and consider for Rea>0 the function g, , ,, given by

(4.2) ga‘a,b(t)=exp(—wa(t—a)2+2wibt—'n'iab) (teR),
whose Wigner distribution W, , , is given by
(4.3)

W ao(X:9)= (-li'zé;)l/zexp(—27r(x—a)2Rea—27r(y—b+(x—a)Ima)z/Rea).
We have by (2.11) and (4.1)
(44) 0<(W(F.F), Wy us)=[ h(r ()W 0 s(¥(D)y(D)lat.

''Cf. (1]. I thank Alan Weinstein for calling my attention to this paper.
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Now let / be the line through y(¢,) whose existence is assured by our assumptions, and
take a such that {(x,y)|y=b—(x—a)Ima} is the graph of /. (If / is parallel to the y-axis
we can use a similar argument with

5\ 172
(;) exp(—wy_'(t—a)2+27ribt—7riab)

instead of g, , ,, where we take y—0). If we let Rea—~0, the right-hand side of (4.4)
tends to Coh(y(2y))ly'(¢y)|, where C,>0 is a number that depends only on the angle
between / and the tangent line at C through y(7,). Hence h(v(z,))=0. We easily see
from our theorems and (1.6)—(1.8) that F is of the form (1.4) (with Rea=0) or (1.5).
Notes. The condition “A continuous” can be relaxed to “h measurable” at the
expense of elegance of the proof. It is furthermore likely that the conditions on the
curve C can be relaxed somewhat as well. On the other hand, consider the function
f=3,8,, whose Wigner distribution is given by {3, (— 1§, ,®8, ,, where the
summations are over all integers (this follows from a straightforward calculation and
the Poisson summation formula, written in the form ¥,8,(x)=2,e 2""*), The points
of the lattice (%£,%) can be joined by a smooth curve C; such a C does not satisfy our
assumptions, of course. Another objection is that the function 4 cannot be continuous
in this case. This is not a serious point, however, as can be shown as follows. Let k:
R — R be continuous, and assume that k vanishes outside [—4,3]. The Wigner distri-
bution of k,*f (where f is as above and * denotes convolution) is obtained by
convolving W( f,f) and W(k,, k,) with respect to the first variable (cf. [5, 4.1]). We get

1 k
(45) Wi korfokoe/) =5 2 (D)W x=5 35 Kok |8,2(2)
k.l

(this formula can also be derived by directly using the Poisson summation formula).
Since W(k,,k,) is concentrated in the strip [—4, ] X R, we see that W(k,*f,ky*f) is
concentrated in the set {(x+%,%)||x|<%, kE€Z, /EZ}. The components of this set can
be embedded in a smooth curve, and the function 4 now becomes continuous, since
W(k,, k) is continuous.

A second example showing that one has to be careful with the statement, “W( f,f)
cannot be concentrated on a curve unless this curve is a straight line,” is the function
f(t)=cos2nt, whose Wigner distribution equals §(8,,(y)+6_,,(y)+28,(y)cosdmx).
Now W(f,f) is concentrated on the three lines y=0, y= *+2, and these lines can be
embedded in a smooth curve.

REFERENCES

[1] N. L. BALAZS, Wepl’s association, Wigner’s function and affine geometry, Physica, 102A (1980), pp.
236-254.

[2] V. BARGMANN, On a Hilbert space of analytic functions and an associated integral transform, part 1,
Comm. Pure Appl. Math,, 14 (1961), pp. 187-214.

[3] N. G. pE BRUDN, Uncertainty principles in Fourier analysis, in Inequalities, O. Shisha, ed., Academic
Press, New York, 1967, pp. 57-71.

, A theory of generalized functions, with applications to Wigner distribution and Weyl correspon-
dence, Nieuw Archief voor Wiskunde, 21 (1973), pp. 205-280.

[5] T. A. C. M. CLAASEN AND W. F. G. MECKLENBRAUKER, The Wigner distribution—A tool for time-frequency
signal analysis, Parts 1, II and 111, Philips J. Res., 35 (1980), pp. 217-250, 276-300, 372-389.

[6] 1. M. GELFAND AND G. E. SHILOV, Generalized Functions, Vol. 2, Academic Press, New York, 1969.

[71 A. GROSSMAN, G. Loupias AND E. M. STEIN, An algebra of pseudo-differential operators and quantum
mechanics in phase space, Ann. Inst. Fourier, 18 (1969), pp. 343-368.

(4]




176 A.J. E. M. JANSSEN

[8] R. L. HUDSON, When is the Wigner quasi-probability density non-negative, Rep. Math. Phys., 6 (1974), pp.
249-252.

[9] A. J. E. M. JANSSEN, Application of the Wigner distribution to harmonic analysis of generalized stochastic
processes, MC-tract 114, Mathematisch Centrum, Amsterdam, 1979.

, Convolution theory in a space of generalized functions, Proc. KN.AW., Ser. A, 82 (1979), pp.

283-305.

[11] , Positivity of weighted Wigner distributions, this Journal, 12 (1981), pp. 752-758.

[12] , Bargmann transform, Zak transform and coherent states, J. Math. Phys., 23 (1982), pp. 720-731.

[13] J. PEETRE, The Weyl transform and Laguerre polynomials, Matematiche (Catania), 27 (1972), pp. 301-323.

[14] H. WEYL, Theory of Groups and Quantum Mechanics, Dover, New York, 1950.

[15] E. WIGNER, On the quantum correction for thermodynamic equilibrium, Phys. Rev., 40 (1932), pp.
749-759.

[10]




SIAM J. MATH. ANAL. © 1984 Society for Industrial and Applied Mathematics
Vol. 15, No. 1, January 1984 0036-1410,/84,/1501-0015 $01.25 /0

GENERALIZED FOCK SPACES AND ASSOCIATED OPERATORS*
FRANK M. CHOLEWINSKI'

Abstract. A class of generalized Fock spaces associated with Bessel functions is studied. The generalized
Fock space is a Hilbert space of even entire functions weighted by a modified Bessel function of the third
kind, whereas ordinary Fock space is a Hilbert space of entire functions of several complex variables
weighted by a Gaussian kernel. The generalized Fock space has a reproducing kernel which is a modified
Bessel function of the first kind.

Commutator relations between the Schrodinger radial kinetic energy operator and multiplication by z2
lead to a generalized class of Weyl relations for the Bessel functions.

1. Introduction. In a series of papers, V. Bargmann [2]-[4] studied a family of
Hilbert spaces, whose elements are entire functions of n complex variables. These
Hilbert spaces are associated with Fock’s [10] realization of the creation and annihila-
tion operators of Bose particles in quantum field theory.

If ¢ and p are selfadjoint operators on a Hilbert space I satisfying the canonical
commutation rule

(1.1) [p,q]=—il, with Planck’s constant h=2,

and if

P=2""%(g+ip) and Q=27'*(g—ip),
then P*=Q, Q*=P and
(1.2) [P,Q]=LI

Fock [10] introduced the operator solution P=3% of the commutation rule (1.2) and
applied it to quantum field theory. Bargmann obtained a realization of Fock space % as
a space of entire functions weighted by a Gaussian function.

In this paper a Hilbert space of entire functions on which the square of the
position operator and the generalized radial kinetic energy operators are adjoints is
obtained. The Hilbert space is weighted by a modified Bessel function of the third kind.
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